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In this work, we propose a novel block preconditioner, labeled Explicit Decoupling Factor 
Approximation (EDFA), to accelerate the convergence of Krylov subspace solvers used to 
address the sequence of non-symmetric systems of linear equations originating from flow 
simulations in porous media. The flow model is discretized blending the Mixed hybrid 
finite element method for Darcy’s equation with the Finite volume scheme for the mass 
conservation. The EDFA preconditioner is characterized by two features: the exploitation 
of the system matrix decoupling factors to recast the Schur complement and their inexact 
fully-parallel computation by means of restriction operators. We introduce two adaptive 
techniques aimed at building the restriction operators according to the properties of the 
system at hand. The proposed block preconditioner has been tested through extensive 
experimentation on both synthetic and real-case applications, pointing out its robustness 
and computational efficiency.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerical modeling of fluid flow in porous media is a key requirement for a wide number of applications in subsurface 
hydrology and petroleum engineering. In general, computer simulators are fundamental tools for the proper management 
and exploitation of aquifer systems, as well as oil and gas fields. The growing demand for higher accuracy of the simula-
tion, assisted by the increasing availability of computational and storage resources, leads to continuous development and 
refinement of virtual simulators. The degree of approximation of the overall numerical model is defined, first of all, by the 
underlying mathematical model, but also by the selected discretization scheme. These schemes should handle effectively 
non-K-orthogonal unstructured grids, as well as highly heterogeneous and anisotropic rock/fluid properties, frequently in-
troduced as full-tensors in the model (see, for instance, Reference [1] about the numerical issues, related to abrupt changes 
in permeability, in Node control volume finite element discretizations).

The Mixed Hybrid Finite Element (MHFE) method, and, in general, the whole class of Mixed Finite Element (MFE) meth-
ods [2], coupled with the Finite Volume (FV) method, has been gaining a growing popularity in recent years. The mass 
conservation at the element level, the continuity of normal fluxes across internal faces of the discretized domain, the 
accuracy of the velocity and pressure fields, the possibility of handling either structured or unstructured grids, and the 
elegant treatment of full tensor fluid properties [3–5] have made the MHFE method attractive for several applications, 
such as contaminant transport [6–8], energy storage [9], poromechanics [10–13] and, of course, single-phase [14], variably 
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saturated [15,16], multi-phase [17–21] and, more recently, compositional [22] flow problems. However, the MHFE method 
exhibits some critical aspects as well, such as the violation of the Discrete maximum principle [23] and the higher number 
of unknowns per element, as compared to other schemes like FV or classical Finite element methods. In this regard, much 
effort was devoted to trying to reduce the overall number of unknowns per cell to one per face [3,5] and even only one per 
element [24]. The main focus was on triangular cells in two-dimensional (2-D) applications, however, with some limitations 
in the shape of tetrahedra in three-dimensional (3-D) domains [25].

A MHFE-based simulator was recently developed in [20] to model the two-phase flow in heterogeneous porous media. 
Fučík et al. [19] introduced multi-component compositional flow in the previous model and also focused on the design 
of a parallel implementation on both CPU and GPU. A similar approach, but extended to compressible multi-phase flow, 
was developed in [21] and applied to several real-field applications. Puscas et al. [26] proposed a two-phase flow Multiscale 
MHFE (MMHFE) simulator, where much care was devoted to the design of a robust parallel implementation, while Devloo et 
al. [27] introduced the Discrete fracture model in a 2D MMHFE simulator. Abushaikha et al. [22] developed a fully implicit 
general-purpose MHFE-based simulator for highly heterogeneous reservoirs, which was later adapted to accommodate a 
Mimetic Finite Difference (MFD) formulation [28,29] for Darcy’s equation in [30] and the Discrete fracture model in [31,
32]. The modeling approach in [22], considered in this work as well, propounds a novel formulation of the mass balance 
equation, where the continuity of the fluxes across adjacent grid elements is strongly imposed. This allows for getting rid of 
possible flux oscillations during the nonlinear iterations, to the benefit of the nonlinear solver robustness and convergence 
rate. Such an approach, however, results in three challenging numerical properties: (i) a high number of unknowns per 
element (although the lowest-order Raviart-Thomas (RT 0) space [33] is used), giving rise to large-size systems of equations, 
(ii) the non-symmetric nature of such systems, and (iii) the inherent block structure of the Jacobian matrix. A key issue to 
increase the attractiveness of the approach in [22] is the availability of an efficient linear solver to tackle the sequence of 
inner linear systems with the Jacobian matrix originating during a full-transient simulation. Most of the overall CPU time, 
in fact, is usually needed for this task. Given the size and sparsity degree of these systems, Krylov subspace methods [34]
are normally the method of choice, but their performance needs to be boosted by means of appropriate preconditioning 
operators.

The main objective of this paper is the efficient solution of the systems of equations stemming from the aforementioned 
MHFE-FV modeling approach, by designing a specific preconditioning technique that copes with their non-symmetric nature. 
A popular physics-based preconditioner for reservoir simulations is the Constrained Pressure Residual (CPR) [35–37], which 
is the standard for commercial and also academic simulators [38–40]. CPR was designed with the aim at exploiting the 
properties of the different processes that are coupled together. CPR-type algorithms are multi-stage preconditioners (like 
SIMPLE [41,42]), whose application (to a vector) goes through several steps during which the groups of unknowns are 
repeatedly updated. CPR has two stages in its original formulation, but other multi-stage variants exist [43,44]. Recently, a 
two-stage CPR scheme, suitable for non-isothermal multi-phase flow simulations, namely Constrained Pressure-Temperature 
Residual (CPTR), has been designed by Roy et al. [45]. However, given the ill-conditioning and non-symmetric nature of the 
systems of equations originating from our modeling approach, CPR-like schemes are often ineffectual.

In this work, we focus on developing an algebraic preconditioner that takes advantage of the block structure of the 
resulting discrete problem. Preconditioning of large-size block systems of equations is a mature branch of applied mathe-
matics [46–48] and still a very active research field. In recent years, block preconditioning techniques have been developed 
for different problems, such as the solution of the Navier-Stokes equations [49–53], coupled poromechanics [54–65], flow in 
fractured porous media [66–68], electromagnetism [69–72], contact mechanics [73–77], as well as single- and multi-phase 
flow in porous media [45,80,81], including multi-level methods [78,79,82–85] that rely on the block decomposition arising 
from hierarchical partitioning of the grid into coarse- and fine-scale levels. In particular, the issue of preconditioning in the 
framework of the MFE and MHFE discretization of flow problems in porous media is not new (see, for instance, [86,87]), but, 
in its original formulation, the resulting systems had the typical structure of symmetric saddle-point problems [47]. How-
ever, in the MHFE-FV formulation we utilize, the property of symmetry is lost. The main feature of our block preconditioner 
is twofold: (i) the exploitation of the block matrix decoupling factors to recast the Schur complement computation, and 
(ii) their approximate construction by means of appropriate restriction and prolongation operators. The reference model for 
the development of our preconditioner is the basic MHFE-FV discretized single-phase flow in porous media. This represents 
the first stage of a more comprehensive research project, where we plan to extend this preconditioning framework to a 
MHFE-FV multi-phase reservoir simulator based on the modeling approach described in [22].

The rest of the paper is organized as follows. The model problem is first presented along with the algebraic properties 
of the system matrix; then the block-structured preconditioning framework is introduced and tested in both synthetic and 
real-world applications. The experimental stage helped highlight advantages and drawbacks of the proposed preconditioner, 
which are reported in the discussion section. The conclusions and hints on the ongoing and future work finally close the 
paper.

2. MHFE-FV model of single-phase flow in porous media

The set of equations governing the single-phase flow in porous media consists of the mass conservation and Darcy’s law. 
The monolithic solution approach addresses these equations simultaneously by means of a fully implicit coupling.
2
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2.1. Governing equations

Consider the finite porous domain � ⊂R3, its boundary � and their union � = � ∪�. �p and �v are partitions of � such 
that �p ∪�v = � and �p ∩�v =∅. Let t and T =]0, T [ indicate the time variable and the simulated open temporal domain, 
respectively. Denoting with s : � ×T →R the source or sink term, p : �×[0, T ] →R the fluid pressure, v : �×[0, T ] →R3

the velocity vector and c : � → R+ the specific storage coefficient, representative of both the fluid and porous matrix 
compressibilities, the set of governing PDEs reads:

v = − K

γ
∇p on � ×T (Darcy’s law), (1a)

∇ · v + c ṗ = s on � ×T (mass conservation), (1b)

where the symbol ∇ indicates the gradient operator, ∇· the divergence operator and (̇) the derivative with respect to time. 
In equation (1a), γ is the fluid specific weight and K is the conductivity tensor, assumed to be symmetric and positive 
definite (SPD). The gravitational term is here neglected. The specific storage coefficient c in equation (1b) can be expressed 
as c = α + φβ where α is the soil compressibility, φ the medium porosity and β the fluid volumetric compressibility [88]. 
The solution to the system of equations (1a) and (1b) is a well-posed problem provided that a set of appropriate initial and 
boundary conditions is supplied:

p|t=0 = p0 in � (initial fluid pressure), (2a)

p = p on �p ×T (prescribed fluid pressure), (2b)

− K

γ
∇p · n = vn on �v ×T (prescribed Darcy’s flux), (2c)

for assigned functions p0 : � →R, p : �p ×T →R, and vn : �v ×T →R. In equation (2c), n denotes the outer unit normal 
vector to �v .

2.2. Discretization of the governing equations

The model domain is partitioned into non-overlapping hexahedral elements, which accommodate, as shown in Fig. 1b, 
two types of pressure unknowns, located on each face barycenter, π , and on the element centroid, pE . The former acts 
the part of Lagrange multipliers and expresses the face average pressure, whereas the latter represents the average element 
value.

Let Eh and Fh be the collection of elements and faces of the discretized domain, respectively. In our modeling approach, 
equation (1a) is discretized by means of the MHFE method, using the RT 0 space to approximate the velocity vh and the 
P0 space for the pressure ph and Lagrange multipliers πh:

Vh =
{

vh | vh ∈ H(div,Eh), −vh · n = vn on �v , vh|E ∈RT 0(E), ∀E ∈ Eh
}

, (3a)

Lh =
{

ph | ph ∈ L2(Eh), ph|E ∈ P0(E), ∀E ∈ Eh
}

, (3b)

Mh =
{
πh | πh ∈ L2(Fh), πh = p on �p, πh| f ∈ P0( f ), ∀ f ∈ Fh

}
, (3c)

where L2
(
Eh

)
and L2

(
Fh

)
denote the spaces of square Lebesgue-integrable functions on Eh and Fh , respectively, and 

H(div, Eh) = {
φ ∈ L2(�),∇ · φ|E ∈ L2(E),∀E ∈ Eh

}
is the Sobolev space of square integrable vector functions with square 

integrable divergence in E [2,90].
The Vh trial space for 3-D problems is generated by local piecewise trilinear vector functions, ηE

i (x1, x2, x3), defined for 
each face i of element E [5,89]. Considering the hexahedral reference element, Ê , in Fig. 1a, the RT 0 basis functions simply 
read:

η Ê
±x̂a

(
x̂1, x̂2, x̂3

) = 1

8

(
x̂a ± 1

)⎛⎜⎜⎝
∂ x̂1
∂ x̂a
∂ x̂2
∂ x̂a
∂ x̂3
∂ x̂a

⎞⎟⎟⎠ , with a = 1,2,3, (4)

where x̂1, x̂2, and x̂3 denote the three coordinates in the reference space. One of these functions is shown in Fig. 1c. Such 
functions exhibit two basic properties [4]:
3
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Fig. 1. The hexahedral element in the reference space with distribution of the model unknowns and example of RT0 basis function. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

1. The flux of ηE
i is unitary across face i and null elsewhere:∫

A j

ηE
i · n j dA = δi j, i, j = 1, . . . , N E

f , (5)

where n j denotes the outer normal at face j, A j the relevant area, δi j the Kronecker delta and N E
f the number of faces 

of element E . From equation (5) it follows that ηE
i has a continuous normal component at face i, so the normal fluxes 

are also continuous.
2. The integral of ηE

i divergence is unitary over element E:∫
�E

∇ · ηE
i d� = 1, i = 1, . . . , N E

f , (6)

where �E is the element volume.

Darcy’s velocity v is approximated at the element level by a linear combination of the basis functions ηE
i [3]:

vh,E =
N E

f∑
j=1

qE
j η

E
j (x1, x2, x3), (7)

where qE
j represents the flux across face j.

Let 
{
ξ E

}
E∈Eh be the set of basis functions for Lh such that ξ E (x) = 1 if x ∈ E and ξ E (x) = 0 if x /∈ E . Similarly, the basis 

for Mh , 
{
ζ f

}
f ∈Fh , consists of functions for which ζ f (x) = 1 if x ∈ f and ζ f (x) = 0 if x /∈ f . Therefore, the pressure and 

Lagrange multiplier fields read:
4
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ph =
Ne∑

E=1

ξ E pE and πh =
N f∑
f =1

ζ f π f , (8)

where Ne and N f are the number of elements and faces in the grid, respectively. The Galerkin weak form of equation (1a)
is written element-by-element as:

γ

∫
�E

ηE,T
i K E −1

v E d� = −
∫
�E

ηE,T
i ∇p d�, i = 1, . . . , N E

f . (9)

Applying the Green-Gauss lemma to the Right-Hand Side (RHS) of equation (9) and substituting equations (5), (6) and (8)
entails:

−
∫
�E

ηE,T
i ∇p d� =

∫
�E

∇ · ηE
i p d� −

N E
f∑

j=1

∫
A j

ηE
i · n j p dA

= pE − π E
i , i = 1, . . . , N E

f ,

(10)

where the superscript on π E
i indicates that those unknowns belong to element E . Introducing equations (7) and (10) in (9)

yields:

γ

N E
f∑

j=1

∫
�E

ηE,T
i K E −1

ηE
j d� qE

j = pE − π E
i , i = 1, . . . , N E

f . (11)

Defining the elementary matrices B E ∈RN E
f ×N E

f , whose components are [3]:

B E
ij = γ

∫
�E

ηE,T
i K E −1

ηE
j d�, i, j = 1, . . . , N E

f , (12)

the local final expression for equation (11) reads:

qE = B E −1
(pE 1 − π E), (13)

which allows to link the face fluxes with the local pressure differences, being qE and π E the vectors gathering the interface 
fluxes and pressures of element E and 1 ∈ RN E

f the vector of unitary components. Being K E SPD, B E is so as well. The 
numerical evaluation of the integrals in equation (12) may be troublesome when performed in the model space with 
general elements. In this regard, Piola transformation comes into play, allowing to map the element in the model space into 
the prototype hexahedron in the reference space (Fig. 1a), perform the integrals using functions η Ê

±x̂a
in equation (4) and 

then map the result back to the physical space (see, for instance, [89,91,92]).
For the discretization of the mass balance equation (1b), we use a FV approximation in space. Choosing the elements of 

the grid as control volumes, we have:∫
�E

c ṗ d� +
∫
�E

∇ · v d� =
∫
�E

s d�, E = 1, . . . , Ne. (14)

Recognizing that the second term on the Left-Hand Side (LHS) is equivalent to the sum of the fluxes across the faces of the 
element, equation (14) gives:

�E cE pE
n+1 − pE

n

tn
+

N E
f∑

i=1

qE,E ′
i = �E sE , E = 1, . . . , Ne, (15)

where a first-order backward Finite difference scheme has been introduced for the integration in time. In equation (15), the 
subscript n indicates the previous time step, n + 1 the actual one, tn = tn+1 − tn , cE and sE are the mean values of the 
storage coefficient and source terms in E , and qE,E ′

i is the fluid flux exchanged by the adjacent elements E and E ′ across 
face i. The expression for the inter-element flux qE,E ′

i results from strongly imposing the continuity of local fluxes across 
face i (see appendix A in [22] for details):

qE,E ′
i = B E ′

ii
−1

�E − B E
ii

−1
�E ′

B E + B E ′ , (16)

ii ii

5
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where

�E = LB E
i

pE −
N E

f∑
j=1

B E
ij

−1
π E

j with i �= j, LB E
i

=
N E

f∑
j=1

B E
ij

−1
.

Notice that the main consequences of this formulation are a tightened tying of the local fluxes and the enlargement of the 
native stencil, since qE,E ′

i depends not only on the pressure unknowns of E but also on E ′ ’s.

2.3. The MHFE-FV system of equations

The solution to the model problem is achieved by solving the system of equations (15) at each time step, along with the 
strong enforcement of the fluxes continuity across the faces of the grid:

qE
i + qE ′

i = 0, i = 1, . . . , N f , (17)

where qE
i and qE ′

i denote the fluxes across face i for elements E and E ′ , respectively. Along the boundary, equation (17)

allows also to apply Neumann conditions in a strong form, just by substituting the RHS accordingly and dropping qE ′
i . Notice 

that equation (17) uses the fluxes as expressed in (13), unlike equation (15). Finally, it is implicitly assumed that π E
i = π E ′

i
due to continuity reasons.

The resulting system

Au = f ⇒
[

Aππ Aπ p

Apπ App

][
πn+1

pn+1

]
=

[
f π

f p

]
(18)

exhibits a 2 × 2 block structure and it is solved in a fully implicit framework. In equation (18), Aππ ∈ RN f ×N f , App ∈
RNe×Ne (with N f > Ne), πn+1 and pn+1 gather the face and element pressure unknowns, and f π and f p are the relevant 
components of the known term. The Lagrange multipliers and the element pressure unknowns are coupled by means of the 
rectangular blocks Aπ p and Apπ . As to the properties of A, this matrix has a flipped generalized saddle-point structure, it is 
sparse, non-symmetric and usually ill-conditioned. In particular, A pp has a symmetric structure, though it is not symmetric, 
Aππ is a symmetric negative definite matrix, and Aπ p �= ±AT

pπ . As mentioned before, in the context of single-phase flow, 
system (18) is linear.

3. The Explicit Decoupling Factor Approximation preconditioner

Solving accurately and efficiently the sequence of linear systems (18) arising from a MHFE-FV unsteady flow simulation is 
the major purpose of this study. Iterative Krylov subspace solvers are mandatory to address the large-size and sparse systems 
of equations that stem from real-world 3-D models, especially for the low memory requirements and better scalability 
as compared to direct solvers [34]. When the system matrix is non-symmetric, the Bi-Conjugate Gradient Stabilized (Bi-
CGStab) [93] or the Generalized Minimal Residual (GMRES) [94] methods are usually the selected algorithms. However, 
improving their performance by supplying an appropriate preconditioning operator P−1 is key to guarantee a fast and 
smooth convergence.

It is well-known that an effective preconditioner is an operator whose application to a vector should resemble as much 
as possible that of the inverse, A−1, of the system matrix [46,48]. Therefore, a good starting point for the design of our 
preconditioner is to consider A−1 and take advantage of its block structure, as it is usually done in saddle-point and general 
block problems [47,77,95,96]. The block LDU decomposition of the system matrix reads:

A =
[

Iπ
Apπ A−1

ππ I p

][
Aππ

S

][
Iπ A−1

ππ Aπ p

I p

]
, (19)

where Iπ and I p are the identity in RN f ×N f and RNe×Ne , respectively, and S = App − Apπ A−1
ππ Aπ p is the so-called Schur 

complement. The exact inverse of A in a factorized form reads:

A−1 =
[

Iπ −A−1
ππ Aπ p

I p

][
A−1

ππ

S−1

][
Iπ

−Apπ A−1
ππ I p

]
, (20)

where the two decoupling factors are defined as:

G = −Apπ A−1
ππ and F = −A−1

ππ Aπ p . (21)

The decoupling factors F and G are also used to compute the Schur complement as:
6
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S = App − Apπ A−1
ππ Aπ p

= App − Apπ A−1
ππ Aππ A−1

ππ Aπ p

= App − H,

(22)

with H = G Aππ F .
Considering equations (21), F and G can be computed explicitly by solving two independent sets of Multiple Right-Hand 

Side (MRHS) systems:

AT
ππ G T = −AT

pπ , (23a)

Aππ F = −Aπ p . (23b)

Of course, such an operation cannot be performed exactly because F and G are dense, hence proper approximations have 
to be introduced. The key feature of the proposed approach, denoted as Explicit Decoupling Factor Approximation (EDFA), 
is the computation of sparse explicit approximations for F and G , F̃ and G̃ , respectively, by means of proper restriction 
operators. The approximate decoupling factors F̃ and G̃ are used to compute a sparsified Schur complement S̃:

S̃ = App − G̃ Aππ F̃

= App − H̃ .
(24)

Recalling equation (20), the final algebraic expression of the EDFA preconditioner reads:

P−1 =
[

Iπ − Ã−1
ππ Aπ p

I p

][
Ã−1

ππ

S̃−1

][
Iπ

−Apπ Ã−1
ππ I p

]
, (25)

where Ã−1
ππ and S̃−1 are inexact applications of the inverse of the leading block Aππ and the approximate Schur com-

plement, respectively. For instance, local inner preconditioners for Aππ and S̃ can be used for this task, like incomplete 
factorizations, approximate inverses or multigrid approaches.

Remark 3.1. The approximate decoupling factors F̃ and G̃ are used only for the computation of S̃ and do not replace the 
relevant terms in the triangular factors in equation (25). In this sense, the EDFA algorithm can be regarded as a member 
of the mixed constraint preconditioners class [95,97], where a twofold approximation for the inverse of the leading block is 
inherently introduced. Similarly, it can be also viewed as an example of application in a non-symmetric context of the multi-
grid reduction framework, e.g. [65,80], where face and element pressures play the role of fine and coarse nodes, respectively, 
and F̃ and G̃ are approximations of the optimal restriction and prolongation operators from the fine to the coarse grid.

The approximation of the decoupling factors F and G is performed by solving the sequence of MRHS systems (23a)
and (23b) inexactly in properly restricted subspaces. For the sake of simplicity, we refer to system (23a), but the same 
developments can be easily extended to (23b). The m-th system reads:

−Aππ g(m),T = a(m),T
pπ , (26)

where Aππ = AT
ππ for symmetry reasons, g(m),T = G T e(m) , a(m),T

pπ = AT
pπ e(m) , and e(m) is the m-th vector of the canonical 

basis of RNe , which plays the role of restriction operator over columns. The minus sign has been introduced at both sides of 
equation (26) to obtain an SPD problem, since Aππ is negative definite. Let us now consider the set Q = {

1, . . . , N f
} ⊂ N

and a sequence of (possibly overlapping) subsets Q (m) ⊆ Q , whose size is 
∣∣Q (m)

∣∣ = s(m) , with m = 1, . . . , Ne . The m-th 
restriction operator over rows,

R(m)
r : RN f → Rs(m)

(27)

is expressed as:

R(m)
r =

⎡⎢⎢⎢⎣
f T

Q (m)
1
...

f T
Q (m)

s(m)

⎤⎥⎥⎥⎦ , (28)

where f � is the �-th column vector of the canonical basis of RN f and Q (m)
i is the i-th member of Q (m) . The application of 

the operator R(m)
r to equation (26) leads to the following system (Fig. 2):

−A(m)
ππ g̃(m),T = R(m)

r a(m),T
pπ , (29)
7
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Fig. 2. Schematic representation of the restriction operators’ action in the computation of G̃ T .

where A(m)
ππ = R(m)

r Aππ R(m),T
r is a symmetric restriction of Aππ to the entries in the rows and columns with indices in 

Q (m) and g̃(m),T = R(m)
r g(m),T is the restriction of the m-th row of G to the entries in the columns with indices in Q (m) . 

Since −A(m)
ππ is a symmetric square submatrix of the SPD matrix −Aππ , it is guaranteed to be SPD as well. The sequence of 

systems (29) can be inexpensively solved by an inner direct solver, provided that the cardinality of Q (m) is small enough.
The restricted vector g̃(m) obtained from the solution of system (29) is an approximation of the m-th row of the exact 

decoupling factor G and inherits an optimal property, as stated by the following result.

Proposition 3.1. Let A ∈ Rn×n be SPD and R ∈ Rm×n (m < n) be a restriction operator from Rn to Rm. Then, for any RHS vector 
b ∈Rn, the solution x ∈Rm to the restricted system:

R ART x = Rb (30)

is such that the error e = A−1b − RT x has minimal energy norm with respect to the A-inner product.

Proof. The energy norm of e with respect to A reads:

‖e‖A =
√

eT Ae. (31)

The contribution under square root in equation (31) is a quadratic function �(x) :Rm →R+:

�(x) =
(

A−1b − RT x
)T

A
(

A−1b − RT x
)

= xT R ART x − 2xT Rb + bT A−1b, (32)

which has a unique minimum in Rm being A SPD. Hence:

min
Rn

‖e‖A = √
�(t), with t = arg min

x∈Rm
�(x) ⇐⇒ ∇�(x) = 0. (33)

Condition (33) applied to equation (32) immediately yields:

R ART x − Rb = 0, (34)

which completes the proof. �
Remark 3.2. Proposition 3.1 guarantees that the restricted vector g̃(m) is the best approximation of g(m) that can be com-
puted for the components selected by the set Q (m) , in the sense of the energy norm with respect to the Aππ -inner product. 
Hence, an accurate selection of such components, so as to identify the most important ones for each row, is fundamental 
for the quality of the approximation G̃ and, similarly, of F̃ and H̃ .

Finally, the assemblage of the Ne contributions g̃(m) from equation (29), prolonged back to RN f , gives rise to the ap-
proximate factor G̃ . Recalling that restrictions and prolongations are dual operators, G̃ is easily obtained as:

G̃ =
Ne∑

e(m) g̃(m)R(m)
r . (35)
m=1

8
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Fig. 3. Sketch of the base patterns for Cartesian and non-Cartesian grids. The front and right elements have been removed to improve the readability of the 
subpanels.

Operating similarly for equation (23b), we obtain:

F̃ =
Ne∑

m=1

R(m),T
r f̃

(m)
e(m),T , (36)

where f̃
(m)

are the solution of the Ne restricted SPD systems:

−A(m)
ππ f̃

(m) = R(m)
r a(m)

π p , (37)

with a(m)
π p = Aπ pe(m) . Of course, the restriction operators R(m)

r can be the same as for G̃ or based on a different sequence of 
subsets W (m) ⊆ Q .

As observed in Remark 3.2, the sequence of subsets Q (m) and W (m) , along with their size s(m) , affects the density of the 
approximate decoupling factors and governs the effectiveness of the EDFA preconditioner. In fact, the entries of Q (m) and 
W (m) are the indices of the non-zero entries computed for the m-th row of G̃ and column of F̃ , respectively. To be effective, 
the sets Q (m) and W (m) should roughly identify for each row of G̃ and column of F̃ the largest entries of G and F . This key 
operation is carried out by means of two techniques, referred to as static and dynamic in the sequel, aimed at selecting the 
most influential entries expected in G and F .

First of all, for the sake of simplicity, we use a single sequence of sets Q (m) for both decoupling factors. A natural initial 
guess for Q (m) is the set of indices of the non-zero entries belonging to the columns of AT

pπ , which is denser than Aπ p . 
Such pattern is referred to as Q (m)

Apπ
. Fig. 2 schematically shows how the restricted systems can be retrieved from the global 

one using the set Q (m)
Apπ

. The two strategies for computing Q (m) starting from Q (m)
Apπ

are as follows.

1. Static technique. The non-zero entries of Q (m)
Apπ

can be derived by the discretization. In particular, the non-zeros lying in 
the m-th row of Apπ identify the faces of the cells connected with the m-th element, as illustrated in Fig. 3. Notice that 
the front and right elements have been removed for the sake of readability, being the overall patch symmetric along 
the three principal directions. The central element (red-filled faces) is the m-th cell, which is connected to six adjacent 
elements, and the colored faces correspond to the indices of the non-zero entries in the m-th row of A pπ . Note that, 
depending on whether the grid is Cartesian or non-Cartesian, the patterns are different. This is a direct consequence 
of the elemental matrices B E,−1 structure in equation (12), which derives from the mutual relationships among the 
basis functions of the RT 0 space for hexahedral elements. For a regular hexahedron, in fact, matrix B E,−1 is block-
diagonal, while this property is no longer valid for a general-shape hexahedron. Since the solution of system (26) can 
be physically interpreted as the face pressures induced by the fluid fluxes related to the pressure gradients occurring 
in neighboring cells, the pattern Q (m)

Apπ
can be extended by adding the connection to faces belonging to close cells 

where the pressure perturbation is expected to propagate. From an algebraic viewpoint, the static technique is based on 
partitioning the problem domain into overlapping subregions built around each cell and keeping the face connections.

2. Dynamic technique. The starting pattern Q (m)
(0) = Q (m)

Apπ
is progressively enlarged during the computation of g̃(m) and 

f̃
(m)

with the aid of an iterative strategy. After computing g̃(m),T
(0) from the solution of system (29), with the restriction 

operator R(m)
r,(0) built on Q (m)

(0) , the residual of the prolonged system

r(m)
(0) = a(m),T

pπ + Aππ R(m),T
r,(0) g̃(m),T

(0) (38)

is obtained and used to expand Q (m)
(0) by incorporating the indices of the largest components of r(m)

(0) , thus obtaining 
Q (m)

(1) . The process can be iterated to obtain Q (m)
(2) , Q (m)

(3) , etc., until a certain exit criterion is met. The same procedure 
applies to system (37).

Remark 3.3. Equation (38) is not expensive to compute. In fact, the matrix Aππ R(m),T
r,0 is the restriction of Aππ to the 

columns with indices in Q (m) . However, such columns are sparse and contain only the connection of a face with the faces 
(0)

9
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of the two sharing cells. Hence, the only non-zero entries of r(m)
(0) correspond to the faces’ indices of a set of neighboring 

elements. In practice, the dynamic strategy automatically selects the most significant entries among a subset of potential 
indices that should resemble the one associated with the static strategy.

Remark 3.4. The use of the prolonged residual to select the most significant entries to be retained is strictly related to the 
symmetry and positive definiteness of −Aππ . In fact, r(m)

(0) is the direction of the gradient of the quadratic form associated 
to −Aππ , whose absolute minimum is the exact solution to equation (26). Therefore, the dynamic strategy can be also 
regarded as an incomplete steepest descent process, where only the largest contributions to the gradient direction are taken 
into account.

Remark 3.5. The EDFA preconditioner, in both the static and dynamic variants, exhibits the remarkable feature that its 
computation is embarrassingly parallel. In fact, the row- and column-wise approach, used to tackle the restricted solution to 
the MRHS systems (23a) and (23b), allows to solve each single linear system independently of the others. All the available 
processing units can be assigned batches of systems that are approximately solved at the same time, with a full and effective 
exploitation of the most modern computational architectures.

3.1. Spectral analysis

It is well-known that an eigenspectrum enclosed in the neighborhood of 1 is not a sufficient condition to guarantee 
a fast convergence of a non-symmetric iterative solver [98]. Nevertheless, computational experience shows that a matrix 
arising from PDEs discretization with a compact eigenspectrum very rarely produces a bad convergence rate. It is therefore 
interesting to investigate the influence of the approximations Ã−1

ππ and S̃−1 on the eigenspectrum of the preconditioned 
matrix P−1A.

Let us introduce the matrices:

Eπ = Iπ − Ã−1
ππ Aππ , (39a)

E S = I p − S̃−1 Ŝ, (39b)

with ̂S = App − Apπ Ã−1
ππ Aπ p . Eπ and E S can be regarded as a measure of the quality of Ã−1

ππ and ̃S−1 as approximations of 
the leading block and the Schur complement of A inverses, respectively. Recalling equations (18) and (25) and introducing 
the error matrices (39a) and (39b), the preconditioned matrix P−1A reads:

P−1A =
[

Ã−1
ππ Aππ − Ã−1

ππ Aπ p S̃−1 Apπ Eπ Ã−1
ππ Aπ p E S

S̃−1 Apπ Eπ S̃−1 Ŝ

]
, (40)

which can be re-written as:

P−1A =
[

Iπ 0
0 I p

]
+

[
− Ã−1

ππ Aπ p S̃−1 Apπ − Iπ Ã−1
ππ Aπ p

S̃−1 Apπ −I p

][
Eπ 0
0 E S

]
= I +HE . (41)

Therefore, the eigenvalues λ of P−1A are:

λ
(
P−1A

) = 1 + ζ, (42)

where ζ denotes the eigenvalues of HE . As expected, this ensures that P−1A converges to the identity as the sub-problem 
approximations Ã−1

ππ and S̃−1 are progressively improved, i.e., Eπ and E S tend to the null matrix.
The leading block Aππ is symmetric negative definite, hence several specific algebraic preconditioners, such as incom-

plete factorization, approximate inverse or algebraic multigrid, are already available in literature and able to force Eπ to 
approach the null matrix as needed. In the limit of Eπ = 0, we have the result that follows.

Proposition 3.2. If Eπ = 0, then the eigenvalues of the preconditioned matrix P−1A are either 1 with multiplicity N f , or equal to 
those of ̃S−1 S for S given in equation (22).

Proof. The proof follows immediately from equation (40). �
Hence, the key for the performance of the EDFA preconditioner is the computation of ̃S and the application of its inverse.
Recalling equation (21), the approximate decoupling factors F̃ and G̃ can be written as:

G̃ = −Apπ A−1
ππ + RG , (43a)

F̃ = −A−1
ππ Aπ p + R F , (43b)
10
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where RG and R F collect the sequence of final residuals in equation (38) obtained during the EDFA preconditioner compu-
tation. The eigenvalue distribution of S̃−1 S depends on RG and R F according to the following result.

Theorem 3.3. Let S and ̃S be the matrices defined in equations (22) and (24), respectively, and r = max {‖RG‖ ,‖R F ‖} for any com-
patible matrix norm. The real and imaginary part of the eigenvalues μ of ̃S−1 S read:

�(μ) = 1 + ξ

(1 + ξ)2 + η2
, �(μ) = −η

(1 + ξ)2 + η2
, (44)

for pairs of real numbers (ξ, η) such that 
√

ξ2 + η2 ≤ ρ(r) and:

ρ(r) = ‖S−1‖
[
‖Aππ‖r2 + (‖Aπ p‖ + ‖Apπ‖) r

]
. (45)

Proof. Using equations (43a) and (43b), the difference matrix R = S̃ − S reads:

R = Apπ A−1
ππ Aπ p − G̃ Aππ F̃

= RG Aπ p + Apπ R F − RG Aππ R F . (46)

Since:

S̃−1 S = (S + R)−1 S

= [
S
(

I p + S−1 R
)]−1

S

= (
I p + S−1 R

)−1
, (47)

the eigenvalues μ ∈C of S̃−1 S are:

μ = 1

1 + λ(S−1 R)
, (48)

for all eigenvalues λ ∈C of S−1 R . Setting in equation (48) λ = ξ + iη, ξ, η ∈R, provides relationships (44). The modulus of 
λ(S−1 R) is bounded by any matrix norm of S−1 R induced by a vector norm, therefore:√

ξ2 + η2 ≤ ‖S−1‖ (‖RG‖ ‖Aπ p‖ + ‖Apπ‖ ‖R F ‖ + ‖RG‖ ‖Aππ‖ ‖R F ‖) . (49)

The right-hand side of inequality (49) is bounded from above by ρ(r) defined in equation (45), thus completing the 
proof. �
Remark 3.6. Equations (44) have a singularity for ξ = −1 and η = 0. If eigenvalues of S−1 R are located in the neighborhood 
of this point, there exist eigenvalues of S̃−1 S with modulus approaching infinity and real part either positive or negative. 
This occurrence might negatively affect the convergence rate of the iterative solver applied to P−1A, independently on the 
quality of the approximation of the leading block inverse. To avoid such a condition, it is therefore important to reduce the 
residuals in the computation of G̃ and F̃ such that ρ(r) ≤ ε , with ε < 1. Recalling equation (45), this yields the following 
upper bound to r:

r <

√(‖Aπ p‖ + ‖Apπ‖)2

4‖Aππ‖2
+ ε

‖S−1‖‖Aππ‖ − ‖Aπ p‖ + ‖Apπ‖
2‖Aππ‖ . (50)

The smaller is the right-hand side of inequality (50), the more accurate should be the computation of G̃ and F̃ in order to 
guarantee a fast solver convergence.

Remark 3.7. The norms of the matrices involved in the upper bound (50) depend on the material parameters of the govern-
ing PDEs in equations (1a)-(1b) and on the space-time discretization grid size. In particular, we have:

‖Aππ‖ � ‖Aπ p‖ � ‖Apπ‖ ∝ |K |h
γ

, ‖S‖ ∝ ch3

t
+ |K |h

γ
, (51)

where h denotes a linear characteristic measure of the elements in the computational grid. Hence, the upper bound of r in 
equation (50) increases with cγ /|K | and, with respect to the discretization parameters, is a function f (h, t) such that:

f ∼ O

(
h√

)
. (52)
t

11



Equation (52) shows that the requirement of denser and higher-quality approximations of G̃ and F̃ becomes stricter as h is 
reduced and t is increased. In particular, the most severe condition in a transient simulation is expected for t → ∞, i.e., 
at steady state.

Remark 3.8. The min/max analysis of the functions in equation (44), within the circle with radius ρ(r) of equation (45), 
provides a bound for the eigenspectrum size of S̃−1 S along the real and imaginary axes. Considering ρ(r) ≤ ε , ε < 1, we 
have:

max(�(μ)) = 1

1 − ε
, min(�(μ)) = 1

1 + ε
, and max(|�(μ)|) = ε

1 − ε2
. (53)

For an appropriate selection of G̃ and F̃ , i.e., fixing r such that equation (50) is satisfied, using equations (51) in (45) gives:

ρ(r) ∼ O

(
t

h2

)
r2, (54)

hence, the eigenspectrum bounds in equation (53) enlarge with t/h2.

3.2. Implementation details

The static and dynamic variants of the EDFA preconditioner require a set of user-specified elements to be properly set 
up.

The static technique needs the sets Q (m) ⊆ {
1,2, . . . , N f

}
for m = 1, . . . , Ne , which correspond to the indices of faces 

connected to a certain cell. The level of such a connection, i.e., the neighbors, or the neighbors of the neighbors, and so on, 
is defined by means of a domain partition into overlapping subregions built around each cell. These subregions are defined 
on the basis of physical considerations related to the expected directions of fluxes.

The dynamic variant can be regarded as fully algebraic and requires a set of user-specified parameters controlling the 
enlargement of the initial set Q (m)

(0) defined for m = 1, . . . , Ne . Assuming Q (m)
(0) = Q (m)

Apπ
, the selected user-defined parameters 

are:

• nadd: maximum number of entries added to Q (m)

(k−1)
at the k-th step of the dynamic procedure;

• nent: total maximum number of new entries added to Q (m)
(0) .

The iterative process continues until nent has been reached. Alternatively, it is also possible to set a maximum number of 
steps, itmax, instead of nent.

The computation of F̃ , G̃ and S̃ = App − H̃ , with either the static or dynamic technique, is followed by a check of 
the non-zero entries size. Pre- and post-filtration techniques are implemented with the purpose of further sparsifying the 
approximate Schur complement by discarding those entries whose absolute value is smaller than a user-defined tolerance, 
namely τfilt, relative to the Euclidean norm of the corresponding row. Performing pre- and/or post-filtration produces an 
additional cost in the preconditioner set-up, which might be anyway beneficial at the application stage. With the aim at 
preventing possible breakdowns in the inexact application of S̃−1, all the diagonal entries are preserved irrespective of the 
dropping threshold.

Recalling that App is the only block of A changing during a transient simulation, the preconditioner set-up can be split 
into two stages. The first one, which can be carried out only once at the beginning of the simulation and then recycled 
at every system solution, consists of the computation of both the inner preconditioners for the inexact application of Ã−1

ππ
and H̃ , the latter being the most time demanding operation, along with a pre-filtration of G̃ and F̃ and/or a post-filtration 
of H̃ , if needed. The second one, performed at the beginning of each time step, includes the update of S̃ = App − H̃ , the 
post-filtration, if required, and the computation of the inner preconditioner for the inexact application of S̃−1. In summary, 
Algorithms 1 and 2 provide an overview of the sequence of operations needed to compute the first and second stage of the 
EDFA preconditioner in both its variants. The overall workflow of the simulator in a full transient problem is provided in 
Algorithm 3.

4. Numerical results

The computational performance of the EDFA preconditioner is investigated in both synthetic and real-world reservoir 
applications.

First, a simple academic benchmark (Test 0) is discretized by three progressively refined grids and employed to in-
vestigate the theoretical behavior of the EDFA preconditioner. In Test 0, A−1

ππ and S̃−1 are applied exactly with the only 
approximation resting on S̃ . The size of the porous domain is L = 10 m, W = 1 m and H = 1 m (Fig. 4) with a homoge-
neous and isotropic hydraulic conductivity equal to 1.73 · 10−5 m

d . The flow scenario simulates the injection and production 
of water at the two opposite faces of the domain along the main axis.
S. Nardean, M. Ferronato and A.S. Abushaikha Journal of Computational Physics 442 (2021) 110513
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Algorithm 1 EDFA Computation: Stage 1
[

H̃, Ã−1
ππ

]
= EDFA_first_stage

(
Ne, Q (m),nent,nadd, τfilt_pre, τfilt_post, Aππ , Aπ p, Apπ

)
.

1: if EDFA_static then
2: for m ← 1, Ne do
3: a(m),T

pπ = AT
pπ e(m) , a(m)

π p = Aπ p e(m)

4: Build R(m)
r based on Q (m) (Equation (28))

5: A(m)
ππ = R(m)

r Aππ R(m),T
r

6: Solve −A(m)
ππ g̃(m),T = R(m)

r a(m),T
pπ

7: Solve −A(m)
ππ f̃

(m) = R(m)
r a(m)

π p

8: Perform pre-filtration on ̃g(m),T and f̃
(m)

with tolerance τfilt_pre, if required

9: G̃ ← G̃ + e(m) g̃(m) R(m)
r , F̃ ← F̃ + R(m),T

r f̃
(m)

e(m),T

10: end for
11: else if EDFA_dynamic then
12: for m ← 1, Ne do
13: a(m),T

pπ = AT
pπ e(m) , a(m)

π p = Aπ pe(m)

14: Build R(m)
r,(0) based on Q (m)

(0) = Q (m)
A pπ

(Equation (28))

15: A(m)
ππ,(0) = R(m)

r,(0) Aππ R(m),T
r,(0)

16: Solve −A(m)
ππ,(0) g̃(m),T

(0) = R(m)
r,(0)a

(m),T
pπ

17: Compute r(m)
(0) = a(m),T

pπ + Aππ R(m),T
r,(0) g̃(m),T

(0)

18: nprog = 0, k = 0 � Initializing the new entries and sweeps counters, respectively
19: while nprog < nent do
20: k ← k + 1
21: n = min(nadd, nent − nprog)

22: Obtain Q (m)

(k)
by adding to Q (m)

(k−1)
at most n new indices associated with the largest components of 

∣∣∣r(m)

(k−1)

∣∣∣
23: Update nprog

24: Build R(m)

r,(k)
based on Q (m)

(k)
(Equation (28))

25: A(m)

ππ,(k)
= R(m)

r,(k)
Aππ R(m),T

r,(k)

26: Solve −A(m)

ππ,(k)
g̃(m),T

(k)
= R(m)

r,(k)
a(m),T

pπ

27: Compute r(m)

(k)
= a(m),T

pπ + Aππ R(m),T
r,(k)

g̃(m),T
(k)

28: end while
29: Solve −A(m)

ππ,(k)
f̃

(m) = R(m)

r,(k)
a(m)
π p

30: Perform pre-filtration on ̃g(m),T
(k)

and f̃
(m)

with tolerance τfilt_pre, if required

31: G̃ ← G̃ + e(m) g̃(m) R(m)
r , F̃ ← F̃ + R(m),T

r f̃
(m)

e(m),T

32: end for
33: end if
34: Compute H̃ = G̃ Aππ F̃
35: Perform post-filtration on H̃ with tolerance τfilt_post, if required
36: Compute the inner preconditioner for the inexact application of Ã−1

ππ

Algorithm 2 EDFA Computation: Stage 2
[̃

S−1
]
=EDFA_second_stage

(
App, H̃, τfilt_post

)
.

1: S̃ = App − H̃
2: Perform post-filtration on ̃S with tolerance τfilt_post, if required
3: Compute the inner preconditioner for the inexact application of ̃S−1

Algorithm 3 Pseudocode of the flow simulator.
1: Compute blocks Aππ , Aπ p , Apπ , and App

2:
[

H̃, Ã−1
ππ

]
= EDFA_first_stage

(
Ne, Q (m),nent,nadd, τfilt_pre, τfilt_post, Aππ , Aπ p, Apπ

)
3: Initialize p0, π0 and the RHS of equation (18), f
4: Initialize the time variable t and the first increment t
5: while t < T do
6: t = t + t
7: Update f and App with the time-dependent contributes
8:

[̃
S−1

]
= EDFA_second_stage

(
App, H̃, τfilt_post

)
9: Solve system (18)

10: Update t (see equation (58))
11: end while
13



S. Nardean, M. Ferronato and A.S. Abushaikha Journal of Computational Physics 442 (2021) 110513
Fig. 4. Test 0: Parallelepiped domain and size of the three meshes employed. The blue and red arrows indicate the position of the producer and injector, 
respectively.

Fig. 5. Planar (a) and dome-structured (b) reservoirs, used as domains for Tests 1, 3 and 2, 4, respectively. The domain size is in meters.

Table 1
Set-up of the test cases and number of non-zeros of the resulting matrices, where N f = 171, 070 and Ne = 51, 741. 
The values of the hydraulic conductivity in brackets are the minimum and maximum of the SPE10 model portion 
used herein. The distribution of the conductivity values throughout the domain follows that of the SPE10 data set.

Test 1 2 3 4

Reservoir type Plain Dome Plain Dome
Cond. tensor properties Homogeneous Homogeneous Heterogeneous Heterogeneous

Isotropic Isotropic Anisotropic Isotropic
Cond. tensor type Diagonal Diagonal Diagonal Full
Horiz. conductivity

[ m
d

]
1.7E-05 1.7E-05 [3.0E-07, 2.0E+00] [3.0E-07, 2.0E+00]

Vert. conductivity
[ m

d

]
1.7E-05 1.7E-05 [3.9E-11, 6.0E-01] [3.0E-07, 2.0E+00]

nnz(A) 1,711,914 4,069,590 1,711,914 4,069,590
nnz(Aππ ) 481,636 1,723,900 481,636 1,723,900
nnz

(
Aπ p

)
310,446 310,446 310,446 310,446

nnz
(

Apπ

)
589,299 1,704,711 589,299 1,704,711

nnz
(

App
)

330,533 330,533 330,533 330,533

Then, the preconditioner is tested in four more challenging applications (Test 1 through 4). The relevant grid consists 
of four layers taken from the SPE10 model [99] and comprises 51,741 elements and 171,070 faces, for a total of 222,811 
unknowns. The scenario being tested, depicted in Fig. 5, represents a reservoir with a producer located in the center and four 
injectors, one at each corner. The wells intercept the full thickness of the reservoir. The initial water pressure is uniform and 
equal to 140 bar, with the producer and injectors pumping at a constant pressure of 100 and 200 bar, respectively. Different 
variants of the model domain have been considered. In Test 1 and 3, the grid is Cartesian with a regular hexahedral 
discretization (Fig. 5a), whereas in Test 2 and 4 the planar structure has been deformed into a dome (Fig. 5b). The resulting 
grid is, therefore, non-Cartesian. In all tests, porosity spans the interval [2.6 · 10−5, 0.5] with a spatial distribution following 
that of the SPE10 data set, rock (α) and water (β) compressibilities are 4.67 · 10−5 1

bar and 4.84 · 10−5 1
bar , respectively, and 

the water specific weight (γ ) is 0.101 bar
m . A summary of the test cases and their main properties, along with the non-zeros 

number of matrix A and its submatrices, is reported in Table 1. Notice that the latter depends only on the grid type.
14
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Test 1, which is characterized by a homogeneous isotropic hydraulic conductivity in the form of a diagonal tensor, is 
aimed at introducing the operative principles of the proposed preconditioner variants. A sensitivity analysis is carried out on 
the patterns selected for the static variant and on the two governing user-specified parameters for the dynamic technique. 
Then, the EDFA preconditioner is employed in a transient simulation to evaluate the effect of time, and, in particular, the 
size of the time step, t , on its performance. Test 2 preserves the same hydraulic properties as Test 1, but highlights 
the influence of a non-Cartesian mesh in the optimal setting of the preconditioner. Finally, Tests 3 and 4 investigate the 
efficiency and robustness of the EDFA preconditioner in challenging real-world conditions. Specifically, Test 3 exhibits a 
highly heterogeneous and anisotropic conductivity distribution, as derived from the properties of the SPE10 model and 
expressed in the form of a diagonal tensor. On the contrary, the dome reservoir in Test 4 is characterized by a heterogeneous 
and isotropic conductivity field with a full tensor, obtained by extending the horizontal conductivity values (Kx,y ) to the 
vertical direction (Kz) and rotating the principal axes of the resulting tensor so as to follow the curvature of the dome 
reservoir. The sensitivity analysis on the EDFA preconditioner performance is carried out for the system at steady state, then 
the overall performance is investigated in full-transient simulations.

Full GMRES [94] and Bi-CGStab [93], with the null vector used as initial guess, are elected as Krylov subspace methods to 
solve the sequence of non-symmetric linear systems (18) for Test 0 and Tests 1-4, respectively. The use of Bi-CGStab in Tests 
1-4 is motivated by the faster convergence generally experienced in the numerical tests. The exit criterion for the iteration 
count relies on the reduction of the 2-norm of the relative residual below a prescribed threshold τ , i.e., ||rk||2/||r0||2 ≤ τ , 
where k is the iteration number and τ = 10−8. The computational performance of the preconditioned Bi-CGStab solver is 
monitored by using the following indicators: (i) the iteration count, nit , (ii) the preconditioner density, μ, defined as

μ = nnz
(

Ã−1
ππ

)+ nnz
(

Aπ p
)+ nnz

(
Apπ

)+ nnz
(̃

S−1
)

nnz (Aππ ) + nnz
(

Aπ p
)+ nnz

(
Apπ

)+ nnz
(

App
) , (55)

where the function nnz() provides the number of non-zeros stored for a sparse matrix, and (iii) the CPU time split into tp0 , 
tp and ts , needed to perform the first and second stage of the EDFA preconditioner set-up (Algorithm 1 and 2, respectively) 
and to iterate to convergence. We denote by tt = tp + ts the total time associated with the solution of the linear system in 
a single time step.

For the transient simulations, we consider also the Courant-Friedrichs-Lewy (CFL) number, which is defined as [100,101]:

χ E = Q Et

�EφE
, (56)

where Q E is the water flux through the E-th element during a time step of size t . Specifically, two measures are reported 
depending on the type of analysis:

χ∞ = max
E

(
χ E

)
, and χ∞ =

∑nstep
i=1 χ i∞
nstep

, (57)

where nstep is the number of temporal steps in the simulation.
The size of the time steps is dynamically adjusted during the transient simulations to stabilize the pressure change 

between two consecutive steps. The underlying criterion relies on the maximum pressure difference at the two previous 
steps, pmax = maxE

(
pE

n − pE
n−1

)
, and a user-defined goal for the pressure change, pT , to define the optimal size of the 

next one:

tn+1 = min

{
tn min

{
tmult,

pT

pmax

}
,tmax

}
, (58)

where tmult is a predefined multiplicative factor and tmax the maximum time step length. A relaxation factor can be 
introduced also in equation (58) [22].

Both the solver and the preconditioner are implemented in Matlab. For the inexact application of Ã−1
ππ and S̃−1 we use 

an incomplete factorization with partial fill-in degree already available in Matlab. Of course, other powerful strategies, also 
more prone to a fully parallel implementation, can be used and will be considered in future developments of the algorithm. 
For the computation of F̃ and G̃ , the parfor operator has been exploited. All numerical tests were carried out on an 
Intel®Core™i7 Quad-Core processor at 2.9 GHz with 16 GB of RAM.

4.1. Test 0: theoretical benchmark

The effectiveness of the EDFA preconditioner mostly relies on the quality of ̃S (equation (24)) as an approximation of the 
Schur complement. In order to test the scalability with respect to the grid size, we consider the porous medium depicted in 
Fig. 4, subjected to a constant water flux along the main axis, x. The domain is discretized with three grids, labeled a, b and 
c, where the length of the elements along the x axis, l, is progressively reduced (see the table in Fig. 4). In order to assess 
the effect of ̃S alone on the EDFA preconditioner quality, the inverses A−1

ππ and ̃S−1 are applied exactly in equation (25) via 
a direct solver. The tests are performed at steady state and the non-symmetric system (18) is solved with the full GMRES.
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Fig. 6. Patterns for the static technique. The front and right elements have been removed to improve the readability.

Table 2
Test 0: Number of iterations to converge with different preconditioner
set-up. The system is solved by full GMRES with A−1

ππ and S̃−1 ap-
plied exactly through a direct solver.

EDFA static 
Pattern

EDFA dynamic nit

nent nadd Mesh a Mesh b Mesh c

- 0 0 24 42 68
- 2 2 17 41 61
- 4 2 10 23 42
- 6 2 6 21 20
- 8 2 4 11 21
- 10 2 3 9 9
- 12 2 2 6 10
- 14 2 1 4 6

A - - 13 19 46
B - - 8 11 17
D - - 3 7 11

First, we introduce a set of patches of cells associated with the face pattern connection used in the static EDFA variant. 
The native pattern of the m-th column, previously presented in Fig. 3a for a Cartesian grid, can be statically enlarged by 
considering the patches A, B and D (Figs. 6a, 6b and 6d), assuming that the flux is mainly oriented along the principal 
conductivity axes. By distinction, the connections of patterns C and E (Figs. 6c and 6e) assume the presence of significant 
fluxes through all directions, as it might be for instance expected in the case of a full conductivity tensor. Similarly, a 
significant permeability anisotropy could suggest privileging one direction with respect to the orthogonal ones.

Table 2 summarizes the iteration count with both the static and dynamic variants for different parameter combinations. 
For a given preconditioner set-up, the number of iterations increases as the grid is refined, in agreement with Remark 3.7. 
However, the iteration count can be stabilized by properly setting the stencil of G̃ and F̃ . This is also consistent with the 
physical interpretation of the decoupling factor, which provides a link between the nonzero entries of G̃ and F̃ and the 
pressure perturbations induced by the fluid fluxes around the cells. As the grid is refined, more cells are subjected to 
the spatial pressure changes and the relevant face unknowns need to be included in the column sparsity pattern so as 
to keep the number of iterations under control. This result gives a helpful indication as to the proper set-up of the EDFA 
preconditioner.

The eigenspectrum of S̃−1 S is considered for grids a and b (Fig. 7). In this analysis, S̃ is computed by means of the 
dynamic technique. Since the simulations are run at steady state, the grid spacing l is the primary parameter affecting 
the eigenvalue distribution. Mesh refinement increases the spread of the eigenvalues. Nevertheless, they remain clustered 
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Fig. 7. Test 0: Eigenspectrum of S̃−1 S for mesh a and b. S̃ is built by the dynamic technique with variable nent and nadd = 1.

Table 3
Test 0: Extreme values for the eigenvalues μ of S̃−1 S . Pattern B and the combination nent = 12, 
nadd = 1 are used for the static and dynamic variants, respectively.

Mesh EDFA variant min(|μ|) max(|μ|) min(�(μ)) max(�(μ)) max(|�(μ)|)
a Static 1.64E-01 1.07E+00 1.64E-01 1.07E+00 4.97E-16
b Static 5.63E-02 1.09E+00 5.63E-02 1.09E+00 0.00E+00
c Static 1.94E-02 1.11E+00 1.94E-02 1.11E+00 0.00E+00
a Dynamic 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.38E-14
b Dynamic 9.87E-01 2.92E+00 9.87E-01 2.92E+00 1.14E-03
c Dynamic 9.38E-02 1.06E+00 9.38E-02 1.06E+00 1.57E-05

Table 4
Test 1: Numerical performance of the static technique.

# Pat Filt τfilt nit tp0

[s]
tp

[s]
ts

[s]
tt

[s]
μ

0 Base - - 356 2.50 0.03 10.94 10.97 1.518
1 A - - 224 3.30 0.03 7.28 7.31 1.739
2 B - - 187 3.51 0.05 6.42 6.47 1.953
3 C - - 306 3.98 0.02 9.40 9.42 1.518
4 D - - 222 4.36 0.06 8.14 8.20 2.160
5 E - - 189 4.82 0.03 6.18 6.21 1.739
6 E Post 1.E-3 224 4.18 3.74 6.75 10.49 1.520
7 E Pre 1.E-2 225 10.36 0.04 7.49 7.53 1.739

around 1 and their distribution is more and more compact as the quality of G̃ and F̃ , hence ̃S , is improved, as it is expected 
from Theorem 3.3. Extreme values of the real and imaginary parts for the S̃−1 S eigenspectrum are reported in Table 3. As 
seen in Fig. 7, the imaginary parts remain small, while the real interval increases from mesh a to c.

4.2. Test 1: planar reservoir with homogeneous and isotropic hydraulic conductivity

The main results from the application of the EDFA preconditioner in its static variant to Test 1 (homogeneous and 
isotropic conductivity with a diagonal tensor) are reported in Table 4. Run 0, denoted as base, is taken as benchmark for 
the following considerations since it refers to the performance of the EDFA preconditioner with the original AT

pπ non-zero 
pattern. Expanding such initial pattern, by using the predefined connections A, B, C, D and E (Figs. 6a - 6e) is indeed 
beneficial, as observed in runs 1 to 5. Considering the reduction in the total CPU time, tt , per time step as evaluation 
criterion, the best results are achieved by patterns E, B and A. Specifically, the use of pattern E allows to reduce nit by a 
17
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Fig. 8. Test 1: Sensitivity analysis on the pair (nadd, nent) in terms of iterations to converge (a), preconditioner density (b), time to compute the first stage 
of the preconditioner (c) and total time per time step (d).

factor 1.88 and tt by 1.77, while increasing the preconditioner density by only 1.15. Runs 6 and 7 show the results obtained 
by applying pre- and post-filtration to pattern E. These techniques introduce a further sparsification of the approximate 
Schur complement, which is expected to decrease the application cost of the EDFA preconditioner at the price of a slight 
increase in the iteration count. In this case, such a strategy does not appear to pay off, with the performance substantially 
getting back to Pattern A at a larger set-up cost.

As to the dynamic technique, Fig. 8 shows the results of a sensitivity analysis carried out on the two user-specified 
parameters nent and nadd, governing the expansion of the initial pattern Q (m)

(0) = Q (m)
Apπ

, versus the number of iterations to 
converge, nit, the preconditioner density, μ, the time to compute the pre-processing stage of the preconditioner, tp0 , and the 
total CPU time, tt , per time step. All the possible settings therein allow to accelerate the convergence compared to the base 
case of Table 4. The most interesting results are located in the blue to light-blue area in Figs. 8a and 8d, characterized by 
values of nent between 4 and 12. Such an interval was also confirmed by the outcome of the static technique, in particular 
runs 1 and 2, where the number of new entries added per column is 6 and 12, respectively, with a very similar overall 
performance. Fig. 8b and 8c are self-explanatory; the higher nent the denser the preconditioner, and the lower nadd the 
higher nit and thus tp0 .

It is interesting to provide the dynamic technique with a physical interpretation, so as to visually locate the position of 
the faces associated with the entries connected by the dynamically-formed optimal patterns. This analysis, whose outcome 
18
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Fig. 9. Test 1: Physical interpretation, based on the flux distribution (a), of two dynamic patterns, obtained with the settings (1, 4) and (2, 6) for the pair 
(nadd, nent) (see Fig. 8) in panels (b) and (c), respectively. The red faces represent the extension of the original AT

pπ pattern in light-green. The resulting 
patches are uniform throughout the grid.

Table 5
Test 1: Effect of the time step size on the EDFA preconditioner behavior.

t
[d]

nit χ∞ tp0

[s]
tp

[s]
ts

[s]
tt

[s]
μ

0.01 3 0.004 35.53 0.04 0.11 0.15 1.749
0.1 6 0.017 - 0.04 0.20 0.24 1.749
1 21 0.099 - 0.04 0.78 0.82 1.749
10 56 5.351 - 0.04 1.87 1.91 1.749
100 127 66.061 - 0.04 4.23 4.27 1.749
1000 199 571.157 - 0.04 6.66 6.70 1.749
Steady 185 - - 0.04 6.09 6.13 1.749

is offered in Fig. 9, confirms the connection between the static and dynamic strategies, possibly inspiring the selection of 
better static connections from the dynamic patterns. In particular, we focus on the pairs (nadd, nent) equal to (1, 4) and 
(2, 6). Notice that the newly added faces are primarily located following the main flow direction. This is consistent with 
the physical principle on which the static technique relies. In the scenario of Test 1, in fact, the water flow is essentially 
horizontal, since the wells penetrate the full thickness of the reservoir, with a principal component along the y axis. These 
patterns are uniform throughout the grid.

Finally, the effect of the time step size on the EDFA preconditioner in a full transient simulation is assessed in Table 5. 
The preconditioner is built by means of the dynamic technique, with the setting (1, 4) for the pair (nadd, nent). The range 
investigated spans the interval [0.01,1000] days, with the associated χ∞ parameter up to almost 600. Notice how the 
number of iterations grows progressively as t increases, where the steady state condition can be regarded approximately 
as an upper limit. This is consistent with Remark 3.7. The reason for this behavior can be also understood from the structure 
of App (equation (A.4)), where the diagonal entries depend on the inverse of t . When t is small, A pp becomes diagonally 
dominant and prevails over the other contributions in S̃ .

4.3. Test 2: dome reservoir with homogeneous and isotropic hydraulic conductivity

The evolution from a Cartesian to a non-Cartesian grid introduces new challenges for the design of efficient non-zero 
patterns due to the modification of the native stencils of blocks Aππ and, most of all, AT

pπ , which is accompanied by the 
increase in the non-zeros number of those two blocks, as shown in Table 1. Specifically, AT

pπ is 1.9 times denser than with 
the planar mesh. In fact, the face-to-element connection building the non-zero pattern of the typical column of AT

pπ moves 
from Fig. 3a to Fig. 3b.

This modification has a considerable effect on the base case numerical performance (see Table 6), which does not con-
verge after 2,000 iterations. Enlarging the face-to-element connections with patterns A, B and D (runs 1, 2 and 4), however, 
improves very rapidly the quality of S̃ . By comparing Fig. 3b with 6a, 6b and 6d, the adoption of patterns A, B and D 
consists of a simultaneous expansion and contraction of AT

pπ ’s column non-zero pattern, since at most 24 entries are dis-
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Table 6
Test 2: Numerical performance of the static technique. The expression NC means that 
the solver did not converge within 2,000 iterations.

# Pat Filt τfilt nit tp0

[s]
tp

[s]
ts

[s]
tt

[s]
μ

0 Base - - NC 5.37 0.29 - - 2.112
1 A - - 896 4.10 0.30 58.91 59.21 2.177
2 B - - 118 4.28 0.62 8.64 9.26 2.734
3 C - - NC 6.00 0.29 - - 2.112
4 D - - 136 4.48 1.04 11.24 12.28 3.372
5 E - - NC 7.78 1.36 - - 3.707
6 B Post 1.E-7 160 4.03 10.59 10.45 21.04 2.071
7 B Pre 1.E-3 117 7.51 0.66 8.77 9.43 2.734

Fig. 10. Test 2: Sensitivity analysis on the post-filtration tolerance τfilt for different values of nent. nadd is kept constant and equal to 4. Post-filtration is 
applied to ̃S , (a, b), and H̃ , (c, d), and the results are expressed in terms of number of iterations to converge, nit , (a, c) and total solution time per time step, 
tt , (b, d). The maximum number of iterations of Bi-CGStab is set equal to 2,000. The best result, i.e., nit = 98 and tt =6.00 s, is obtained by setting nent=12 
and performing post-filtration on H̃ with τfilt =1.E-3 (c, d).

carded and others are added in a variable number. It is a sort of implicit moderate expansion accompanied by a significant 
filtration. Applying pre- or post-filtration when adopting pattern B, which means in practice sparsifying for the second time 
the relevant pattern, is not beneficial as proved in runs 6 and 7. Notice that the overall preconditioner density is generally 
higher than in Test 1 (see Table 4 for a comparison).

As to the dynamic technique, the same strategy, consisting of expanding and contracting the original AT
pπ pattern, has 

been followed. Fig. 10 reports the outcomes of a sensitivity analysis on the post-filtration tolerance for different values of 
nent, ranging from 10 to 18 with nadd = 4. The results are expressed in terms of iteration count to converge (Fig. 10a) and 
total solution time per time step (Fig. 10b). The best performance is achieved for τfilt =1.E-3, where the number of iterations 
to converge is similar to that obtained with pattern B in Table 6. An effective way to limit the post-filtration cost consists of 
applying it to H̃ as a pre-processing effort. This strategy is successfully investigated in Figs. 10c and 10d. Notice that, while 
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Table 7
Test 3: Numerical performance of the static technique.

# Pat Filt τfilt nit tp0

[s]
tp

[s]
ts

[s]
tt

[s]
μ

0 Base - - 395 2.67 0.03 11.57 11.60 1.518
1 A - - 279 3.28 0.03 8.75 8.78 1.739
2 B - - 315 3.40 0.05 10.43 10.48 1.953
3 C - - 445 4.69 0.02 13.13 13.15 1.518
4 D - - 303 3.80 0.06 10.59 10.65 2.160
5 E - - 290 4.81 0.04 9.19 9.23 1.739
6 A Post (on H̃) 1.E-7 267 7.08 0.03 8.78 8.81 1.730
7 E Post (on H̃) 1.E-8 267 8.12 0.04 8.77 8.81 1.733
8 A Pre 1.E-3 266 5.81 0.04 8.50 8.54 1.729
9 E Pre 1.E-4 260 10.36 0.04 7.78 7.81 1.731

Table 8
Test 3: CPU times and memory requirements for Matlab backslash operator 
and Bi-CGStab preconditioned with: (i) optimal ILU(τ ) of A, (ii) Bdiag, and (iii) 
Binv. Due to memory limitation the test with the direct solver has been car-
ried out on a different platform equipped with an Intel®Xeon™CPU E5-1620 v4 
processor at 3.5 GHz with 64 GB of RAM.

Method nit tp

[s]
ts

[s]
tt

[s]
Memory peak 
[GB]

μ

Matlab \ - - 205.01 205.01 23.68 -
ILU(τ ) 113 248.25 4.11 252.36 - 2.730

Bdiag NC 0.06 - - - 1.276
Binv 316 2.70 9.15 11.85 - 1.405

the number of iterations remains approximately the same or is even improved, the CPU time per time step is halved, thus 
making the dynamically-formed preconditioner competitive to the best statically-derived one (run 2 in Table 6).

4.4. Test 3: planar reservoir with heterogeneous and anisotropic hydraulic conductivity

Introducing a heterogeneous and anisotropic conductivity field in the planar reservoir application worsens the condition-
ing properties of the associated problem, as shown by the increase in the number of iterations of the base case (Table 7) 
with respect to Test 1 (Table 4). Like in Test 1, patterns A and E (runs 1, 5) provide improved results that can slightly ben-
efit from further sparsification of the approximate Schur complement. Specifically, pre- and post-filtration are characterized 
barely by the same performance (runs 6 to 9), with pre-filtration a little more efficient in this application.

A sensitivity analysis on the dynamic parameters nent and nadd is shown in Figs. 11a and 11b in terms of number of 
iterations to converge, nit, and total solution time per time step, tt , respectively. All the analyzed combinations succeed in 
accelerating the convergence with respect to the base case (run 0 in Table 7). The most efficient settings are located in the 
bottom left portion of graph 11b in the interval 2 ≤ nent ≤ 8, where tt is minimized. Specifically, the fastest convergence is 
achieved with the setting (6, 6) for the pair (nadd, nent), where nit = 267 and tt = 8.98 s. In the same figure notice how tt

grows with nent, depending only partially on nadd.
To conclude this analysis, we compare the performance obtained by the proposed preconditioner and other available 

algorithms. Since no specific methods have been developed yet for the non-symmetric block problem considered herein, 
we start considering general-purpose popular tools, such as Matlab backslash operator and Bi-CGStab accelerated by a 
global preconditioner, such as a threshold-based ILU(τ ) of a properly reordered A, to benchmark the performance of the 
proposed EDFA preconditioner in the steady state case. The relevant outcomes are conveyed in Table 8, where the memory 
peak reached during the solving phase with Matlab backslash replaces the preconditioner density as a measure of the 
solver memory footprint. The solution time tt , as well as the memory requirements, are by far higher than those obtained 
with the EDFA preconditioner (see Table 7 and Figs. 11a and 11b for reference). A more effective strategy may rely on using 
an iterative approach with the same block preconditioning framework (25), where the approximate Schur complement 
S̃ is computed differently from the EDFA approach. A standard default choice, labeled Bdiag, is using the inverse of the 
diagonal of Aππ , i.e., S̃ = App − Apπ diag(Aππ )−1 Aπ p . This option, however, is completely ineffectual since Bi-CGStab does 
not converge at all. An alternative, and more advanced, option relies on using an explicit approximate inverse, A

−1
ππ , such as 

the one employed in [73,102], to compute S̃ = App − Apπ A
−1
ππ Aπ p . This choice, labeled Binv, actually approaches the EDFA 

performance (Table 8), though with a limited flexibility, thus supporting the generality and robustness of the preconditioning 
framework (25).
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Fig. 11. Test 3 and 4: Sensitivity analysis on the pair (nadd, nent) for Test 3 (a), (b) and Test 4 (c), (d). The outcome is expressed in terms of iterations to 
converge (a), (c) and total time per time step (b), (d).

4.5. Test 4: dome reservoir with full tensor heterogeneous and isotropic hydraulic conductivity

In this final application, the dome-structured reservoir is characterized by a full-tensor heterogeneous conductivity field, 
which is obtained by rotating the element local axes x and y, following the curvature of the domain [30]:

K̂ E = R E
xy K E R E,T

xy , E = 1, . . . , Ne, (59)

where K E is the element diagonal conductivity matrix and R E
xy = R y(−θ E

y )Rx(−θ E
x ) is the overall rotation matrix. θ E

x and 
θ E

y are the average rotations of the domain surface, within element E , around the global Cartesian reference system as per 
the right-hand rule.

The main results for the static strategy are provided in Table 9. The base case performance (run 0) is not satisfactory and 
the only pattern yielding an appreciable acceleration is D (runs 1-5). Moreover, in two cases the solver has not converged yet 
after 2,000 iterations. Filtration here appears to be mandatory and effective, as shown by runs 6 and 7, where a significant 
post-filtration (τfilt =1.E-2) on factor H̃ has been applied to patterns D and B. This confirms that the native patterns seem to 
involve too many connections, which turn out to be not significant to capture the complicated flux nature of this test case. 
On the other hand, pre-filtration (runs 8 and 9) does not represent a consistent alternative, due to the larger preconditioner 
density, which leads to an increase in the application costs even for a smaller number of iterations.
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Table 9
Test 4: Numerical performance of the static technique.

# Pat Filt τfilt nit tp0

[s]
tp

[s]
ts

[s]
tt

[s]
μ

0 Base - - 667 5.24 0.30 42.30 42.60 2.112
1 A - - NC 4.03 0.32 - - 2.177
2 B - - 521 4.35 0.62 38.50 39.12 2.734
3 C - - 667 6.07 0.30 43.10 43.40 2.112
4 D - - 386 4.56 1.05 31.76 32.81 3.372
5 E - - NC 7.72 1.37 - - 3.707
6 D Post (on H̃) 1.E-2 231 17.40 0.04 11.79 11.83 1.214
7 B Post (on H̃) 1.E-2 233 14.24 0.04 12.35 12.39 1.216
8 D Pre 1.E-3 217 8.65 1.05 17.96 19.01 3.195
9 B Pre 1.E-3 424 7.49 0.63 31.68 32.31 2.717

Table 10
Test 4: Pre- and post-filtration on the dynamically-formed preconditioner. Run 0 is 
obtained with: nent = 6 and nadd = 1.

# Filt τfilt niter tp0

[s]
tp

[s]
ts

[s]
tt

[s]
μ

0 - - 172 69.39 1.13 14.04 15.17 3.072
1 Post 1.E-3 158 70.31 12.47 9.63 22.10 1.395
2 Post (on H̃) 1.E-3 160 79.21 0.13 9.33 9.45 1.552
3 Pre 1.E-8 149 73.38 1.12 12.09 13.21 3.072

As to the dynamic technique, the sensitivity analysis on nent and nadd in Figs. 11c and 11d reveals that there exists a 
wide blue area characterized by competitive settings, both in terms of number of iterations and total solving time per step. 
In this regard, the most attractive portion of the graphs remains the bottom left one. Table 10 aims at assessing the effect of 
filtration on the dynamically-formed preconditioner obtained with the settings nent = 6 and nadd = 1. The outcomes of post-
filtration, applied to both ̃S and H̃ in runs 1 and 2 respectively, are here reported to emphasize the greater efficiency of the 
latter strategy. Although performing post-filtration on H̃ gives a higher density preconditioner, the filtration is anticipated in 
the pre-processing stage of the preconditioner set-up, while preserving the quality in the approximation of ̃S . Post-filtration 
on H̃ (run 2), in fact, allows to approximately halve the density of the original preconditioner (run 0) to the benefit from 
a 38% reduction in the total solution time. Pre-filtration, on the other hand, seems not to be effective (run 3). Notice that, 
in this application, combinations where nent = nadd, i.e., all the prescribed new entries are subsumed at once, give a bad 
quality S̃ , hence at least two steps of the dynamic procedure are recommended.

Despite the high density, the unfiltered dynamically-formed preconditioner in Table 10 is by far more competitive than 
the corresponding static alternatives in Table 9 (runs 0-5). An explanation comes from the analysis of the dynamic pattern 
representation vs. the position within the dome-grid and the flux distribution, as provided in Fig. 12. The dynamic technique 
is capable to flexibly catch and exploit the possibly complex physics of the fluxes behind the problem. Due to the dome 
structure of the domain and the heterogeneity of the hydraulic conductivity, the fluid fluxes are not uniformly distributed 
in the domain. As an effect, the resulting pattern is not the same throughout the grid and can be hardly guessed, hence a 
statically designed homogeneous pattern is not well-suited to the specific requirements of this application.

In conclusion, the performance of the EDFA preconditioner is evaluated in a full-transient simulation reproducing the 
exploitation of a reservoir, initially undisturbed, under the conditions mentioned in Section 4, i.e., four injectors (one at 
each corner) and a producer (in the center) operating at a constant pressure. The overall computational times are displayed 
in Fig. 13, where a comparison among a selection of four variants of the EDFA preconditioner is proposed. The performance 
of the basic setting (V 0, run 0 in Table 9) is used as benchmark to test the advantage provided by the most efficient dynamic 
(V 1 and V 2, runs 0 and 2 in Table 10) and static strategies (V 3, run 6 in Table 9). The simulated time interval is 130 days 
with 200 time steps. The other relevant settings are: tmax = 5 d, pT = 5 bar, tmult = 1.1. The average CFL number, 
χ∞ , recorded during the simulation, is 13.54. The best performance is given by variant V 2, which proved to be the most 
competitive one also in the previous steady state analysis. Nevertheless, the difference with V 1 and V 3 is not as significant 
as the steady state analysis might have suggested. In any case, all trials, i.e., V 1, V 2 and V 3, clearly outperform V 0, reducing 
the total time to about one fourth.

5. Discussion

Achieving a fast and cheap solution to the sequence of systems (18), that stem from a full MHFE-FV single-phase flow 
simulation, is the main objective of this paper. Given the peculiar properties of system (18), which is characterized by a 
non-symmetric generalized saddle-point structure and usually ill-conditioned blocks, an original preconditioning strategy, 
denoted as EDFA, has been specifically designed to accelerate the convergence of Krylov subspace solvers. The key features 
of the proposed approach are twofold: (i) the exploitation of the decoupling factors, G and F , of the system matrix A block 
23
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Fig. 12. Test 4: Physical interpretation, based on the flux distribution (a), of the dynamic pattern, obtained with the settings nent = 6 and nadd = 1 at three 
different locations. The red faces represent the extension of the original AT

pπ pattern in green.

Fig. 13. Analyzing the performance of four versions of the EDFA preconditioner in a full-transient simulation, where χ∞ = 13.54. The outcomes are ex-
pressed in terms of overall solution time (a), broken down into its basic components, and total number of iterations (b). The preconditioners are obtained 
with the following settings: V 0 → Base pattern (run 0 in Table 9), V 1 → Dynamic strategy with nent = 6, nadd = 1 (run 0 in Table 10), V 2 → like V 1 with 
post-filtration on H̃ and τfilt = 1.E-3 (run 2 in Table 10) and V 3 → Static strategy with pattern D, post-filtration on H̃ and τfilt =1.E-2 (run 6 in Table 9).

LDU decomposition to recast the Schur complement avoiding the inversion of the leading block (equation (22)); (ii) the 
inexact computation of these factors by solving two independent sets of MRHS systems (26), by means of a combination 
of restriction and prolongation operators based on the non-zero pattern of G̃ and F̃ . Such an approximation turns out to 
be optimal, with respect to Aππ -inner product, for the selected non-zero pattern. The ability to recognize G and F ’s most 
representative entries is key to obtain high-quality approximations at a workable sparsity and achieve a fast convergence. 
This is the motivation behind the introduction of two strategies, namely static and dynamic, aimed at selecting the sparsity 
pattern of the two decoupling factors by customizing the face-to-element connections contained in the columns of AT

pπ , 
depending on the properties of the problem at hand.
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Table 11
Tests 1-4: Best EDFA performance. The column t′

t reports the total solving time of the base case (run 0).

Test Variant Description Filt τfilt niter tt

[s]
t′
t

[s]
μ

1 Dynamic nent = 6, nadd = 4 - - 174 5.83 10.97 1.855
2 Dynamic nent = 12, nadd = 4 Post (on H̃) 1.E-3 98 6.00 NC 1.671
3 Static Pattern E Pre 1.E-4 260 7.81 11.60 1.731
4 Dynamic nent = 6, nadd = 1 Post (on H̃) 1.E-3 160 9.45 42.90 1.552

A physics-based concept underlies the static technique, since the entries of the generic column of the decoupling factors 
correspond to the face pressure unknowns, which result from the fluid flow arising in a certain small and compact partition 
of the physical domain. Expanding such a partition to incorporate the most relevant entries is a way for enlarging the 
native sparsity pattern effectively. The size of the augmented partition and the location of the faces associated with the 
newly-added entries give rise to a number of possible combinations. As an example, in this paper, we considered five 
general-purpose prototypes (Figs. 6a-6e). This strategy turns out to be effective when the modeler has a robust idea of the 
flux distribution, and the resulting pattern can be more or less uniformly extended throughout the domain (compare, for 
instance, Figs. 9 and 12).

On the other hand, a fully algebraic framework is introduced to define a dynamic variant, where nent new entries to the 
initial pattern are progressively added at the locations corresponding to the largest components of the prolonged residual 
(equation (38)). Compared to the static variant, the dynamic technique is computationally more demanding because, at every 
step of the pattern construction, a static solution is needed. However, this cost can be easily amortized during a transient 
simulation and take advantage of an almost ideal parallel degree. Furthermore, this technique is more flexible, since it is 
capable to implicitly capture the physics behind the problem without the modeler being aware of it and might be used in a 
black-box fashion as well. Pre- and post-filtration techniques have been introduced with the twofold purpose of controlling 
the density of S̃ , and improving the quality of its inexact inverse application by removing possibly detrimental near-zero 
entries.

The extensive experimental phase of Section 4 helped understand the EDFA preconditioner potential in different settings, 
according to the grid type and hydraulic properties, but also suggested some indications about default optimal settings. 
The EDFA performance with the most efficient set-up is summarized in Table 11 for Tests 1-4 and compared to the base 
case (run 0) scenario. All the tests revealed that less than 12 new entries are actually needed in addition to the original 
column patterns, but it is the grid type, i.e., whether Cartesian or non-Cartesian, that mostly influences the optimal EDFA 
preconditioner set-up. With a Cartesian grid, the suggested static patterns in Fig. 6 seem to be appropriate, and especially 
E and A, as shown in Tables 4 and 7. By comparing Figs. 6a and 6e, notice that the physical structure of these patterns is 
similar as the elements involved in their definition are the same. By distinction, optimal results have been obtained for the 
dynamic variant by setting nent between 4 and 10, with nadd ≈ nent. Filtration is not strictly necessary, even though some 
good results were obtained with pre-filtration and τfilt between 1.E-4 and 1.E-3 (Table 7). Conversely, with a non-Cartesian 
grid, patterns B and D turned out to be the winning choice for the static technique, whereas, for the dynamic one, it is 
advisable to set nadd < nent < 12 (Fig. 11d). A significant post-filtration with 1.E-3 ≤ τfilt ≤ 1.E-2 proved to be effective to 
accelerate, or even to allow for, convergence (see, for instance, Tables 6 and 9). Post-filtration on H̃ , rather than on ̃S , should 
be preferred.

Finally, Table 5 and Fig. 13 showed that the preconditioner set-up for steady-state conditions plays the role of a worst-
case scenario, thus confirming the analytical result in Remark 3.7. In particular, the smaller t , the better the accuracy of ̃S
(equation (22)). This observation suggests a different set-up strategy of the preconditioner because building F̃ and G̃ with 
the optimal settings at steady state might be too conservative. The two decoupling factors can be approximated more than 
once during a full-transient simulation since usually t increases as steady state is approached, and cheaper approximations 
can be effective at the initial stages.

6. Conclusions

In this paper, we introduce a novel preconditioning technique, denoted as EDFA, to solve the sequence of non-symmetric 
block linear systems arising from the original MHFE-FV discretization of flow problems in porous media developed in [22]. 
The proposed method is based on the approximation of the decoupling factors of the system matrix by using appropriate 
restriction operators for the sake of the Schur complement computation. The experimental phase proved its robustness 
and reliability in different settings, depending on the structure of the grid and the properties of the hydraulic conductivity 
tensor. The EDFA preconditioning strategy exhibits several attractive features, in particular:

1. Since the process for building the preconditioner is based on the solution of the sets of independent MRHS systems (26), 
the set-up stage is inherently parallel and can fully exploit the architecture of modern computing platforms;

2. The preconditioner set-up can be split in a two-step procedure, where the first stage is performed only at the beginning 
of a full-transient simulation and the second stage at each time step;
25
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S E = {a,b, c,d}
F E = {1,2,3,4}
P E1 = {2,3,4}
R E ′ = {5,6, . . . ,15,16}

Fig. A.14. Two-dimensional sketch of the element/face connections with an example of the basic sets S E , F E , P Ei and R E ′ .

3. The largest computational cost, associated with the approximation of G and F , is concentrated in the first stage, so it 
can be effectively amortized during a full simulation.

Both the static and dynamic variants proved to be overall efficient. A winner does not stand out clearly, even though it 
might be better to rely on the dynamic technique when the flux distribution is highly variable throughout the domain and 
it is hard to define a uniform static pattern prototype. All the same, it is appreciable the relatively easy setting up and 
cheapness of the static variant and the flexibility of the dynamic.

Research is currently ongoing to develop a fully parallel C++ implementation of the proposed solver and extend the 
formulation to multi-phase MHFE-FV reservoir models.
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Appendix A. MHFE-FV matrices

In this appendix, the expressions for the four sub-matrices of system (18) are provided based on the definitions (13), 
(15), (16) and (17). Let us consider the element E of the grid, the set of its faces, F E , and neighbors, S E , where E ′ is an 
element of S E . P Ei denotes the set of faces of E without the one, say i, shared with E ′ , i.e., F E − F E ∩ F E ′ = F E − i. By 
extension, P E ′

i = F E ′ − i. R E ′ , formally defined as ∪i∈F E P E ′
i , is the set of faces of the elements in S E not shared with E . 

Fig. A.14 provides a graphical interpretation of the aforementioned sets in a 2-D setting. Let also g : k → p = g(k) be the 
function that converts the global matrix index k into the local one p. The expressions for the A sub-blocks read:

[Aππ ]i j : ∀i ∈ {1,2, . . . , N f } if i = j − B E−1

g(i)g(i) − B E ′−1

g(i)g(i),

if j ∈ P Ei − B E−1

g(i)g( j), (A.1)

if j ∈ P E ′
i − B E ′−1

g(i)g( j),

[Aπ p]i j : ∀i ∈ {1,2, . . . , N f } if j ∈ {
E, E ′} N E

f∑
B j−1

g(i)k, (A.2)

k=1
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[Apπ ]E j : ∀E ∈ {1,2, . . . , Ne} if j ∈ F E −
∑

k∈K E

B E−1

g(k)g( j)

B E ′−1

g(k)g(k)

B E ′−1

g(k)g(k)
+ B E−1

g(k)g(k)

, where K E = F E − j, (A.3)

if j ∈ R E ′ B E ′−1

g(i)g( j)

B E−1

g(i)g(i)

B E ′−1

g(i)g(i) + B E−1

g(i)g(i)

, where i = F E ∩ F E ′ ,

[App]El : ∀E ∈ {1,2, . . . , Ne} if E = l
∑
i∈F E

B E ′−1

g(i)g(i)

B E ′−1

g(i)g(i) + B E
g(i)g(i)

∑
j∈F E

B E−1

g(i)g( j) + �E cE

tn
, (A.4)

if l ∈ S E − B E−1

g(i)g(i)

Bl−1

g(i)g(i) + B E−1

g(i)g(i)

∑
j∈Fl

Bl−1

g(i)g( j), where i = F E ∩ Fl.
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[17] R. Fučík, J. Mikyška, Mixed-hybrid finite element method for modelling two-phase flow in porous media, J. Math-for-Ind. 3 (2011C-2) (2011) 9–19.
[18] A.S. Abushaikha, M.J. Blunt, O.R. Gosselin, C.C. Pain, M.D. Jackson, Interface control volume finite element method for modelling multi-phase fluid 

flow in highly heterogeneous and fractured reservoirs, J. Comput. Phys. 298 (2015) 41–61, https://doi .org /10 .1016 /j .jcp .2015 .05 .024.
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