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Abstract: The role of the immune system in myocarditis onset and progression involves a range
of complex cellular and molecular pathways. Both innate and adaptive immunity contribute to
myocarditis pathogenesis, regardless of its infectious or non-infectious nature and across different
histological and clinical subtypes. The heterogeneity of myocarditis etiologies and molecular effectors
is one of the determinants of its clinical variability, manifesting as a spectrum of disease phenotype
and progression. This spectrum ranges from a fulminant presentation with spontaneous recovery to
a slowly progressing, refractory heart failure with ventricular dysfunction, to arrhythmic storm and
sudden cardiac death. In this review, we first examine the updated definition and classification of
myocarditis at clinical, biomolecular and histopathological levels. We then discuss recent insights on
the role of specific immune cell populations in myocarditis pathogenesis, with particular emphasis on
established or potential therapeutic applications. Besides the well-known immunosuppressive agents,
whose efficacy has been already demonstrated in human clinical trials, we discuss the immunomodu-
latory effects of other drugs commonly used in clinical practice for myocarditis management. The
immunological complexity of myocarditis, while presenting a challenge to simplistic understand-
ing, also represents an opportunity for the development of different therapeutic approaches with
promising results.

Keywords: myocarditis; immune system; immunosuppressive therapy; autoimmune disease; systemic
immune-mediated disease; drug repurposing

1. Introduction: Myocarditis, Hard to Suspect and Tricky to Diagnose

Myocarditis is an inflammatory disease of the myocardium; this nosological entity
encompasses a heterogeneous group of diseases characterized by variable clinical presenta-
tions and etiologies.

The most updated and widely endorsed definition of myocarditis is reported in the
2013 consensus document of the European Society of Cardiology (ESC) Working Group on
Myocardial and Pericardial Diseases [1]. In this statement, myocarditis and inflammatory
cardiomyopathy (if associated with myocardial dysfunction) are not defined just as a generic
inflammatory state of the myocardium; instead, specific histological, immunohistochemical
and immunological criteria are outlined to achieve a standardized definition of the disease,
aiming to address a longstanding challenge in disease classification and diagnosis, which
has always been present throughout the history of this condition.

The term “myocarditis” was introduced in 1837 by Jean Cruveilhier, a French patholo-
gist who described inflammation and necrosis within the hearts of individuals who died
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of rheumatic fever [2]. However, it was not until 1982 that a modern conceptualization of
the disease began to emerge, thanks to the work of Woodroof JF et al. who proposed an
etiopathogenetic classification system for myocarditis [3]. The advancement in endomy-
ocardial biopsy (EMB) techniques and cardiovascular pathology played a pivotal role in
this progress. Not only did these advancements enable the identification of inflammatory
cell infiltration in the myocardium, as established by the classic Dallas criteria [4], but they
also provided the means to further define this condition.

Recognition of a non-ischemic inflammation in the myocardium has prompted relevant
inquiries into characterizing the disease further. Key questions have emerged, including
the following: How are the inflammatory infiltrates defined and classified? What factors
contribute to myocardial inflammatory states? And to what extent do these factors impact
patients’ prognosis and treatment strategies?

In the 2013 ESC consensus statement, quantitative criteria for pathological characteriza-
tion were proposed: in EMB examinations, ≥14 leucocytes/mm2 should be present, including
up to 4 monocytes/mm2, along with the presence of ≥7 CD3 positive T-lymphocytes/mm2.
This recommendation was a steep advance after the publication of the World Health Organi-
zation classification of cardiomyopathies in 1995 [5], which lacked established quantitative
criteria for EMB analysis, potentially resulting in significant heterogeneity in disease diagnosis.

In the 1995 WHO Classification of Cardiomyopathies [5], inflammatory cardiomyopa-
thy is defined as a specific cardiomyopathy and described as an “inflammatory disease of
the myocardium associated with cardiac dysfunction”; the role of virus-negative and/or
virus-positive inflammatory cardiomyopathy in the onset and progression of dilated car-
diomyopathy (DCM) has recently gained growing attention, due to the emerging etiological
treatment options for both infectious and autoimmune/immune-mediated forms [6].

Immunohistochemistry (IHC) emerged as a pivotal technique for EMB analysis in
the 2011 consensus statement by the Association for European Cardiovascular Pathology
and the Society of Cardiovascular Pathology [7]. IHC was deemed useful for identifying
and phenotyping inflammatory infiltrates in EMB, with a list of principal antibodies for
immunophenotype characterization provided (namely CD45, CD45RO, CD3, CD20, CD4,
CD8 and CD68/PGM1). However, attempts to establish clear cutoff points for inflammatory
cellular infiltration and precise criteria for IHC use were based on relatively limited data [8].
Given the contentious nature of several pathological aspects of myocarditis, as highlighted
by recent research, further studies are warranted to address these controversies and refine
diagnostic criteria [9,10].

To further complicate matters, EMB may not always be feasible for diagnosing my-
ocarditis. In clinical practice, EMB should be considered for each patient in whom my-
ocarditis is suspected, following the exclusion of other potential cardiac or extracardiac
diseases that could account for the symptoms and imaging findings, notably coronary
artery disease [1]. Nonetheless, EMB can be omitted, at least initially in the clinical eval-
uation, in the absence of any markers of worse prognosis and when specific etiological
therapy is deemed unnecessary [11]. In such a scenario, a definition of clinically suspected
myocarditis can be established when a patient presents with a consistent clinical profile.
This profile may exhibit considerable heterogeneity, encompassing symptoms ranging from
infarct-like acute chest pain to acute or chronic heart failure (HF), unexplained ventricu-
lar arrhythmias, to cardiogenic shock; additionally, the diagnosis of clinically suspected
myocarditis requires the fulfilment of at least one diagnostic criterion (Figure 1).

Cardiac magnetic resonance (CMR) has emerged as a pivotal non-invasive diagnostic
technique to support the clinical suspicion of myocarditis, due to its ability to provide
detailed insights into myocardial tissue characterization. The recently updated Lake Louise
criteria [12] require the coexistence of myocardial edema (one T2-based criterion) and non-
ischemic myocardial injury (one T1-based criterion) to suspect myocardial inflammation.
However, it should be noted that such criteria have only been validated in a relatively small
cohort of patients with histologically proven myocarditis [13]. Therefore, further studies
are required to better define the diagnostic yield of CMR in inflammatory cardiomyopathy.
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Additionally, according to the literature, the sensitivity of CMR is significantly influenced
by the clinical presentation of myocarditis, potentially attributed to variations in the extent
and nature of myocardial injury (e.g., cellular necrosis or apoptosis). Specifically, CMR
demonstrates its highest sensitivity when myocarditis presents with infarct-like chest pain
(80%), whereas its sensitivity is lower in arrhythmic (57%) and HF (40%) presentations [14].
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Figure 1. Diagnostic criteria for clinically suspected myocarditis, modified from Caforio et al. [1].
Myocarditis is a highly heterogeneous disease; these criteria were defined in 2013 by the European
Society of Cardiology (ESC) Working Group on Myocardial and Pericardial Diseases with the purpose
of facilitating clinicians in recognizing myocarditis and addressing selected patients to second- or
third-level examinations and possible etiological treatment. a Clinically suspected myocarditis is
diagnosed if ≥1 clinical presentation (upper panel) and ≥1 diagnostic criteria (lower panel) from
different categories are present; if no symptoms are reported, ≥2 diagnostic criteria (lower panel)
should be met. Legend: CMR: cardiac magnetic resonance; ECG: electrocardiogram; LGE: late
gadolinium enhancement; LV: left ventricle; RV: right ventricle; TnI: troponin I; TnT: troponin T.
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2. Etiology: Infectious Versus Non-Infectious Myocarditis

The clinical spectrum of myocarditis exhibits significant heterogeneity, which can be
partially attributed to the wide range of etiological factors contributing to the disease (see
Figure 2).
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Figure 2. A schematic résumé of possible myocarditis etiologies; adapted from Brociek et al. [15]
and from Tschöpe et al. [16]. The list is not exhaustive. a Viral presence in the myocardium is to
be assessed through viral Polymerase Chain Reaction (PCR). Legend: CAR: coxsackievirus and
adenovirus receptor; CMV: cytomegalovirus; EBV: Epstein–Barr virus; HCV: hepatitis C virus; HHV-
6: human herpesvirus 6; HIV: human immunodeficiency virus; ICI: immune checkpoint inhibitors.

Acute myocarditis can be induced by a multitude of infectious agents, primarily
viruses, though bacteria and parasites may also play a role. Geographic variability in the
etiology of myocarditis is observed in relation to demographic factors, with viral etiologies
prevailing in developed countries, while Central and South America exhibit a higher inci-
dence of Chagas disease, caused by the protozoan Trypanosoma Cruzi [15]. Historically,
enteroviruses and adenoviruses were recognized as the predominant etiological agents of
viral myocarditis. However, the implementation of viral Polymerase Chain Reaction (PCR)
in EMB samples has led to an increased detection of Parvovirus B19 (PVB19) and Human
Herpesvirus 6 (HHV-6) [17]. Additionally, other herpesviruses, including Epstein-Barr
virus (EBV) and Cytomegalovirus (CMV), have been implicated in the development of
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myocarditis. Notably, up to 30% of patients with viral myocarditis have been reported
to harbor mixed infections [18]. Viruses can be classified based on their tissue tropism as
follows (see Figure 2): (a) primary cardiotropic, directly infecting the cardiac myocytes
and susceptible to host immune clearance (e.g., adenoviruses and enteroviruses); (b) vascu-
lotropic, targeting endothelial cells (e.g., PVB19) [19]; (c) lymphotropic, capable of latent
persistence in the myocardium for years (e.g., HHV6, CMV, EBV); (d) cardiotoxic, inducing
myocardial inflammation through immune system activation (e.g., Hepatitis C virus; HIV;
A and B Influenza viruses) [16]. It is important to distinguish between myocarditis triggered
by viral infection and myocarditis associated with infection. In the former, myocardial dam-
age arises directly from viral replication, whereas in the latter, molecular mimicry between
viral antigens and myocardial proteins elicits an immune response targeting myocardial
self-antigens [20]. Therefore, the detection of viral agents in the myocardium constitutes
only the first diagnostic step in viral myocarditis assessment. To date, no definitive evidence
of biopsy-proven myocarditis caused by SARS-CoV-2 infection or vaccination has been
found. Conversely, a study demonstrated that SARS-CoV-2 vaccination is safe for patients
with prior myocarditis; additionally, this study showed an absence of increased risk of
myocarditis relapse after SARS-CoV-2 infection in the same patients’ population [21].

A multiparametric assessment of the viral type and virulence should be performed
before considering therapeutic interventions. However, in cases where no virus is de-
tected in EMB, leading to a diagnosis of virus-negative myocarditis, and after excluding all
other potential exogenous etiological agents, the disease is presumed to be autoimmune
or immune-mediated. Virus-negative myocarditis may present either as an isolated au-
toimmune disease or within the context of a systemic immune-mediated disease (SID),
where extracardiac involvement holds clinical significance. The definition of organ-specific
autoimmunity is based on the Rose–Witebsky criteria [22], with inflammatory cardiomy-
opathy fulfilling various major and minor criteria (see Table 1).

Table 1. Rose–Witebsky criteria in inflammatory cardiomyopathy. Adapted from Tschöpe et al. [16].

Criteria Evidence in the Literature

Presence of immune cell infiltrates and abnormal expression of HLA class II on interstitial cells;
Presence of adhesion molecules in the absence of viral genomes in EMB samples from both index
patients and family members.

Kindermann et al., 2008 [23]

Presence of circulating heart-specific autoantibodies in patients with inflammatory
cardiomyopathy and their relatives.

Caforio et al., 2007 [24]
Mestroni et al., 1999 [25]
Baritussio et al., 2022 [26]

Animal models of experimentally induced inflammatory cardiomyopathy, with or without a
DCM phenotype, after immunization with specific auto-antigen(s). Li et al., 2006 [27]

Response to immunosuppressive or immunomodulant therapy in patients with virus-negative
inflammatory cardiomyopathy.

Escher et al., 2016 [28]
Chimenti et al., 2022 [29]
Merken et al., 2018 [30]
Caforio et al., 2024 [31]

Legend: DCM: dilated cardiomyopathy; EMB: endomyocardial biopsy.

Although cardiac involvement in SIDs is often underestimated or overlooked, it is a
common occurrence and serves as an established marker of adverse prognosis that should
be recognized to intensify treatment strategies [32–34].

A recently defined entity is ICI-related myocarditis (ICIM), an uncommon (0.04–1.14%)
yet serious and potentially fatal (with a reported mortality risk of 25–50%) adverse event of
Immune checkpoint inhibitors (ICIs). ICIs are monoclonal antibodies targeting immune
response receptors, such as CTLA-4 (e.g., ipilimumab), PD-1 (e.g., pembrolizumab), PD-L1
(e.g., avelumab). Due to its peculiar aggressiveness, especially in frail oncological patients,
prompt recognition and treatment of ICIM are crucial for successful disease management,
which typically involves providing hemodynamic support and administering high-dose
intravenous steroid therapy [35].
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Few data are currently available on biopsy-proven ICIM cases. In a single-center
cohort study including 28 patients with clinically suspected ICIM, EMB showed signs of
myocarditis/inflammation in 18 cases. ICIM patients commonly presented with dyspnea
and weakness, and less frequently with symptoms of heart failure; additionally, ECG
abnormalities, non-sustained ventricular arrhythmias and troponin elevation were reported.
Patients’ characterization through EMB had significant therapeutic implications, since a
substantial proportion of patients with low-grade myocardial inflammation were able to
continue ICI treatment [36].

Regardless of etiology, the main classification of myocarditis is histological: EMB
analysis can identify different types, with lymphocytic myocarditis being the most com-
mon. However, it can also reveal rare forms such as eosinophilic, sarcoid, polymorphic
or giant cell myocarditis (GCM). The type of inflammatory infiltrate is of paramount im-
portance for both prognostic and therapeutic considerations, as will be discussed in the
following paragraphs.

3. Humoral Immunity in Myocarditis

Among the Rose–Witebsky criteria, the presence of circulating heart-specific autoan-
tibodies in both patients and their relatives is noted. Indeed, in myocarditis, the role of
humoral immunity is well established. Various types of autoantibodies have been detected
in patients with myocarditis and autoimmune DCM, including anti-β1-adrenergic recep-
tor [37], anti-troponin [38] and anti-M2 acetylcholine muscarinic antibodies [39]. Among
these, anti-heart antibodies (AHA) have demonstrated particular relevance in the patho-
genesis, diagnosis and prognosis of myocarditis [40–42]. AHA presence in the serum of
patients with myocarditis correlates with a poor prognosis [43] and their detection in
asymptomatic relatives of patients with idiopathic DCM serves as a predictive marker for
disease development [24,44].

AHA encompass a group of autoantibodies targeting cardiac antigens, including
myosin, troponin and other proteins expressed in the heart tissue. It has been demonstrated
that AHA may directly compromise myocardial contractility through complement activa-
tion and cell-mediated cytotoxicity [43,45], or indirectly contribute to myocardial damage
by inducing an inflammatory response [46,47].

Detection of AHA typically involves indirect immunofluorescence, which can further
differentiate between various antibody patterns: organ-specific, cross-reactive type 1 or
partially organ-specific and cross-reactive type 2 AHA. Organ-specific AHA primarily
target the α and β isoforms of the myosin heavy chain [40,45,47,48], with the α isoform
uniquely expressed in the atria. Loss of tolerance for cardiac myosin may arise from
molecular mimicry mechanisms, cross-reaction between myosin and the β1-adrenergic
receptor or cell necrosis triggered by infection or other agents.

Furthermore, recent studies have highlighted the prognostic role of non-organ specific
antibodies, such as anti-nuclear antibodies (ANA), in biopsy-proven myocarditis [42].
Additionally, AHA have been detected in other cardiac diseases where autoimmunity is
suspected to be a contributing factor, such as arrhythmogenic cardiomyopathy, suggesting
an association with disease severity [49]. Further research is warranted to better characterize
the precise mechanisms of AHA induction in myocarditis and their presence and role in
other cardiomyopathies.

4. Immunopathological Processes in Myocarditis

Both innate and adaptive immunity contribute to the pathogenesis of myocardi-
tis. These mechanisms can be targeted through conventional immunosuppressive or
immunomodulatory treatments, as well as by repurposed drugs already used to manage
myocarditis symptoms with newly recognized immunomodulatory effects. The pathogene-
sis of myocarditis encompasses infectious or autoimmune/immune-mediated mechanisms,
occurring in three distinct phases. In the acute phase lasting 1–7 days, the innate immune
response plays a role, potentially triggered by an infectious agent, e.g., a viral infection.
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One mechanism by which viruses infect cardiomyocytes is through internalization via
receptor complexes interaction, especially the coxsackie/adenoviral receptor (CAR) [50].
Internalization of the virus is facilitated by concurrent binding to decay accelerating factor
(DAF; also known as CD55), a ubiquitously expressed host protein that inhibits complement
activation [50,51].

Subsequently, in the subacute phase lasting 1–4 weeks, the adaptive immune response
becomes engaged. In a sizable proportion of cases, the inflammatory process resolves
spontaneously; however, incomplete resolution of inflammation may lead to a chronic
course in a relevant quote of patients (up to 25%). This chronic phase can extend from
months to years, ultimately progressing to DCM, end-stage HF and death [52].

Different types of innate and adaptive immune cells participate in the pathogenesis of
myocarditis across different stages, including acute infection, subacute immune response
and adverse cardiac remodeling.

Innate immunity comprises humoral effectors such as cytokines, chemokines and com-
plement, as well as cellular effectors like neutrophils, monocytes/macrophages. Following
infection, the innate immune response is initiated, involving pattern recognition receptors
(PRRs) expressed on the surface of innate immune cells which identify pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) released
from damaged cells, subsequently triggering the release of cytokines, chemokines and
alarmins [53,54].

This cascade recruits inflammatory cells including mast cells, neutrophils, dendritic
cells, monocytes and macrophages to the heart. Notably, monocytes and macrophages are
the predominant inflammatory cell subsets identified in both human and experimental
myocarditis [55]. Monocyte recruitment and migration play crucial roles in myocarditis
development. Cardiomyocytes secrete key chemokines such as monocyte chemoattractant
protein 1 (MCP-1) and macrophage inflammatory protein-1 alpha (MIP-1α), which promote
monocyte migration and contribute to myocarditis via C-C chemokine receptor (CCR)
type 2 and CCR5, respectively [56,57]. In a murine model of CVB3-induced myocarditis,
increased MCP-1 expression in cardiomyocytes was observed upon CVB3 infection [58].
Additionally, silencing CCR2 using short interfering (si)RNA in experimental autoimmune
myocarditis reduced inflammatory monocyte recruitment, thereby attenuating myocardial
inflammation and fibrosis [59].

Once at the site of injury, monocytes amplify inflammation by further cytokine expres-
sion, including Interleukin (IL)-6 and Tumor necrosis factor (TNF)-α, as well as differentia-
tion into macrophages with different functions [60,61].

Traditionally, macrophages are divided into 2 types according to their activating fac-
tors [62]. The first type is classical (M1) macrophages activated by Toll like receptor (TLR)
ligands or Interferon (IFN)-γ, which mainly mediate oxidative stress, inflammasome forma-
tion and proinflammatory factor secretion (TNF-α, IL-1β, IL-6 and IL-12, among others) to
produce co-stimulating factors and chemokines that promote inflammatory cell infiltration
and proliferation. They subsequently cause cardiac injury [63]. In contrast, IL-4 and IL-13,
as well as IL-10 and Transforming growth factor (TGF)-β, induce alternatively activated M2
macrophages, mainly playing an anti-inflammatory role [64–66]. Throughout the different
phases of tissue repair, macrophages shift from M1 to M2 phenotype. M1 macrophages
in early inflammation produce IL-6, TNFa and IL-1, activating innate immune cells. Dur-
ing resolution, M1 to M2 transition reduces inflammation, increases anti-inflammatory
cytokines and clears apoptotic neutrophils and damaged cells [63–65]. In BALB/c male
mice with CVB3-induced myocarditis, myocardial macrophage phenotype shifts from M1
to M2 around days 7 to 10 during fibrotic repair [67].

In addition to innate immune cells, the pathogenesis of myocarditis involves crucial
contributions from adaptive immune pathways, notably T helper 1 (Th1) and T helper 2
(Th2) cells, along with key cytokines. The balance between Th17 and regulatory T cells
(Treg) also significantly influences myocarditis progression [68–70]. Th1/Th2 paradigm was
introduced to categorize CD4+ T cells based on their cytokine secretion profiles. In the clini-
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cal phase of myocarditis, a systemic Th1/Th2 imbalance is well-documented [71]. The exact
role of Th1 cells in myocarditis pathogenesis is still debated, as they seem to play a dual role,
initiating tissue damage while also providing protection against excessive inflammation.
The secretion of IL-12 by these cells has been reported to be proinflammatory, since exoge-
nous administration of IL-12 exacerbates heart inflammation in experimental autoimmune
myocarditis (EAM) models, which can be blocked in IL-12R knockout mice [72]. Conversely,
IFN-γ, produced by Th1 cells, limits disease progression to the chronic second phase of
myocarditis, essentially DCM and end-stage HF [72]. Inhibiting IFN-γ using monoclonal
antibody or gene inactivation promotes a Th2-type immune response that increases acute
myocarditis, pericarditis and DCM in the EAM model [73,74]. This effect may be attributed
to IFN-γ ability to activate macrophages, facilitating the eradication of intracellular viruses,
and regulating the expansion of activated T lymphocytes [75,76]. Th2 cells and associated
cytokines such as IL-4 and IL-13 play a crucial role in severe myocarditis characterized by
eosinophil expansion. Susceptibility to experimental autoimmune myocarditis (EAM) in
A/J and BALB/c mice depends on the production of an IL-4/Th2-type immune response,
which in mice is associated with eosinophils, elevated IgG1 autoantibodies against cardiac
myosin and elevated IgE [73,77]. Conversely, IL-13, known for its regulatory effects on
macrophage differentiation, mitigates the extent of myocardial inflammation, underlining
also for Th2 cells a “dual” action in myocarditis pathogenesis [73].

The classical “Th1-Th2” paradigm has evolved to incorporate other distinct T helper
cell subsets, notably Th17, which plays a key role in the initiation and progression of
immune-mediated diseases [78]. Th17 cells pathological differentiation and signalling are
predominantly driven by IL-6 and IL-23 [78]. Inhibition of the transcription factor STAT3,
which serves as the principal mediator of IL-6 signalling and Th17 differentiation, was
found to impair the development of EAM and to improve heart function during DCM [79].
Additionally, high levels of Th17 cells have been confirmed in human myocarditis and
DCM both in peripheral blood and myocardial tissue, and they were associated with a lack
of left ventricular (LV) recovery and progression to more advanced HF stages [80]. While
the Th17 signature cytokine IL-17A is not essential for myocarditis onset, it is crucial for
the progression to HF [81,82].

Despite advancements in both experimental and clinical research, the immunological
background of myocarditis remains only partially understood. Further investigation is
warranted to discover novel therapeutic approaches targeting specific immune pathways
in the clinical management of myocarditis.

5. Therapeutic Approaches: Targeting the Immune System to Heal Myocarditis

The 2013 ESC consensus statement recommends immunosuppressive therapy (IT)
for selected cases of histologically confirmed virus-negative myocarditis [1], particularly
giant cell myocarditis (GCM), necrotizing eosinophilic myocarditis or cardiac sarcoidosis
(Table 2). This recommendation has been recently reaffirmed in the 2021 ESC guidelines for
the diagnosis and treatment of HF [83].

Table 2. Immunosuppressive therapy protocols in autoimmune/immune-mediated virus-negative
myocarditis. Modified from Baritussio et al. [84].

EMB Diagnosis Treatment Comments

Lymphocytic myocarditis

• PDN, 1 mg/kg/day for 1 month, then
gradually tapered and discontinued within
5 months + AZA *, 2 mg/kg d for 6 months

• MMF, starting with 1 g/day, then increasing to
2 g/day over 4 weeks, and up to 3 g/day if
required, in combination with PDN.

• ** MPDN, i.v. 1 g bolus, for 1 or more days,
then, 1 mg/kg/day to be gradually tapered

(Frustaci et al., 2009 [85];
Chimenti et al., 2022 [29])

MMF: Off-label for myocarditis;
Second line if intolerance or resistance to

AZA (De Luca et al., 2020 [86]);
First line in SIDs.
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Table 2. Cont.

EMB Diagnosis Treatment Comments

Giant Cell Myocarditis

• MPDN, 10 mg/kg i.v. bolus + OKT3, 5 mg/day
for 10 days. Then, PDN p.o.: 1 mg/kg/day,
then gradually tapered + Cy-A (therapeutic
blood range 150–300 ng/mL) and AZA *,
starting with mg/Kg/day.

(Cooper et al., 1997 [87])

Eosinophilic myocarditis

• PDN p.o., 1 mg/kg die to be gradually tapered
in combination with weekly MTX, 7.5–20 mg
(alternatively AZA *, 1–2 mg/Kg/day), or
MMF, 1–3 g/day

• Treatment of underlying disease when
associated to EGPA.

• ** MPDN, i.v. 1 g bolus, for 1 or more days,
then, 1 mg/kg/day to be gradually tapered

MMF: off-label for myocarditis

Cardiac Sarcoidosis

• PDN, 1 mg/kg die to be gradually tapered
in combination with weekly MTX,
7.5–20 mg/week (alternatively, AZA *,
1–2 mg/Kg/day), or MMF, 1–3 g/die;

• If no response, MTX, 15–20 mg/week, in
combination with i.v. Infliximab, 5 mg/kg, time
0, at 2 weeks and 4 weeks, then every 8 weeks.

MMF: off-label for myocarditis

Legend: anti-CD3 monoclonal antibody; AZA: Azathioprine; Cy-A: Cyclosporin-A; EGPA: Eosinophilic Gran-
ulomatosis with Polyangiitis; EMB: Endomyocardial Biopsy; i.v.: intravenous; MMF: Mycophenolate Mofetil;
MTX: Methotrexate; MPDN: Methylprednisolone; p.o.: per os; PDN: Prednisone; SIDs: Systemic Immune-
mediated Diseases. * in absence of Thiopurine-Methyl-Transferase mutations. ** fulminant onset.

Evidence regarding the efficacy of IT for treating heart failure in biopsy-proven virus-
negative lymphocytic myocarditis is based on randomized clinical trials (RCTs) and met-
analysis [28–30,85]. Conversely, data concerning the efficacy of IT in other forms of histologi-
cal myocarditis such as GCM [88], eosinophilic myocarditis [89] and cardiac sarcoidosis [90]
primarily come from retrospective observational registries.

According to the limited number of RCTs focusing on biopsy-proven virus-negative
inflammatory cardiomyopathy, IT can improve left ventricular function, alleviate symptoms
and increase overall survival among this specific subset of patients with myocarditis [29,91].
With respect to lymphocytic myocarditis, the majority of available data primarily focus on
the use of a combination of corticosteroids and a steroid-sparing agent, mainly Azathioprine
(AZA) [29,85] or Mycophenolate Mofetil (MMF) [86]. However, the treatment of other
histological types, such as GCM, entails a combination of at least three drugs, commonly
including Cyclosporine A, together with corticosteroids and a steroid-sparing agent (AZA
or MMF) [88]. Indeed, GCM is recognized as “the most fatal of autoimmune diseases”
and is characterized by an aggressive clinical course, with a high incidence of fulminant
hemodynamic presentation and substantial mortality rate [92]. In cardiac sarcoidosis,
steroid therapy is indicated in cases of ventricular dysfunction or arrhythmias [93].

When managing myocarditis within the context of SIDs, treatment should encompass
standard approaches tailored to address the underlying condition. Additionally, given
the adverse prognosis of patients with myocarditis in the context of SIDs, more intensive
immunosuppression regimens may also be considered [94].

It is crucial to note that the presence of viral agents in the myocardium should be
considered as an absolute contraindication to the use of IT. The Myocarditis Treatment
Trial, the first clinical study investigating the effects of IT in addition to Optimal Medical
Therapy (OMT) in 111 patients with myocarditis of unknown etiology, did not demonstrate
an improvement in terms of survival in IT patients compared to those receiving OMT,
despite an overall improvement in left ventricular function [95]. The primary limitation
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of the study was the unknown etiology of myocarditis: in this trial, EMBs were solely
analyzed by histological Dallas criteria, without including a search for viral genome in the
myocardial tissue samples. Furthermore, the Myocarditis Treatment Trial lacked sufficient
statistical power to detect differences in survival.

In a retrospective analysis by Frustaci et al. [91], the virological and immunological
characterization of lymphocytic myocarditis treated with IT revealed a 90% response rate
in virus-negative cases, whereas viral genomes were detected in the myocardium of 85% of
non-responders. Consequently, updated recommendations suggest the use of IT only after
ruling out active infection in EMB by PCR, in the absence of other contraindications [1].

The Tailored Immunosuppression in virus-negative Inflammatory Cardiomyopathy
(TIMIC) trial [85], a randomized double-blind study conducted in 2009, presented signifi-
cantly different results. It aimed to assess the efficacy of IT (PDN and AZA) in 85 patients
with biopsy-proven virus-negative active myocarditis and chronic HF unresponsive to
OMT, compared to a placebo control group. This RCT demonstrated a significant improve-
ment in LVEF (left ventricular ejection fraction) in 88% of patients receiving IT, while 83%
of patients in the placebo group experienced progressive LV dysfunction. Furthermore,
follow-up EMBs showed the resolution of inflammatory infiltrates among the patients
exhibiting improvement with IT. Subsequently, a 20-year follow-up study on the same
cohort, expanded upon these results, confirming the efficacy of IT both in the short and
long term, even among patients with poor baseline conditions (i.e., severe impairment of
left ventricular function) and for preventing relapses in autoimmune myocarditis [29]. Sim-
ilarly, a RCT on 84 patients diagnosed with DCM and increased HLA expression, despite
revealing no difference in a composite outcome comprising death, heart transplant and
hospital readmission, demonstrated a significant improvement in LVEF and a reduction in
LV volumes among patients treated with IT [96].

The safety and efficacy of tailored IT in all histological types of virus-negative my-
ocarditis has recently been confirmed in a single centre prospective cohort using a propen-
sity weighted approach [31].

Among novel approaches to immune-mediated myocarditis, monoclonal antibodies
also represent a promising tool. For instance, Mepolizumab, an anti-IL-5 antibody, has been
successfully used to treat patients with forms of eosinophilic myocarditis. Additionally,
many other antibodies have been tested in vitro to selectively target pro-inflammatory
cytokines or immune cell surface receptors, thereby potentially attenuating myocardial
inflammation and preserving cardiac function [97]. Rituximab, an anti-CD20 monoclonal
antibody with potent immunosuppressive properties, has also been used in selected cases
of virus-negative myocarditis, with promising results [98]. Moreover, also for recent cases
of ICIM a biotechnological approach involving the blockade of co-stimulatory proteins
CD80/CD86 with Abatacept appears to be efficacious [99,100].

The predictors of IT response in myocarditis are still under research. Exploration of the
specific cytokines and molecular pathways, both within myocardium and at the peripheral
level, as well as the assessment of genetic predisposition, warrants further investigation.

6. Repurposing of Traditional Drugs with Potential Immunomodulant Action for
Myocarditis Management

Given the pathogenic role of the immune system in myocarditis, several attempts
have been made to target it for myocarditis treatment with direct immunosuppression,
as described above. Nonetheless, several studies demonstrated that drugs with other
clinical indications, not initially designed to act on immunity, might have novel molecular
mechanisms of action on cells of the immune system, thus supporting the rationale of their
application in inflammatory cardiomyopathy. Many drug categories were suggested, such
as anti-hypertensive, anti-diabetic, anti-HF and hypolipidemic agents; notably, some of
these might be already used in myocarditis patients since they belong to OMT (Figure 3).
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Among anti-hypertensive agents, the non-selective β-adrenergic receptor (β-AR)
blocker carvedilol, was demonstrated to mediate a cardioprotective role either in mod-
els of fulminant autoimmune or viral myocarditis. Its cardioprotective role is exerted
by decreasing the troponin and myofilaments degradation through the reduction of the
Matrix Metalloproteinase-2 activity, leading to the preservation of cardiac function [101].
Moreover, carvedilol acts also as antioxidant and anti-inflammatory; in particular, the
inhibition of β-2AR, expressed on Th1 lymphocytes and antigen presenting cells, leads
to a reduced expression of pro-inflammatory cytokines IL-1β and TNF-α and the pro-
motion of the anti-inflammatory cytokines IL-10 and IL-1RA [102,103]. While in murine
viral myocarditis carvedilol improved the survival lowering myocardial inflammation
and necrosis by lower IL-6 and TNF-α secretion [104]. Another class of anti-hypertensive
drugs with proven immunomodulant action in myocarditis models are the Angiotensin-II
receptor 1 antagonists (AT1R). In fact, Angiotensin-II (AngII) is upregulated in the heart of
EAM models and induces monocytes/macrophages chemotaxis; thus, the use of losartan
reduces heart infiltration and ameliorates the disease phenotype [105]. Generally, sar-
tans act as an anti-inflammatory agent in the heart either in innate or acquired immunity,
since in models of autoimmune or viral myocarditis they reduce the expression of the Th1
type pro-inflammatory while increasing the Th2 ones, leading to a rebalanced Th1/Th2
ratio [106–108]. Notably, sartans might have a specific anti-inflammatory action in my-
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ocarditis, since in viral models their cardioprotective role was not linked to any antiviral
action [106]. AT1R inhibition contributes also to the prevention of DCM evolution because
it lowers the expression of endoplasmic reticulum (ER) stress proteins, thus reducing my-
ocardial apoptosis and fibrosis [107,109,110]. Renin-Angiotensin System (RAS) might be
targeted not only through the inhibition of target receptors, but also in lowering the produc-
tion of the soluble mediators as Ang II by angiotensin converting enzyme (ACE) inhibitions.
In particular, captopril or similar, when compared to losartan, has similar mechanisms
of action in reducing cardiac hypertrophy, fibrosis and AHA production, despite, for the
latest, controversial results being reported [111–113]. While by blocking AT1R is possible
to decrease chemotaxis of the macrophagic compartment, captopril reduces the effect of
the hypersensitivity to anti-myosin antibodies by reducing local inflammatory processes,
limiting T cells recruitment to the heart [111]. Captopril may therefore reduce inflammation
by inhibiting recruitment of T cells to the heart or by reducing local inflammatory processes.

Sartans, specifically telmisartan, induce the down-modulation of AT1R, which might
drive to the upregulation of peroxisome proliferator activated receptor (PPAR)-γ, whose
increased activity is linked to myocarditis improvement [107]. Indeed, the class of PPAR-γ
activators, as the antidiabetic drug Pioglitazone, is indicated as beneficial for myocarditis.
In particular, PPAR-γ is highly expressed in infiltrating inflammatory cells and its activation
is linked to a strong nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) inhibition, which leads to a reduced expression of the chemotactic protein MIP-1α
and Th1 type cytokines while increasing Th2 type, altogether promoting the shift from
Th1 towards Th2 [114–116]. In the last decade novel antidiabetic drugs with stunning
anti-HF properties have been evaluated in autoimmune myocarditis models, such as
Linagliptin and gliflozins. Linagliptin acts by blocking Dipeptidyl peptidase (DPP)-4 and it
is approved for diabetes treatment, but, since DDP-4 is expressed also in T lymphocytes,
it might be acting also in modulating inflammatory response. In fact, in EAM and ICIM
models linagliptin is effective in reducing fibrosis, pro-inflammatory cytokine secretion,
as well as the AngII production. In particular, the blockade of DDP-4 inhibits Catepsin
to catalyze AngII production [117,118]. Another class of recently approved antidiabetic
drugs, which have been rapidly included among the “four pillars” for HF treatment,
namely the inhibitors of sodium/glucose cotransporter 2 (SGLT-2) gliflozins, has been
studied in EAM models. Despite SGLT-2 is not expressed on cardiomyocytes, gliflozins
and particularly canagliflozin, might act on cardiac homeostasis by targeting other proteins
involved, as SGLT-1, which is upregulated in EAM models, and its inhibition ameliorates
oxidative stress blocking NF-κB [119,120]. Gliflozins have cardioprotective effects also by
reducing fibrosis and cardiac inflammation and apoptosis through the following: shifting
of macrophages polarization from M1 to M2 by blocking the pro-inflammatory pathway
signal transducer and activator of the transcription (STAT)3 activation; inhibition of the
NLR family pyrin domain containing 3 (NLRP3) inflammasome leading to a reduced IL-1β
and IL-18 production and Th17 cells infiltration [120,121]. Angiotensin receptor-neprilysin
inhibitors (ARNI), another type of anti-heart failure drug, may be beneficial in myocarditis
inhibiting the differentiation of Th17 cells, as gliflozins, but with a different mechanism
of action; in EAM models, they do not block the NLRP3 inflammasome pathway, but
they activate natriuretic peptide receptors, expressed on heart infiltrating lymphocytes,
which block NF-κB p65 signalling pathway [122]. ARNI have been described as effective
in models of viral myocarditis; in particular, in vitro experiments show a reduction in the
production of IL-6 and IL-1β after treatment with LCZ696 [123].

Interestingly, the NF-κB pathway is a relevant pathogenetic mechanism of inflamma-
tion in myocarditis, its inhibition being involved in several anti-myocarditic mechanisms
by blocking Th17 differentiation and infiltration in EAM. Another example of this is the
hypolipidemic drug fenofibrate, which is a PPAR-α agonist. PPAR-α is part of the family
of PPAR proteins abovementioned and acts on cardiac lipid metabolism [124].

Statins, lipid-lowering drugs known as 3-hydroxy-3-methylglutaryl coenzyme-A
(HMG-CoA) reductase inhibitors, have also been reported having immunomodulating
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roles and several studies in myocarditis models have been described in the last years [125].
In particular, statins can reduce proinflammatory Th1 cytokines production, through NF-κB
inhibition, as TNF-α, IFN-γ, IL-6 and IL-2, in favour of Th2 type as IL-10 and IL-4 [126–128].
The reduction of TNF-α, statin mediated, leads to ameliorated potassium currents in ven-
tricular cardiomyocytes and to reduced Major histocompatibility complex (MHC) class II
and co-stimulatory proteins expression on antigen presenting cells [129,130]. Nonetheless,
statins have been recently used, together with intravenous immunoglobulins, to treat three
cases of ICIM reaching LVEF improvement and class I NYHA at discharge [131].

7. Conclusions and Future Directions

Current guidelines [83] recommend the use of immunosuppressive therapy in selected
cases of virus-negative biopsy-proven myocarditis, on top of OMT that should be targeted
on the specific patient’s phenotype, e.g., anti-HF drugs in case of left ventricular dysfunction
or antiarrhythmic medical therapy in case of hemodynamically stable sustained ventricular
arrhythmias [132].

Emerging evidence suggests that HF medications, such as β-blockers or ACE-inhibitors,
have immunomodulatory effects in addition to their primary ones in murine models [104,110].
These findings, even if obtained mainly in models, raise an intriguing possibility for
the management of myocarditis patients: could a novel combination of IT and OMT
potentially enhance patients’ response through a synergistic effect of drugs? To answer
this question, clinical studies are warranted along with the ongoing research on novel
therapeutic approaches. Despite advancements in understanding the mechanisms, the
pathogenesis of myocarditis involves an intricate immune network, complicating so
far a clear determination of the most relevant factors; therefore, the exact role of non-
immunosuppressive/immunomodulating agents in myocarditis in vivo still needs to be
ascertained. In conclusion, this review contributes to describe the main etiological, clinical
and therapeutic features of myocarditis, underlining the importance of new immunopatho-
logical insights for their strong therapeutic potential. In particular, emerging evidence
regarding repurposed drugs, as well as novel biotechnological drugs, suggests promising
therapeutic options for myocarditis.
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Abbreviations

AHA Anti-heart antibodies
ANA Anti-nuclear antibodies
ARNI Angiotensin receptor-neprilysin inhibitors
AT1R Angiotensin-II Receptor 1
AZA Azathioprine
β-AR β-adrenergic receptor
CAR Coxsackie/adenoviral receptor
CCR C-C chemokine receptor
CMR Cardiac magnetic resonance
CMV Cytomegalovirus
CVB3 Coxsackievirus B3
DAF Decay accelerating factor
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DAMPs Damage-associated molecular patterns
DCM Dilated cardiomyopathy
DDP-4 Dipeptidyl Peptidase 4
EBV Epstein-Barr Virus
EMB Endomyocardial biopsy
ESC European Society of Cardiology
GCM Giant cell myocarditis
HCV Hepatitis C virus
HHV-6 Human herpesvirus 6
HLA Human leukocyte antigen
HMG-CoA 3-Hydroxy-3-methylglutaryl coenzyme-A
ICI Immune checkpoint inhibitors
IFN Interferon
IHC Immunohistochemistry
IL Interleukin
IT Immunosuppressive therapy
LV Left ventricle
LVEF Left ventricular ejection fraction
MCP-1 Monocyte chemoattractant protein 1
MHC Major histocompatibility complex
MIP-1α Macrophage inflammatory protein-1 alpha
MMF Mycophenolate Mofetil
OMT Optimal Medical Therapy
PAMPs Pathogen-associated molecular patterns
PCR Polymerase Chain Reaction
PDN Prednisone
PPAR Peroxisome proliferator activated receptor
PRRs Pattern recognition receptors
PVB19 Parvovirus B19
RAS Renin-Angiotensin System
RCT Randomized controlled trial
SGLT-2 Sodium/glucose cotransporter 2
SID Systemic immune-mediated disease
TGF Transforming growth factor
Th T helper cells
Treg Regulatory T cells
TNF Tumor necrosis factor
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