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The Minimalist Foundation and Bishop’s Constructive

Mathematics
Maria Emilia Maietti and Giovanni Sambin

20.1 Introduction

Acentral aspect ofBishop’s constructivemathematics in [10, 12] emphasized in [15]
is that of being a generalization of classical mathematics. Indeed, contrary to other
constructive approaches, such as Brouwer’s intuitionistic mathematics or Markov’s
recursive mathematics, in his mathematical development Bishop did not use any
principle incompatible with classical mathematics as that formalizable in Zermelo–
Fraenkel set theory. In this way Bishop produced an analysis of mathematical
concepts that is finer than in other approaches.
Bishop himself in [10, 11] and in unpublished notes sketched a foundation for

hismathematics.Many proposals of a formal system apt to founding his constructive
mathematics followed afterwards in the style of axiomatic set theory in [1, 2, 3, 23,
56] and in that of type theory by Martin-Löf in [52, 58].
Most notably, the so-called notion of ‘setoid’ over Martin-Löf’s type theory

appears to be close to the idea of ‘set’ sketched in [10] as well as the notion
of ‘type-theoretic function’, which appears to be an adequate representation of
Bishop’s notion of ‘operation’ because it explicitly shows its computational contents
or ‘numerical meaning’.
Then the model of setoids formalized over Martin-Löf’s type theory appears to

be a suitable framework to formalize Bishop’s constructive mathematics. A whole
study of its categorical structure as a quotient completion had been started and it is
still ongoing (see, for example, [45, 46, 49, 58, 61]), and many different kinds of
setoid models have been considered (see, for example, [6, 27]).
The main drawback of the formalization of mathematics in the setoid models is

that it is very far from the language used in the informal mathematical practice of
constructive proofs, including that in Bishop’s literature and even more so that of
classical mathematics. This is because the formalization in this model, and more
generally in Martin-Löf’s type theory, requires us to handle lots of computational
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details useful for the extraction of programs from proofs but apparently useless to
develop the constructive proofs themselves.

To overcome this problem, in [73] it was proposed that Martin-Löf’s type theory
should be extended with some abstract concepts, like that of ‘proof-irrelevant
proposition’ and that of ‘subset’, as soon as they satisfy the forget–restore principle
introduced by the second author of the present chapter. This principle states that one
can abstract away from irrelevant computational information when this information
can be restored in the process of extracting a program from a constructive proof.

Pushing forward the idea of the forget–restore principle, in [47] we introduced
the notion of two-level foundation for constructive mathematics. Such a foundation
should consist of:

• one theory acting as the extensional level written in a language close to the usual
mathematical practice of proofs;
• another theory acting as the intensional levelwritten in a type-theoretic language

suitable for extraction of programs from proofs;
• an interpretation of the extensional level in (a model of) the intensional level

showing that the extensional level has been obtained from the intensional one
following the forget–restore principle.

The introduction of a two-level foundation was also motivated by the need to
build a new foundation for constructive mathematics. Indeed, since 2005 with [47],
we embarked on the project of building a Minimalist Foundation where the math-
ematics developed in it turns out to be compatible with the different approaches to
constructivism, and also with classical mathematics. To formalize Bishop’s math-
ematics we intended to build an intuitionistic and predicative foundation finer than
the formal systems available in the literature, and characterized by the lack of
whatsoever choice principle, including the so-called axiom of unique choice.

In [39] a full formal system, called the Minimalist Foundation, here named MF
for short, was proposed.

In parallel, a new approach to constructivism, called ‘dynamic’, was also put
forward in [65, 67, 68, 69, 70, 71]. This was inspired by the constructive approach
originating explicitly with Brouwer at the beginning of the twentieth century and
revived in the 1960s and 1970s (see, for example, [10, 51], among others). The first
chapter of [72] will contain a detailed introduction to dynamic constructivism.

In the followingwe are going to describe what aspects of our minimalist approach
andMF have in common with Bishop’s one, called BISH, and what differ.

The main common aspects include the following:

• the compatibility with classical mathematics via a language close to that of usual
mathematical practice;
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• the need to compile this language in a strictly algorithmic language to extract the
computational contents of constructive proofs.

Both aspects are fulfilled inMF by crucially employing its two-level structure.
Indeed, compatibility with the standard Zermelo–Fraenkel foundation for clas-

sical mathematics is fulfilled at the extensional level ofMF, while the extraction of
programs from proofs is at its intensional level. In particular, the intensional level
can be interpreted in realizability semantics extending the Kleene realizability of
intuitionistic arithmetic as shown by Ishihara, Maietti, Maschio, and Streicher in
[31]. This fact has two main consequences which emphasize the constructivity of
the wholeMF.
The first is that the intensional level ofMF is consistent with full axiom of choice

and formal Church thesis as advocated in [47]. This characteristic is generally not
satisfied by the other constructive intensional foundations in the literature such as
the extension of Martin-Löf type theory called Homotopy Type Theory in [76]
(because it satisfies the function extensionality principle).
The second consequence is that the extensional level of MF turns out to be

consistent with the formal Church thesis (see [44]) via its interpretation at the
intensional level.
Furthermore, the intensional level of MF could serve as a base for a minimalist

proof-assistant whose formalized proofs can, a priori, be reused in proof-assistants
based on the many extensions. This would be a practical application of the fact
that MF can well serve as a basic theory to compare the different approaches to
mathematics and their proofs.
We can underline some major peculiarities of MF not present in Bishop’s con-

ception of mathematics BISH.
One main difference is about the concept of function. As in BISH, in MF we

have both the notion of operation with the meaning of representing a computable
function, and that of functional relation. However, contrary to BISH and other type-
theoretic foundations for BISH, in MF these two notions are kept well distinct. In
fact, while operations between two sets do form a set, functions do not generally do.
This distinction is guaranteed by the lack of the general validity of choice principles
in both levels of MF (see [41]). Indeed it is enough to add a rule of unique choice
to both levels ofMF to guarantee the validity of the axiom of unique choice which
makes the two notions coincide.
There is a major consequence of the absence of choice principles from MF

combined with its predicative nature (even à la Feferman see [31, 43, 44]) when
adopting MF to develop topology. It is that the constructive pointfree approach to
topology introduced byMartin-Löf and the second author in the 1980s in [64] under
the name of formal topology constitutes not only a valid alternative to pointwise
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approaches for constructive analysis byBrouwer (see [75]) andBishop (see [10, 12]),
but it appears to be compulsory. The main reason, as sketched in [40, 42], is that
in MF real numbers, either as Dedekind cuts or as Cauchy sequences, cannot be
proven to be sets. Also, choice sequences of Baire and Cantor spaces do not form a
set. All this is a consequence of the fact that inMF functional relations between two
sets do not generally form a set. Instead, a priori, using Martin-Löf’s type theory
in [58] as a foundation, both pointwise approaches and pointfree ones could seem
legitimate. In fact, one can define a pointwise topology on Dedekind real numbers,
because these are in bijective correspondence with Cauchy sequences, and the latter
can be represented in Martin-Löf’s type theory as a setoid. Also, in the predicative
foundation of Aczel’s constructive set theory CZF in [1, 2, 3] both Dedekind reals
and Cauchy reals form a set and a pointwise approach is possible.

In this chapter we recall the basic definitions of formal topology necessary to
introduce the previously mentioned example of real numbers and Baire and Cantor
spaces by underlying how they are formalized inMF.

The way constructive topology is formalized inMF agrees well with our minim-
alist attitude, especially if we want to work in a constructive foundation compatible
with classical predicativity where we can distinguish the real (effective) structure
of a topology from a corresponding ideal (infinitary) structure of formal points.

A major benefit from developing pointfree topology inMF in the form of formal
topology is that we gain in clarity and in an analysis of topological concepts finer
than in other foundations.

Finally, we conclude by describing an extension ofMF, actually of its extensional
level, which appears closer to BISH.

This extension of MF is characterized by the validity of choice principles in-
cluding the axiom of unique choice and the axiom of countable choices. It should
also be interpretable in Martin-Löf’s type theory to form a two-level foundation by
extending the interpretation in [39]. But a proof of this is left to future work.

20.2 Why Adopt a Minimalist Foundation?

A plurality of philosophical reasons for a constructive approach to mathematics has
been proposed, both before and after Brouwer and Bishop.

Presently, various logical systems to formalize constructive mathematics are
available in the literature. They range from axiomatic set theories, as Aczel’s CZF
in [1, 2, 3] or Friedman’s IZF in [8], to the internal theory of categorical universes
as topoi or pretopoi in [33, 35, 37], to type theories such as Martin-Löf’s type
theory in [58] or Coquand’s Calculus of Inductive Constructions in [19, 21]. No
existing constructive foundation has yet superseded the others as the standard one,
as Zermelo–Fraenkel axiomatic set theory did for classical mathematics.
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Various machine-aided proof development systems are also available to imple-
ment mathematics (see, for example, [78]). Many of those for constructive math-
ematics are based on type systems which are also paradigms of (functional) pro-
gramming languages with the possibility of extracting the computational contents
of constructive mathematical proofs. Some of these, for example Coq in [18] or
Matita in [5], are based on impredicative typed systems, while some others, for
example Agda in [13] and Nuprl in [4], are based on predicative ones.
Beginning with [47], we embarked on the project of developing a foundation

with minimal assumptions. The main reason for this choice is to support our gen-
eral attitude to preserve all effective notions and conceptual distinctions as much as
possible, with no a priori exception. The result is a foundation which is minimalist
also in the sense that it becomes a common core among the most relevant construct-
ive foundations. Thus we expect that such a minimalist foundation should be useful
not only to constructive mathematicians but also to logicians, for example as a base
system to do constructive reverse mathematics, and also to computer scientists, as
a base for a minimalist proof-assistant suitable for formalizing reusable proofs and
for program extraction from proofs.

20.2.1 Founding Constructive Mathematics on a Two-Level Theory

In our opinion, a constructive foundation should make evident those key aspects
which differentiate constructive mathematics from classical mathematics. For ex-
ample, a typical characteristic of constructive proofs, contrary to classical ones,
is the possibility of extracting programs computing witnesses of true existential
statements occurring in them.
Even better, any proof in a constructive system should be seen as a program.

Hence, a foundation for constructive mathematics should be at the same time a
theory of sets, in which to formalize mathematical theorems, and a programming
language, in which to extract the computational contents of mathematical proofs.
In [47] we argued that such a constructive foundation (validating Heyting arith-

metics at least) should be a two-level theory consisting of the following.

• A level, called extensional, which should be an extensional set theory (with
undecidable equality of sets and elements) formulated in a language close to that
used in the common practice of developing mathematics.
• Another level, called intensional, which should be an intensional theory (with
decidable equality of sets and elements) enjoying extraction of programs from
proofs; according to [47] this level should possibly be a proofs-as-programs
theory, that is, a theory consistent with the axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))
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for A,B sets and R(x, y) a logical relation, and the formal Church thesis for
functions between natural numbers denoted with the symbol Fun(Nat,Nat)

(CT) ∀f ∈ Fun(Nat,Nat) ∃e ∈ Nat
( ∀x ∈ Nat ∃y ∈ Nat T (e, x, y) & U(y) = f(x)),

where Nat is the set of natural numbers and T (e, x, y) is the Kleene predicate
expressing that y is the computation executed by the program numbered e on the
input x and U(y) is the output of the computation y.
• Then, in order to guarantee the extraction of programs even from proofs written

at the extensional level, we required that the extensional level should be obtained
as an abstraction of the intensional level according to the forget–restore principle
proposed by the second author of the present chapter in [73].

The link between the two levels was then made more technical in [39], by
requiring that the extensional level should be interpreted in the intensional one
by means of a quotient completion of the latter, that is, the extensional level should
be seen as (a fragment of) the internal language of a quotient completion built on
the intensional one.

This kind of link captures what happens in the practice of computer-aided for-
malization of mathematics in an intensional type theory, which makes use of the
so-called model of ‘setoids’ built on it (see [6, 27]). Actually another motivation
behind the notion of two-level foundation in [39, 47] is the desire to make ex-
plicit the extensional theory validated in the quotient model chosen to formalize
mathematical proofs in intensional-type theory.

Our two-level structure where the intensional level is consistent with axiom
of choice and formal Church thesis fully agrees with Bishop’s need to exhibit the
computational contents of constructive proofs, in particular of existential statements
whose witness can be chosen computationally (see [10, Chapter 1] and [11]).

20.3 The Minimalist Foundation

In [39] we presented a two-level formal system which satisfies the requirements in
[47] of a two-level foundation for constructive mathematics. We call this system
the two-level minimalist foundation, or MF for short. We are aware, however, that
a specific formal system, which is static by definition, cannot fully capture the
dynamics of the minimalist approach to constructivism, started in [47, 67, 68, 69].

The two levels of MF are both given by a type theory à la Martin-Löf: the
intensional level, called mTT, is an intensional type theory including aspects of
Martin-Löf theory in [58] (and extending the set-theoretic version in [47] with
collections), and its extensional level, called emTT, is an extensional type theory



9781316510865c20 CUP/Bridges-L1 November 3, 2022 23:30 Page-531

20 The Minimalist Foundation & Bishop’s Constructive Mathematics 531

including aspects of extensional Martin-Löf’s theory in [53]. Then a quotient model
of setoids à la Bishop in [6, 10, 27, 59] is used in [39] to interpret the extensional
level in the intensional one. A categorical study of this quotient model has been
carried out in [45, 46, 49] and is related to the construction of Hyland’s effective
topos in [28, 29].
In the following, we explain the main characteristics of the extensional level

emTT and ofmTT viewed more as a many-sorted logic than as a type theory. This
is because both levels of MF are given by a type theory that includes a primitive
notion of proposition, which allows us to control the validity of choice principles.

Need for Two Types of Entities: Sets and Collections A minimalist foundation
for constructive mathematics should certainly be based on intuitionistic predicate
logic and include at least the axioms of Heyting arithmetic. Hence we could expect
to build it starting from a many-sorted logic, such as Heyting arithmetic of finite
types in [75], where sorts, which we call types, include the basic sets we need to
represent our mathematical entities.
However, in order to develop topology in an intuitionistic and predicative way,

we need a foundation with two kinds of types: sets and collections. The main reason
is that the power of a non-empty set, namely the discrete topology over a non-empty
set, fails to be a set in a predicative foundation, and it is only a collection.

Need for Two Types of Propositions In parallel with the presence of sets and
collections, to keep the system predicative we also need to distinguish two types
of propositions: those closed under quantifications on sets, called here small pro-
positions as in [39] (and proper propositions in [72]), from those closed under any
kind of quantification, called here simply propositions as in [39] (and improper
propositions in [72]). Both kinds of propositions include propositional equalities
which are small propositions only if they refer to elements of a set.

Need for Two Types of Functions It is well known that by adding the principle of
excluded middle to some constructive foundations, such fas Aczel’sCZF orMartin-
Löf’s type theory, one can derive that power-collections become sets and thus get an
impredicative theory. In both such theories this is due to the fact that the collection
of functions from a set A to the boolean set {0, 1}, called exponentiation of the
boolean set overA, forms a set, too. Therefore, if wewish to have compatibility with
classical theories where the power of a non-empty set is not a set as in Feferman’s
predicative theories in [23], we need to avoid exponentiation of functions.
A drastic solution is to drop all axioms yielding any form of exponentiation.

What we propose is to allow exponentiation only of a certain kind, as happens in
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[23]. To this purpose, we introduce a primitive notion of operation, represented by
certain functional terms

f(x) ∈ B [x ∈ A]

in a setB with a free variable in the setA. These operations can be defined as type-
theoretic functions of a type theory, like in Martin-Löf’s type theories in [53, 58].
Clearly any operation f(x) ∈ B [x ∈ A] must give rise to a functional relation
f(x) =B y [x ∈ A, y ∈ B], namely what is usually called function. What we do
not wish to guarantee is the converse. Our idea is then that only exponentiation of
operations from a set A to a set B forms a set.

20.3.1 The Main Types of the Extensional Level of the Minimalist
Foundation

The formal system emTT of the extensional level of the Minimalist Foundation
in [39] is written in the style of Martin-Löf’s type theory in [58] by means of the
following four kinds of judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ];

that is, the type judgement (expressing that something is a specific type), the
type equality judgement (expressing that two types are equal), the term judgement
(expressing that something is a term of a certain type), and the term equality
judgement (expressing the definitional equality between terms of the same type),
respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of entities:
collections, sets, propositions, and small propositions, namely

type ∈ {coll, set, prop, props }.

Therefore, in emTT types are actually formed by using the following judgements:

A set [Γ] B coll [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that B is a collection, that φ is a proposition, and that ψ is a
small proposition.

Here, contrary to [39] where we use only capital latin letters as meta-variables
for all types, we use greek letters ψ, φ as meta-variables for propositions and capital
italic latin letters A,B as meta-variables for sets or collections, and small italic
latin letters a, b, c as meta-variables for terms, that is, elements of the various types.

Observe that for a set A, when we say that

a ∈ A [Γ]
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is derivable in emTT, we actually mean that the term a is an element of the set A
under the context Γ and hence the symbol ∈ stands for a set membership. As usual
in type theory, equality of sets is given primitively and is not defined by equating
sets with the same elements. This is indeed a main difference between a set theory
defined as a typed system in the style of Martin-Löf’s type theory in [58] and an
axiomatic set theory à la Zermelo–Fraenkel.
We now proceed by briefly describing the various kinds of types in emTT,

starting from small propositions and propositions, then sets, and finally collections.
Small propositions in emTT include all the logical constructors of intuitionistic

predicate logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ |

∀x ∈ A φ(x) | ∃x ∈ A φ(x) | x =A y

provided that A is a set. Here we use the more familiar x =A y for the extensional
equality type Eq(A, a, b) of Martin-Löf type theory in [53].
Then, propositions of emTT include all the logical constructors of intuitionistic

predicate logic with equality and quantifications on all kinds of types, namely sets
and collections. Of course, small propositions are also propositions:

φ prop ≡ φ props | φ ∧ ψ | φ ∨ ψ | φ→ ψ |

∀x ∈ B φ(x) | ∃x ∈ B φ(x) | x =B y.

In order to close sets under comprehension, for example to include the set of
positive natural numbers {x ∈ N | x ≥ 1}, and to define operations on such sets,
we need to think of propositions as types of their proofs: small propositions are
seen as sets of their proofs while generic propositions are seen as collections of
their proofs. That is, we add to emTT the following rules:

(props-into-set)
φ props
φ set

(prop-into-coll) φ prop

φ coll
.

The difference between the notion of set and collection will be explained later in
this section.
A key feature of the extensional typed system emTT is proof-irrelevance of

propositions. This means that in emTT a proof of a proposition, if it exists, is
unique and equal to a canonical proof term called true thanks to the following
rules:

(prop-mono) φ prop [Γ] p ∈ φ [Γ] q ∈ φ [Γ]

p = q ∈ φ [Γ]

(prop-true) φ prop p ∈ φ
true ∈ φ

.
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Proof-irrelevance of propositions justifies the introduction of a judgement assert-
ing that a proposition φ is true under a contextΓ assuming propositionsψ1, . . . , ψm
are true as in [53, 54]. This judgement can be directly interpreted in emTT as fol-
lows:

φ true [ Γ;ψ1 true, . . . , ψm true ] ≡ true ∈ φ [ Γ, y1 ∈ ψ1, . . . , ym ∈ ψm].

In emTT sets are characterized as inductively generated types and they include the
following:

A set ≡ φ props | N0 | N1 | List(A) |

Σx∈AB(x) | A+B | Πx∈A B(x) | A/ρ,

where the notation N0 stands for the empty set, N1 stands for the singleton set,
List(A) stands for the set of lists on the set A, Σx∈AB(x) stands for the indexed
sum of the family of sets B(x) set [x ∈ A] indexed on the set A, A + B stands
for the disjoint sum of the set A with the set B, Πx∈AB(x) for the product type of
the family of sets B(x) set [x ∈ A] indexed on the set A, and A/ρ stands for the
quotient set provided that ρ is a small equivalence relation ρ props [x ∈ A, y ∈ A].
Moreover, we call N the set of natural numbers represented by List(N1).

The notion of set in emTT agrees with that in [10] and in [51]. According to
them, sets must have an effective nature which is mostly forgotten in any axiomatic
approach where a universe of sets closed under certain properties is implicitely
assumed as the underlying range of the set variables. In fact, each set A must be
specified by providing a finite number of rules to construct all its elements (see
the rules of emTT forming elements of sets in [39]). It is understood that the
rules defining a set are inductive, that is, their application can be iterated any finite
number of times. The infinite is only potential, and in a certain sense it is always
reduced to a finite description, at a higher order: not a finite number of elements,
but a finite number of rules to generate (the infinite number of) them. In particular,
the elements of the product type Πx∈AB(x) are only terms

b(x) ∈ B(x) [x ∈ A].

In the case the family B(x) set [x ∈ A] is just a constant set B indexed on the set
A, we indicate the product type simply as

A→ B ≡ Πx∈AB

and its elements are just operations

b(x) ∈ B [x ∈ A].
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Hence, in emTT operations between two sets form a set, but generic functions
between them do not.
Finally, collections in emTT include the following types:

B coll ≡ A set | φ prop | P(1) | A→ P(1) | Σx∈B C(x),

where P(1) and A→ P(1) stand for the power-collections of the singleton and of
a set A respectively, and Σx∈B C(x) stands for the indexed sum of the family of
collections C(x) col [x ∈ B] indexed on the collection B. Actually, for a set A, we
will use the common abbreviation of power-collection

P(A) ≡ A→ P(1).1

Elements of the power-collections rely on the notion of subset, which in emTT
is inspired by that in [73] put on top of Martin-Löf’s type theory. A subset of a
set A is defined as the equivalence class of a small predicates φ(x) depending on
one argument in A with respect to the equivalence relation of equiprovability. This
is the minimum we must require in order to close subsets under comprehension.
Indeed, for any small predicate φ(x) props [x ∈ A] on a set A we can define its
subset comprehension as

{x ∈ A | φ(x) } ∈ P(A).

Moreover, two equiprovable small predicates give rise to the same subset, that is,
in emTT we can derive

φ1(x) ↔ φ2(x) true [x ∈ A]

{x ∈ A | φ1(x) } =P(A) {x ∈ A | φ2(x) } true
.

In the following we indicate subsets of a set A with capital letters U, V,W . . . .

Associated with the notion of subset we have also a subset membership indicated
with the symbol ε, which we distinguish from the primitive set membership ∈ used
to say that an element belongs to a certain set. Given a subset U ⊆ A of a set A,
that is, U ∈ P(A), for any a ∈ A we define a new small proposition

a ε U props.

We can prove in emTT that

U = {x ∈ A | x ε U } ∈ P(A)

and also that, for any small predicate φ(x) ∈ props [x ∈ A] on the set A and for
any element a ∈ A,

a ε {x ∈ A | φ(x) } ↔ φ(a) true.

1 The notation A→ P(1) for the power-collection P(A) is used to remember that its elements are operations
from a set A to the power-collection on the singleton.
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The subset equality is equivalent to usual extensional equality with respect to
membership ε, namely we can derive in emTT that

∀x ∈ A (x ε U ↔ x ε W ) ↔ U =P(A) W true

and, of course, that

{x ∈ A | φ(x) } =P(A) {x ∈ A | ψ(x) } ↔ ∀x∈A (φ(x)↔ ψ(x)) true.

In particular,P(1) denotes the power-collection of the singletonN1 and its elements
are equivalence classes of small propositions closed under the equivalence relation
of equiprovability.

The fact that subset equality corresponds to usual extensional equality of sets
suggests that we can view the subset theory in emTT as a local set theory where
subsets of a setA can be considered local sets in [9] in the style of Zermelo–Fraenkel
set theory. Then, membership and extensional equality via elements becomes a local
property restricted to a given set A. To this purpose, observe that among subsets of
A, there is A itself thought of as the subset

{x ∈ A | tt },

where tt is any tautology. Moreover, we can define quantifiers relativized to a
subset: this means that, if U ⊆ A and ϕ is a small predicate (or propositional
operation) with an argument in A, we write ∃x ε U ϕ as an abbreviation for the
formula ∃x ∈ A (x ε U & ϕ), and ∀x ε U ϕ as an abbreviation for the formula
∀x ∈ A (x ε U → ϕ). A consequence of these definitions is that all laws of many-
sorted intuitionistic logic regarding quantifiers extend to quantifiers relativized to a
subset.

Note that the membership relation ε between terms and subsets is crucial in
emTT to obtain an embedding of subsets into sets, which associates the set

Σx∈A x ε U set

to a subset U ⊆ A. In this way an operation from U ⊆ A to a set B can be
represented as an operation in Σx∈A x ε U → B.

The emTT distinction between set and collection is analogous to the distinction
between set and class in axiomatic set theory. But while in axiomatic set theory the
distinction is mainly due to problems with consistency (or size), here it is motivated
by quality of information and preservation of predicativity. Indeed, sets are kept
distinct from collections to be able to maintain a distinction between computable,
effective domains (represented by sets) and non-computable ones (represented by
collections). This distinction is also extended to propositions in emTT by selecting
small propositions as those propositions closed only under quantifications over sets
and only under propositional equality only on sets. Then, to avoid an impredicative
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power-collection of a set, a subset must be defined as an equivalence class of small
predicates and not of generic ones.
An important conceptual reason why even the power-collection P(1) of the

singleton is only a collection and not a set is that in emTT we intend the notion of
small proposition to be open. The same is done for that of proposition, of set, and of
collection. Indeed, althoughwe have fixed the system emTT, new sets or collections
can be introduced at any time. This implies in particular that the collection of small
propositions (quotiented under equiprovability) is not a set. Indeed, each time we fix
our propositions or sets by fixing a formal system, both notions become inductively
generated. However, we cannot support an induction principle inside the formal
system, given that the number of inductive hypotheses should change any time we
introduce a new set or proposition. This is different from the induction principle
on the set of natural numbers, which has only two hypothesis: what we do on the
number zero, and with any successor number.

20.3.2 The Main Types of the Intensional Level of the Minimalist
Foundation

Herewe briefly describe themain types of the formal systemmTT of the intensional
level of the Minimalist Foundation in [39] by simply pointing out the differences
with those of emTT.
In essencemTT is a dependent type theory which provides a predicative version

of Coquand’s Calculus of Constructions in [19]. It is written in the style of inten-
sional Martin-Löf’s type theory in [58] by means of the following four kinds of
judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ].

Like emTT, mTT includes small propositions and propositions which are closed
under the same type constructors as those in emTT except that the propositional
equality type is written Id(A, a, b) and has proper rules specifying its elements.
There are also the rules stating that small propositions are propositions, that small
propositions are sets and that propositions are collections. A main difference with
respect to emTT is that in mTT the rules (prop-mono) and (prop-true) are
omitted. As a consequence, all propositions inmTT are seen as types of their proofs
which are not in general unique as usual in intensional type theory. Moreover, as
in the intensional version of Martin-Löf’s type theory, in mTT the definitional
equality of terms of the same type given by the judgement

a = b ∈ A [Γ],
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which should be computable, is no longer equivalent to the propositional equality
type

Id(A, a, b) prop [Γ],

which is not necessarily computable and not necessarily equipped with only one
proof.

Sets in mTT are closed under the same constructors as those in emTT with the
exception of the quotient set constructor A/ρ. As in emTT, in mTT there is also
the rule stating that sets are collections.

Finally, collections in mTT include the same constructors as those of emTT
except that the power-collection of the singleton P(1) is replaced by the universe of
small propositions props and the power-collection constructor A → P(1) on a set
A is replaced by the collectionA→ props of predicates or propositional operations
depending on the set A.

The dependent type theory mTT was designed in order to serve as a base for a
proof-assistant.

20.3.3 On the Extraction of Programs from Proofs inMF

Here we describe how Bishop’s desire to compile a foundation for constructive
mathematics in a programming language is fulfilled for MF.

First of all, MF was structured as a two-level theory to interpret constructive
proofs done at its extensional level emTT to proofs done at its intensional level
mTT from which to extract the computational contents in the form of programs.
However, the extraction of the computational contents of proofs in mTT cannot
be performed in mTT itself as shown in [41] but in a stronger theory or in the
realizability semantics in [31]. One could then think of enlarging the intensional
level to become the stronger theory needed, but this would not satisfy the forget–
restore principle according to which the entities at the extensional level should be
obtained by abstraction from the intensional ones, or more concretely as quotients
of intensional entities.

A priori, the intensional levelmTT itself could serve as a programming language
to compile proofs done at the extensional level. Indeed, mTT is a dependent type
theory where we can construct a correct and terminating program as a typed term
meeting a certain specification defined as its type. But to extract programs from
constructive proofs it is desirable that from a proof of an existential statement under
hypothesis

p(x) ∈ ∃y ∈ B R(x, y) [x ∈ A]
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for generic types A and B, one may extract a functional program f ∈ A → B

whose graph is contained in the graph of R(x, y), namely for which we can prove
that there exists a proof-term q(x) such that we can derive

q(x) ∈ R(x, f(x)) [x ∈ A]

This property is called choice rule.
In all the versions ofMartin-Löf dependent type theory in [53, 58] the choice rule

is valid thanks to the identification of theMLTT-existential quantifier with the the
strong indexed sum of a set family, which characterizes the so-called propositions-
as-sets isomorphism. Then the axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

is valid for generic types A and B.
However, in mTT the existential quantifier is not identified with the strong

indexed sum type whilst it is still a type of its proofs. The result is that the choice
rule in Definition 20.1 is not valid.

Definition 20.1 The dependent type theory mTT satisfies the choice rule if for
every small proposition R(x, y) props [x ∈ A, y ∈ B] derivable in mTT, for any
derivable judgement in mTT of the form

p(x) ∈ ∃y∈B R(x, y) [x ∈ A],

there exists in mTT a typed term

f(x) ∈ B[x ∈ A]

for which we can find a proof-term q(x) and derive in mTT

q(x) ∈ R(x, f(x)) [x ∈ A].

Proposition 20.2 In mTT the choice rule is not valid.

Proof See [41].

Hence, when proving a statement of the form

∀x∈A∃y ∈ B R(x, y)

in the dependent typed theory mTT, we cannot always extract a functional term
f ∈ A → B computing the witness of the existential quantification depending
on a x ∈ A within the theory itself but we need to find it in a more expressive
proofs-as-programs theory.
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For mTT we can use Martin-Löf’s type theory, for short MLTT, in [58] as the
more expressive theory where to perform the mentioned witness extraction. Indeed,
we can interpret mTT inside MLTT as shown in [39] by preserving the meaning
of its entities.

This extraction is done by first embedding the proof-term

p ∈ ∀x∈A ∃y ∈ B R(x, y)

derived in mTT and then usingMLTT-projections to extract f .
The other possibility is to perform this witness extraction in the realizability

model of mTT in [31]. This realizability model guarantees that the intensional
levelmTT ofMF is a ‘proofs-as-programs theory’ in the sense of [47], namely that
mTT is consistent with the axiom of choice (AC) and the formal Church thesis
(CT) by identifying Fun(Nat,Nat) inmTT with the type of functional relations
between natural numbers.

ΣR∈P(N,N) ∀x∈A ∃!y ∈ B 〈x, y〉εR,

where ∃!y ∈ B 〈x, y〉εR ≡ ∀y1∈B ∀y2∈B R(x, y1) & R(x, y1) → Id(B, y1, y2)

Actually in [31]mTT is shown to be consistent with (AC) and the formal Church
thesis for operations between natural numbers

(CTtt)2 ∀f ∈ N→ N
∃e ∈ N ∀x ∈ N ∃y ∈ N (T (e, x, y) ∧ U(y) =N f(x))

stating that all operations between natural numbers are recursive.
The consistency ofmTT with (AC) and (CTtt) implies the consistency ofmTT

with (AC) and (CT) since we can easily show the following.

Lemma 20.3 InmTT extended with (AC) the formal Church thesis for functional
relations CT is equivalent to the formal Church thesis for operations CTtt.

Therefore we conclude as follows.

Proposition 20.4 The intensional levelmTT ofMF in [39] is consistent with (CT)
and the axiom of choice in the form

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

for A,B collections and R(x, y) any proposition in mTT.

Proof It follows from Lemma 20.3 and [31].

As a consequence of the interpretation of the extensional level of MF into its
intensional level in [39], we can also deduce that the extensional level of MF is
consistent with the formal Church thesis.
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Proposition 20.5 The extensional level emTTofMF in [39] is consistentwith (CT ).

Proof A proof of this proposition can be obtained in various ways. For example,
it also follows from the realizability interpretations ofmTT in [43, 44], or from the
fact that emTT can be interpreted by preserving the meaning of its entities both
in the internal theory of a topos and then in Hyland’s Effective Topos in [28] or
in Aczel’s set theory in [1]. It would be also possibile to interpret emTT in the
predicative version of Hyland’s Effective Topos in [48].

Observe that the consistency requirement of a proofs-as-programs theory with
(AC) and (CT) just guarantees that from proofs of existential statements on natural
numbers under hypothesis

∃y ∈ N R(x, y) true [x ∈ Nat]

we can extract of a computable choice function

f ∈ N→ N

producing a witness under hypothesis such that we can find a proof of

R(x, f(x)) true [x ∈ N].

It is then clear that our proofs-as-programs requirement does not fully capture
the idea of a foundational theory that is at the same time a programming language
satisfying the choice rule, such asMLTT in [58].
It is still an open problem whether MLTT enjoys our proofs-as-programs re-

quirement or, equivalently, whether MLTT is consistent with the formal Church
thesis (CT).
Our purpose with the proofs-as-programs requirement in [47] was to single out

a property characterizing theories which are interpretable in extensions of Kleene
realizability semantics for Heyting Arithmetics with finite types (see [75]).

20.3.4 Benefits of Distinguishing Operations from Functions

Inspired by Brouwer’s difference between lawlike and choice sequences in [75],
in MF contrary to BISH we can define choice sequences from the set of natural
numbers N to a set B as functions (in the sense of functional relations, that is, total
and single-valued relations), and lawlike sequences as operations.

Definition 20.6 (Choice and lawlike sequences) Given a set A, a choice sequence
from the set N of natural numbers to A is a function defined by a small functional
relation α(x, y) props [x ∈ N, y ∈ A] in emTT.
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A lawlike sequence from the set N of natural numbers to A is an operation

f ∈ N→ A

in emTT, or equivalently, thanks to the rules in [39] defining elements in N→ A,
an emTT-term f(x) ∈ A [x ∈ N].

It is possible to keep a distinction between choice sequences and lawlike se-
quences because in emTT the axiom of unique choice

(AC!N,N ) ∀x ∈ N ∃!y ∈ N R(x, y) −→ ∃f ∈ N→ N ∀x ∈ N R(x, f(x)),

which turns a function between natural numbers into an operation, is not valid, as
shown in [40, 41]. Our distinction allows us to clarify and compare results about
choice sequences in the literature, since choice sequences are sometimes identified
with our functions, for example in [63], and sometimes with our operations, for
example in [75].

Another consequence of the distinction between operations and functions is that
we can refine the notion of decidable subset of the set of natural numbers N. In
constructive mathematics it is common to say that a subset U ⊆ N is decidable if
∀x (x ε U ∨ x 6ε U ) holds. In our theory we can distinguish three notions.

Definition 20.7 A subset U of the set N is said to be:

• complemented, if ∀x (x ε U ∨ (x 6ε U) ) holds, and in this case U is classified
by a function from N to the boolean set Bool

χU (x, y) ≡ (x ε U & y =Bool 1) ∨ (x 6ε U & y =Bool 0);

• detachable, if the subset U is classified by an operation, namely we can derive

∃f∈N→Bool ∀x ∈ N ((x ε U & f(x) =Bool 1) ∨ (x 6ε U & f(x) =Bool 0));

• decidable, if U is classified by a computable operation, namely we can derive

∃f∈N→Bool (∀x ∈ N ((x ε U & f(x) =Bool 1) ∨ (x 6ε U & f(x) =Bool 0))

& ∃e ∈ N ∀x ∈ N ∃y ∈ N (T (e, x, y) ∧ U(y) = Nf(x))),

where T (e, x, y) is the Kleene predicate expressing that y is the computation
executed by the program numbered e on the input x and U(y) is output of the
computation y.

Observe that, classically, all subsets are complemented. Of course, in the pres-
ence of the axiom of unique choice, functions and operations coincide and hence
complemented and detachable subsets coincide, too, as for example inMartin-Löf’s
type theory.
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All the three kinds of subsets coincide in the Kleene realizability interpretation of
Heyting arithmetic. This interpretation is in some sense the intended interpretation
of the arithmetic fragment of a constructive foundation. Hence, the identification
of the name ‘decidable’ with our notion of complemented subsets (that we do not
follow here, however), has its own (plausible) justification.
In [40, 42], we observed that if we extend emTT with the principle of excluded

middle then we can prove the existence of a power-set of detachable subsets, which
do not necessarily coincide with all subsets, that is, with complemented ones. This
option of restricting exponentiation as a set to lawlike sequences opens the way to
build a theory compatible with classical predicativity as those in [23].

20.4 Why Adopt the Pointfree Approach to Develop Topology in MF?

Bishop, like Brouwer, developed constructive analysis by adopting a pointwise
approach which presented some difficulties solved by them in different ways (see
[60, 75]).When developing topology inMFweneed to adopt the pointfree approach.
The most important reason is that, when working inMF, the pointwise approach is
not suitable because relevant examples of classical topologies (real numbers both
as Dedekind cuts or Cauchy sequences, Baire space, Cantor space, etc.) do not give
rise to a pointwise topology since their points do not form a set.
A solution is to work with the pointfree topology associated to each of these

spaces. The constructive approach to pointfree topology given by formal topology
has provided evidence that most important results of constructive analysis (see, for
example, [51, 60]) can be reached in a compatible way with classical mathematics
as in Bishop’s constructive approach, but without assuming further principles,
such as the Fan Theorem adopted by Brouwer in his pointwise approach and in
[14, 15, 30, 75].
Before entering into details, we briefly review a constructive notion of topological

space and then the main concepts of formal topology.

20.4.1 A Predicative Constructive Notion of Topological Space

Considering that in a predicative foundation the discrete topology on a given non-
empty set is not a set but a collection, we need to review the concept of topological
space by distinguishing what belongs to the realm of sets from what belongs to the
realm of collections.
At first, one could think of simply keeping the traditional definition of topological

space (X, OX) by just declaring the topology OX to be only a subcollection of
the power ofX which is a suplattice, that is, a complete join-semilattice, with finite
distributive meets. This approach is compulsory in order to include the discrete
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topology among topologies. Even more, as shown in [22], there is no non-trivial
suplattice, and hence no non-trivial topology, which is a set.

One should then define suplattices as collections closed under sups of set-indexed
families. However, as in [7] and [64], suplattices are easier to handle by restricting
to the notion of set-based suplattice, namely a semilattice that is generated by taking
sups from a set(-indexed family) of elements, called generators.

Topologically this means that we need to assume that the collection of opens
of a space has a base that is a set. To make this assumption rigorous, we require
that for a given set of points X we have a set S together with a family of subsets
ext (a) ⊆ X [a ∈ S] acting as a base for the topology onX . Elements a of S act as
names of basic opens ofX; they are called formal basic neighbourhoods or simply
observables.

Then, following [66], we define a subset of X to be open if it is equal to
extU ≡ ∪aεU ext a for some subset U ⊆ S. It is immediate to see that open
subsets are closed under unions of set-indexed families.

Then we need to require closure of open subsets under intersection. To this
purpose, it is convenient to start from basic neighbourhoods, that is, subsets of X
of the form ext a for some a ∈ S. For all a, b ∈ S, the intersection ext a ∩ ext b is
open, that is, it is equal to extW for someW ⊆ S, if and only if

B0 ext a ∩ ext b = ext (a ↓ b) for all a, b ∈ S,

where

a ↓ b ≡ {c ∈ S : ext c ⊆ ext a ∩ ext b}.

In fact, ext (a ↓ b) is by its definition the greatest open subset contained in ext a∩
ext b. Then, from B0, by two applications of distributivity in PX , we can easily
obtain

B1 extU ∩ extV = ext (U ↓ V ) for all U, V ⊆ S,

where

U ↓ V ≡ ∪aεU ∪bεV a ↓ b.

Finally, to obtain that the whole space is open we need to add the requirement

B2 X = extS.

It is clear that for any family of subsets ofX indexed by the set S, that is, for any
ext a ⊆ X for a ∈ S, satisfying B1 and B2, the collection of subsets extU ⊆ X

for U ∈ PS is closed under set-indexed unions and finite intersections.
Therefore we can give the following constructive version of topological spaces

(see [66]).
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Definition 20.8 A concrete space is a structure X = (X, ext , S) whereX , S are
sets and ext (a) ⊆ X [a ∈ S] is a set-indexed family of subsets satisfying:

B1 extU ∩ extV = ext (U ↓ V ) for all U, V ⊆ S,

B2 X = extS.

In an impredicative foundation with power-sets, this is just a reformulation of the
common notion of topological space.

The notion of concrete space is present in [10], under the name of neighbourhood
space. The discrete topology on a setX is obviously an example of concrete space
with X itself as base and ext (x) ≡ {x} for x ∈ X .

A useful example of concrete space is given by the set Q of rational numbers
with the topology produced by the base of open intervals.

In more detail, the base is the set Q×Q of pairs 〈p, q〉 of rational numbers, and
the basic neighbourhood with index 〈p, q〉 is the subset

ext ( 〈p, q〉 ) ≡ {r ∈ Q | p < r < q }

for all p, q ∈ Q.
In other constructive and predicative foundations, such as Aczel’s CZF and

Martin-Löf’s type theory in [58], another example of concrete space is that of real
numbers. It is not so in ourMF, as we shall see later. Even when the topology of real
numbers provides an example of concrete space, it is well known from Brouwer that
a constructive pointwise development of analysis fails to get important properties
(see [75]), such as compactness of the closed interval [0, 1], unless further principles,
for example the Fan Theorem, are assumed or some basic topological notions are
changed as in Bishop’s approach (see [10, 12, 15]). An alternative approach to
constructive topology, and analysis, is offered by formal topology.

20.4.2 The Predicative Constructive Pointfree Approach of Formal Topology

The approach of formal topology to pointfree topology was introduced by Per
Martin-Löf and the second author in the 1980s; the first published account is
[64]. The intended foundation was then Martin-Löf’s type theory MLTT in [58].
However, as underlined in the introduction of [64], to the second author it was
already clear that it was necessary to work with an explicit notion of subset, and
with a primitive notion of proposition using the judgement that a proposition is
true without any reference to proof-terms in [54]. Such a conception of subsets and
propositions was later specified in [73] as a tool to be added on top of type theory.
As noticed in [36, 37], working with existential quantifiers with no proof-terms
means that the axiom of choice no longer holds. This is different from MLTT
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where existential quantifications are identified with indexed sums, according to the
proposition-as-set isomorphism, thus making the axiom of choice (AC) derivable.
Moreover, this explains why in formal topology, as developed by the second author,
every use of the axiom of choice was explicit. Given that the notion of subset in [73]
and a primitive notion of proof-irrelevant propositions have been incorporated in
our Minimalist Foundation, all the main definitions and results on formal topology
(by the second author) can be carried in it. Actually the combination of the tool
of extensional subsets with the intensional MLTT partly anticipated the notion of
two-level theory in [47], because subsets are not formally included in MLTT.

The main idea of formal topology is to replace the notion of concrete space with
an abstract axiomatization of the structure of open subsets, and then to recover its
points in a formal way as suitable subsets of opens. The precise definition is reached
by describing the structure of the set S of basic neighbourhoods in a concrete space
(X, ext , S) with no mention of the set X of points.

While in the concept of concrete space (X, ext , S) points in X are given at the
same time as the formal basic neighbourhoods in S and both form a set, in formal
topology only the structure of opens is described, starting from the set S of formal
basic neighbourhoods and from a new primitive relation aCU , called formal cover,
between formal basic neighbourhoods a ∈ S and subsets U ⊆ S. A formal cover
relation is the abstract counterpart of

ext a ⊆ extU,

which expresses in a concrete space that the open extU is a covering of the basic
neighbourhood ext a. Then, the notion of formal topology extends that of formal
cover with the addition of a primitive predicate Pos(a) for a ∈ S, which is the
abstract counterpart of the assertion that the basic neighbourhood ext a is inhabited.
Details of the definitions are now presented.

Definition 20.9 (Formal cover) A formal cover A = (S,C) is given by a set S
and a relation C ⊆ S × P(S) between elements and subsets of S that satisfies the
following rules for every a ∈ S and U, V ⊆ S:

a ε U
aC U

reflexivity
aC U U C V

aC V
transitivity

aC U aC V
aC U↓AV

convergence,

where U C V
def⇐⇒ (∀ b ε U) (b C V ) and U ↓A V = {a ∈ S : (∃u ε U)(a C

u) & (∃v ε V )(aC v)}.

This definition provides a predicative counterpart of the impredicate notion of
pointfree topology called locale in [32, 35]. In fact, to any formal coverA = (S,C)
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we can associate an operator A on P(S), that is, an operation A : P(S) → P(S)

(that by abuse of notation we call the formal cover itself!), by putting

AU def
= {a ∈ S | aC U} (20.1)

for anyU ⊆ S. Then, reflexivity and transitivity of the cover means that the operator
A is a saturation (or closure operator) and convergence means that A satisfies

A(U ↓A V ) = AU ∩ AV.

The collection Sat(A) of all fixed points of the operatorA (i.e., all subsets U of S
satisfyingA(U) = U ) with the order given by inclusion form a locale. See [17] for
an account and discussion on the several variants of the definitions of formal cover.
Then a formal topology is defined as follows.

Definition 20.10 A formal topology S = (S,C,Pos) is a formal cover (S,C)

equipped with a positivity predicate, that is a predicate Pos(a) for a ∈ S which
satisfies the conditions

(monotonicity)
Pos(a) a C U

(∃u ε U) Pos(u)
(positivity)

Pos(a)→ a C U

a C U
.

Formal topologies provide a predicative counterpart of the impredicative notion
of open locale in [34].
Formal covers, as well as formal topologies, can be inductively generated from a

set-indexed family of axioms of the form aC U .

Definition 20.11 Given a set S, an axiom-set is a pair I, C, given by a family of
sets I(a) for each a ∈ S and a family of subsetsC(a, i) ⊆ S for a ∈ S and i ∈ I(a)

(with the intended meaning that aC C(a, i) holds).

The definition of inductively generated formal cover was introduced in [20] and
for our purposes we just recall the following.

Definition 20.12 Given a preordered set (S,≤) and an axiom-set I, C, the induct-
ively generated formal cover (formal topology) (S,CI,C) is a formal cover (formal
topology) satisfying:

(i) aCI,C C(a, i) for every a ∈ S and i ∈ I(a);
(ii) if C′ is another formal cover (formal topology) such that a C′ C(a, i) for all

a ∈ S and i ∈ I(A), then aCI,C U → aC′ U holds for all a ∈ S and U ⊆ S.

Observe that in generating the formal topology the preorder on the set of basic
neighbourhoods (S,≤) is essential to produce a distributive lattice of open subsets
(see [17] for a detailed explanation).
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In the Minimalist Foundation we can define some inductively generated formal
topologies but not all, as shown in [50]. For example, in MF we can represent the
pointfree topology of real numbers or that of the Cantor space by reproducing the
argument used in [77] to define inductively generated formal covers, and formal
topologies, in an extension of Martin-Löf’s type theory with ordinals.

Thereforewe assume the existence of an inductively generated coverwhen needed
both at the extensional and at the intensional levels of MF. A proper two-level ex-
tension of the Minimalist Foundation with generic inductively generated formal
topologies satisfying the requirements in [48] was built in [50] and called MFind.
In particular, in [50] the intensional level is shown to be consistent with the for-
mal Church thesis and the axiom of choice by extending the Kleene realizability
interpretation of intuitionistic arithmetic as was done in [31] but in a constructive
metatheory.

We now recall the notion of a formal point. Given any formal topology S, a
formal point over S is a subset α of the set S such that it makes sense to think of
a ε α as meaning that the observable a is an approximation of α. To obtain a precise
definition, one considers the case in which S is the topology of a concrete spaceX
and takes some pointfree properties of the subset { a ∈ A | x ε ext (a) }, which
is the trace on S of a concrete point x ∈ X , as the conditions to define a subset
α ⊆ S to be a formal point.

Definition 20.13 (Formal point) LetA ≡ (A,C) be a formal cover. An inhabited
subset α of A is a formal point if, for any a, b ∈ A and any U ⊆ A, it satisfies the
following conditions:

(α is filtering)
a ε α b ε α

(∃c ε {a} ↓A {b}) c ε α
(α splits the cover)

a ε α a C U

(∃u ε U) u ε α
.

Then, one can take the collection of Pt(A) ≡ {α ∈ P(S) | α formal point }
and make it a formal space as follows.

Definition 20.14 (Formal topology and formal space) For any formal cover A ≡
(S,C), the collection Pt(A) of formal points of A with the topology generated
by the basic neighbourhoods of the form Ext (a) ≡ { α ∈ Pt(A) | a ε α } for
a ∈ S defines the formal space of points of A (that by abuse of notation we still
call Pt(A)).

In an impredicative foundation, where power-collections are sets, it is clear that
Pt(A) defines a concrete space for any formal cover A. Hence, as is well known,
impredicatively one can prove the existence of an adjunction between formal covers
and concrete spaces (see [32, 35]). This impredicative adjunction associates to a
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formal cover its formal space, and conversely to a concrete space (X, ext , S) the
formal cover (S,CX) defined by

aCX U ≡ ext a ⊆ extU.

But, not all formal covers arise from concrete spaces in this way. Moreover, the
formal cover induced by a formal space is not necessarily equal to the starting
formal coverA, that is, not all formal covers are spatial. And even more, the formal
space of a formal cover arising from a concrete space is not necessarily equivalent
to the starting concrete space, that is, not all concrete spaces are sober.
In a constructive and predicative foundation like our minimalist one, such an

adjunction is no longer available, because the collection Pt(A) is not necessar-
ily a set.
Here we will see at least three relevant examples of proper formal spaces, that

is, formal spaces whose formal points cannot form a set in our MF: the formal
space of real numbers, Cantor, and Baire spaces. In all these examples, we will
see how our foundation allows us to distinguish points which are given effectively,
namely concrete points identified with lawlike sequences, from points which are
only ideally so, that is, formal points, which are identified with choice sequences.
It is a predicative foundation which allows one, and, in the same time compels one,
to take care of this distinction between an effective or real structure, such as that of
open basic neghbourhoods, from an ideal or non-effective structure such as that of
formal points.
So in a constructive approach to topology such as our minimalist one, formal

topologies and formal points are not just an option to describe something which is
there in any case. They are introduced also as the only way to treat those spaces
which otherwise would be constructively unreachable.

20.4.3 Examples of Pointfree Topologies whose Formal Points
do not Form a Set

Thefirst example of topologywhose formal points do not forma set in theMinimalist
Foundation is the formal topology of real numbers, such as Dedekind cuts.

Definition 20.15 (Formal topology of real numbers) The formal topology of real
numbers R ≡ (Q × Q,CR,PosR) is an inductively generated formal topology
defined as follows. The base is Q × Q and the basic neighbourhoods are pairs of
rational numbers, 〈p, q〉 with p, q ∈ Q. A preorder on Q × Q is defined as follows

〈p, q〉 ≤ 〈p′, q′〉 ≡ p′ ≤ p ≤ q ≤ q′

for p, q, p′, q′ in Q. The cover is defined inductively by the following rules (which
are a formulation in our context of Joyal axioms, cf. [32], pp. 123–124):
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q ≤ p
〈p, q〉CR U

〈p, q〉 ∈ U
〈p, q〉CR U

p′ ≤ p < q ≤ q′ 〈p′, q′〉CR U
〈p, q〉CR U

p ≤ r < s ≤ q 〈p, s〉CR U 〈r, q〉CR U
〈p, q〉CR U

wc
wc(〈p, q〉) CR U
〈p, q〉CR U

where in the last axiom we have used the abbreviation

wc(〈p, q〉) ≡ { 〈p′, q′〉 ∈ Q × Q | p < p′ < q′ < q}

(wc stands for ‘well-covered’).
The positivity predicate is PosR( 〈p, q〉 ) ≡ p < q, expressing that the pair of

rationals represents a non-empty interval.

As shown in [57], formal points of the formal topology R are in bijection with
the collection of Dedekind cuts on the rationals. The proof carries over to our
foundation after observing thatR can be defined in emTT as described in [50].

Definition 20.16 A Dedekind cut on the rationals is a pair (L,U) with inhabited
L,U ⊆ Q satisfying the following properties:

(disjointness) ∀q ∈ Q ¬(q ε U & q ε L)

(L-openess) ∀p ε L ∃q ε L p < q

(U -openess) ∀q ε U ∃p ε U p < q

(L-monotonicity) ∀q ε L ∀p ∈ Q (p < q → p ε L)

(U -monotonicity) ∀p ε U ∀q ∈ Q (p < q → q ε U)

(locatedness) ∀q ∈ Q ∀p ∈ Q (p < q → p ε L ∨ q ε U).

Proposition 20.17 In emTT the formal points of the inductively generated formal
topologyR are in bijection with the collection of Dedekind cuts on the rationals.

Proof Given a formal point α ∈ Pt(R) we can build the following Dedekind cut:

Lα ≡ { p ∈ Q | ∃q∈Q 〈p, q〉 ε α } Uα ≡ { q ∈ Q | ∃p∈Q 〈p, q〉 ε α }.3

Conversely, given a Dedekind cut (L,U) we can define the following formal point

α(L,U) ≡ {〈p, q〉 ∈ Q×Q | p ε L & q ε U}.

In [57] it is proved that formal points of R, or Dedekind cuts, are also in bijective
correspondence with Cauchy sequences à la Bishop in [10]. This correspondence
does not work in emTT: only Cauchy sequences à la Bishop can be shown to
be formal points of R. To make this point clear, we recall the notion of Cauchy
sequence à la Bishop. In the following with N+ we mean the set of positive natural
numbers.
3 Note that the base of our topologyR does not contain +∞,−∞ like that in [57].
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Definition 20.18 (Cauchy sequence à la Bishop) A function R(n, x) props [n ∈
N+, x ∈ Q], indicated with the usual notation (xn)n∈N+ , is a Cauchy sequence in
emTT if we can prove for any n,m ∈ N+

| xn − xm | ≤ 1/n+ 1/m.4

As in [57], we can also prove in emTT that any Cauchy sequence (xn)x∈N
determines a formal point α of the formal topologyR if we define it by:

α ≡ {〈p, q〉 ∈ Q×Q | ∃n ∈ N+ p < xn − 2/n < xn + 2/n < q}.

Conversely, given a formal point α, we can prove in emTT that within α there exists
a countable number of strictly decreasing intervals as follows:

∀n ∈ N+ ∃ 〈xn, yn〉 ∈ Q×Q ((〈xn, yn〉 ε α & | xn − yn |< (2/3)n)

& ∃ 〈xn+1, yn+1〉 ∈ Q×Q (xn ≤ xn+1 < yn+1 ≤ yn &

(〈xn+1, yn+1〉 ε α & | xn+1 − yn+1 |< (2/3)n+1))).

This is proved by induction; in fact, for n ∈ N and 〈xn, yn〉 ε α we can find a
covering

〈xn, yn〉CR { ln1 , ln2 }

such that ln1 ≡ 〈xn, zn1〉 and ln2 ≡ 〈zn2 , yn〉 with zn1 ≡ xn+(2·(yn−xn))/3

and zn2 ≡ xn + (yn − xn)/3. Since the formal point α splits the cover, we can
prove

∀n ∈ N ∃ i (iε{1, 2} & lni ε α).

However, such lni is not necessarily unique, because the formal point can be con-
tained in both!
Classically, one can define a function L(n) for n ∈ N by cases by putting

L(n) ≡

{
ln1 if ln1 ε α

ln2 if ln2 ε α & ¬ln1 ε α.

Constructively this does not work because α is not complemented. But, if we work
in a foundation such asMartin-Löf’s type theoryMLTT, actually in the setoid model
over it, by using the axiom of dependent choice on Q×Q, we can even extract an
operation l(n) ∈ Q×Q [n ∈ N+] such that for any n ∈ N+

l(n) ε α

and, after naming l(n) =Q×Q 〈xn, yn〉 the values of the operation on each natural
4 This is formally written as ∀ p ∈ Q ∀ q ∈ Q (R(n, p) & R(m, q) → | q − p |≤ 1/n+ 1/m), where the

definition of module is the usual one.
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number, the conditions xn − yn ≤ (2/3)n and xn ≤ xn+1 < yn+1 ≤ yn hold for
each natural number n. Then, a Cauchy sequence can be defined by taking the first
components (xn)n∈N or the second components (yn)n∈N . Hence, any Dedekind
cut or formal point of R corresponds to a lawlike Cauchy sequence à la Bishop in
MLTT.

Since in our foundation no axiom of choice is available, this proof cannot be
carried out. At a closer look, it does not appear constructively justified to be able to
extract a choice of the interval where the formal point is, with no extra information.

What actually happens in MLTT is that the splitting of points is already given
with an operation choosing an interval where the point is, and hence from this
choice a definition by cases can be given similarly to that done classically. This
example explains why in Martin-Löf’s type theory real numbers as formal points
are only the lawlike ones, namely those for which we can extract a lawlike Cauchy
sequence.

This is not true in our foundation. In fact, the property that a formal point splits
the cover is expressed through an existential quantifier ∃x∈A φ(x) [w ∈ Γ] under
a context Γ, which does not necessarily provide an operation wit(d) ∈ A [w ∈ Γ]

(depending on the context Γ) returning a witness for the existential statement when
this holds. Such an operation is available only in a Kleene realizability interpretation
of our foundation. As expected, in emTT real numbers as formal points of the formal
topology R cannot coincide with lawlike Cauchy sequences (see [40, 42]). Even
more, real numbers such as formal points of R, and hence such as Dedekind cuts,
do not form a set. Analogously, real numbers as Cauchy sequences à la Bishop do
not form a set. These results are obtained through a realizability interpretation of
emTT which interprets emTT-sets as countable subsets of natural numbers and
emTT-collections as entities which are not necessarily countable.

Now we describe two other examples of formal topologies whose formal points
do not form a set in emTT. These are Cantor and Baire formal topologies, which
are defined as instances of the more general notion of formal topology on the tree
over a set. In order to define such formal topologies, we need to represent the tree
over a set A, which we identify with the nodes labelled by lists of elements in a set
A, using the abbreviation A∗ ≡ List(A). We write [l, x] for the list obtained by
appending x ∈ A to the list l ∈ A∗ and [l, t] for the list obtained by appending the
list t ∈ A∗ to the list l ∈ A∗.

Definition 20.19 The tree formal topology over a set A is the formal topology
AN ≡ (A∗, /AN ,PosAN ) where /AN is inductively generated by the following
rules

rfl
l ε V

l /AN V
≤ s v l l /AN V

s /AN V
tr
∀x ∈ A [l, x] /AN V

l /AN V
,
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where s v l ≡ ∃t∈A∗ s =A∗ [l, t], i.e. l is an initial segment of s.
The positivity predicate is true on any element, that is, PosAN (l) ≡ tt for any

l ∈ A∗.

Among tree formal topologies, we distinguishCantor andBaire formal topologies
as follows

Definition 20.20 (Cantor and Baire formal topologies) The tree formal topology
when A ≡ { 0, 1 }, namely

{ 0, 1 }N ≡ ({ 0, 1 }∗, /{ 0,1 }N ,Pos{0 , 1}N )

is called Cantor formal topology.
The tree formal topology when A ≡ N, namely

NN ≡ (N∗, /NN ,PosNN )

is called Baire formal topology.

Note that the Cantor formal topology is definable in MF but the Baire formal
topology is not as specified in [50].

Formal points of such topologies coincide with choice sequences of Defin-
ition 20.6.

Proposition 20.21 Formal points Pt(AN ) of the tree formal topology over a set
A are in bijective correspondence with choice sequences on the tree A∗.

Proof Given a formal pointα, we define a functionRα(n, x)props [n ∈ N, x ∈ A]

as follows:
Rα(n, a) ≡ ∃ l ε α ln+1 =A a,

where ln is the nth component of l.

Conversely, given a function R(n, x) props [n ∈ N, x ∈ A] the subset

αR ≡ { l ∈ A∗ | ∀n ∈ N (n < lh(l) → R(n, ln+1))},

where lh(l) is the length of l, turns out to be a formal point.

An alternative proof follows after noting, as observed in [74], that the tree formal
topology over a set A is isomorphic to the exponential formal topology of the
discrete formal topology of N over the discrete formal topology on the set A (see
[38] for a predicative treatment of exponentiation). Therefore its formal points are
in bijection with functions, because every function between discrete topologies
is continuous. This explains why we denote the tree formal topology with the
symbol AN .

The realizability interpretation in [40, 42], showing that real numbers (both as
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Dedekind cuts or Cauchy sequences) do not form a set, also shows that choices
sequences as formal points of Cantor or Baire formal topology do not form a set
either and hence they only form a proper collection. Therefore predicatively we can
only work with the pointfree topologies of usual Cantor and Baire spaces.

The equivalence of each of our pointfree topologies with the corresponding
pointwise topology of their formal spaces as in Definition 20.14, namely spatia-
lity, is not generally valid in emTT. Indeed, spatiality of our tree formal topologies
amounts to the well-known principle of Bar Induction, as first observed in [24].

Definition 20.22 (Bar Induction in topological form) In emTT extended with the
inductive definitions necessary to define the formal topologies /AN for any set A,
the principle of Bar Induction is the following statement: for any given set A

(BI(A))

∀l ∈ A∗ ∀V ∈ P(A∗) ( ∀α ε Pt(/AN ) ( l ε α → α G V )→ l /AN V )

where

V GW ≡ ∃a ∈ A (a ε V ∧ a ε W )

expresses that two subsets V,W of a set A overlap (see [66]).

The above formulation of BI(A) means that the topology put on the formal
points of the treeA∗ that are its choice sequences, coincides with the pointfree one.
Hence, Bar Induction implies that we can reason topologically on choice sequences
by induction on finite sequences, given that the pointfree topologies are inductively
generated (see [67, 72]).

The usual Fan Theorem in [75] is then an instance of Bar Induction (see [24, 25]).

Definition 20.23 (Fan Theorem) We callFan Theorem the formulation BI({ 0, 1 })
of BI(A) on Cantor formal topology, namely when A ≡ { 0, 1 }.

Spatiality of Cantor formal topology allows us to derive compactness of Cantor
space in [24].

In [40, 42] it is shown that emTT is compatible with the described principle of
Bar Induction BI(A) for any set A, and the identification of lawlike sequences with
recursive ones. Indeed, there exists a realizability interpretation showing that real
numbers and choice sequences do not form a set validating the formal Church thesis
for operations between natural numbers (CTtt).

Hence, the realizability interpretation in [40, 42] shows that emTT is compatible
with constructive foundationswhereBar Induction or the FanTheoremare used as in
Brouwer’s constructive pointwise approach of topology, by keeping a computable
interpretation of operations between natural numbers with the validity of CTtt.
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Actually a motivation to develop our MF was exactly to study a development of
topology in the presence of these extra axioms.
Observe that compatibility with Bar Induction and CTtt is not possible for

Martin-Löf’s type theory, because the axiom of choice, and hence also the axiom
of unique choice, is valid in there. To see this, first observe that in our MF we
can prove the well-known result by Kleene [75] that formal Church thesis for
choice sequences is contradictory with the Fan Theorem, and hence also with Bar
Induction. Observe then that this result can be formulated by saying that there
is no model of emTT +/AN + FT + CTtt + ACN,N. Therefore a theory validating
the axiom of unique choice cannot keep together a computational interpretation of
operations and Bar Induction. Hence, the consistency of emTT with Bar Induction
and CTtt explains why the axiom of unique choice, and a fortiori the axiom of
choice, is not valid in emTT.

20.5 Extending MF with choice principles

The aim of this section is to show an extension ofMF with choice principles in the
spirit of BISH.
Ideally one would choose – as the most adequate basic foundation for Bishop’s

mathematics – a theory which fully axiomatizes the setoid model on Martin-Löf’s
type theory in [58]. ButMartin-Löf’s type theory is intended as a full-scale theory for
formalizing constructive mathematics only if it is left opened to further extensions
with all the needed inductive definitions. Currently only the first-order fragment of
the setoid model has been axiomatized categorically in [62]. It would be desirable
to have a type-theoretic presentation of the internal theory of the setoid model over
MLTT as an extension of emTT, or better as an extension of the internal type
theory of an arithmetic locally cartesian closed pretopos in [37].
Here we just consider an extension of emTT with the forms of axiom of choice

which are acceptable constructively. Indeed, it is well known [26] that the full
axiom of choice is not constructively acceptable in foundations with extensional
principles.
The two-level structure ofMF makes very evident the connection established in

[55] between Zermelo’s choice axiom and the type-theoretical axiom of choice in
showing that the formula of the full axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

forA,B sets andR(x, y) a small proposition, written at the extensional level ofMF
gets interpreted at the intensional level of MF as Martin-Löf’s extensional axiom
of choice in [55] represented by the formula
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(ACext)
∀x ∈ A ∃y ∈ B R(x, y) −→

∃f ∈ A→ B (Ext(f)'B
'A

& ∀x ∈ A R(x , f(x))),

where A , B are sets and

Ext(f)'B
'A
≡ ∀x1 ∈ A ∀x2 ∈ A (x 'A y → f(x1) 'B f(x2)),

provided that R(x, y) is a small proposition preserving given equivalence relations
'A and 'B in the sense that we can find in mTT a proof of

∀x1 ∈ A ∀x2 ∈ A ∀y ∈ B (x1 'A x2 → (R(x1, y)↔ R(x2, y)))

and of

∀x ∈ A ∀y1 ∈ B ∀y2 ∈ B (y1 'B y2 → (R(x, y1)↔ R(x, y2))).

As expected, the extensional axiom of choice (ACext) is not constructively
acceptable since it implies the law of the excluded middle (see [16, 39, 55]).

Therefore, to develop constructive mathematics we cannot use the axiom of
choice on all sets if we work in an extensional foundation such as emTT. On the
contrary, as shown in Section 20.3.3, the intensional level mTT is consistent with
the full axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x)),

which is called intensional by Martin-Löf in [55].
The different status of (AC) in the extensional and intensional levels of MF

reflects the different status of the axiom of choice in axiomatic set theory and
in type theory. This fact was another motivation for building a two-level theory
where to distinguish the various kinds of choice principles. Indeed, as described
previously, the two forms of (AC) can only be visible in an intensional theory, like
mTT orMLTT, but the fact that they express the same formula in different contexts
is only visible in the two-level structure ofMF.

20.5.1 The Extension emttac ofMF

We extend the extensional level ofMF to form a theory that we call emttac for short.
This theory emttac is simply obtained from emTT by adding the axiom of unique

choice for all types and the axiom of choice for what we call intensional sets.
Intensional sets are sets of emTTwhose interpretations inmTT given in [39] turn

out to be ‘faithful copies’ of them inmTT (with their terms and their propositional
equality), and they include the following:

A seti ≡ N0 | N1 | List(A) | Σx∈AB(x) | A+B,
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provided that A and B are intensional sets, as well as B(x) [x ∈ A] is a family of
intensional sets on an intensional set A.
Then, formally the theory emttac is obtained by extending emTT with:

• the axiom of unique choice written as follows

(AC!R)
R(a, b) prop [a ∈ A, b ∈ B]

∀x ∈ A ∃!y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x)) true

for all A and B types in emTT where as usual

∃!y ∈ A R(x, y) ≡ ∃y ∈ B R(x, y) ∧ ∀y1, y2 ∈ B (R(x, y1) ∧ R(x, y1)

→ y1 =B y2);

• the axiom of choice on intensional sets
(iACR)

A seti B set R(a, b) props [a ∈ A, b ∈ B]
∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x)) true

.

By adding the axiom of unique choice we guarantee that the graph of each
functional relation is also a graph of an operation and hence has a computational
meaning in accordance with BISH.
Following the interpretation in [39] emttac can be interpreted in mTT extended

with a proof term pac

(ACR)
A set B set R(a, b) props [a ∈ A, b ∈ B]

pac ∈ ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))
.

In turn this extension of mTT naturally interprets in Martin-Löf’s type theory
MLTT where we can also extract programs from its proofs. Hence, MLTT could
serve for the intensional level of a two-level foundation with emttac for the ex-
tensional level. But a direct extension of the interpretation in [39] for emttac into
MLTT is left to future work.

20.6 Concluding Remarks

In our opinion the existence in MF of proper formal spaces, such as the space of
real numbers both as Dedekind cuts or Cauchy sequences, constitutes an advantage
which could be useful for performing reverse Bishop constructive mathematics. In
fact, a positive and practical motivation of the minimalist approach is to provide
a finer grid to look at reality, in particular topology, and thus preserve pieces of
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information, structures, conceptual distinctions (for example, all that is necessary
to be able to instruct a computer) which would be lost, and actually are not even
considered, in a classical or impredicative foundation. For instance, our Minimalist
Foundation allows us to distinguish infinitary or ideal topological concepts not
enjoying induction principles, like Brouwer’s choice sequences, from inductive or
real ones, for example, lawlike sequences. On the other hand, the minimalist attitude
means that all results in the Minimalist Foundation about topology are also valid
for the most relevant constructive and classical foundations.

Another important motivation supporting the pointfree approach to topology is
given by a recent result showing that pointfree topology can be seen as a general-
ization of topology with points. To obtain this, one first has to introduce the notion
of positive topology, that is an enrichment of formal topologies by the addition of
a suitable primitive notion of closed subset. Then one can show that the category
of concrete spaces can be embedded in the category of positive topologies. A full
book [72] on positive topologies and their developments will soon be published.

For the future, we plan to investigate topologies of real numbers and of choice
sequences using the more powerful tool provided by positive topologies.
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