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ABSTRACT The cortical network including the piriform (PC), orbitofrontal (OFC), and entorhinal (EC)
cortices allows the complex processing of behavioral, cognitive, and context-related odor information and
represents an access gate to the subcortical limbic regions. Among the several factors that influence odor
processing, their hedonic content and gender differences play a relevant role. Here, we investigated how these
factors influence EEG effective connectivity among the mentioned brain regions during emotional olfactory
stimuli. To this aim, we acquired EEG data from twenty-one healthy volunteers, during a passive odor task
of odorants with different valence. We used Dynamic Causal Modeling (DCM) for EEG and Parametric
Empirical Bayes (PEB) to investigate the modulatory effects of odors’ valence on the connectivity strengths
of the PC-EC-OFC network. Moreover, we controlled for the influence of arousal and gender on such
modulatory effects. Our results highlighted the relevant role of the forward and backward PC-EC connections
in odor’s brain processing. On the one hand, the EC-to-PC connection was inhibited by both pleasant and
unpleasant odors, but not by the neutral one. On the other hand, the PC-to-EC forward connection was
found to be modulated (posterior probability (Pp)>0.95) by the arousal level associated with an unpleasant
odor. Finally, the whole network dynamics showed several significant gender-related differences (Pp>0.95)
suggesting a better ability in odor discrimination for the female gender.

INDEX TERMS DCM, EEG, effective connectivity, gender, hedonic olfaction.

I. INTRODUCTION
The neural processing of olfactory information is a complex
phenomenon involving the activation of several brain areas,
not limited to the olfactory network, but also involved in

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

memory and emotion processing [1]. The olfactory infor-
mation is preprocessed, at the first stage, by the olfactory
bulb that projects to a number of cortical structures tra-
ditionally designated as olfactory cortex. The two largest
olfactory cortical areas are the anterior olfactory nucleus
(AON), which regulates information flow between nearly
every region where odor information processing occurs,
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and the piriform cortex (PC), which is often referred to as
‘‘primary olfactory cortex’’. However, unlike ‘‘primary’’ cor-
tical structures in other sensory systems that are devoted to
processing a single type of sensory information, the PC shows
an extensive network of interconnections with both cortical
areas such as the orbitofrontal cortex (OFC) and entorhinal
cortex (EC), and subcortical regions such as the amygdala
(AM) and hippocampus (HIP) [1], [2], [3], [4], [5], [6], [7].
More in detail, the connection with the OFC is known to
assign affective value to olfactory stimuli [8], whereas the EC,
one of the brain centers for associative memory, is considered
the access gate to theHIP and participates in the local process-
ing of the olfactory information through dense bidirectional
projections with the PC [9], [10]. Finally, the AM, closely
connected to the HIP, plays a key role in enhanced memory
performance associated to emotional odors [11], [12]. In sum-
mary, the network at cortical level including PC, OFC and
EC allows the complex processing of behavioral, cognitive
and context-related odor information and represents an access
gate to the subcortical-level network in the limbic regions
(i.e., AM and HIP), which is directly related to the emotion
processing. Accordingly, studying the PC-OFC-EC network
dynamics may give relevant insight into the neural processing
of the hedonic properties of odors.

The hedonic characteristics of odors are typically defined
according with two principal dimensions: i.e., valence and
arousal [13], [14]. The arousal of the odor perception is
related to the intensity of the odorant [15]. On the other hand,
the perception of valence is not only related to the chemical
features of the odorant but also to the perceptual memories
built upon prior exposure to the same odorant [16], [17],
[18]. In this context, previous EEG studies have found a time
varying activation of cortical brain areas following the onset
of inspiration of pleasant and unpleasant olfactory stimuli,
respectively [19], [20]. More specifically, after the onset of
a hedonic odor, primary olfactory structures such as PC and
EC are first activated. Afterwards, it is possible to observe
the spread of olfactory information to other cortical regions
and, in particular, to the OFC. This has been interpreted as
a further evidence of the role played by PC and EC in the
early stages of odor recognition. Instead, the role of OFC was
associatedwith higher-order functions such as the discrimina-
tion of odors’ hedonic properties [19], [20]. In another study
with fMRI data, the authors have found an increase in the
connectivity between PC and OFC during an unpleasant odor
stimulation compared to a pleasant one [21]. This indicates
that differences in the hedonic perception of odors could be
reflected by changes in the connectivity between brain areas,
in addition or even rather than their activation.

In the context of brain connectivity analysis, both func-
tional and effective connectivity techniques have been
proposed [22], [23]. Functional connectivity regards statis-
tical dependencies between coupled brain sources. On the
other hand, effective connectivity is related to the influence
that one neural system exerts over another [22]. Among
the latter, Granger-Causality based measures [24] have been

successfully applied to EEG data to evaluate frequency-
specific bidirectional interactions between brain sources [25],
as well as between the OB and the PC by combining EEG and
electrobulbographic data [26] during olfactory stimulation.
However, also other methods are available in the literature for
the estimation of effective connectivity [22]. In this context,
Dynamic Causal Models (DCMs) are biophysically inspired
spatiotemporal models designed to answer questions about
the architecture of underlying neuronal dynamics and to
make inferences about key neuronal parameters that has been
extensively used to estimate effective connectivity among
coupled brain regions from either fMRI or EEG data [27],
[28]. Previous studies using DCM for fMRI have highlighted
an increased connectivity strength among PC, OFC and AM
during odor stimulation when an anxiety state has been exper-
imentally induced [29]. A specific thalamic pathway linking
PC to OFC has been also found by a further DCM for fMRI
study when subjects have been asked to focus to upcoming
emotional olfactory stimuli [7]. Nevertheless, to the best of
our knowledge, none of these studies on hedonic olfaction
processing have combined the key features of DCM with
the unmatched temporal resolution of EEG, which allows to
measure the cortical brain processes at the time scale at which
they occur.

In this paper, we develop and apply a DCM to EEG
data acquired during the administration of pleasant, unpleas-
ant and neutral olfactory stimuli. Specifically, we test the
hypothesis that the valence of odors exert a modulatory
effect on EEG connectivity at the group-level. Additionally,
we control for both the gender and the perceived level of
arousal on such modulatory effect of valence. There are
known differences in the processing of olfactory information
between males and females, based on chemical, anatomi-
cal and functional aspects [30], [31], [32], [33], [34], [35],
[36], [37], and which are reflected also at the behavioral
level in many odor tasks. For example, females outperform
males in odor-associated memory tasks [38] and score higher
valence ratings of perceived odors [39], [40], [41]. Interest-
ingly, authors in [42] found that differences in odor’s valence
rating were likely to be reflected also by differences in the
chemosensory event-related potentials (CSERPs) between
males and females. Accordingly, it has been proposed that
perceptual gender differences may origin at a higher level
of neural processing. In this view, it could be hypothesized
that gender differences may arise also from the interactions
among different brain regions, rather than their individual
activation. In this context, DCM for EEG represent a powerful
framework to study gender differences characterizing the
neural processing of hedonic odors, although it has never been
used.

The EEG data analyzed in this study was already found
to carry relevant information about interacting cortical brain
areas during the olfactory stimulation [25]. More in detail,
in such a previous study, connectivity measures derived from
multivariate autoregressive models (MVAR) have confirmed
the central role of the OFC in the processing of emotional
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olfactory stimuli [43], [44]. In addition, significant inter-
actions between the OFC and the parahippocampal gyrus
(PHG) has been found during positive odor stimulation. The
PHG is a large region surrounding the HIP, which is involved
in complex emotive processes and includes both the PC
and the EC [45]. In agreement with these previous findings
and the aforementioned evidence from the literature, here
we aim at further exploring the cortical network including
the OFC, and targeting the possible roles of PC and EC
regions exploiting the potential of DCM. The Parametric
Empirical Bayes (PEB) framework is used to infer aver-
age group connectivity and between-subject differences from
single-subject DCM connectivity estimates [46], [47]. Three
different odors, namely n-butanol, vanillin and isovaleric
acid, are purposely selected to convey neutral, positive and
negative valence respectively [48]. We estimate the modula-
tory effect of odor valence on the single-subject connectivity
between PC, EC and OFC as well as the influence of gender
and arousal at the group level. A preliminary analysis limited
to the investigation of average-group effects of odors’ valence
can be found in [49].

This paper is structured as follows: in Section II we
describe methodological aspects related to the experimen-
tal protocol, data acquisition and preprocessing, and data
analysis using DCM; in Section III we report our results;
in Section IV we discuss our main findings together with
methodological aspects and limitations; finally, in Section V
we provide the main conclusions of our work.

II. MATERIALS AND METHODS
A. SUBJECTS
The study was conducted according with the guidelines of
the Declaration of Helsinki, and approved by the Bioethics
Committee of the University of Pisa Review No. 14/2019,
May 3rd, 2019.

Twenty one healthy volunteers (age 26±2, 8 females) were
enrolled to the study. Volunteers were not allowed to have any
food nor drink in the 30 minutes preceding the experiment.
We recruited volunteers in the same years of age and with
similar cultural background, since these are potential con-
founding factors on studies of gender differences [50], [51],
[52], [53]. Subject’s olfactory threshold was determined by
submitting subjects to a double-blind forced-choice olfactory
test [54]. Briefly, we diluted a mother solution of n-butanol
into 10 solutions whose concentration followed an increasing
power law of 2 (from 8 to 4096), and which were stored into
separate vials. Starting from the weakest concentration value,
subjects were asked to distinguish between the n-butanol
solution and a vial containing distilled water. For each incor-
rect answer, we increased the concentration on the next trial.
Conversely, a correct choice led to the presentation of the
same concentration of n-butanol solution. The test was con-
sidered concluded when the subjects correctly distinguished
n-butanol compared to distilled water for 4 consecutive times.
All the subjects showed a similar olfactory threshold andwere

included in the study, ensuring a homogeneous panel in terms
of olfactory perception [55], [56]

B. STIMULI
Vanillin (152.15g/mol), n-butanol (74.12g/mol) and iso-
valeric acid (102.13g/mol) were used to convey positive,
neutral and negative valence, respectively [48]. Odorants’
concentrations were purposely chosen to obtain isointense
solutions, and they were stored into separate vials.

C. EXPERIMENTAL PROTOCOL
The experiment consisted of a single session in which par-
ticipants performed 3 minutes of initial rest and three blocks
of olfactory stimulation. Each block consisted of 1 minute of
pre-stimulus rest, 5s of stimulus administration, 1 minute of
post-stimulus rest and an average of 15s of self-assessment
questionnaire, during which participants scored the stimulus
in terms of valence (from -2 to +2 with a step size of 1) and
arousal (from +1 to +5 with a step size of 1) according with
the Self-Assessment Manikin (SAM) test [57], [25], [58],
[59], [60], [61]. Stimuli were administered by approaching
the vials containing the odorant at about 2cm from partic-
ipant’s nostrils. The order of presentation was randomized
across participants. The experiment was conducted in an
isolated room, and participants were instructed to sit on a
chair keeping their eyes closed throughout the whole session
to reduce artifact effects and avoid visual interference when
approaching the vials.

D. EEG ACQUISITION AND PREPROCESSING
For the EEG acquisition, we employed a 128-channel
Geodesic EEG System 300 from Electrical Geodesics, Inc.
(EGI). Electrodes were referenced to the vertex of the cap
(i.e., Cz channel) and their impedances were always main-
tained below 20k� during all acquisitions. A sampling fre-
quency of 500Hz was used.

EEG preprocessing was performed through the Mat-
lab toolbox EEGLAB [62]. First, data was downsampled
at 100Hz, after proper antialiasing filtering, to reduce the
computational complexity of subsequent analysis. Then,
we high-pass filtered the data above 1Hz to improve sta-
tionarity. Afterwards, we removed flat and poorly correlated
channels by exploiting the method presented in [63]. Briefly,
each channel is compared with its reconstructed version
obtained from the spherical interpolation of its neighbors,
and is removed if the correlation coefficient is less than a
user defined threshold. Here, we used a correlation threshold
of 0.8. Moreover, we repaired nonstationary high-amplitude
artifacts with the Artifact Subspace Reconstruction (ASR)
algorithm [63], using optimal parameters as recommended
in [64]. Specifically, the ASR, first, searches for the cleanest
part of the data to use it as calibration data. Then, a sliding
window is applied to the data, and for each window the
EEG signal is decomposed into its principal components
(PCs) through Principal Component Analysis (PCA). The
PCs whose variance exceeds a component-specific cutoff
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threshold are detected as artifact and thus removed. Finally,
the removed PCs are interpolated based on the remaining
ones, and the cleaned data is finally backprojected to its native
space [63]. The component-specific thresholds are based on
the variance of the calibration data’s PCs, multiplied by a
user-specified factor which determines how many times the
variance of the PCs of the windowed data should exceed
the variance of the calibration data’s PCs in order to be
considered an artifact. Higher values of such factor imply a
very conservative filtering, whereas lower values correspond
to a very sensitive one, with the consequence of removing
not only artifacts but also relevant information from the
data [64]. In this work, we adopted a conservative factor of 30,
which has been shown to remove the majority of the artifacts,
while preserving the information contained in the data [64].
We then visually inspected the EEG signal, to remove bad
data not successfully repaired by the ASR. More than the
92.74% of the original data was retained at the end of this
process. Removed channels were recovered via spherical
interpolation and the data was re-referenced to its average.
Lastly, we decomposed the EEG signals with Independent
Component Analysis (ICA) by means of the Adaptive Mix-
ture ICA (AMICA) algorithm [65]. AMICA approximates the
probability distribution function (PDF) of each independent
component (IC) through a mixture of generalized Gaussian
distributions [65]. Compared to other standard methods for
ICA decomposition, which assume pre-defined PDFs for sub-
Gaussian and super-Gaussian sources, AMICA has shown
higher mutual information reduction, while unveiling a larger
number of biophysically plausible dipolar sources [66], [67]
Accordingly, we obtained components reflecting either brain
activity or artefacts. Components which were likely to reflect
artefactual activity were removed from the data (e.g., eye
blinks, muscle activity, and other non-stereotyped artefacts).

E. SAM STATISTICAL ANALYSIS
We tested for significant differences in valence ratings among
olfactory stimuli, while controlling for the effect of arousal
ratings, through analysis of covariance (ANCOVA), with
stimuli as group factor and arousal ratings as within-group
covariate. Then, we performed a two-way ANOVA on the
valence ratings, with stimuli and gender as grouping factors.
Accordingly, we tested for significant differences in the per-
ceived valence between genders, regardless of the olfactory
stimulus, as well as for differences between genders depend-
ing on the olfactory stimulus.

F. DYNAMIC CAUSAL MODELING
We analyzed preprocessed EEG data with SPM12. Specif-
ically, we modeled steady-state dynamics between coupled
cortical sources using DCM for Cross-Spectral Densities
(CSDs) [68]. This method allows to characterize neuronal
dynamics from single-trial data, by inferring connectivity
changes based on the modulation of both the amplitude
and the phase properties of the observed EEG spectra. This
framework attempts at reproducing the observed CSDs by

modeling hidden brain sources dynamicswith a bio-physically
inspired class of models, called neural mass models, and
using an observer equation to combine an project their activ-
ity onto the scalp:

ẋ = f (x, θ, u) (1)

y = h(θ ) = Lx + ε (2)

Each source is modeled by means of three types of neu-
ronal populations: i.e., inhibitory interneurons, excitatory
spiny stellate cells and excitatory pyramidal neurons, whose
activity is parameterized in terms of membrane potentials and
currents x. Endogenous inputs (i.e., neuronal innovations)
u enter the spiny stellate cells layer and are represented
by a mixture of white and pink Gaussian noise [69]. Brain
sources are coupled together by means of extrinsic connec-
tions. Such connections are classified into forward, backward
and lateral according with the hierarchical organization of the
cortex [70].

The underlying neuronal activity is projected to the scalp
by means of an electromagnetic forward model (2), charac-
terized by a lead-field matrix L. Specifically, each column
in L specifies how the electromagnetic field generated by
brain sources spreads towards a given EEG channel, accord-
ing with the volume conductor properties of the head. Here,
we exploited the single equivalent current dipole (ECD)
model to parameterize L. Nevertheless, other different spatial
source models also exist [71]. Accordingly, the lead-field
matrix was parameterized in terms of the three location
and three moment parameters of the sources based on the
ECD model.

Overall, the generated data y depends on both the neural
mass model and the forward model parameters [69]. Under
Gaussian assumptions, the likelihood associated with the
observation model in (2) is:

p(y|θ, λ) = N (h(θ ),Cov(ε)) (3)

Following the Bayes’ rule, the likelihood is combined with
a Gaussian prior density p(θ ) over model parameters to give
a posterior density:

p(θ |y) =
p(y|θ,m)p(θ )

p(y|m)
(4)

wherem is the DCMmodel. Priors are introduced in the DCM
framework to put physiological constraints on the parame-
ters [28]. In particular, the variance is used to reflect the
amount of prior knowledge about the parameter, with a small
variance corresponding to more certainty about its expected
value. Instead, the normalizing term p(y|m) is called model
evidence and has a central role in the DCM framework to
compare different models. Particularly, the ratio between the
model evidence of two different models allows to choose for
the best model describing the data [72]. We used a Variational
Bayes approach to estimate model parameters. Briefly, model
parameters are iteratively updated to minimize the divergence
between the conditional and the true posterior densities [72].
This can be viewed as an expectation-maximization (EM)

127316 VOLUME 10, 2022



G. Rho et al.: Valence, Arousal, and Gender Effect on Olfactory Cortical Network Connectivity

algorithm that performs a gradient descent on the free-energy
objective function F :

E step: q← min
q
F(q, λ,m) (5)

M step: λ← min
λ
F(q, λ,m) (6)

F(q, λ,m) = D(q(θ)||p(θ |y, λ,m))− ln p(y|λ,m) (7)

where, the conditional density q(θ ) is approximated as
Gaussian with mean η and covariance 6, and D is the
Kullback-Leibler divergence between the conditional and the
true posterior densities. During the E-step (5), the gradient
descent on F is performed with respect to the conditional
moments η and 6, whereas in subsequent M-step (6) F is
optimized with respect to hyperparameters λ. Such procedure
is performed iteratively until convergence is reached.

A feature of DCM is the possibility to evaluate the modu-
latory effect of an experimental condition (e.g., a task) onto
a given set of parameters θ , with respect to another condition
(e.g., a baseline). This effect is modeled by a subset of param-
eters θmod , which takes into account the additional effect of a
deviant condition over a standard one. Here,we are interested
in the parameters θmod encoding themodulatory effect of odor
valence onto the weight of the extrinsic connections.

G. NETWORK SPECIFICATION
In DCM framework, the set of brain sources and their anatom-
ical location can be specified a priori. In this work, we mod-
eled a fully connected network including three brain sources:
the PC, the EC and the OFC, due to their key role in the
early stages of olfactory processing. Specifically, the PC rep-
resents the main cortical component of the primary olfactory
region, and is implicated in olfactory pattern recognition and
associative learning, due to dense bidirectional interactions
with the AM at the subcortical level and top-down projections
from both the OFC and the EC at the cortical level [2].
Particularly, the connections with the EC [11], [12] provide
a bidirectional cortical access route to the emotional memory
through the HIP [1]. Further, the OFC, i.e., the main target
of primary olfactory areas, has a key role for the attribution
of both reward and emotional valence meaning to olfactory
stimuli [3], [8], [25].

Based on previous literature [1], [2], [10], [73], we defined
the hierarchy of the network in terms of forward (bottom-up)
and backward (top-down) connections among the sources.
Accordingly, we specified PC−→EC, PC−→OFC and
OFC−→EC as forward connections, and EC−→PC, OFC−→PC
and EC−→OFC as backward connections (Fig.1). Finally,
to reduce model complexity and in line with the notion of a
left lateralization of human processing [74], [75], [76], [77],
[78], we limited the analysis to nodes in the left hemisphere:
PC x = −24, y = −4, z = −12, OFC x = −5, y = 31, z =
−13, and ECx = −8, y = −11, z = −20 [79], [80], [81].

H. EFFECTIVE CONNECTIVITY ANALYSIS
We evaluated the modulatory effects of odors valence onto
the group connectivity by exploiting the Parametric Empirical

FIGURE 1. Modeled effective connectivity in a network comprising the
PC, OFC and EC. Solid lines correspond to forward connections, whereas
dashed lines correspond to backward connections.

Bayes (PEB) framework [46]. Such framework builds upon
a statistical hierarchical model of connectivity parameters
according with the following set of equations:

Yi = 0(θ
(1)
i )+ ε(1)i (8)

θ (1) = (Xb ⊗ Xw)θ (2) + ε(2) (9)

where the first level (8) models the single-subjects obser-
vations (i.e., Yi) as being generated by a DCM 0(.) with
unknown parameters θ (1)i , plus a zero-mean white gaussian
noise residual ε(1). The second level (9) models the first
level parameters θ (1) with a General Linear Model (GLM)
having design matrix X = (Xb ⊗ Xw), where Xb models the
between subject variability (i.e., the covariates), Xw models
the within-subject variability (i.e., which model parameters
are influenced by the between-subject effects),⊗ denotes the
Kronecker product, and θ (2) represents second level parame-
ters. Any unexplained between-subject difference (e.g., non-
modeled sources of variations, random effects) is modeled by
the zero-mean white gaussian residuals ε(2). Finally, the prior
distribution of θ (2) is defined as a gaussian distribution, with
fixed expected value η and covariance6(3). Furthermore, η is
equal to the prior mean of the first-level parameters, whereas
6(3) is equal to the first-level covariance adjusted for the
scaling of the design matrix X (for more details see [46]).

I. FIRST LEVEL ANALYSIS
We modeled the modulatory effect of odors’ valence on
the single-subject connectivity by specifying the contrast
between the 5sec stimulus-administration interval relative
to each odor and the last 5sec of initial rest condition.
Accordingly, we defined three different conditions: i.e.,
pleasant (vanillin vs. resting-state), neutral (n-butanol vs.
resting-state) and unpleasant (isovaleric acid vs. resting-
state) valence.

In DCM, the data is reduced to a few numbers of spatial
components, or eigenmodes, through PCA. Particularly, the
observed data can be modeled more into detail by increasing
the number of modes. However, on the one hand, selecting
too many modes may result in a computationally infeasible
DCM, especially when using high-density EEG. On the other
hand, increasing the number of modes has the drawback
of capturing noise at the expense of meaningful neuronal
dynamics [71], [82]. Here, we decomposed the data into
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8 eigenmodes, which is the default value in SPM12 [82].
Such a choice allowed to retain the 99% of data variance
while reducing computational load. Then, we estimated the
CSDs between eigenmodes in the frequency range between
4-30Hz by using Bayesian multivariate autoregressive mod-
eling with the default model order of 8 [83]. Such frequency
range was chosen to take into account the EEG dynamics of
the θ (4 − 8)Hz, α (8 − 12)Hz, and β (12 − 30)Hz bands.
We adopted the ERP neural mass model to describe hidden
brain sources’ dynamics [84].

Concerning the forward model, we modeled the spatial
activity of brain sources through equivalent current dipoles
(the ECD option in SPM12) on the gray matter surface. The
passive volume conduction effects of source’s dipoles were
described through a boundary element model (BEM) of the
head, based on the standard head model template from Mon-
treal Neurological Institute (MNI; Montreal, Canada). Here,
we used a BEMmodel made of three layers, i.e., cortex, skull
and brain, whose conductances were set to 0.33, 0.0042 and
0.33 S/m, respectively. Dipoles’ projection from the cortex to
the channels was determined by parameterizing the lead-field
matrix L in terms of the three location and three moment
parameters of the sources.

Since premature convergence issues may arise due to
the presence of free-energy local maxima (see [85], [86]),
we inverted each single-subject model (8) by following a two-
step procedure. First, we increased the value of the hyper-
parameter responsible for the expected precision of the data
(i.e., hE = 20), and we fitted the DCM models until conver-
gence. On the one hand, such a procedure biases the model
fitting towards the observed data, rather than towards the
priors set. On the other hand, the fitting accuracy is increased
at the expense of an increase in model complexity. Then,
the obtained parameter and hyperparameter estimates were
used as the starting point of a new model fitting procedure
where the modified hyperparameter (i.e. hE) was restored to
its original value.

J. SECOND LEVEL ANALYSIS
For each stimulus, we grouped together the parame-
ters of the modulatory effects across subjects. Accord-
ingly, we had three distinct sets of parameters θ (1)modj =

[θ (1)modj,1
, . . . , θ

(1)
modj,i . . . , θ

(1)
modj,N ]

T , where j = 1, 2, 3 are the
stimuli and i = 1, . . . ,N are the subjects. For each stimulus j,
we fitted a PEB model with design matrices Xb and Xw
as depicted in Fig.2. Specifically, we constructed Xb as a
three-column matrix, where the first column was a constant
vector of ones modeling the commonalities across subjects,
the second column was a categorical variable representing
the gender and the third column was the perceived arousal
of the j-th stimulus for the i-th subject. Both gender and
arousal were mean-centered, endowing the first covariate
(i.e., the commonalities) with the interpretation of the group
mean effective connectivity [46]. Gender was coded with
males as 1 and females as -1. We chose Xw as the identity

matrix. Accordingly, each parameter could be influenced by
the between-subject effects.

For each PEB model, we applied a greedy search to
find the combination of second-level parameters that best
described the commonalities, the effect of arousal and the
effect of gender, respectively (spm-dcm-peb-bmc). In partic-
ular, we used Bayesian Model Reduction (BMR) to prune
away parameters not contributing to the model evidence [46].
All the models were assumed to be equally probable a priori.
Finally, we calculated a Bayesian Model Average (BMA)
over the models resulted from the final iteration of the greedy
search. BMA performs an average of the parameters posterior
densities across models, weighted for their model posterior
probability (Pp). Accordingly, a set of parameters estimates
was obtainted. Such estimates were no longer conditional
on the particular model assumed. We finally thresholded the
BMA results of each stimulus. Specifically, we pruned away
the parameters having probability of being influenced at the
group level (i.e., the probability associated to the difference
between the log evidences of the models with and without
a given parameter, respectively) lower than 0.95. In partic-
ular, we based such thresholding on the free-energy of the
models, to also consider the full covariance of parameters
when assessing their contribution to the model evidence (see
Appendix 3 of [46]).

K. CONNECTIVITY ANALYSIS SUMMARY
Here, we aim at resuming the implementation steps of the
connectivity analysis.
As schematically represented in Fig.3, after EEG data prepro-
cessing, for each subject we performed:
• extraction of 5sec-long EEG epochs for the three odor’s
administration conditions and for the last 5sec of resting-
state (Fig.3a);

• data reduction to the first 8 principal modes, and esti-
mation of the CSDs relative to each EEG epoch and for
each mode, with a Bayesian MVAR with default order
of 8, in the 4-30Hz frequency range (Fig.3b);

• specification of the contrasts between the odors’ admin-
istration conditions and the resting-state CSDs to model
the modulatory effect of odors’ valence (Fig.3c);

• definition of the network nodes, in terms of their position
in the MNI space and of their hierarchical connections:
i.e., PC→EC, PC→OFC and OFC→EC as forward
connections, and EC→PC, OFC→PC and EC→OFC as
backward connections. All the connections are allowed
to be modulated by odors’ valence (Fig.3d);

• specification of the ERP NMM to model the evolution
of sources’ dynamics (Fig.3e);

• specification of the standard forward model provided
by SPM12 with the ECD option (head model: standard
MNI template; three-layer BEM for volume conduction
effects) (Fig.3f).

• Model inversion with the hyperparameter hE=20.
Parameter estimates are used to initialize the final fitting
scheme, with the default value of hE=8 (Fig.3g).
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FIGURE 2. The group level design matrix. Left: between-subject design matrix Xb, with covariates modeling the group mean, gender and perceived
arousal. Both gender and arousal covariates are mean-centered, endowing the first covariate (i.e., the commonalities) with the interpretation of the
mean group connectivity. Accordingly, for the gender, females and males are decoded with -1 and 1 respectively, whereas the transformed arousal
range is represented by the colorbar. Middle: the within-subjects design matrix Xw , whose diagonal specifies which DCM parameters are influenced
by the between-subjects effects. Right: the model design matrix X , where each column is a covariate associated to a particular DCM parameter, and
each row correspond to a DCM parameter of a given subject.

The parameter estimates indicating the modulatory effect of
odors’ valence on the connectivity were put together across
the subjects for the second level analysis. Then, we con-
structed the within-subject and between-subject level matri-
ces as follows:
• definition of Xb with gender and arousal as between-
subject effects, mean-centered with respect to the first
column of ones (i.e., mean group connectivity; added by
default in SPM12);

• definition of Xw = I , to allow each parameter to be
influenced by Xb;

Finally, for each different odor:
• fit a PEB model with Xb and Xw as above (Fig.3h);
• for each between-subject effect: greedy search with
BMR on the corresponding PEB estimates and BMA
across all the explored model space; pruning of those
connections having Pp< 0.95 of being present vs. absent
based on the free-energy principle (Fig.3i).

III. RESULTS
A. SAM STATISTICAL ANALYSIS
The estimated scores (mean±standard error (SE)) for the
valence and the arousal were 1.43±0.18 and 2.95±0.24 for
the pleasant odor, -0.67±0.19 and 2.57±0.29 for the neutral
odor, and -1.43±0.15 and 2.33±0.28 for the unpleasant odor
respectively. The results of the ANCOVA test are summarized
in Table 1. We report the main effect for both stimuli and
arousal, along with their standard error and the t-statistic
against the null hypothesis of no effect. The model was
significant against the null hypothesis of equal effect sizes
among the stimuli (F4,59 = 52.2, p = 1.34 × 10−16). Fur-
thermore, from the t-statistic, we observed a significant effect
for each of the three stimuli on the valence scored, while
we found no significant correlation between the arousal and
the valence ratings given for each stimulus. Post-hoc analy-
sis showed significant differences among all three odorants.
The results of the two-way ANOVA on valence ratings are

TABLE 1. Summary of the ANCOVA on the subjective valence ratings, with
stimuli as factors and arousal ratings modeling within-group variance.

TABLE 2. Summary of the two-way ANOVA on the subjective valence
ratings, with factors stimuli and gender.

reported in Table 2. As expected by the previous ANCOVA
test, we observed a significant main effect for the stimuli
(F2,57 = 69.46, p = 5.22 × 10−16). On the other hand,
we found no significant main effect for both the gender and
the interaction between stimuli and gender. The post-hoc
analysis among the three stimuli highlighted significant dif-
ferences in each pairwise comparison, as reported in Fig.4.
Specifically, subjects rated vanillin as significantly most
pleasant (mean valence=+1.44) while the isovaleric acid as
significantly most unpleasant (mean valence = −1.37). The
n-butanol showed a middle rating (mean valence = −0.71)
significantly different from both the vanillin and the isova-
leric acid.

B. FIRST LEVEL ANALYSIS
The principal eigenmodes in our data showed a marked peak
in the α band, and a secondary peak in the β band. Fig.5
shows the observed CSDs, together with the spectra pre-
dicted by the DCM model after inversion for an exemplary
subject. As depicted, DCMs were able to accurately capture
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FIGURE 3. Schematic illustration of the connectivity analysis performed with DCM. In the first level analysis (top): (a) preprocessed EEG data is
segmented into 5sec-long epochs consisting of the three odors’ administration conditions (i.e., n-butanol (B), vanillin (V) and isovaleric acid (IA)), and the
last 5sec of resting-state (R). (b) The data is then reduced to its first 8 principal modes, and for each condition and for each mode, the cross-spectral
densities (CSDs) are estimated through a Bayesian multivariate autoregressive (MVAR) model of order 8 in the frequency range (4-30)Hz. (c) The
modulatory effect of valence on the connectivity is specified through the between-trial effects matrix, which models the contrast between the observed
CSDs relative to the odor conditions and the resting-state. Accordingly, three experimental manipulations are defined, namely neutral (#), pleasant (++)
and unpleasant (−−) valence. (d) The network is defined by specifying the (x, y, z) position of the nodes in the MNI space and their reciprocal extrinsic
connections. (e, f) The ERP neural mass model is used to emulate sources’ dynamics, whose activity is then projected to the electrodes on the scalp with
the standard ECD forward model provided by SPM12. (g) The initial parameter estimates for model inversion (i.e., θ (1)

iinit
) are obtained by fitting the model

with hE=20. Then, the model inversion procedure is repeated using the obtained θ (1)
iinit

and the default value of hE=8. (h) Parameter estimates of the

valence modulatory effects [θ (1)
iB

, θ (1)
iV

, θ (1)
iIA

] are taken to the second level, and are put together across the subjects into the θ (1)
B , θ (1)

V and θ (1)
IA group terms

respectively. A PEB model is fitted on each of these subsets of parameters, with group-mean connectivity, gender and arousal modeling the
between-subject effects. (i) A greedy search with Bayesian Model Reduction (BMR) is applied on the estimates θ (2)

B,V ,IA of each PEB model for each
second-level effect in Xb, followed by Bayesian Model Averaging (BMA) to obtain a unique model of connectivity, given by those connections with the
greatest evidence. Finally, connections having a posterior probability Pp< 0.95 of being present vs. absent based on the free-energy principle are pruned
away. (bottom) The prior distribution of second-level parameters is a Gaussian distribution with expected value η and covariance 6(3).

the frequency content in the θ band, together with the most
prominent part of the spectra, i.e., the α peaks. Nonetheless,
the fitting of secondary spectral features was found to bemore
challenging, as the observed β peaks were sometimes not
considered by the models. For each subject, DCM models
were successfully fitted without observing any problem of
early convergence. The explained variance of the models
was 80.92% on average, ranging from 65.15% to 98.02%,
indicating an overall good representation of the data.

C. SECOND LEVEL ANALYSIS
Results of BMA are depicted in Fig.6 for the n-butanol,
vanillin and isovaleric acid, respectively. Specifically, for

each condition and for each second-level effect, i.e., the
mean-group connectivity (commonalities), the gender and the
arousal, we report the PEB parameters relative to the connec-
tions with the highest evidence of being modulated and hav-
ing a Pp of being non-zero greater than 95%. Particularly, for
each of the parameters that survived the threshold, we report
its estimated posterior effect size and the corresponding 90%
credibility interval, through a black bar and a pink error bar,
respectively.

1) COMMONALITIES
The commonalities encode what is common to all the sub-
jects, and they indicate the average modulatory effect of
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FIGURE 4. Post-hoc analysis of the two-way ANOVA (Mean ± standard
error; corrected with the Tukey-Kramer critical value). We observed the
valence ratings to be different for each of the three stimuli, with vanillin
rated as pleasant and isovaleric acid rated as unpleasant. The n-butanol
was rated as slightly unpleasant. *p<0.05, **p<0.01, ***p<0.001.

odors’ valence on the group connectivity. Negative values
in the effect size of commonalities indicate an inhibitory
effect on the connectivity, whereas positive values indicate
an excitatory effect. Indeed, such an effect size operates
as log-scaling parameter on the prior mean of connectivity
strengths. In our analysis, the administration of n-butanol
did not show any significant effect (Pp < 0.95) at the
group level, indicating that none of the connections in the
network was either inhibited or strengthened. On the other
hand, we observed a negative effect size on the backward
connection from EC to PC for both vanillin (effect size =
−0.56; Pp = 0.99) and isovaleric acid (effect size = −0.28;
Pp = 1.00).

2) GENDER
Considering the results of the gender covariate, negative val-
ues of the effect size estimates indicate that the modulatory
effect of the odors’ valence on the connectivity was greater
in females than in males based on the modeling setup. As
for the commonalities, these effect sizes have the meaning
of log scaling parameters on the connectivity strengths. The
valence of the odors consistently showed a greater modu-
latory effect on the connectivity of females, compared to
males. Particularly, during the stimulation with n-butanol
we observed a negative effect size for the PC−→EC for-
ward connection (effect size = −0.45; Pp = 0.99), and
for the backward connections EC−→OFC (effect size:−0.24;
Pp = 0.97) and OFC−→PC (effect size: −0.29, Pp = 0.98).
These results indicate a greater modulatory effect of
n-butanol in females, with respect to males, on the strengths
of PC−→EC, EC−→OFC and OFC−→PC. During the stimu-
lation with vanillin, we found higher connectivity strengths
of the forward connections PC−→OFC (effect size = −0.18;
Pp = 0.97) and PC−→EC (effect size =−0.45; Pp = 1.00) in
females, with respect to males. Finally, during the stimulation
with isovaleric acid, we found higher connectivity strengths
of the PC−→EC forward connection (effect size = −0.28;
Pp = 1.00) and the OFC−→EC backward connection (effect
size = −0.16; Pp = 0.97). Interestingly, we always found

FIGURE 5. Cross-spectral densities (CSDs) for the first 4 principal
eigenmodes of EEG channel mixtures for an exemplary subject during the
last 5sec of initial resting-state (top-left), and during the 5sec of odor
administration for the n-butanol (top-right), vanillin (bottom-left) and
isovaleric acid (bottom-right) respectively. Observed CSDs are depicted in
red, whereas model-predicted CSDs are depicted in blue.

a negative effect size of gender on the PC−→EC forward
connection. This indicates that such a connection was always
stronger in females than in males, regardless of the stimulus.

3) AROUSAL
Concerning the analysis of the arousal level as covariate, a
positive effect size indicates that the higher the perceived
arousal, the stronger the excitatory effect of odors’ valence
on the connectivity. On the other hand, a negative effect size
indicates that the higher the perceived arousal, the higher
the inhibitory effect of valence. We did not observe any
significant effect in response to the administration of both
n-butanol and vanillin, on any of the network connections
(Pp < 0.95). This indicates that there were no interactions
between the modulatory effect of the valence of these odors
and the perceived level of emotional arousal. On the contrary,
we observed a positive effect for the arousal on the PC−→EC
forward connection during the negative stimulation with iso-
valeric acid (effect size = 0.22; Pp = 0.97). This means that
the strength of such connection was greater in subjects who
perceived the stimulus as more arousing.
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FIGURE 6. Results of BMA. For each stimulus (rows), the height of the black bars indicates the 95%-over threshold parameters showing the modulatory
effect of odor’s valence among subjects (first column; Commonalities), the effect of gender (second column; Gender) and the effect of arousal (third
column; Arousal) onto each connection. Pink error bars indicate the 90% credibility interval around each posterior estimate. The brain figures depict the
rendering of our network on the axial plane. For each condition, the connections reporting a significant modulation are shown in purple.

IV. DISCUSSION
In this work, we used olfactory stimuli with different emo-
tional valence to investigate the effects of the hedonic prop-
erties of odors on group-level effective brain connectivity.
In addition, we considered between-subject differences deter-
mined by both gender and the perceived level of arousal
on such connectivity changes induced by odors’ valence.
To this aim, we analyzed a fully connected cortical network
directly involved in olfaction, emotion, and memory pro-
cessing: i.e., the PC-EC-OFC network, focusing on the left
hemisphere. Indeed, the left lateralization in human olfactory
processing is widely reported in the literature [74], [75],
[76], [77], [78]. Structural connectivity and electrophysio-
logical studies demonstrated stronger intra-hemispheric con-
nectivity between the primary and the secondary olfactory
regions in the left hemisphere, and robust asymmetrical acti-
vation of the left-PC during odor discrimination learning.
[77], [78]. We used DCM for CSD to estimate changes
in the cortico-cortical interactions of such network induced
by odor stimuli with different valence at the single-subject
level. Then, for each stimulus, we used the PEB framework
to estimate the average modulatory effects (commonalities)
of odors’ valence, and the between-subject effects of both
gender and arousal on the effective connectivity at the group
level. Therefore, we limited the influence of single-subject
uncertainty on the parameter estimates at the group level.
Our results suggest that well-known gender differences in
olfactory perception [30], [31], [32], [33], [34], [35], [36],
[37] are also reflected by changes in the effective connectivity
of the olfactory cortical network under study.

We found a negative modulatory effect induced by both
the pleasant odor and the unpleasant odor on the EC−→PC
backward connection. Accordingly, we may suggest that the
effect of valence was reflected by the inhibition of a specific
connection, which happens independently by the sign of the
valence. Consistently, we found no modulatory effect of the
neutral odor on any connection. Our results confirmed pre-
vious evidence describing EC as the gateway to the odor’s
emotional processing [9], [10]. Furthermore, EC→PC back-
ward connection can be associated with top-downmodulation
of fine odor discrimination [10]. In this view, perceiving a
neutral odor could reflect a more active tuning than a pleas-
ant/unpleasant odor perception, due to greater difficulty in
evaluating its potential meaning (e.g., threat or reward). It is
important to remark that such observations are referred to the
average effect on the group connectivity.

Further relevant findings were shown by the analysis of the
effect of gender on the connectivity. We observed differences
between genders at least in one connection of the network, for
all three stimuli. This result is in line with previous studies
showing a gender effect on olfactory sensitivity, olfactory
emotional responses, and functional differences in response
to olfactory cues [37], [39], [40], [41], [42], [87], [88]. Specif-
ically, the effect size of females was always greater compared
tomales. Interestingly, we found the forward connection from
PC to EC to be strongly modulated in females, compared
to males, irrespective of the odorant. In this view, we may
speculate that females have better performances in odor-
associated learning, irrespective of odors’ valence. In addi-
tion, during the exposure to n-butanol,we observed a greater
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modulatory effect on females, compared to males, on the
EC−→OFC and OFC−→PC backward connections. Since the
PC has a role in the integration of odors’ representation with
other information coming from higher-order structures [89],
we may consider these effects as the activation of a top-down
modulation path starting from the EC and terminating down
to the PC (i.e., EC−→OFC−→PC). Given the role of OFC in
the discrimination of odors’ valence [3], we may suggest that
a stronger activation of such top-down pathway in females
confers them a better performance in the pattern recognition
of neutral odors, which may be more difficult to discriminate
compared to emotional odors [2]. However, we found such
a top-down path to be no longer activated in females when
an odor with emotional content was administered. Indeed,
when the pleasant stimulus (i.e., vanillin) was presented, part
of the same pathway in females was activated but in the
opposite direction (i.e., bottom-up direction). Specifically,
we observed a stronger activation of the forward connection
from PC to OFC. Conversely, when the unpleasant odor
(i.e., isovaleric acid) was administered, the forward con-
nection from OFC to EC was more activated in females,
compared to males. Previous results have shown a role of the
OFC in the evaluation of pleasant/unpleasant odors [3], [8].
In this view, we may relate the stronger connection from PC
to OFC for vanillin to a greater reward component [3]. On the
other hand, we suggest that the stronger connection fromOFC
to EC could be related to a greater cognitive control/attention
women have shown for negative odors [90], [91].

Concerning the arousal role in affective odor processing,
we found an effect of arousal on the connectivity during the
administration of isovaleric acid. On the other hand, no effect
of the arousal was present during the exposure to either
n-butanol or vanillin. This is in line with previous literature,
suggesting that negative stimuli are typically more arousing
than positive stimuli [12], [92]. In particular, we observed
that higher perceived arousal was associated with a greater
increase of the connection strength from PC to EC. The
PC has a role in the association between odors and behav-
ioral, cognitive, and contextual information, provided by the
reciprocal connections with higher-order structures (e.g., EC,
perirhinal cortex, prefrontal cortex) [2], [89]. Specifically,
it has been hypothesized that the bidirectional interactions
between PC and EC have a role in odor-associative learning
and memory retrieval [89]. Here we speculate that the asso-
ciative learning due to PC−→EC is enhanced by the arousal
level of unpleasant odors.

SAM analysis showed that subjects perceived all three
stimuli as having a different valence content. However, we did
not observe any correlation of the valence with the arousal,
within any stimulus. Furthermore, we found neither an effect
of gender on the valence nor an interaction between stimuli
and gender, meaning that there was no difference in the
valence ratings between males and females. The discrepancy
between SAM results and the results from the connectivity
analysis is not totally unexpected. Indeed, differently from
odor perception, the performance of affective ratings is a

slower process in which odor information is elaborated and
integrated with top-down influences such as odor knowledge
and prior experience [93], [94], [95]. Accordingly, it could
be possible that the affective ratings of olfactory stimuli may
be the result of partially different processes not taken into
account in our analysis.

Our considerations are based on the assumption that the
observed average modulatory effect on the group-level con-
nectivity (i.e., the commonalities) would reflect the process-
ing of the valence of odors. However, we should consider
that other effects, such as those related to the processing of
different odors, may influence the observed dynamics. Such
ambiguity has been mitigated by the experimental design and
data modeling strategies: first, we designed a cortical network
selecting brain regions that are known to be involved in
the processing of hedonic olfaction; secondly, we used three
isotonic and isointense solutions that have been previously
proven to convey pleasant, neutral and negative emotional
valence [48]. This choice was also supported by the statistical
analysis of the reported SAM, which confirmed a strongly
significant difference in the valence of the odors (and not in
the arousal). Finally, our findings on the connectivity high-
lighted a significant modulation due to the administration of
both the pleasant and the unpleasant odor, while no connec-
tivity changes were observed due to the administration of
the neutral odor. Accordingly, we believe that our model was
able to reflect the processing of the valence of odors, while
mitigating potential effects related to other dynamics of no
interest.

A potential limitation of our study is related to the deep-
ness of the cortical regions considered in our network. More
specifically, the EEG inversion may fail in localizing activity
in such deep regions [25]. Here, we used the positions of the
PC, EC and OFC in a standard space (i.e., the MNI template),
and exploited the key feature of DCM for EEG of estimating
interactions among sources for a set of pre-specified regions.
Future analyses could consider the identification of cortical
sources contributing to the EEG signals by solving the EEG
inverse problem without any a priori hypothesis.

Moreover, the choice of limiting our study on the PC-
EC-OFC cortical network could exclude other brain regions
involved in the neural processing of hedonic olfaction, such
as AM, HIP and insula (INS) [1], [96], [97]. However,
investigating the activity of such subcortical regions using
EEG remains challenging, due to both their distance from
the scalp and complex cellular architectures compared to
cortical areas [98]. Hence, the integration of EEG with other
techniques such as fMRI may be necessary. Nevertheless,
we can still assume to indirectly capture part of their con-
tribution, since bidirectional projections among AM, HIP,
INS and the nodes of our network exist [1], [96]. Other
cortical regions, such as superior temporal gyrus (STG),
precuneus (PCC/PCu) and cingulate gyrus (CgG) have been
also found [25] in our previous study using MVAR on the
same olfactory data. Although, these regions are known to
participate in the processing of emotions and memory [99],
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[100], [101], they may have less specific roles in the pro-
cessing of hedonic olfaction, as compared to PC, OFC and
EC [1], [19]. Indeed, STG, PCC/PCu, and CgG are involved
in a variety of processes different from olfactory perception,
such as high-order auditory processing of speech, visuo-
spatial imagery, and processing of painful stimuli [102],
[103], [104]. Accordingly, we limited our analysis to a
smaller network that could be more specific of the early
olfactory processing stages.

Future works could evaluate the role of inter-hemispheric
connections on the neural processing of hedonic odors by
extending our modeled PC-EC-OFC network to the right
hemisphere. In addition, we could expand the PC-EC-OFC
network to other salient cortical nodes as those resulted from
our previous findings: i.e., STG, PCC/PCu, and CgG [25].
In particular, such future works must consider data collected
from a greater number of subjects, to improve result reliabil-
ity on larger networks.

V. CONCLUSION
In this work, we applied DCM to EEG data to investigate
the impact of the hedonic content of odors (i.e., valence and
arousal) and gender on the group effective connectivity of the
PC-EC-OFC cortical network. The central role of the EC-PC
backward and forward connections is clear in the results.
Indeed, whereas the backward connection was modulated by
the odor valence suggesting the necessity of finer discrimi-
nation for neutral and probably more ambiguous odors, the
forward connection is modulated by the gender difference,
regardless of the kind of odor under consideration, and by the
arousal during the negative olfactory stimulus. EC has then
confirmed as the gateway to the odor’s emotional processing.
We believe that this study will pave the path for further inves-
tigations on the neural processing of odors at the effective
connectivity level.
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