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ABSTRACT 

Purpose: Muscle anatomical cross-sectional area (ACSA) can be assessed using ultrasound and 

images are usually evaluated manually. Here, we present DeepACSA, a deep learning approach 

to automatically segment ACSA in panoramic ultrasound images of the human rectus femoris 

(RF), vastus lateralis (VL), gastrocnemius medialis (GM) and lateralis (GL) muscles. Methods: 

We trained three muscle-specific convolutional neural networks (CNNs) using 1772 ultrasound 

images from 153 participants (age=38.2 years, range: 13-78). Images were acquired in 10% 

increments from 30 to 70% of femur length for RF and VL and at 30 and 50% of muscle length 

for GM and GL. During training, CNN performance was evaluated using intersection-over-union 

scores. We compared the performance of DeepACSA to manual analysis and a semi-automated 

algorithm using an unseen test set. Results: Comparing DeepACSA analysis of the RF to manual 

analysis with erroneous predictions removed (3.3%) resulted in intra-class correlation (ICC) of 

0.989 (95% CI 0.983;0.992), mean difference of 0.20 cm
2
 (0.10;0.30) and standard error of the 

differences (SEM) of 0.33 cm
2
 (0.26,0.41). For the VL, ICC was 0.97 (0.96,0.968), mean 

difference was 0.85 cm
2
 (-0.4,1.31) and SEM was 0.92 cm

2
 (0.73,1.09) following removal of 

erroneous predictions (7.7%). After removal of erroneous predictions (12.3%), GM/GL muscles 

demonstrated an ICC of 0.98 (0.96,0.99), a mean difference of 0.43 cm
2
 (0.21,0.65) and a SEM 

of 0.41 cm
2
 (0.29,0.51). Analysis duration was 4.0s standard deviation (SD) ± 0.43 for analysis 

of one image in our test set using DeepACSA. Conclusions: DeepACSA provides fast and 

objective segmentation of lower limb panoramic ultrasound images comparable to manual 

segmentation. Inaccurate model predictions occurred predominantly on low-quality images, 

highlighting the importance of high image quality for accurate prediction. 

Key Words: IMAGE SEGMENTATION, MUSCLE, ULTRASONOGRAPHY, U-NET, DEEP 

NEURAL NETWORKS 
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INTRODUCTION 

The anatomical cross-sectional area of a muscle (ACSA) represents a two-dimensional index of 

muscle size acquired in the transversal plane. (1) Muscle ACSA is important for clinical and 

scientific practice; it is related to the capacity of a muscle to generate force and, as a 

consequence, to locomotor performance. (2,3) Recent investigations have shown that muscle 

ACSA represents a useful parameter in the diagnosis and classification of several muscular 

disorders as well as the potential monitoring of disease progression. (4–7) Lower limb muscle 

ACSA is often assessed in the diagnosis of sarcopenia and is strongly associated with frailty. (4–

6) Moreover, measuring lower limb muscle mass or ACSA is necessary to assess the extent of 

induced muscle loss in cachectic, dystrophic, and even intensive care unit patients. (7–9) Muscle 

mass is also a predictor of hospital stay duration in patients with moderate to severe COVID-19. 

(10) Thus, whole muscle ACSA represents a crucial variable when monitoring muscle decline in 

pathological settings, in response to disuse and ageing, and when investigating muscle 

adaptations to training in rehabilitation and return to sport scenarios.  

 

Muscle ACSA can be assessed using several techniques such as Magnetic Resonance 

Imaging (MRI) and computer tomography, or with ultrasound imaging. Due to technical 

advances, the ability to perform measurements at the bedside, and drastically lower costs 

compared to other imaging modalities, the use of ultrasound has increased in many research and 

clinical settings. (4,11,12) Because of the shape and size of several lower limb muscles, 

conventional static B-mode ultrasound is often unsuitable to assess whole muscle ACSA. (1) The 

main reason for this is the limited field of view of most transducers. (1,11) Hence, panoramic 

ultrasound, which is used to obtain a panoramic image of the whole muscle, is employed to 
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circumvent the limitations imposed by the field of view of most commercially available 

transducers. (1) Brightness mode panoramic ultrasound inherits the benefit that it enables the 

user to image structures extending the field-of-view of the transducer. Thus no stitching of 

several non-panoramic images as well as manual extrapolation is required for complete ACSA 

assessment in ultrasonography images. (1,13) Yet, a limitation of panoramic ultrasonography is 

that the algorithms used for image calculation by the manufacturers are usually unknown. The 

technical principles are similar to those of non-panoramic ultrasonography, requiring the same 

methodological aspects to be considered. (1,13,14) However, panoramic ultrasonography is a 

more challenging technique, as it requires steady and consistent probe movement in the same 

imaging plane. (1,15) Nonetheless, panoramic ultrasound has previously shown good 

comparability to MRI and excellent inter-session and inter-rater repeatability. (16,17)  

 

Once ultrasound is implemented as a routine part of ACSA monitoring, large volumes of 

image data could be collected, necessitating efficient and reliable analysis methods. To date, 

ultrasound images of muscle ACSA are mostly evaluated manually. However, manual analysis is 

subjective, laborious, and requires great experience. (18,19) Semi-automated and automated 

algorithms have been developed to accelerate the ACSA segmentation process and reduce the 

subjectivity of manual segmentation in lower limb muscle ultrasound images. (20,21) These 

approaches used sophisticated image processing steps to localize features and objects within an 

image. However, because of this, their generalisability is limited, and they present inconsistent 

results depending on image properties. 
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Making use of deep learning might be advantageous compared to non-trainable image 

processing alone, especially since convolutional neural networks (CNNs) have shown great 

promise identifying features in medical ultrasound and MRI scans. (12,19) U-net structured 

CNNs (22) have inter alia been successfully applied to brain MRI segmentation(23), carotid 

plaque segmentation in ultrasound images (24), as well as lower limb muscle segmentation in 

ultrasound and MRI images. (25–28) Previously, Chen et al. (27) and Marzola et al. (25,26) 

presented automatic approaches to segment the ACSA of upper and lower limb muscles, but only 

in conventional static brightness mode ultrasound images, and not panoramic images.  

 

To our knowledge, the semi-automated ACSAuto program (20) is the only open-access 

tool available for analysing panoramic lower limb ultrasound images. Thus, it should be 

determined whether CNN approaches could be used to fully automate the process of ACSA 

analysis from panoramic ultrasound images. This could increase objectivity and reduce the time 

and effort needed for the analysis process. (18,25) Although manual ACSA segmentation of 

ultrasound images is the current gold standard, using automatic approaches might increase the 

evaluation quality.  

 

In this study we present DeepACSA, a python package incorporating U-net based CNNs 

to automatically segment the ACSA of lower limb muscles in panoramic ultrasound images. 

DeepACSA is open source and includes a custom graphical user interface (GUI) to allow 

straightforward use and implementation. The muscles of interest are the m. rectus femoris (RF), 

m. vastus lateralis (VL), mm. gastrocnemius medialis (GM) and lateralis (GL). Here we describe 
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the DeepACSA package and compare it to manual image analysis and a non-trainable image 

processing script (ACSAuto) (20).  

 

METHODS 

Image acquisition and data  

The data used in this study contains images from 143 participants of different age groups 

(adolescent males: n = 50, 16.4 years (13 to 17), adults: n = 83 (25 females, 58 males), 26.9 years 

(18 to 40), elderly males: n=10, 71.5 years (65 to 78)). We used 602 ultrasound images of the 

RF, 634 ultrasound images of the VL and 298 ultrasound images of the GM and GL (9 to 36 

images per participant) acquired in previous and ongoing studies which received ethical approval 

from the responsible committees (Ethics Committee of North-Western and Central Switzerland; 

Local ethics Committee of the Department of Biomedical Sciences, University of Padova) and 

complied with the Declaration of Helsinki. Participants signed an informed written consent prior 

to the start of the study after receiving all relevant study information. Images were anonymized 

and randomly divided into a training set for the models as well as an external test set, making 

sure that no image of the same muscle region of one participant appeared in both sets. To 

increase image variability, we used brightness mode panoramic ultrasonography from three 

devices (ACUSON Juniper, linear-array 54 mm probe, 12L3, Acuson 12L3, SIEMENS 

Healthineers, Erlangen, Germany; Aixplorer Ultimate, linear-array 38mm probe, Superline 

SL10-2, SuperSonic Imagine, Aix-en-Provence, France; Mylab 70, linear array 47mm probe, 

Esaote Biomedica, Genova, Italy) collected by three different experienced operators to assess the 

ACSA of RF, VL, GM and GL. We acquired scans at rest and a guide was mounted to the leg to 

control the transversal path. Because of regional differences in muscle size and shape, we 
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acquired images of the RF and VL at 10% increments from 30 to 70% of the distance between 

the lateral femur condyle and the trochanter major. Participants laid in a supine position with 

their legs extended and feet on the bed. We acquired images of the GM and GL at 30 and 50% of 

muscle length. Participants laid in a prone position with their legs extended and feet on the bed. 

Scans of the RF and VL muscles were either taken separately or cropped from whole quadriceps 

scans to increase image variability. We included images of all acquired regions in our training 

and validation sets. Ultrasound device settings differed between devices and study protocols, and 

image depth, brightness and contrast settings were always chosen to ensure best visibility of the 

muscle. Images included in the training and validation sets were manually labelled by an 

experienced investigator (PR) prior to model training (Fig. 1). Manual segmentation consisted of 

digitizing the ACSA of each muscle using the polygon tool in FIJI (29). We randomly included 

30 images from the proximal (70% of femur length), mid (50% of femur length) and distal (30% 

of femur length) regions in the test  set for the RF and VL. For the GM and GL, 37 images from 

the mid (50% of muscle length) and 28 images from the proximal (30% of muscle length) region 

were randomly included in the test set. Therefore, the test set consisted of 90 images for the RF 

and VL and 65 images for the GM and GL. The ratio of images in the test and training sets for 

the RF was 0.18 (90:512), for the VL 0.17 (90:544), and for the GM and GL 0.27 (65:233). No 

cropped images were included in the test set because we only had these images available from 

one device. We measured ACSA in all images of the test set using the DeepACSA and ACSAuto 

programs. Because GL segmentation is not supported in ACSAuto, we only analyzed the GM 

test images with ACSAuto. 
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Network architecture and training 

We performed sematic segmentation with two classes (ACSA and background) on pre-processed 

ultrasound images. The image-label pairs (Fig. 1) served as input for the models. We compared 

the performance of the original U-net architecture to models using a pretrained VGG16 encoder 

path and a U-net decoder path. The U-net models we employed consisted of a contracting and an 

expanding path. (18,22) The exact architecture of the U-net model can be found elsewhere. 

(18,22)  The encoder (left) path uses convolution and max pooling layers to generate a 1024-

dimensional abstract representation of the input image. Subsequently, the decoder (right) path 

uses deconvolutional layers to generate a pixelwise class prediction from the abstract image 

representation of the input. Features between layers of the same resolution are shared so that 

information about small-scale objects is not lost (hence the U-shape). The model outputs a 

pixelwise binary label, thus, every pixel of an image is predicted to belong to one of two possible 

classes. Shortly, and incontrast to the U-Net encoder, the VGG16 encoder uses a series of 

convolutional and may pooling layers to generate a 512-dimensional abstract representation of 

the input image (Fig. 2). (30) Detailed description of the VGG16 encoder path architecture can 

be found elsewhere. (30) We adopted U-net and VGG16 models due to their demonstrated 

success for image segmentation in several fields (18,25–28,30) and their ability to work well 

with small datasets containing a few hundred images (22). Prior to model training, images and 

masks in the training sets of all muscles were augmented using height and width shift, rotation 

and horizontal flipping (see shared code for details). We imported, normalized to a scale between 

0 and 1, and resized the images to 256 x 256 pixels for training. Training the CNNs with 512 x 

512-pixel sized images yielded inferior intersection-over-union (IoU) and accuracy scores and 

was computationally more expensive. By convention, we applied a random 90/10 % 
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training/validation data split within the training data set. (18) We trained three separate models, 

one for RF, one for VL and one for GM and GL combined with the same U-net model 

architecture.(18,22) A RTX3060 GPU (NVIDIA, Santa Clara, USA) was used for model training 

with a defined maximum of 50 epochs and a batch size of one. We used the Adam optimizer for 

stochastic gradient descent to update network weights with an initial learning rate of 10
-5

. (18,22) 

The learning rate was reduced by a factor of 0.1 following ten epochs of loss stagnation. We 

used binary cross-entropy as a loss function because the segmentation task only represents two 

classes. To reduce the risk of overfitting, we implemented early stopping when the training error 

decreased, and the test error reached a plateau or increased. During training, model performance 

was evaluated using the IoU measure to test the overlap between manually segmented muscle 

area and labels predicted by the respective model (Table 1). IoU is defined as 

 

𝐼𝑜𝑈(𝐴, 𝐵) =  
|𝐴 ⋂ 𝐵| 

|𝐴|+ |𝐵| − |𝐴 ⋂ 𝐵|
 ,  [1] 

 

where 0 ≤ IoU (A, B) ≤ 1, A describes the ground truth and B the model predictions. The IoU is 

maximal if the ground truth A and model predictions B are the same and minimal if A and B 

have no overlap.  

 

The output of each CNN is a binary mask image that contains the predicted muscle area. 

The output is post-processed so that holes within the predicted muscle are filled and, in case of 

multiple predicted structures, only the largest structure is kept. The DeepACSA code is written in 

Python using a Keras API to interface with Tensorflow for model training. The code and trained 

models from this project are openly available at https://github.com/PaulRitsche/DeepACSA.git. 
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For more information about program use we refer the reader to an instructional online video 

(Link: https://youtu.be/It9CqVSNc9M).  

 

Analysis metrics 

All statistical analyses were performed in R software (31) (Base, BlandAltmanLeh, irr, readxl 

and rstudioapi packages). The analysis script is shared as supplemental digital content (see 

Supplemental Digital Content 1, http://links.lww.com/MSS/C684). We compared DeepACSA 

and ACSAuto measurements to manual measurements. For this purpose, we calculated 

consecutive-pairwise intra-class correlations (ICC) and standard error of the differences between 

methods (SEM) with 95% compatibility intervals (CI). We used Bland–Altman analysis (32) to 

test the agreement between two analysis methods and set the limits of agreement to ± 1.96 

standard deviations. We computed the standardized mean bias according to Hopkins (33), with 

0.1, 0.3, 0.6, 1.0 and 2.0 representing small, moderate, large, very large and extremely large 

errors respectively.  

 

RESULTS 

The training of the deep neural networks required 23 to 38 epochs, and IoU and loss metrics are 

shown in Table 1. Performance of the model employing a pretrained VGG16 encoder path and a 

U-net decoder path outperformed the original U-net architecture slightly, based on IoU and 

accuracy measures. Thus, we selected this model architecture for comparison to manual analysis. 

An example of an input image  and model prediction following post-processing is shown in 

Figure 2. ICCs, SEMs, mean bias, standardized mean bias with 95% CI as well as percentage 

values for all muscles across all regions comparing DeepACSA and ACSAuto to manual 
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measurements are shown in Table 2 and Fig. 3. We additionally report comparability statistics 

after removing incorrect predictions (RF: n = 3 (3.3%), VL: n = 7 (7.7%), GM & GL: n = 8 

(12.3%)) by the models (Table 2). Predictions were removed following visual inspections by an 

experienced investigator (PR) based on obvious deviations from the expected ACSA of the 

respective muscle (Fig. 4). All images wrongly segmented by the models can be found in the 

supplemental digital content (see Supplemental Digital Content 2, 

http://links.lww.com/MSS/C685). Comparing DeepACSA analysis of all muscles including the 

wrong predictions to manual analysis resulted in ICCs between 0.91 and 0.99, mean differences 

of 0.24 to 0.85 cm
2 

and SEMs ranging from 0.46 to 1.53 cm
2
 (Table 2). Calculated standardized 

mean biases were small for all muscles ranging from 0.05 to 0.14 (Table 2). The comparison of 

ACSAuto with manual analysis of all images and muscles resulted in ICCs between 0.97 and 

0.99, mean differences of -0.13 to 0.24 cm
2 

and SEMs ranging from 0.23 to 0.66 cm
2
. 

Standardized mean biases were small for all muscles ranging from -0.02 to 0.05 (Table 2). 

DeepACSA segmentation resulted in differences between muscle regions for the VL. At 30% of 

femur length, the ICC was 0.75 (95% CI: 0.53;0.87), the mean difference was 1.66 cm
2
 

(0.47;2.85) and the SEM was 2.24 cm
2
 (1.05;3.41). Standardized mean bias was moderate (0.34). 

In contrast, at 50% of femur length, the ICC was 0.95 (0.89;0.97), the mean difference was 0.72 

cm
2 

(0.16;1.27) and the SEM was 1.05 cm
2
 (0.73;1.27). Standardized mean bias was small 

(0.14). At 70% of femur length, the ICC was 0.96 (0.93;0.98), the mean difference was 0.18 cm
2
 

(-0.15;0.51) and the SEM was 0.63 cm
2
 (0.29;0.96). Similar to the 50% of femur length site, the 

observed standardized mean bias was small (0.05). Regional data for RF, GM & GL can be 

found in the supplemental digital content (see Tables S1-S3, Supplemental Digital Content 3, 

Comparison of manual analysis and ACSAuto and DeepACSA at 30%, 50%, and 70% femur 
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length, http://links.lww.com/MSS/C686). Removing incorrect model predictions resulted in 

increased ICCs and decreased mean differences, SEMs, and standardized mean bias for all 

muscles (Table 2). In Bland-Altman analysis, concerns regarding heteroscedasticity were only 

raised when comparing manual to DeepACSA RF analysis. With increasing muscle size, it 

seems that the variance around the mean difference increases.  

 

Additionally, we compared the efficiency of DeepACSA and ACSAuto in ten images.  

Analysis duration was 4.0s standard deviation (SD) ± 0.43 for scaling, segmenting and saving 

the analysis results of one image in our test set using DeepACSA. Compared to that, analysis 

duration for one image using ACSAuto (whole workflow) was 40.3s ± SD 6.9.  

 

DISCUSSION 

Here we present DeepACSA, a deep learning approach for automatic analysis of muscle ACSA 

in panoramic brightness mode ultrasound images. The predictions of our trained CNNs were 

comparable to manual segmentation for all the lower limb muscles investigated. To our 

knowledge, DeepACSA represents the first openly accessible program able to automatically 

segment the muscle area of rectus femoris, vastus lateralis, gastrocnemius medialis, and 

gastrocnemius lateralis in panoramic ultrasound images. 

 

Comparing the DeepACSA-based analysis of all muscles, the predictions of GM & GL 

ACSA were found to have the highest agreement with manual analysis. The worst agreement 

was observed for the RF. Yet, only the VL  displayed regional differences. Most incorrect VL 

predictions occurred at 30% of femur length. Here the aponeuroses of the VL are more difficult 
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to scan and in some cases cannot be distinguished from surrounding tissue. Thus, the image 

quality decreases. Lower pixel contrast and image quality make prediction more difficult and 

might lead to deletion or selection of the wrong area during post-processing. 

 

All our CNNs demonstrated minimal loss and high IoU scores. Although high IoU and 

minimal loss values in the training set might indicate overfitting, similar values were observed 

for the test set. Thus, our models can generalize to unseen data. However, we used ultrasound 

images of all three devices in our training, validation and test sets leading to similar image 

characteristics in all data sets. To test whether our CNNs can generalize to unseen image data 

from other devices, images from a fourth device should solely be added to the test set. Based on 

our results, visual inspection of the model output subsequent to automatic muscle ACSA 

segmentation is still necessary, and the removal of erroneous predictions resulted in increased 

comparability for all muscles. However, we believe that adding more training data might help to 

eliminate these model failures. Erroneous predictions in the test set mostly occurred when image 

quality was low, i.e., when tissue contrast was low or pixel values were homogeneous. 

Therefore, image quality is still an important factor for correct muscle ACSA segmentation using 

deep learning. Images for which muscle ACSA was predicted incorrectly should be analyzed 

using ASCAuto (20) or manually.  

 

Given that DeepACSA is comparable to manual evaluation, the program might be 

implementable in a clinical setting as well. In contrast to MRI or computer tomography, 

ultrasound can be used quickly at the bedside of patients and practitioners do not necessarily 

need active cooperation from patients. (4)  This might be especially important for patients in the 
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intensive care unit or with severe muscular disorders. (9,34) DeepACSA analysis is comparable 

to manual evaluation, more time efficient, and automates the segmentation process. This is 

important for clinical practice as it decreases the effort needed to analyze ultrasound image data. 

In fact, reducing the subjectivity of the analysis might increase the overall validity of clinical 

results. Moreover, our trained CNNs could be used to correctly predict the ACSA of other 

muscles, in patients with muscular diseases or an ageing population (for example when screening 

for the presence of sarcopenia). However, because of differences in image properties, it might be 

necessary to retrain our models including labeled images from the respective muscles or clinical 

populations in the training dataset. In the future, we aim to release more models that allow data 

from additional muscles and clinical populations to be analysed using the DeepACSA package.  

 

In contrast to the algorithms presented by Chen et al. (27) and Marzola et al. (25,26), who 

used a supervised learning approach with U-net structured CNNs and achieved good precision 

and recall rates, DeepACSA can segment muscles in panoramic ultrasound images. To our 

knowledge, DeepACSA is the only program that includes images of several lower limb muscles 

from various muscle regions, different operators, and several ultrasound devices. Whereas 

Marzola et al. (25) included images from the tibialis anterior, GM and biceps brachii at rest, 

Chen et al. (27) included images of the RF during contraction. Acquiring images during 

contraction could limit the generalizability of the model to images acquired at rest. Furthermore, 

while the algorithms proposed by Marzola et al. (25,26) seem to distinguish between clinical and 

healthy populations based on echogenicity values, segmenting ACSA in muscles that exceed the 

field of view of the ultrasound transducer may have limited meaningfulness.  
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It is important to note that the predictions of our trained CNNs for all muscles showed 

lower agreement with manual analysis when compared to ACSAuto (DeepACSA: 95% limits of 

agreement 5.1 to -2.1 cm
2
, ACSAuto: 1.7 to -1.9 cm

2
). This is due to the manual correction of the 

suggested outline during ACSAuto analysis. Yet, the feature detection filters used for image 

segmentation in ACSAuto are highly dependent on image properties. Furthermore, ACSAuto is 

somewhat subjective because the user must validate the proposed muscle outline. In addition, not 

correcting the suggested outline led to large measurement errors compared to manual analysis 

and thus unusable results. (20) By employing trainable CNNs, DeepACSA is more robust to 

variation in ultrasound image pixel characteristics because the whole image texture is 

considered, and more complex features are computed. Additionally, DeepACSA reduces user 

bias in the analysis process, as no user input is required during image segmentation.  

 

This investigation has some limitations. First, we performed no cross-validation or hyper 

parameter tuning for our models. (19) Additionally, comparing more different deep neural 

networks with various architectures could be beneficial to determine the ideal model for this 

task. However, the U-net architecture we employed demonstrated good results when segmenting 

muscle aponeuroses and fascicles in sagittal plane ultrasound images of the VL and GM. (18) 

Although our training set consisted of data from different age groups, we only included images 

from adolescent and young healthy participants and three devices in our test sets because of 

limited available data from elderly people. Thus, we cannot yet generalize our results to older 

people, clinical populations or other devices. (25,26)  Finally, DeepACSA is currently able to 

automatically evaluate single muscle images but not videos.  
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CONCLUSIONS 

DeepACSA segmentation of panoramic ultrasound images from rectus femoris, vastus lateralis, 

gastrocnemius medialis and lateralis muscles yielded comparable results to manual 

segmentation. Therefore, our trained convolutional neural networks can automatically segment 

lower limb muscles in panoramic ultrasound images. DeepACSA objectifies and accelerates the 

evaluation process of panoramic ACSA ultrasound images, allowing large datasets to be 

evaluated quickly, and representing a valuable tool that can be implemented in clinical settings. 

However, our results demonstrated that visual inspection of the output subsequent to automatic 

muscle ACSA segmentation may still be necessary to optimize predictions and avoid 

misclassifications. In the future, the segmentation performance of different model architectures 

should be compared whilst using a larger, more variable training dataset. 
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FIGURE LEGENDS 

Figure 1. Manual segmentation for convolutional neural network training. a) Original extended-

field-of-view ultrasound image of m. vastus lateralis, b) manually segmented binary mask of 

muscle in a). 

 

Figure 2. DeepACSA workflow. a) Original ultrasound image of the m. rectus femoris (RF) at 

50% of femur length that serves as input for the model. b) Detailed U-net CNN architecture 

(modified from Ronneberger et al. (19) and Cronin et al. (15),). Multi-channel feature maps are 

represented by the blue boxes with number of channels displayed on top of the respective box. 

Copied feature maps from the convolutional (left) side that are concatenated with the ones from 

the expanding (right) side are represented by the white boxes. The different operations are 

marked by the arrows. c) Model prediction of muscle area following post-processing (shown as a 

binary image).  

 

Figure 3. Bland-Altman plots of all muscles plotting the difference between manual and 

DeepACSA with incorrect predictions removed (rm), manual and DeepACSA as well as manual 

and ACSAuto area segmentation measurements against the mean of both measures. Dotted and 

solid lines illustrate 95% limits of agreement and bias. M. rectus femoris (RF) and m. vastus 

lateralis (VL), mm. gastrocnemius medialis (GM), and lateralis (GL). 

 

Figure 4. Examples of incorrect predictions and obvious deviations from the expected ACSA of 

the respective muscles. a) m. vastus lateralis, b) m. rectus femoris, c) m. gastrocnemius medialis, 

and d) m. gastrocnemius lateralis.  
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SUPPLEMENTAL DIGITAL CONTENT 

SDC 1: Comparability_analysis_DeepACSA.txt 

Analysis script 

 

SDC 2: Supplemental_Digital_File2.pdf 

 

SDC 3: Supplemental Digital File 3.pdf 

 

Table S1 - Comparison of manual analysis and ACSAuto and DeepACSA at 30% femur length 

Table S2 - Comparison of manual analysis and ACSAuto and DeepACSA at 50% femur length 

Table S3 - Comparison of manual analysis and ACSAuto and DeepACSA at 70% femur length 
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Figure 4 
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Table 1: Final intersection over union and loss functions for the two different model 

architectures, original U-net and pretrained VGG16 encoder U-net. 

Metric RF VL GM & GL 

 
Train Valid Train Valid Train Valid 

Original U-net 

IoU 0.997 0.996 0.994 0.992 0.997 0.996 

Accuracy 0.986 0.984 0.975 0.971 0.975 0.973 

Pretrained VGG16 encoder U-net 

IoU 0.998 0.997 0.997 0.996 0.997 0.996 

Accuracy 0.996 0.995 0.995 0.992 0.996 0.994 

Intersection over union (IoU) was calculated for the model prediction and the manually segmented ground truth in 

the training and the randomly generated test set using the training/validation split. M. rectus femoris (RF), m. 

vastus lateralis (VL), mm. gastrocnemius medialis (GM), and lateralis (GL). 
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Table 2: Comparison of manual analysis and ACSAuto and DeepACSA 

Mode 
ICC MD cm² 

SEM cm² SEM % Stmd 

RFM vs. Auto 0.996 (0.994;0.998) 0.24 (0.17;0.31) 0.23 (0.19;0.27) 5.10 0.05 

RFM vs. Deep 0.989 (0.983;0.992) 0.23 (0.10;0.37) 0.45 (0.29;0.63) 11.1 0.05 

RFM vs. DeepRm 0.989 (0.983;0.992) 0.20 (0.10;0.30) 0.33 (0.26;0.41) 9.49 0.04 

VLM vs. Auto 0.988 (0.982;0.992) -0.13 (-0.33;0.06) 0.66 (0.55;0.77) 3.13 -0.02 

VLM vs. Deep 0.926 (0.889;0.95) 0.85 (-0.4;1.31) 1.52 (0.88;2.20) 8.66 0.13 

VLM vs. DeepRm 0.972 (0.957;0.982) 0.50 (0.21;0.79) 0.92 (0.73;1.09) 4.48 0.08 

GM&GLM vs. Auto 0.97 (0.94;0.985) 0.06 (-0.2;0.32) 0.51 (0.35;0.67) 4.19 0.02 

GM&GLM vs. Deep 0.960 (0.925;0.979) 0.53 (0.25;0.82) 0.59 (0.42;0.75) 5.69 0.14 

GM&GLM vs. DeepRM 0.978 (0.955;0.989) 0.43 (0.21;0.65) 0.41 (0.29;0.51) 3.89 0.12 

RF = rectus femoris, M = Manual analysis, Auto = ACSAuto analysis, Deep = DeepACSA analysis, DeepRM = 

DeepACSA analysis with wrong predictions removed, VL = vastus lateralis, GM & GL = gastrocnemii, rm = wrong 

prediction removed, ICC = Intra-class correlation (95% compatibility interval), MD = mean difference (95% 

compatibility interval), SEM = Standard error of the differences (95% compatibility interval), and Stmd = 

standardized mean difference. 
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#'Title: Comparability_analysis_DeepACSA 

#'Project: DeepACSA 

#'Author: Paul Ritsche 

#'Last edited: 22.10.2021 

 

rm(list = ls()) 

library(rstudioapi)  

library(BlandAltmanLeh) 

library(readxl) 

library(irr) 

 

########################## 

#####Define Functions##### 

########################## 

 

get_file_list <- function(root){ 

  #'  Retrieves all *.xlsx files in root directory and subfolders. 

  #'  Files should contain one measurement parameter each.  

  #'  Args: root = Path to directory containgy .xlsx files (String) 

  #'  Returns: Vector containing all  files in root and subfolders. 

   

  file_list <- list.files(root, pattern ='*.xlsx') 

  df_list <- lapply(file_list, read_excel) 

  return(df_list) 

   

} 

 

calc_comp <- function(root, comp_index, filename){ 

  #'  Calculates several comparability values including ICC, MD, SEM and StMD 

  #'  for comparability analysis.   

  #'  Args: root = Path to directory containgy .xlsx files (String) 

  #'        comp_index = Column to be compared to (Integer) 

  #'        filename = Name of file (String) 

  #'  Returns: CSV-file with above mentioned values. 

   

  # Get files in root 
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  df_list <- get_file_list(root) 

  # Loop trough files 

  for (data_frame in df_list){ 

     

    # Convert tibble to data.frame 

    data_frame <- as.data.frame(data_frame) 

    data_frame <- na.exclude(data_frame) 

    View(data_frame) 

  

    # Loop trough columns of data_frame 

    for(i in 2:ncol(data_frame)) { 

       

      # Get variable names 

      var_names <- colnames(data_frame) 

      var_names <-  paste(var_names[comp_index], var_names[i], sep = " vs. ") 

       

      #Scatterplot of a vs. b  

      plot(data_frame[,comp_index], data_frame[,i],  

           xlab = colnames(data_frame[comp_index]), 

           ylab = colnames(data_frame[i])) 

         

      #ICC calculation 

      icc_raw <- icc(cbind(data_frame[,comp_index],data_frame[,i]),  

                     model="oneway",  

                     type="agreement",  

                     unit="single") #Model=only subjects randomly chosen, type=differences in judges rating, unit = 

average of several measurements 

      ICC <- icc_raw$value 

      ICC_L <- icc_raw$lbound 

      ICC_U <- icc_raw$ubound 

     

      #Mean difference 

      ttest <- t.test(data_frame[,comp_index], data_frame[,i], paired = TRUE) 

      MD <- ttest$estimate 

      MD_CI <- ttest$conf.int 

      diff_log <- (log(data_frame[,comp_index]) - log(data_frame[,i])) 
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      MDP <- ((100*(exp(mean(diff_log) / 100))) - 100) * 100 

       

      #SEM of difference calculation 

      diff <- (data_frame[,comp_index]-data_frame[,i]) 

      CV <- sd(diff)/sqrt(2) 

      CV_log <- sd(diff_log) / sqrt(2) 

      CVP <- ((100*(exp(CV_log / 100))) - 100) * 100 

       

      #Bootstrapping CI of SEM 

      BSW <- NULL #Empty Object for bootstrap values 

      for (l in 1:10000) { 

        BSdiff <- sample(diff, size = length(diff), 

                         replace = TRUE) 

        BSW <- c(BSW, sd(BSdiff)/sqrt(2)) #Save bootstrap values 

      } 

         

      CV_CI<- quantile(BSW, probs = c(0.025, 0.975), na.rm = TRUE) #Get quantiles = CI 

         

      #Mean bias standardized to  

      Mean_bias <- bland.altman.stats(data_frame[,comp_index],  

                                      data_frame[,i])$mean.diffs 

      LLOA <- bland.altman.stats(data_frame[,comp_index],  

                                 data_frame[,i])$lower.limit 

      ULOA <- bland.altman.stats(data_frame[,comp_index],  

                                 data_frame[,i])$upper.limit 

      Stmd <- Mean_bias / sd(data_frame[,comp_index]) #Standardized mean difference 

       

      #Creating dataframe to convert to CSV 

      comp_vals <- data.frame("Comparison" = var_names, 

                              "ICC" = ICC, 

                              "ICC_L" = ICC_L,  

                              "ICC_U" = ICC_U,   

                              "MD" = MD,  

                              "MD_CI_L" = MD_CI[1], 

                              "MD_CI_U" = MD_CI[2], 

                              "MDP" = MDP,  

Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



 

                              "CV" = CV,  

                              "CV_CI_L" = CV_CI[1],  

                              "CV_CI_U" = CV_CI[2],  

                              "CVP" = CVP,  

                              "Mean_bias" = Mean_bias,  

                              "LLOA" = LLOA, 

                              "ULOA" = ULOA,  

                              "Stmd" = Stmd 

      ) 

      write.table(comp_vals, file = filename,  

                  append=TRUE, 

                  sep=",", 

                  col.names=TRUE, 

                  row.names=FALSE)  

    } 

  } 

} 

 

 

calc_BaPlots <- function(root, comp_index){ 

  #'  Calculates Bland-Altman Plots for comparability analysis.   

  #'  Args: root = Path to directory containgy .xlsx files (String) 

  #'        comp_index = Column to be compared to (Integer) 

  #'  Returns: .JPG file with different Plots. 

   

  # Get files in root 

  df_list <- get_file_list(root) 

  # Loop trough files 

  for (data_frame in df_list){ 

     

    # Convert tibble to data.frame 

    data_frame <-  as.data.frame(data_frame) 

    names <- colnames(data_frame) 

    name <- paste(names[3], ".jpg", sep = "") 

     

    # Define image settigns 
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    jpeg(name,  

         width = 1640, height = 640, units="px",  

         quality = 100, pointsize = 15, bg = "transparent",  

         res = 100) 

     

    oldpar <- par() 

    par(mar = c(3,3,2,1), cex.axis = 1, cex.lab = 1.2,  

        mgp = c(1.75, 0.5, 0), tcl = -0.2, mfcol = c(1,2)) 

     

    # Loop trough columns of data_frame 

    for(i in 3:ncol(data_frame)) { 

       

      # Get variable names 

      var_names <- colnames(data_frame) 

      var_names <-  paste(var_names[comp_index], var_names[i], sep = " vs. ") 

       

      ##Manual Quadriceps RF 

      a <- bland.altman.stats(data_frame[,comp_index],  

                              data_frame[,i]) 

      b <- a$lines 

       

      #Creating bland-altman Plots 

      plot(a$means, a$diffs, 

           panel.last = abline(h = a$lines, lty = 2), 

           ylab = "Differences of measures (cm²)",  

           xlab = "Mean of values (cm²)", 

           ylim = c(-9.5, 9.5), 

           xlim = c(min(a$means) - 0.5, max(a$means) + 2), 

           main = var_names) 

       

      segments(1, a$mean.diffs, 3 , a$mean.diffs) 

      text(max(a$means) + 1, b[3] + 0.4, round(b[3], 3), cex = 0.7) 

      text(max(a$means) + 1, b[3] + 1,"+1.96 SD", cex = 0.7) 

      text(max(a$means) + 1, b[2] - 0.3, round(b[2], 3), cex = 0.7) 

      text(max(a$means) + 1, b[2] + 0.37,"Mean", cex = 0.7) 

      text(max(a$means) + 1, b[1] - 1, round(b[1], 3), cex = 0.7) 
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      text(max(a$means) + 1, b[1] - 0.4,"-1.96 SD", cex = 0.7) 

    } 

    dev.off() 

  } 

} 

 

################## 

#####Analysis##### 

################## 

 

#####Set root Directory##### 

setwd(dirname(getActiveDocumentContext()$path)) # Gets file location 

working_dir <-  getwd() # Sets location to working directory 

 

#####Comparability analysis##### 

calc_comp(working_dir, 2, "comparability_pre-post.csv") 

 

#####Bland-Altman Plots##### 

calc_BaPlots(working_dir, 2) 

 

 

Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



 

Supplementary file containing all images with erroneous predictions 

using DeepACSA.  
 

Firstly, the eight images of the gastrocnemius medialis and lateralis are presented. Then, the seven 

images of the vastus lateralis are presented. Lastly, the two images of the rectus femoris are 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



 

Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



 

 

Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



 

Copyright © 2022 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

ACCEPTED



Supplementary Table 1: Comparison of manual analysis and ACSAuto and DeepACSA at 30% femur length 

ACSA 30% 

Muscle Mode ICC MD MDP CV CVP Mean_bias Stmd 

RF Hand vs. ACSAuto 0.983 (0.966;0.992) 0.06 (-0.01;0.13) 1.56 0.13 (0.08;0.18) 8.26 0.06 (-0.32;0.43) 0.05 

RF 
Hand vs. 

DeepACSA 0.941 (0.881;0.971) 0.03 (-0.11;0.18) 9.21 0.27 (0.16;037) 38.01 0.03 (-0.72;0.79) 0.03 

VL Hand vs. ACSAuto 0.981 (0.961;0.991) 
-0.268 

(-0.506; -0.03) 1.66 0.451 (0.333;0.554) 2.911883 
-0.268 

(-1.517;0.981) -0.08 

VL Hand vs. Deep256 0.964 (0.923;0.983) 0.18 (-0.15;0.52) 1.13 0.63 (0.29;0.97) 4.94 0.18 (-1.57;1.94) 0.05 

GM/GL Hand vs. ACSAuto 0.961 (0.903;0.985) -0.11 (-0.49;0.26)        1.34 0.54 (0.27;0.79 4.62 -0.11 (-1.64;1.41) -0.03 

GM/GL 
Hand vs. 

DeepSingleL 0.962 (0.919;0.982) 0.58 (0.30;0.87) 4.17 0.69 (0.39;0.97) 6.83 0.49 (-1.42;2.41) 0.12 

RF = rectus femoris, VL = vastus lateralis, GM&GL = gastrocnemii, rm = wrong prediction removed, ICC = Intra-class correlation, CI = compatibility 
interval, MD = mean difference, SEM = Standard error of the differences, and Stmd = standardized mean difference. 

 

Supplementary Table 2: Comparison of manual analysis and ACSAuto and DeepACSA at 50% femur length 

ACSA 50% 

Muscle Mode ICC MD MDP CV CVP Mean_bias Stmd 

RF Hand vs. ACSAuto 0.975 (0.948;0.988) 0.32 (0.24;0.41) 4.26 0.16 (0.12;0.19) 2.18 0.32 (-0.12;0.77) 0.18 

RF Hand vs. Deep256 0.973 (0.946;0.987) 0.13 (-0.02;0.28) 2.12 0.29 (0.16;0.41) 3.61 0.13 (-0.66;0.92) 0.07 

VL Hand vs. ACSAuto 0.986 (0.97;0.993) -0.05 (-0.379;0.279) -0.55 0.623 (0.452;0.743) 2.67 -0.05 (-1.777;1.677) -0.01 

VL Hand vs. Deep256 0.947 (0.892;0.974) 0.71 (0.17;1.27) 2.64 1.04 (0.73;1.27) 4.17 0.72 (-2.18;3.61) 0.14 

GM/GL Hand vs. ACSAuto 0.973 (0.921;0.991) 0.3 (-0.05;0.65)                     2.47 0.42 (0.24;0.54) 3.03 0.3 (-0.88;1.47) 0.07 

GM/GL Hand vs. DeepSingleL 0.962 (0.939;0.977) 0.51 (0.29;0.74) 4.36 0.63 (0.46;0.80) 6.15 0.51 (-1.24;2.28) 0.13 

RF = rectus femoris, VL = vastus lateralis, GM&GL = gastrocnemii, rm = wrong prediction removed, ICC = Intra-class correlation, CI = compatibility 

interval, MD = mean difference, SEM = Standard error of the differences, and Stmd = standardized mean difference. 
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Supplementary Table 3: Supplementary table 3: Comparison of manual analysis and ACSAuto and DeepACSA at 70% femur length 

ACSA 70% 

Muscle Mode ICC MD MDP CV CVP Mean_bias Stmd 

RF Hand vs. ACSAuto 0.961 (0.921;0.981) 0.35 (0.19;0.51) 2.66 0.3 (0.22;0.36) 2.25 0.35 (-0.49;1.18) 0.18 

RF Hand vs. Deep256 0.862 (0.732;0.931) 0.55 (0.21;0.88) 4.31 0.64 (0.33;0.92) 4.88 0.54 (-1.22;2.32) 0.28 

VL Hand vs. ACSAuto 0.968 (0.935;0.985) -0.08 (-0.537;0.376) -0.45 0.865 (0.63;1.037) 3.732241 -0.08 (-2.477;2.317) -0.02 

VL Hand vs. Deep256 0.745 (0.533;0.869) 0.1.66 (0.47;2.84) 7.98 2.24 (1.05;3.42) 13.23 1.66 (-4.55;7.88) 0.34 

RF = rectus femoris, VL = vastus lateralis, GM&GL = gastrocnemii, rm = wrong prediction removed, ICC = Intra-class correlation, CI = compatibility 

interval, MD = mean difference, SEM = Standard error of the differences, and Stmd = standardized mean difference. 
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