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Abstract
The release of chemical additives from plastic microparticles in the aqueous phase represents a potential indirect threat 
for environment and biota. The estimate of the release timescale is demanded for drawing sensible conclusions on 
quantitative grounds. While the microparticles are generally taken to be spherical for ease of modelling, in reality the 
variety of shapes is large. Here, we face the problem of working out an empirical simple expression for estimating the 
release times for arbitrary shapes, assuming that the plastic material is in the rubbery state, that the dynamics inside 
the particle is a diffusion process, and that the release is irreversible. Our inspection is based on numerical simulations 
of the release process for randomly generated instances of regular and irregular geometries. The expression that we 
obtain allows one to estimate the release time in terms of the corresponding time (easy to compute) for the equal-volume 
spherical particle taken as reference, and of the ratio between the surface areas of particle and equivalent sphere.
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1 Although our focus is on the release of additives, microplastics can 
absorb (and hence transport) pollutants in the aquatic environment. 
For a list of typical absorbed pollutants, see Table 2 of Ref. Amelia 
et al. (2021) and references therein. We can find hydrophobic organic 
species like polycyclic aromatic hydrocarbons (PAH) and polychlo-
rinated biphenyl (PCB), hydrophilic species like perfluoroalkyl acids, 
heavy metals, and drugs.

Introduction

Micro-sized plastic debris are widespread in all environmen-
tal compartments on a planetary scale and are cause of con-
cern for various reasons, including direct and indirect threats 
for the health of all forms of biota (Teuten et al. 2009; Kane 
and Clare 2019; Khalid et al. 2020; Ge et al. 2021). Regard-
ing the indirect threats in aquatic environments, microplas-
tics have been early addressed as possible vectors of pollut-
ants1 and as source of toxic additives released in the hosting 

medium (Mato et al. 2001; Teuten et al. 2007; Amelia et al. 
2021), a matter still under intense study and debate (Koe-
lmans et al. 2016; Alimi et al. 2018). Among the additives, 
we mention flame retardants, plasticizers, additives for heat 
and UV resistance, colorants, and other chemicals added 
during the manufactoring process for conferring specific 
properties to the material (Fred-Ahmadu et al. 2020). The 
quantitative characterization of the transfer between plastic 
and medium lies at the core of any model for the distribution 
of the chemicals among the phases, and even for the transport 
on the wider scale.

Here, we focus on the irreversible release of additives 
from plastic microparticles into the aqueous medium, with 
the aim of inspecting how the rate of release does scale 
with respect to the area of the exposed surface at a fixed 
particle’s volume. We adopt a statistical approach based 
on the inspection, through simulations and global analysis 
of the outcomes, of large sets of shapes for several types of 
geometries. First, let us fix the physical framework at the 
basis of our modelling.
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We shall refer to amorphous plastic materials in the 
rubbery state above the glass transition temperature.2 
This is the representative situation (Town and van Leeu-
wen 2020) to which one commonly refers when facing the 
release from plastic materials in the aquatic environment. 
This choice is supported by considering the main types of 
plastic produced on the planetary scale. An estimate on 
the main common types of plastics ever made up to 2015 
was done in ref. Geyer et al. (2017). We can deduce that 
about 50% of plastics is constituted by polymeric materi-
als that, at ambient temperature, are in the rubbery state. 
The main plastics of such a kind are polyethylene (low-
density, high-density, linear low-density) and polypropyl-
ene. Direct inspections have revealed that polyethylene and 
polypropylene are the predominant plastics also in aquatic 
environments (Isobe et al. 2014; Enders et al. 2015; Frère 
et al. 2017). Thus, we may take the rubbery state as a repre-
sentative situation for our analysis. Under such assumption, 
the motions of the chemical species inside the particle can 
be modelled as a diffusive process induced by the thermal 
fluctuations of flexible portions of the polymeric structure. 
For simplicity, we assume the material homogeneous, and 
take the diffusion coefficient D as constant. It is supposed 
that D is known, for the given species in the given material, 
either from direct experimental assessment or from semi-
empirical relations. For instance, for a class of brominated 
flame retardands, D could be related with the molecular 
diameter and with the polymer’s glass transition tempera-
ture (Sun et al. 2019). Yet, diffusion coefficients in poly-
ethylene have been related with the molar volume of the 
diffusing species (Lohmann 2012).

With the above positions, the release can be modelled 
as diffusion inside the material with irreversible escape 
through the exposed surface (i.e., by treating the interface 
plastic-medium as an absorbing boundary). A simple but 
likely assumption is to consider initial homogeneous volu-
metric concentration c0 . In addition, the external concentra-
tion is considered to be vanishingly small even close to the 
interface, so that the assumption of irreversible leakage is 
licit. This is acceptable if the medium is well stirred in the 
neighborhood of the particle; otherwise, a different kind of 
modelling should be adopted (Endo et al. 2013).

Let pint(t) be the fraction of chemical species still present 
inside the particle at the time t, i.e., pint(t) = mint(t)∕(c0V) 
being V the volume of the particle. The temporal profile of 

pint(t) starts from 1 and monotonically decays to 0. Com-
monly adopted descriptors of such a decay are the times �� 
at which

In particular, �0.5 is the common half-life time, while �0.95 can 
be conventionally taken as the time required for achieving, in 
practice, the complete release (Endo et al. 2013). Under the 
above assumptions, the geometry typically considered is that 
of a spherical particle of radius rs . For such a geometry, the 
evolution of the internal concentration profile is analytically 
known, the mass flux at the surface can be exactly evaluated, 
and the internal fraction ps

int
(t) (throughout, the superscript 

“s” stands for sphere) is given by the well-known Crank’s 
expression (Crank 1975):

In combination with Eq. 1, this expression allows one to 
determine the �s

�
 numerically. Equation 2, or variants in 

which an effective diffusion coefficient is employed to take 
into account speciation reactions (Town and van Leeuwen 
2020), is frequently used for a first-level study of the release 
process from microplastics.

A question arises: How are the �� affected by a change 
of the microparticle’s shape in passing from spherical to 
other geometries? It is known that microplastics, especially 
when formed by fragmentation processes (Wayman and 
Niemann 2021), can assume a variety of shapes including 
spheres, fibers, flakes, and generally irregular fragments 
(Paul-Pont et al. 2018). In particular, fibers (filaments and 
lines) are abundant in the acquatic enviroments and may 
derive directly either from fishing lines and nets or from 
degradation of primary plastics (Kane and Clare 2019; Free 
et al. 2014). For instance, in a study conducted in the East 
China Sea it was found that fibers are the dominant mor-
photype, followed by granules and films (Zhao et al. 2014). 
Intuitively, one may expect that for non-spherical shapes 
the release times are shorter because, at fixed volume, the 
surface area is higher. Such shortened release times might be 
a priori a cause of concern; hence, a more reliable estimate 
is demanded. The exact quantitative answer to the above 
question must be clearly given case by case. In spite of such 
case-dependent specificity, one may ask if there might be 
an empirical relation to link �� with some suitable coarse 
descriptor (to be found) quantifying the deviation from the 
spherical shape at a fixed volume of the particle.

In this work, we face such a problem by combining 
intuitive expectation and numerical simulations for some 
classes of regular and irregular geometries. For each kind 
of geometry, a large number of instances is generated at 
random by varying the geometric parameters. For each 

(1)pint(��) = 1 − �

(2)ps
int
(t) =

6

�2

∞
∑

n=1

n−2 e−n
2�2Dt∕r2

s

2 For data on the glass transition temperature of synthetic polymers, 
see for instance PerkinElmer 2019, “Melting point, glass transition 
temperature and structure of common polymers” (available at https:// 
resou rces. perki nelmer. com/ corpo rate/ cmsre sourc es/ images/ 44- 74863 
tch_ mptga ndstr uctur eofco mmonp olyme rs. pdf), and Omnexus - The 
material selection platform (available at https:// omnex us. speci alchem. 
com/ polym er- prope rties/ prope rties/ glass- trans ition- tempe rature).
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instance, solving numerically the diffusion equation is a 
hard task since it requires the discretization of the internal 
volume of the particle and the enforcing of the absorbing 
boundary conditions on the exposed surface. As the par-
ticle’s shape becomes locally very featured, this requires 
employing an irregular and case-dependent tri-dimen-
sional grid. In this work, we propose a new approach to 
by-pass the cumbersome numerical solution of the diffu-
sion equation. The strategy consists in producing a large 
number of Brownian trajectories starting from points ran-
domly generated in a uniform way inside the particle. Each 
moving point represents a molecule whose trajectory is 
stopped when the delimiting surface is crossed. From the 
statistical ensemble of trajectories, we get the time evolu-
tion of the survival fraction pint(t) , and hence the release 
times �� for chosen values of � . The global synthesis of the 
outcomes then allows us to work out the key result, namely 
the empirical relation Eq. 3 presented later. A similar kind 
of strategy, i.e., making a systematic exploration as exten-
sive as possible, is nowadays adopted in several contexts 
of physical statistics to make conjectures and discover new 
laws before formal proofs, and has been recently applied 
to the assessment of the release of chemicals from mate-
rials under intermittent conditions (Frezzato et al. 2022). 
To the best of our knowledge, the present strategy has 
not yet been employed to the release of chemical species 
from plastic microparticles. The results are illustrated in 
the next section, while the details of the methodology are 
provided in “Computational details.”3

The main finding is that the ratio A∕As , where A is the 
surface area of the given particle and As is the area of the 
equal-volume sphere, suffices to connect �� with the refer-
ence �s

�
 easily obtainable from Eq. 2. The key outcome is 

Eq. 3 given later. Although such an expression is nothing but 
a tentative empirical law to be used for a rough estimation of 
�� , it might be relevant for getting a more reliable estimate of 
the leakage timescale. For instance, even the sole indication 
that �0.5 might be 2–3 times shorter than the value expected 
for the spherical shape can be a useful information.

Empirical results

As outlined in the “Introduction,” we empirically face the 
problem by means of numerical simulations done for parti-
cles of several shapes. The generation of a large ensemble of 
Brownian trajectories starting from internal points drawn at 
random in an unbiased way allows us to achieve pint(t) and, 

hence, to get the release times �� . Details about the method 
are provided in the section “Computational details.” For 
each particle’s shape, we also consider the associate sphere 
of equal volume and determine the times �s

�
 from ps

int
(t) in 

Eq. 2.
Both regular and irregular geometries have been consid-

ered. The regular geometries are as follows: the parallele-
piped with sides of length a, b, and c (ranging from square 
slab to elongated parallelepiped); the ellipsoid with semi-
axes of length a = b and c (from lens-like to needle-like 
shape); the torus generated by the revolution of the circle 
of radius a with revolution radius R0 ≥ a (from doughnut-
like to ring-like shape); multi-bead structures made of a 
number of beads (up to 100) of radii generated at random. 
The choice of such geometries was motivated not only 
by the ease of checking on the fly when the moving point 
crossed the delimiting surface, but also by the fact that 
such geometries capture some essential features of real 
plastic microparticles. The toroidal shape, a simple exam-
ple of non-convex shape, mimics an object with a hole. 
The multi-bead structure is chosen since it corresponds 
to a variety of structures in which the small beads may be 
connected one with the others in several ways: from pearl-
necklace–like structures to irregular agglomerates. The 
transit between the beads is meant to occur at single points 
of contact; hence, the multi-bead structure is an extreme 
case of particles in which different parts are connected by 
tiny bottlenecks of vanishingly small volumes. The aspect 
of such regular geometries has been varied by exploring a 
wide range of values of their parameters (see “Computa-
tional details”). For the parallelepiped and the ellipsoidal 
shapes, the maximum allowed aspect ratio (maximum over 
minimum linear extension) was 100; the toroidal shapes 
could range from a doughnut-like shape without hole to a 
thin ring-like shape with ratio 100 between radius of the 
ring and radius of the circular cross section; in the multi-
bead structures, the radii of the beads varied within a fac-
tor 10. The irregular geometries, described later in detail, 
have been generated by adopting spherical coordinates for 
describing the delimiting surface, by using a parametric 
functional form for the surface, and then drawing at ran-
dom the values of the required parameters. In this case, the 
geometries are all of convex type for the ease of checking 
when a trajectory crosses the surface.

Let us begin with the outcomes for the regular geom-
etries. Figure 1 shows the profiles of ps

int
(t) and pint(t) for 

some instances of the regular geometries at fixed volume. 
It can be seen how the spherical shape is the one for which 
the profile lies above all others; hence, the release process is 
the slowest. This is intuitively expected because, at a fixed 
volume, the sphere has the smallest surface area. This sug-
gests to consider, at least provisionally, the ratio A∕As as a 

3 All simulations and post-production analyses were done with For-
tran77 codes developed by implementing the route and the choices 
fully described in “Computational details.”
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potentially relevant geometrical descriptor for expressing the 
deviation of �� from �s

�
.

Figure 2 shows the values of ��∕�s� against A∕As for the 
regular geometries here considered. Each panel shows the 

data for a number of randomly generated instances (see 
“Computational details”). The different symbols refer to 
specific stages of the release: � = 0.2 (black open circles), 
� = 0.5 (red full circles) and � = 0.95 (green open trian-
gles). The continuous straight line has slope −2 in the 
adopted double-logarithmic scale. What emerges is that, 
for all � , the points are concentrated close to the straight 
line. This suggests to propose the following empirical 
relation linking �� with the reference �s

�
 through the fac-

tor A∕As:

In this expression, the symbol “ ≃ ” must be interpreted as 
a “rough but likely estimate of the order of magnitude” of 
�� without using any other subtler descriptor of the parti-
cle’s geometry. We see in fact that the points are distributed 
around the straight line, and in some cases, depending on 
� , they tend to lay below or above the line. The multi-bead 
case reveals an interesting behavior. For beads of different 
radii, each bead has its own release kinetics and the overall 

(3)�� ≃ �s
�

(

A

As

)−2

Fig. 1  Time dependence of the survival fraction of chemical species 
inside the particle. The profiles refer to particles of different geom-
etry but equal volume: reference sphere with r

s
= 1 ; square slab with 

a = b = 5 and c = 0.168 ( A∕A
s
= 4.2 ); ellipsoid with a = b = 0.2 

and c = 25 ( A∕A
s
= 3.9 ); torus with a = 0.35 and R

0
= 1.732 

( A∕A
s
= 1.9 ); five identical beads with r

i
= 0.585 ( A∕A

s
= 1.7 ). 

Physical units of length and time are here irrelevant and are left 
implicit. The diffusion coefficient D was set equal to 1 with reference 
to such units

Fig. 2  Spread of the ratio ��∕�s� 
versus A∕A

s
 (at fixed volume 

of the particle) for randomly 
generated instances of several 
geometries; see the text for 
details. Open black circles refer 
to � = 0.2 (80% of species still 
present inside the particle), 
full red circles to � = 0.5 (50% 
inside), open green triangles to 
� = 0.95 (5% inside). The solid 
line has slope −2 in the double-
logarithmic scale here adopted

decay of pint(t) corresponds to a weighted average of the 
individual decay profiles (see “Computational details”). The 
distribution of the points in Fig. 2d shows that Eq. 3 is a 
lower bound (hence the “ ≃ ” can be replaced by “ ≥”); the 
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bound is found to be saturated only when all beads have the 
same radius, as can be easily proven.4

Note that the actual size of the particle does not enter Eq. 3. Once 
the shape and size are set, the volume of the particle is computed and 
rs can be determined. For the given value of D, the reference release 
times �s

�
 are then computed by solving Eq. 1 with Eq. 2, and finally 

the �� is determined. In practice, the particle’s size controls the actual 
timescale of the release process, while Eq. 3 deals only with relative 
quantities (ratios) and is unaffected by the size. In the section “Discus-
sion and final remarks,” we will make an example for a particle of 
linear extension in the millimiter range, i.e., within the conventional 
range of plastic microparticles (average dimension less than 5 mm).

After emerging from the inspection of regular shapes, 
Eq.  3 has been tested on randomly generated irregular 
geometries. The surface of the particles was parametrized in 

spherical coordinates by choosing, for the radial dependence 
on the azimuthal and polar angles, a functional form capa-
ble of yielding very irregular shapes (see “Computational 
details”). For the ensemble of produced structures, the ratio 
between the maximum and the minimum distance from the 
origin ranged from 1.1 to 270, meaning that the surfaces 
can feature marked protrusions and deep inlets. Examples 
of generated structures are shown in Fig. 3a and the results 
are presented in Fig. 3b. Even in this case, the points fall 
close to the straight line of slope −2 , although a more refined 
exponent ( ≃ −2.4 in place of −2 ) would be more appropriate 
for low values of � . However, Eq. 3 still captures the trend 
of ��∕�s� versus the deformation factor A∕As.

Let us briefly comment Eq. 3 on physical grounds. First 
we note that it can be rearranged to give

where c�(V) depends on the volume (fixed), on D and on 
� , but not on the specific shape of the particle. Thus, in 
principle, one could choose any reference shape for express-
ing ��∕�ref�

 as in Eq. 3, although the choice of the sphere 
of equivalent volume seems to be the most natural and 

(4)�� A
2 ≃ c�(V)

Fig. 3  a Examples of irregular 
geometries randomly gener-
ated. b As for Fig. 2, here for 
randomly generated instances 
of irregular geometries (see the 
text for details)

4 For N identical beads, we have (ri∕rs) = N−3 (from the equal-vol-
ume condition) and A∕As = N(ri∕rs)

2 . Thus, it must be ri∕rs = As∕A . 
For identical beads, the �� for the whole multi-bead particle and for 
the single bead do coincide. By considering the equal-volume sphere 
on one side, and the single bead on the other side, from Eq. 2 it can 
be seen that the same fraction of release is achieved if �s

�
∕r2

s
= ��∕r

2

i
 . 

By using the above result, it follows that �� = �s
�
(A∕As)

2 in this pecu-
liar case.
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convenient one. A simple back-of-the-envelope reasoning 
can help to rationalize Eq. 4. Let us fix the released fraction 
� and consider the associated time �� . By recalling the root-
mean-squared displacement (r.m.s.d) formula for the free 
Brownian motion, we could take L� =

√

2D�� as the average 
linear distance travelled by the molecules for arriving at the 
surface in the time �� . In doing this, we are consciously mak-
ing a mistake since while in reality the molecule is meant 
to remain within the particle, the r.m.s.d. formula is strictly 
valid only for unrestricted motion. Going anyway forward, 
let us consider a shell of volume V� = �V  underneath the 
surface. Still making a “mistake,” we could see V� as the 
volume “cleaned” if the molecules initially in it could move 
only forward towards the surface. For � sufficiently small, we 
can express such a volume as V� = AL� , hence L� = � V∕A . 
By substituting in the r.m.s.d. formula, we get Eq. 4 with a 
c�(V) quadratically dependent on � and V, and inversely pro-
portional to D. Of course, this is nothing but a basic reason-
ing whose utility is to provide a provisional physical frame 
of Eqs. 3 and 4. In particular, the reasoning might become 
critical for featured surfaces and/or for large � . This is in 
accord with the outcomes in Figs. 2 and 3. For the regular 
geometries, Eq. 3 seems to work well in the first part of the 
release process (say, for � up to 0.5). For the irregular geom-
etries here explored, the deviations are marked also for small 
� values, probably in relation with the very featured surfaces. 
As � increases, tending to the completion of the release, 
Eq. 3 seems to be followed on average, but the outcomes are 
more spread with respect to the straight line. Only numerical 
inspections, like those conducted here, can provide a direct 
check of the likelihood of Eqs. 3 and 4 case by case.

Discussion and final remarks

The release kinetics of chemicals from plastic microparticles 
is of crucial relevance to assess the timescale of pollutants’ 
inflow in a fluid environment. In this work we have faced the 
problem of estimating the average times of release, namely the 
�� where � is the released fraction, for arbitrary shapes of the 
particles. In fact, while the solution is well-known for spheres, 
it remains to establish how the release times depend on the 
specific shape at a fixed volume. The novelties of our approach 
lie in the fact that (i) generic geometries (even highly irregular) 
are considered, (ii) the cumbersome numerical solution of the 
diffusion equation is replaced by the much easier simulation 
of an ensemble of single-molecule trajectories inside the given 
microparticle, and (iii) a global analysis of the outcomes is 
done for extracting general scaling laws of empirical type.

By means of numerical simulations made for some rep-
resentative categories of regular shapes, and for irregular 
shapes as well, we have shown that the simple scaling law 
Eq. 3 can be adopted for estimating �� just in terms of the �s

�
 

for the equal-volume sphere, and of the ratio A∕As as a basic 
descriptor of deformation from the spherical shape.

For some representative regular geometries we have 
shown that Eq. 3 is accurate, especially if one restricts to the 
first half of the release process. Let us make an example. Sup-
pose to deal with needle-like particles containing a chemical 
species with diffusion coefficient D = 10−14 m2s−1 , of the 
order of the diffusion coefficient of toluene in high-density 
polyethylene at 25 ◦ C (Teuten et al. 2009). Suppose that the 
particles’ shape can be approximated to cylinders (a shape 
not among the ones considered above) of length 3 mm and 
radius 0.1 mm. The radius of the equivalent sphere is 0.28 
mm and �s

0.5
 , obtained from the profile of ps

int
(t) in Eq. 2, is 

equal to 68 h. Given that A∕As = 1.944 , by means of Eq. 3 
we estimate �0.5 = 18 h , much shorter than the time computed 
with the spherical approximation. Notably, the exact value 
from the simulation of an ensemble of Brownian trajectories 
turns out to be 17.4 h, very close to the above estimate.

We stress again that although Eq. 3 (or, equivalently, Eq. 4) 
meets the intuitive expectation, the analysis conducted here 
served to assess its effective applicability to regular geome-
tries that mimic common plastic microfragments (like flakes 
and needle-like particles) and to irregular shapes. Of course, 
the full space of the possible shapes cannot be systematically 
spanned with this empirical approach. The idea is that Eq. 3 can 
be provisionally used for an initial estimate of the �� and, if the 
outcome is of particular interest (or concern), the exact com-
putation can then be done for the specific geometry by using 
the computational tool described in “Computational details.”

Finally, the adoption of the sole ratio A∕As as a descrip-
tor of the deviation from the spherical shape constitutes the 
first-level approach. The same kind of analysis could be 
conducted by adding more descriptors (to be found); again, 
empirical expressions, more refined than Eq. 3, could be 
worked out from the distribution of the points ��∕�s� in such 
an augmented space of geometrical descriptors. This might 
be an interesting direction for future inspections.

We want to finish by outlining the limitations of the model, 
some possible improvements, and the points of strength of 
the approach. We stress again that our analysis is based on 
the assumption that the dynamics inside the particle is a dif-
fusive process, which is plausible for amorphous plastics in 
the rubbery state above the glass transition temperature. It is 
assumed that the conformational fluctuations of the polymeric 
structure generate transient voids and create the free volume 
for the molecules’ motion. In the glassy state, or even in the 
crystalline state, different kinds of dynamics take place and 
the model should be revised. Moreover, we took the diffu-
sion coefficient D constant inside the particle. For markedly 
inhomogeneous materials, a location-dependent coefficient 
should be considered. This can be easily implemented in the 
simulation of the Brownian trajectories. We also assumed that 
the water is well mixed in the neighborhood of the particle, so 
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that the concentration at the interface can be taken equal to 0. 
Although this assumption is commonly done in the modelling 
of desorption from microparticles (Teuten et al. 2009; Town 
and van Leeuwen 2020), an improved description should 
include a stagnant film at the water side, taking into account 
the partition coefficient plastic-water for the chemical spe-
cies of interest, and the diffusion in the stagnant film of given 
thickness. Also this feature can be easily implemented in the 
simulation route: the forward-backward crossing of the inter-
face plastic-water can be described by means of the Monte 
Carlo acceptance/rejection criterion (Allen et al. 1987), taking 
into account that the energy difference between plastic and 
water is related to the logarithm of the partition coefficient. 
A more complex scenario is that of plastics with persistent 
pores at the meso- or even macroscale (widths larger than 50 
nm) (Silverstein et al. 2011), either closed or inter-connected. 
In this situation, the surface enclosing the pores behaves as 
a reflecting boundary from the side of the plastic. The pen-
etration of water inside the porous material can be likely 
neglected, especially if considering the most common poly-
olefins that are found in the aquatic environment (the water 
absorption is very little5 and takes place in a long timescale). 
In the peculiar case of materials with relevant hydrophilicity, 
on the contrary, one should consider the possible diffusion 
of the molecules in two phases, namely the plastic material 
and the embedded water (Seland and Hafskjold 2001), also 
including the crossing of the interface plastic-water. Given the 
geometrical details of a microparticle’s structure, the result-
ing release kinetics derives from the interplay of all such 
processes. The simple empirical scaling law obtained in this 
work is probably violated, and new systematic explorations 
are required to extend the analysis to such a more complex 
scenario. While the solution of the diffusion equation would 
be hardly feasible because of the difficulty of enforcing the 
specific boundary conditions, the simulation of Brownian tra-
jectories is expected to be a much easier task.6 This is a point 
of strength of the approach presented here.

Computational details

Random production of the structures

For each kind of geometry, various instances have been gener-
ated by assigning random values to the geometric parameters. 
Concerning the regular geometries, the parameters are as fol-
lows: the lengths of the sides for the parallelepiped, the lengths 
of the semi-axes for the ellipsoid, the circle’s radius a and the 
revolution radius R0 ≥ a for the torus, the number of beads 
and their radii for the multi-bead particles. For parallelepiped, 
ellipsoid, and torus, 200 instances were generated (correspond-
ing to the points in panels a, b, and c of Fig. 2): 100 instances 
with uniform random drawing of the value of each parameter 
in the linear scale between 0 and 1, and 100 instances with uni-
form random drawing in logarithmic scale between 10−2 and 1. 
For the multi-bead particles, the number of beads was varied 
from 2 to 100; for each number of beads, 5 instances were 
produced by generating the radii at random from the uniform 
distribution between 0.1 and 1. In total, 495 instances (cor-
responding to the points in Fig. 2d) were generated.

The surface of the irregular geometries was represented in 
spherical coordinates (�,�, r(�,�)) with distance from the 
origin generated as follows. Let Q(�,�) = ∑jmax

j=1

∑+j

m=−j

�

Re{c
j,mYjm(�,�)}

�q , 
where Yjm are spherical harmonics of rank j and projection 
index m, cj,m are complex numbers with real and imaginary 
parts randomly drawn in the interval [−c,+c] (with c fixed, 
see below), jmax is the maximum rank (set equal to 5 in all 
cases), and q is an integer exponent which controls the degree 
of surface irregularity and the extension of the particle. Then 
we have set r(�,�) = r0 + Q(�,�) −min�,�{Q(�,�)} where r0 is an 
offset which corresponds to the minimum distance from the 
origin. Such a subjective functional form proved useful for 
producing rather irregular surfaces. In total, 300 instances 
have been generated (corresponding to the points displayed 
in Fig.  3b): 67 instances refer to c = 0.5 and q = 1 , 66 
instances to c = 0.5 and q = 2 , 67 instances to c = 0.5 and 
q = 3 , 50 instances to c = 1 and q = 2 , 50 instances to c = 1 
and q = 3 . In all cases, the offset r0 was randomly generated 
between 10−2 and 1 with uniform distribution in logarithmic 
scale. By denoting with rmax and rmin the maximum and the 
minimum distances of the surface points from the origin, the 
ratio rmax∕rmin varied from 1.10 to 270 for the instances with 
c = 0.5 , and from 1.95 to 146 for c = 1.

Surface area and volume

For all the regular shapes, surface area and volume were 
computed by means of the analytical formulas. For the ellip-
soidal particles, the calculation of the surface area was done 
by using Thomsen’s approximation which is accurate within 

5 Data on water absorption of several plastics can be found at https:// 
omnex us. speci alchem. com/ polym er- prope rties/ prope rties/ water- absor 
ption- 24- hours.
6 Let us sketch the possible route for the general case of hydrophilic 
material and presence of water inside the particle. While the molecule 
is in one of the two phases, the motion is described by the Langevin 
equation with the specific diffusion coefficient. The reflecting bound-
aries are easily implemented by checking when a move would take 
the molecule to the other side, and then, for instance, making a simple 
reflection of the forbidden part of the move with respect to the tan-
gent plane to the boundary at the intersection point. The crossing of 
the interface plastic-water could be handled by means of the Monte 
Carlo acceptance/rejection criterion (Allen et al. 1987). The trajecto-
ries have to start from points sampled from a reasonable initial distri-
bution (for instance, homogeneous distribution in the plastic). From 
an ensemble of trajectories, one can obtain pint(t) (once the outer sur-
face that separates the particle from the environment is specified), and 
hence characterize the release kinetics.
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about 1% and allows avoiding the computation of elliptic 
integrals.7 For the irregular shapes, volume and area were 
computed by means of numerical integration.8

Survival fractions

For the parallelepiped, the ellipsoid, the torus, and the 
irregular shapes, the survival fraction pint(t) was determined 
from the simulation of 5 × 104 Brownian trajectories sim-
ply counting the fraction of trajectories for which the mov-
ing point was still inside the particle. The points shown in 
Figs. 2 and 3 refer to single sets of simulations, after hav-
ing established that the variability of the outcomes under 
repetition of the simulations was very little (see “Accuracy 
assessment” in the following).

For the reference sphere, the computation of ps
int
(t) was 

done by means of Eq. 2 with nmax = 100 components, under 
check that this was sufficient to achieve a converged pro-
file. For the multi-bead particles made of N beads, pint(t) 
was computed as pint(t) = V−1

∑N

i=1
Vi p

s
int,i

(t) with ps
int,i

(t) 
obtained from Eq. 2 for the ith bead of volume Vi , and 
V =

∑

i Vi the total volume. In all cases, the times �� were 
numerically determined from the profiles of the survival 
fractions.

Brownian trajectories

For each instance of parallelepiped, elliposid, torus, and 
irregular shapes, 5 × 104 Brownian trajectories were gen-
erated starting from internal points uniformly distributed. 
Except for the parallelepiped (for which the production of 
internal points is trivial), the initial points were generated 
by enclosing the particle in a sphere of radius Rcut (exactly 
containing the particle, or slightly greater) and then drawing 
points at random within the sphere. In spherical coordinates, 
this requires generating at random three numbers, u1 , u2 , and 
u3 , from the uniform distribution between 0 and 1,9 and then 
computing � = arccos(2u1 − 1) , � = 2�u2 , r = Rcut

3
√

u3  . 

The point is accepted if it falls inside the particle, rejected 
otherwise.

The Brownian trajectories were generated by means 
of Langevin’s equation in the overdamped regime 
of motion (Zwanzig 2001). The evolution rule is 
rj(t + Δt) = rj(t) + sj

√

2DΔt , where rj(t) is the jth Cartesian 
coordinate of the molecule’s position at time t, Δt is the time 
step of advancement, D the diffusion coefficient, and sj are 
random numbers drawn from the Gaussian distribution with 
null average and unit variance (i.e., Gaussian White Noise 
was adopted, as typically done for Brownian dynamics10 ). 
The time-step was arbitrarily set equal to Δt = 5 × 10−5� , 
where � = r2

s
∕(�2D) (with rs the radius of the equal-volume 

sphere) is taken as a rough estimate of the release timescale. 
Case by case it was however checked that Δt ≤ 10−2d2

min
∕D 

with dmin a short length of the particle (e.g., the length of the 
smallest semi-axis of the ellipsoid); this ensures that also the 
shortest escape trajectories are sufficiently well described. 
Each trajectory was interrupted when the moving point 
crossed the delimiting surface.

Accuracy assessment

The accuracy on pint(t) obtained from the Brownian trajec-
tories was assessed by means of the following checks. (A) 
For a spherical particle, it was checked that pint(t) obtained 
from Brownian trajectories visually matches the exact solu-
tion Eq. 2 when the plots are superimposed. In quantitative 
terms, it was checked that the �� from the simulations, for 
� = 0.2, 0.5, 0.95 , were in agreement with the exact values. 
The deviation � = (��)sim∕(��)exact − 1 was adopted for such 
a check. The simulations were repeated 100 times. The dis-
tribution of the � values showed a median of +0.050 for 
� = 0.2 (the maximum displacement from 0 was +0.10 ), 
+0.012 for � = 0.5 (maximum displacement +0.037 ), and 
−0.0004 for � = 0.95 (maximum displacement −0.022 ). (B) 
For some of the irregular geometries, it was checked the 
stability of the ratio �0.5∕�s0.5 both under the repetition of the 
simulations11 and with respect to the number of trajecto-
ries. For instance, for the first irregular geometry generated 
with c = 0.5 and q = 1 , the variability of the outcomes with 
5 × 104 trajectories was found of 0.9% (expressed as standard 
deviation over mean value from 10 repetitions). Concerning 
the convergence with respect to the number of trajectories, 

10 The Normal deviates were generated with the double-precision 
Fortran77 function “drnorf.f” available, for instance, at https:// gams. 
nist. gov/ cgi- bin/ serve. cgi/ Module/ NMS/ DRNOR/ 11308/
11 The variability is due to the fact that the initial points are randomly 
generated and the trajectories are stochastic. The independence of the 
simulations was ensured by using, for each repetition, different seeds 
for the random number generators (the seeds were manually initial-
ized for the generation of the initial points, and initialized with the 
computer’s clock for the Brownian trajectories).

7 The approximation due to Knud Thomsen can be found at https:// 
www. numer icana. com/ answer/ ellip soid. htm# thoms en.
8 The numerical integrations were done with the double-precision 
IMSL® Fortran77 subroutine ‘DQAND.f’(http:// www. rogue wave. 
com/ produ cts/ imsln umeri cal- libra ries. aspx); absolute and relative 
accuracy were set equal to 10−4 and 5 × 10−3 , respectively.
9 The uniform deviates in [0, 1] were generated by means of the basic 
“Linear Congruential Generator” employed in “Computer Simulation 
of Liquids” by M. P. Allen and D. J. Tildesley (Allen et  al. 1987); 
see the Fortran77 function “ranf” in the program F.11 available at 
http:// www. ccp5. ac. uk/ softw are/ allen_ tilde rsley. It was checked that 
equivalent results are obtained by using the more elaborated genera-
tor implemented in the function “ran2.f” of “Numerical Recipes in 
FORTRAN 77” (Press et al. 1992).
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for the same geometry it was found that the outcome is stable 
already with 104 trajectories, and that the fluctuations of the 
outcomes are of the order of 1% in passing from 104 to 106 
trajectories. In summary, both the method for sampling the 
starting points and the number of 5 × 104 trajectories for 
each considered particle can be considered adequate for the 
present analysis.
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