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Abstract

The process of inference in a parametric statistical model involves assessing the uncer-

tainty of the surrounding parameters based on an observed sample. Often, the lack of

analytical solutions prohibits a direct precise quantification. Monte Carlo (MC) simula-

tions play a central role in understanding this uncertainty by reproducing samples that

mimic data-dependent probability distributions or replicating data-generating mecha-

nisms to estimate functionals and specific quantities of interest. This dissertation is

dedicated to the advancement of methods for sampling algorithms for statistical infer-

ence in different paradigms.

Chapter 2 focuses on general simulation-based strategies for obtaining confidence dis-

tributions, confidence curves and confidence densities in non non regular settings, where

for instance Bootstrap methods are not directly applicable. Special attention is paid

to the treatment of parameter vectors and nuisance parameters, to ensure invariance

of the procedures under reparametrizations. The developed techniques are investigated

in the context of robust methods and estimating equations. Some extensions are con-

sidered for inference with non-parametric tests, with probability semi-metrics. Possible

applications can be found in non-inferiority tests and in the realm of likelihood-free

inference.

In Chapter 3, we study a method in the context of Approximate Bayesian Computa-

tion which is free from the choice of the tuning parameter. The resulting approximation

implicitly uses a pseudo-likelihood that exhibits some consistency properties, and is

linked to Confidence Distributions and data depth functions.

In Chapter 4, we derive and discuss coupling techniques for Markov Chain Monte

Carlo (MCMC) algorithms on submanifolds. They form the basis for the generation of



convergence diagnoses and principal possibilities for the execution of parallel chains. In

particular, we describe probabilistic reflection-contract couplings and meeting-inducing

couplings, placing the latter in the context of couplings for a broader class of MCMC

algorithms with complex proposal mechanisms.

Chapter 5 presents two novel MCMC strategies developed for sampling generic target

distributions on Rd. These algorithms utilise ideas derived from MCMC algorithms

on manifolds, incorporating geometric information from the target distribution in the

problem at hand. In particular, equations specifically relevant to the sampling problem

are used to define an artificial submanifold, such as the graph of the target distribution

and the contour set.

Finally, Chapter 6 deals with the problem of performing Bayesian inference in the

presence of an intractable matching prior distribution. This involves transitioning to a

manifold characterized by an estimating equation that encompasses the derivatives of the

said intractable matching prior distribution. An application in the context of Bayesian

testing with e-values is presented, where the default prior guarantees the invariance

properties of the procedure.



Sommario

Il processo di inferenza in un modello statistico parametrico implica valutare l’incer-

tezza dei parametri circostanti basandosi su un campione osservato. Spesso, la mancanza

di soluzioni analitiche proibisce una quantificazione precisa diretta.

Le simulazioni Monte Carlo (MC) rivestono un ruolo fondamentale per la compren-

sione e determinazione di questa incertezza, mediante la generazione empirica di distri-

buzioni di probabilità o riproducendo i meccanismi di generazione dei dati stessi, al fine

di riprodurre e stimare funzionali e quantità specifiche di interesse. Questa tesi è dedi-

cata allo sviluppo di metodi per algoritmi di campionamento per l’inferenza statistica

secondo diversi paradigmi.

Il Capitolo 2 si concentra su strategie generali basate su simulazioni per ottenere

distribuzioni di confidenza, curve di confidenza e densità di confidenza in contesti non

regolari, dove ad esempio i metodi Bootstrap non sono direttamente applicabili. Si

presta particolare attenzione al trattamento di vettori di parametri e al caso di parame-

tri di disturbo, per garantire l’invarianza delle procedure sotto riparametrizzazioni. Le

tecniche sviluppate sono studiate nel contesto di metodi robusti ed equazioni di stima.

Alcune estensioni sono considerate per l’ inferenza con test non parametrici con semi-

metriche di probabilità. Possibili applicazioni si trovano nei test di non inferiorità e nel

campo dell’inferenza priva di verosimiglianza.

Nel Capitolo 3 viene introdotto un metodo nel contesto di Approximate Bayesian

Computation (ABC) libero dalla scelta del parametri di regolarizzazione o tuning. L’ap-

prossimazione risultante utilizza implicitamente una funzione di pseudo-verosimiglianza

che gode di proprietà di consistenza, grazie anche ad alcuni legami con le distribuzioni

di confidenza e le funzioni di profondità dei dati (data depth).



Nel Capitolo 4, vengono ottenute e discusse tecniche per l’ accoppiamento (coupling)

per algoritmi MCMC su sottovarietà. Queste tecniche, nel contesto degli algoritmi basati

su catene di Markov, costituiscono la base per la derivazione di diagnostiche di conver-

genza e per la possibilità di ottenere stime non distorte a partire da campioni ottenuti

dall’esecuzione di catene parallele. In particolare, descriviamo e proponiamo l’ imple-

mentazione di schemi di coupling basati su riflessione, che favoriscono l’avvicinamento

reciproco delle catene, e meccanismi di coupling che rendono possibile l’incontro delle

catene stesse. Questi ultimi schemi vengono infine ricondotti ed estesi ad un contesto e

ad algoritmi Markov Chain Monte Carlo (MCMC) più generali, in cui il meccanismo di

proposta viene definito complesso, in quanto si articola in più fasi.

Il Capitolo 5 presenta due nuovi algoritmi MCMC sviluppati per campionare distribu-

zioni di interesse definite in Rd. Questi fanno uso di idee derivate da algoritmi MCMC

su sottovarietà, incorporando informazioni geometriche della distribuzione target nel

problema di campionamento in considerazione. In particolare, equazioni specificamente

rilevanti per il problema del campionamento sono utilizzate per definire artificialmente

delle sottovarietà, come il grafico della distribuzione target e le curve di livello della

funzione.

Infine, il Capitolo 6 affronta il problema di effettuare inferenza Bayesiana in presenza

di una distribuzione a priori di tipo matching che risulta intrattabile. L’approccio consi-

derato coinvolge la simulazione su una sottovarietà definita a partire da un’equazione di

stima che coinvolge le derivate della suddetta distribuzione a priori intrattabile. Viene

presentata un’applicazione nel contesto dei test d’ipotesi Bayesiani con e-values in cui

la prior è scelta in modo da garantire le proprietà di invarianza della procedura.
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Introduction

Overview

While crucial for statistical inference, probability distributions and their functionals

often defy simple mathematical expressions. This difficulty arises in various scenarios,

including sampling distributions in finite sampling regimes, conditional distributions

with posterior distributions being a notable example (Barndorff-Nielsen and Cox, 1994;

DiCiccio et al., 1993; Martin et al., 2023). Other cases include statistical models with

intractable likelihood functions, for instance when latent variables are involved or nor-

malization constants depend on complex integrals (Kent, 1982; Ising, 1924). Similar

problems also occur in connection with certain objective prior distributions (Consonni

et al., 2018; Leisen et al., 2020). In such cases, determining the distribution of interest

requires solving complicated partial differential equations. Further challenges arise when

the support of the distribution of interest deviates from the usual Euclidean space. The

lack of regularity conditions may not only lead to poor approximations but also render

some techniques useless.

When it comes to drawing conclusions on high-dimensional, constrained or compli-

cated domains, computer simulations, with Monte Carlo techniques at their core, play

an important role in various statistical paradigms. In this context, a convenient way of

representing models is by means of algorithmic form, also known as a data generating

equation, which can be expressed as follows

y = g(u, θ). (1)

This formulation outlines the process by which the data is generated: the function g(·, ·)
represents a deterministic mapping from the parameter space Θ and the space of random

components U to the observation space or output space Y . The random, unobserved

variables u ∈ U are distributed according to a known probability distribution ρ(u),

which is independent of θ while the nature of θ ∈ Θ and its adherence to a suitable

1
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probability distribution can vary depending on the paradigm used. Upon defining this

structure, simulations can facilitate the recovery of the distribution to be inferred while

the chosen inference paradigm guides the process of elaborating and synthesizing the

information derived from the observation and comparing it with the data yobs. This is

the fundamental premise of simulation-based inference (SBI).

Historically, the representation (1) was first proposed in fiducial inference for group

models and structural inference (Fraser, 1961; Bunke, 1975; Fraser, 2004; Dawid and

Stone, 1982) and is now widely used in the context of generalized fiducial inference

(GFI) (Hannig, 2009; Hannig et al., 2016). The basic concept of GFI is to pair each

input u with parameter estimates θ̂(yobs, u) such that g(u, θ̂(yobs, u)) provides the most

accurate approximation for yobs. In other words, for each potential realization of the

random quantity u, the estimates are defined as θ̂(yobs, u) = arg minθ ∥g(u, θ)∥, with ∥·∥
the L2 or L∞ norm. The operation of combining u, originally assumed to be distributed

with density ρ(u) to θ̂ allows to define a new distribution on u

ψϵ(u) ∝ ρ(u) · I{∥g(u, θ̂(yobs, u))− y∥ < ϵ}, (2)

which is supported on a restricted space. The expression (2) then, for u ∼ ψϵ(u) and as

ϵ→ 0, induces a distribution on θ̂(yobs, u), which is referred to as a generalized fiducial

distribution (GFD) Hannig et al. (2016).

In Bayesian analysis, the relationship between the target posterior distribution and

the form in equation (1) is established by introducing an additional layer, which is given

by the prior distribution π(θ) on the parameter space. Considering the observed data,

the posterior can then be written as

π(θ|yobs) ∝ P{g(u, θ) ∈ Gθ(yobs)|θ}π(θ), (3)

where Gθ(y) = {u ∈ U : g(u, θ) = y} is a section of the data generating manifold, i.e. is

a subset of the data generating manifold for fixed θ and P{g(u, θ) ∈ Gθ(yobs)|θ} can be

recognized as the likelihood function, which is

∫

Gθ(yobs)

ρ(u)

det (∇ug(u, θ)∇ug(u, θ)⊤)1/2
λGθ(yobs)(du),

where λGθ(yobs) is the intrinsic measure of the manifold (for details we refer to Liu et al.,

2022).
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In the frequentist framework, inference on the parameter θ relies on comparing the

sample with all possible outcomes of the model. Thus, the p-value is computed as

p− val(θ, yobs) = P{t(g(u, θ)) > t(yobs)},

where a function of the data t : Rn 7→ R is introduced to reduce the dimensionality of

the problem. A confidence interval of level α can be defined as

ICα(θ, yobs) = {θ : ∃ u | yobs = g(θ, u), t(g(u, θ)) ∈ Bα}, (4)

where Bα is a set such that P{t(g(u, θ)) ∈ Bα} ≥ α.

There are already several established computational methods that make effective

use of representations (3) and (4). A prominent example is the family of Approximate

Bayesian Computation (ABC) algorithms, which focus on approximating posterior dis-

tributions by selecting parameters that yield simulated pseudo-data that closely resemble

the observed data according to certain criteria (Sisson et al., 2018).

Another category of methods for dealing with target distributions, represented in

the forms (3) and (2) are Markov Chain Monte Carlo (MCMC) algorithms tailored

to sampling on submanifolds (Brubaker et al. 2012, Zappa et al. 2018, Graham and

Storkey 2017, Liu et al. 2022). Submanifolds arise, for example, when there is a lack of

relaxation in the comparison between simulations and observed data in ABC, but also

in conditional tests (see for example Diaconis et al. 2013 and Lindqvist et al. 2022).

In these scenarios, the ability to recover the target distribution largely depends on the

convergence of the Markov chains. By combining simulations with other techniques, such

as grid search algorithms, and using representations similar to those of (4), a number

of methods have recently been proposed to perform frequentist inference in non-regular

environments, e.g. in the absence of the likelihood function (Dalmasso et al. 2021, Xie

and Wang 2022, Wang et al. 2022a).

Main contributions of the thesis

The aim of this dissertation is to improve existing methods and introduce new simulation-

based procedures tailored to solve some complex inference problems. Chapter 1 provides

a general introduction to statistical inference based on different paradigms, accompanied

by an overview of Monte Carlo methods and simulation-based inference.

Chapter 2 focuses on general simulation-based strategies for obtaining confidence

distributions, confidence curves and confidence densities in non non regular settings,
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where for instance Bootstrap methods are not directly applicable. Special attention is

paid to the treatment of parameter vectors and nuisance parameters, to ensure invariance

of the procedures under reparametrizations. The developed techniques are studied in the

context of robust methods and estimating equations. Some extensions are considered for

inference with non parametric tests, with probability semi-metrics. Possible applications

are in non-inferiority tests and within the realm of likelihood-free inference.

In Chapter 3, we study a method in the context of Approximate Bayesian Com-

putation (ABC) which is free from the choice of the tuning parameter. The resulting

approximation implicitly uses a pseudo-likelihood that exhibits some consistency prop-

erties, and is linked to link to confidence distributions and data depth functions.

In Chapter 4, we derive and discuss coupling techniques for MCMC algorithms on

submanifolds. They form the basis for the generation of convergence diagnoses and

principal possibilities for the execution of parallel chains. In particular, we describe

probabilistic reflection-contractive couplings and meeting-inducing couplings, placing

the latter in the context of couplings for a broader class of MCMC algorithms with

complex proposal mechanisms.

Chapter 5 presents two novel MCMC strategies developed for sampling generic target

distributions on Rd. These algorithms utilise ideas derived from MCMC algorithms

on manifolds, incorporating geometric information from the target distribution in the

problem at hand. In particular, equations specifically relevant to the sampling problem

are used to define an artificial submanifold, such as the graph of the target distribution

and the contour set.

Finally, Chapter 6 deals with the problem of performing Bayesian inference in the

presence of an intractable matching prior distribution. This involves transitioning to a

manifold characterized by an estimating equation that encompasses the derivatives of the

said intractable matching prior distribution. An application in the context of Bayesian

testing with e-values is presented, where the default prior guarantees the invariance

properties of the procedure.



Chapter 1

Statistical Inference and Monte

Carlo Methods

1.1 Distributions in statistics

A parametric statistical model is defined as a collection of probability distributions,

represented in a general form as

M := {p(y|θ), y ∈ Y , θ ∈ Θ ⊆ R
d},

where y is a random variable in the sample space Y and θ is the parameter of the model

at which the analysis is aimed.

In the context of the model M, the inference process aims to quantify the uncer-

tainty associated with the model’s parameters given an observed sample, yobs. Monte

Carlo (MC) simulations help to assess and understand this uncertainty by generating

an empirical distribution of interest for either y or θ and provide relevant information

for inference.

The aim of this Chapter is to give an introduction to the different formalisms used

in statistical inference, focusing on posterior distributions and confidence distributions.

In addition, we give an overview of MC methods and simulation-based techniques for

approximating these inference distributions.

1.2 Bayesian inference

In Bayesian inference, the process encompasses not solely outlining the model but

also regarding the parameter space Θ as a probability space, thereby specifying an initial

5
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distribution (prior) π(θ) for θ. Subsequently, after collecting data, this distribution gets

updated using Bayes’ theorem to form the posterior distribution

π(θ|yobs) =
p(yobs|θ) · π(θ)

p(yobs)
. (1.1)

In (1.1) p(yobs|θ) = L(θ) is the likelihood function, defined as the probability of the

observed data yobs conditioned on the parameter point θ. Drawing from the principles

of probability theory, this paradigm offers a structured and coherent method to refine

beliefs regarding parameters of interest. Another advantage lies in its ability to easily

convey information. The normalizing constant in the denominator, termed marginal

likelihood, requires an integral computation across the parameter space, that is

∫

θ

p(yobs|θ)π(θ)dθ.

The accessibility of the posterior distribution in a closed form is frequently restricted due

to lack of analytical solution in either the prior, likelihood, or the integral (see among

others Robert et al., 2007) and this aspect prohibits a direct uncertainty quantification

in probabilistic terms, through credible intervals or functionals of the form Eπ[f(θ)].

Monte Carlo methods and simulation-based techniques offer a workaround for de-

riving specific posterior distributions, especially when deterministic approximations as

quadrature methods are become of difficult application in high dimension.

1.3 Confidence Distributions

Within frequentist inference, the concept analogous to the Bayesian posterior distri-

bution is the Confidence Distribution (CD). The CD does not rely on the choice of a

prior distribution, but unlike the Bayesian posterior, its form is not readily derived once

the likelihood is computed. Conversely, it arises through a process grounded in repeated

sampling principle: the uncertainty inherent the parameters is derived comparing ob-

served data with the epistemic ordering of outcomes from the assumed data generating

process p(y|θ), for given θ.

More precisely, a function C(·) = C(y, ·) on Y × Θ → [0, 1] is called a Confidence

Distribution for a parameter θ, if

(i) for each given y ∈ Y , C(y, ·) is a cumulative distribution function on Θ;

(ii) at the true parameter value θ = θ0, C(θ0) = C(yobs, θ0), as a function of the sample

yobs, follows the Uniform(0, 1) distribution.
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A random variable ξ such that

ξ|y = yobs ∼ C(·)

is called a CD random variable and its probability distribution function, called confi-

dence density, is given by ∂C(·)
∂ξ

. The CD random variable represents the uncertainty

in the estimation of the parameter of interest, or can be seen as a random estima-

tor of the parameter of interest. As a consequence of (i) and (ii), if C(θ) is a CD,

[C−1(α/2), C−1(1−α/2)] becomes an equi-tailed 1−α confidence interval. In particular,

a zero-level equi-tailed confidence interval is called the confidence median and denoted

by θ̃. The confidence median is median unbiased, implying that Pθ0(θ̃ > θ0) = 0.5.

Furthermore, this estimator, as well as all equi-tailed confidence intervals are naturally

equivariant under one-to-one reparametrizations.

A generalization of the CD, in cases where the monotonicity condition (i) does not

hold, is given by the confidence curve, cc(θ) = cc(θ, y) (Xie and Singh, 2013; Schweder

and Hjort, 2016). If θ0 is the true parameter point, then the random variable cc(θ0) =

cc(θ0, y) is designed to have a uniform distribution across the unit interval, i.e.

Pθ0(cc(θ0, y) ≤ α) = α, for all α.

Thus confidence intervals can be read off, at each desired level. In regular cases, cc(θ)

can be uniquely linked to a full confidence distribution C(θ) = C(θ, y), via

cc(θ) = |1− 2C(θ, y)| =
{

1− 2C(θ, y), if θ ≤ θ̃

2C(θ, y)− 1, if θ > θ̃.

Solving cc(θ) = 1 − α yields two cut-off points for θ, precisely those of a 1 − α confi-

dence interval. This property allows to extract confidence intervals at any desired level.

Furthermore, the confidence curve allows to identify confidence intervals when they are

given by the union of disconnected regions and is well defined for multidimensional

parameters.

1.3.1 Likelihood-based CDs

The standard theory for CDs evolves around the use of likelihood methods. This

translates into establishing the order within the sample space through the utilization of

data reduction summaries that are pivotal likelihood-based quantities. Under regularity

conditions, the choice of such pivotal quantities simplifies the process of the construction
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of Confidence Distributions and enables making epistemic-probabilistic statements with

well-working large-sample approximations. Consider the partition of the d dimensional

parameter θ = (ψ, λ), where ψ is a scalar parameter for which inference is required and

λ represents the remaining (d−1) nuisance parameters. If ψ̂ is the Maximum Likelihood

Estimator (MLE) of ψ, then the CD derived from the profile Wald statistic,

wp(ψ) =
ψ̂ − ψ√
jp(ψ̂)−1

, (1.2)

with jp(ψ) profile observed information, coincides with the asymptotic first-order Bayesian

posterior distribution for ψ (see e.g. Ruli and Ventura 2021). A pivotal quantity that

can reflect asymmetry and likelihood multimodality in the underlying distributions,

unlike (1.2) is the log-likelihood ratio. Let ℓ(θ) = logL(θ) be the log-likelihood func-

tion for θ, and let ℓp(ψ) = ℓ(ψ, λ̂ψ) be the profile log-likelihood for ψ, where λ̂ψ is the

maximum likelihood estimator (MLE) for λ given ψ. The profile log-likelihood ratio

Wp(ψ) = 2(ℓp(ψ̂)− ℓp(ψ)), under mild regularity conditions, has an asymptotic null χ2
1

distribution. Hence Γ1(Wp(ψ)) ∼̇ Uniform(0, 1), with Γ1(·) denoting the χ2
1 distribution

function, and

C(ψ) =̇ Γ1(Wp(ψ))

is a first-order asymptotic CD. Similarly, the profile likelihood root

rp(ψ) = sign(ψ̂ − ψ)

√
2(ℓp(ψ̂)− ℓp(ψ)) (1.3)

can be used to derive a first-order accurate CD, with error O(n−1/2). Improved CD

inference based on higher-order asymptotics (see, among others, Severini 2000, Reid

2003, Schweder and Hjort (2016, Chap. 7) and Ruli and Ventura 2021). One key

pivotal quantity is the modified profile likelihood root, derived as refinement of (1.3)

r∗p(ψ) = rp(ψ) +
1

rp(ψ)
log

qp(ψ)

rp(ψ)
, (1.4)

where the quantity qp(ψ) is a suitably defined correction term (see, e.g., Severini 2000,

Chapter 9). In practice, r∗p(ψ) allows to obtain asymptotically third-order accurate CDs,

i.e. with error of order O(n−3/2).

In some contexts, the absence of regularity conditions, the presence of intractable
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likelihood functions, or small sample sizes related to the complexity of the model, pro-

hibit the use of asymptotic pivotal quantities, which are not available or may not hold

true. A way to obtain instead approximations of pivotal distributions and related confi-

dence distribution is by relying on computer simulations, as Monte Carlo methods and

resampling techniques.

1.4 Monte Carlo and simulation-based inference

Monte Carlo methods refer to procedures that aims at estimating integrals using

finite samples from stochastic simulations (Devroye, 1985). For a generic quantity of

interest, expressed as an expectation

I =

∫
f(x)π(x)dx = Eπ[f(x)] <∞, (1.5)

if x1, . . . , xR are independent realizations sampled from a distribution with density π,

then the estimator Î = R−1
∑R

j=1 f(xj) converges in probability to I as the number

of stochastic realizations (R) increases. Furthermore, if the variance of I is finite, the

estimator converges almost surely, at rate R−1/2, from the Central Limit Theorem (see

e.g. Robert and Casella 1999).

Using independent realizations is not the sole approach for estimating (1.5). De-

pendent realizations, particularly from Markov chains, can also be employed for this

purpose, and under appropriate conditions the result is validated by the Ergodic The-

orem. This extension gives rise to Markov Chain Monte Carlo (MCMC) methods. De-

spite their asymptotic validity, the determination of the convergence rate of dependent

sampling methods is more complicated. Another important difference between the inde-

pendent and dependent samplers lies in their parallelization potential. For independent

samplers, the process of generating a sample of R replicates can be easily sped up by

executing operations in parallel, while for dependent samplers this is less natural and

requires ad hoc strategies (see e.g. Wang and Dunson 2013, Heng and Jacob 2019,Scott

et al. 2022).

1.4.1 Independent samplers

Inversion generation

The Inverse generation method leverages the definition of the quantile function,

Π−1(u) := inf{Π(x) ≥ u}, i.e. the inverse of the cumulative distribution function



10 Section 1.4 - Monte Carlo and simulation-based inference

(CDF), to transform uniform random variables into variables following the desired dis-

tribution Π. If u ∼ Uniform(0, 1), then x = Π−1(u) ∼ π. This method represents a

basic form of an algorithmic model of form y = g(u, θ), in which the function g is re-

placed by the quantile function. Thanks to its generality, it allows easily sampling from

univariate distributions, while extending this method to the multivariate case is possible

in a limited number of problems, since it requires the complete knowledge of the CDF.

Rejection sampling

The Accept-Reject method, or rejection sampling, relies on a instrumental distribu-

tion with density π̃ to obtain samples from π. In its simplest form, Accept-Reject is

rooted in the observation that the density π can be obtained marginalizing a uniform

random variable in the the interval [0, π(x)]:

π(x) =

∫ π(x)

0

du.

Thus, sampling uniformly (u∗, x∗) and choosing x∗ s.t. u∗ ∼ Uniform(0, π(x)) produces

marginally samples with density π. If instead of sampling uniformly in the space, an

instrumental distribution π̃ is chosen, the target can be written as

π(x) ∝
∫ Mπ̃(x)

0

π̃(v)dv,

provided that Mπ̃(x) ≥ π̃(x) for all x. The pseudo-code for this method is presented in

Algorithm 1. Despite this method can be used to sample in d-dimensional space, it be-

comes inefficient in high dimensions due to the complexity of covering the distribution’s

support.

Algorithm 1 Accept-Reject Algorithm

Input: target density π, instrumental density π̃, M s.t. Mπ̃(x) ≥ π̃(x)

for j in 1, . . . , R do

Sample x ∼ π̃ and u ∼ Uniform[0, 1]

if u ≤ π(x)/Mπ̃(x) then accept x

else reject

end if

end for
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Importance sampling and resampling

Importance sampling (Kahn and Marshall, 1953) involves generating independent

random variables from an instrumental distribution π̃ and construct estimates for the

test function (1.5) based on a weighted sample. The validity of the technique can be

shown by rewriting the integral (1.5) as

I =

∫
f(x)

π(x)

π̃(x)
π̃(x)dx,

where π̃(x) is any density function dominating π(x). Note that importance sampling

does not yield a sample directly distributed from π(x). Nevertheless, it is possible to re-

sample values from the instrumental distribution with multinomial weights proportional

to the ratio π(x)
π̃(x)

the original sample from the instrumental distribution. This further

step is called Importance resampling and is the basis of advanced techniques as Sequen-

tial Monte Carlo (Chopin, 2002; Del Moral et al., 2007; Chopin and Papaspiliopoulos,

2020; Dai et al., 2022).

1.4.2 Dependent samplers

Dependent samplers relate to Markov Chain Monte Carlo (MCMC) algorithms. The

fundamental idea behind this class of algorithms is to design a Markov chain, (xt)t∈N,

i.e. a sequential processes where the future state depends solely on the present state,

that converges in the time limit of the sequence, t→∞ to the target distribution π(x).

We recall some basic properties and conditions to ensure that the dependent sample

drawn from a Markov chain can be used to estimate functions of type (1.5); for more

details we refer to Robert and Casella (1999).

Markov chains

A Markov kernel on a topological space X is defined as a function K : X ×B(X )→
[0, 1], where K(x, ·) ∈ B(X ) for all x ∈ X and K(·, A) is a measurable function for

every A ∈ B(X ). A sequence of random variables (xt)t∈N, represents a Markov chain

with transition kernel K on X if P (xt+1 ∈ A|x1, . . . , xt) = P (xt+1 ∈ A|xt) = K(xt, A)

for all t ∈ N and A ∈ B(X ). If the transition kernel is the same for all t, the chain

is said homogeneous. The evolution of homogeneous Markov chains can be completely

described by the initial distribution π0, and their Markov kernel K.

A necessary condition for a transition kernel K to have π as a limiting distribution

is that π serves as an invariant or stationary distribution of K, that writes as π(A) =
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π(K(A)) =
∫
X
K(x,A)π(dx) for all A ∈ B(X ). A condition which is easier to verify

is the detailed balance condition, which implies that the Markov chain is reversible,

K(x, dy)π(dx) = K(y, dx)π(dy), where also y ∈ X . The reversibility of a transition

kernel K with respect to π implies that K has π as an invariant distribution, although

the converse statement is not generally true. Finally, for the invariant distribution being

unique, a chain must be irreducible, aperiodic and positive recurrent.

A chain is irreducible if starting at any point in X, there is a non-zero probability

of moving to any set with positive measure, after a finite number of steps, i.e. there

exists t such that Kt(x,A) > 0 for all x ∈ X and for every A ∈ B(X) such that

the set (A) is of positive probability under a dominating measure, where Kt(x,A) =
∫
Kt−1(y, A)K(x, dy). A chain is aperiodic if state transitions do not occur in a strictly

periodic manner, i.e. there do not exist cyclically ordered s > 1 subsets of X , such that

K(Ai, Aj) = 1, j = i+1 ≤ s and K(As, A1) = 1. An irreducible Markov chain is said to

be recurrent if for every set A ∈ B(X), of positive measure E[⊮Xt∈A] = ∞. Moreover,

if the expected first return time to A is finite, the chain is said positive recurrent.

For a Markov chain (xt) which is aperiodic, positive recurrent and has π as an

invariant distribution, a CLT, called Ergodic Theorem, applies:

1

N

N∑

t=1

f(xt) −−−→
N→∞

I,

with I defined in (1.5), with asymptotic variance given bu

v(K, f) = Varπ(f(X0)) + 2
∞∑

t=1

Covπ(f(X0), f(Xt)) (1.5),

where the subscript π stands for X0 ∼ π. This well-known expression results from

simple calculations of limt→∞ varπ(T−1/2
∑T−1

t=0 f(Xt)).

1.4.3 Markov Chain Monte Carlo

Metropolis-Rosembluth-Teller-Hastings (MRTH)

The Metropolis-Hastings algorithm, as introduced by Metropolis et al. (1953), and

further elaborated by Hastings (1970), operates by iteratively proposing new states for

the Markov chain via a proposal distribution q(x, dy) in form of a Normal centered at

the current state and accepting these proposals with a carefully computed acceptance

probability, α that involves the ratio of the target density at proposed and current states

and the ratio of the proposal distributions from and to the states as summarized in the
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pseudo-code of Algorithm 2. The transition kernel related to the procedure can be

written as

K(x, dy) = α(x, y)q(x, dy) + (1− α′(x))δx,

where α′(x) =
∫
X
α(x, y)q(x, dy) and δx is a Dirac at x.

Algorithm 2 Metropolis-Rosembluth-Teller-Hastings algorithm

Input: starting value x(0), proposal q(, dx),target distribution π(x)

for j in 1, . . . , R do

Sample x∗ ∼ q(x(j−1), dx∗), u ∼ Uniform(0, 1)

Compute the acceptance probability α(x, x∗) = min
(

1, π(x∗)q(x∗,dx(j−1))

π(x(j−1))q(x(j−1),dx∗)

)

if u ≤ α then

x(j) = x∗

else x(j) = x(j−1)

end if

end for

Algorithm 2 can be extended to use other acceptance probabilities (see e.g. Barker 1965,

Tierney 1998, Andrieu et al. 2020).

Gibbs sampler

The Gibbs sampler is a widely used technique for sampling from high-dimensional

distributions (Verdinelli and Wasserman, 1991; Carlin and Gelfand, 1991). The idea is

to separate blocks of components of the state space and update each of them, fixing the

current values of the other components by exploiting the conditional distributions. It

is therefore necessary to define a partition of variables and the corresponding tractable

conditionals.

Depending on how the parameter space is partitioned, several Gibbs samplers can

be defined for the same target distribution. A popular variant of the Gibbs sampler is

the Metropolis-in-Gibbs method, in which some (or all) of the conditional updates are

replaced by MRTH proposals and acceptance steps with a single block of components. If

the partition of the blocks consists of singlets, as in algorithm 3, these are often referred

to as full conditionals.
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Algorithm 3 Gibbs sampling algorithm (systematic scan)

Input: starting value x(0) = (x
(0)
1 , . . . , x

(0)
d ), target distribution π(x)

for j in 1, . . . , R do

Sample x
(j)
1 from π(x1|x(j−1)

−1 )

for k = 2 to d do

Sample x
(j)
k from π(xk|x(j)−k)

end for

end for

Slice sampler

The slice sampler was introduced by Neal (2003) and serves for sampling from a

target distribution without rejecting values, similarly to the Gibbs sampler. It operates

in two steps: first, given a current state xt, a random height ut is chosen uniformly

from the interval [0, π∗(xt)], where π∗(xt) represents the value of the (un-normalized)

target distribution at xt. This height creates a horizontal plane on the graph of the

target distribution. Subsequently, within the region under the hyperplane at height

π∗(xt), a new point xt+1 is sampled uniformly from the region where π(xt+1) ≥ π(xt),

see Algorithm 4.

Algorithm 4 Slice sampler

Input: current state xt, target distribution π(x)

for j in 1, . . . , R do

Sample uj ∼ Uniform[0, π(xj)].

Define Sj = {x : π(x) ≥ uj}.
Sample xj+1 uniformly in Sj.

Update xj to xj+1

end for

Metropolis adjusted Langevin Algorithm

The Metropolis-adjusted Langevin Algorithm (MALA), pioneered by Ermak (1975)

and Doll and Dion (1976) integrates the Langevin dynamics proposal into the Metropolis-

Hastings framework with the goal of proposing new states that match the local geom-

etry of the target distribution and aid in the efficient exploration of high-dimensional

spaces (see also Roberts and Tweedie, 1996). This involves leveraging gradient in-

formation from the log-target distribution, to obtain a proposal kernel of the form

q(x, dy) = Normal(x+ 1
2
σ∇ log π(x), σ2), to be used in Algorithm 2.
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Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 1999; Betancourt et al.,

2017) represents an advanced MCMC technique that leverages Hamiltonian dynamics

to move and explore the space of interest. HMC introduces an auxiliary variable for

each parameter, called the velocity, v, creating a joint system with potential and kinetic

energy functions. This results in the Hamiltonian function:

H(x, v) = − log π(x) +
vTM−1v

2
,

where M is the Hamiltonian mass matrix associated with the target distribution π.

The system evolves according to Hamilton’s equations:

dx

dt
=
∂H

∂v
=
∂H

∂v
= M−1v,

dv

dt
= −∂H

∂x
=
∂ log π(x)

∂x
.

Throughout this evolution, the total energy of the system, as governed by the Hamilto-

nian equations, remains constant, thus adhering to the principle of energy conservation,

while the determinant of the transformation is 1, thus the distribution exp{−H(x, v)}
is preserved, and consequently π(x). In practice, the integration is performed numer-

ically, for a discretization step, η, called timestep. The resulting position xK after K

integration steps is used as a candidate proposal for the next state of the chain, before

being accepted or rejected according to a Metropolis-Hastings type of mechanism. The

mechanism for generating a proposal, using the leapfrog integrator, is summarized in

Algorithm 5.
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Algorithm 5 Hamiltonian Monte Carlo with leapfrog integrator

Input: Current state x, potential H(x), timestep η, leapfrog steps K.

for j in 1, . . . , R do

set x1 = xj

Sample v ∼ Normal(0,M)

Simulate the Hamiltonian dynamics for k ≤ K using the leapfrog integrator:

xk+1 = xk + ηvk −
η2

2
∇H(xk)

vk+1 = vk −
η

2
∇H(xk)−

η

2
∇H(xk+1),

Use xK as the proposal for the next state of the Markov chain.

end for

1.4.4 Couplings of Markov chains

A coupling of two distributions π and π̃ refers to a joint distribution Γ(π, π̃) that

preserves π and π̃ as its marginals. Coupling methods in the MCMC context have

historically played a fundamental role in the study of theoretical convergence properties.

A key concept to describe convergence is the distance of total variation (TV). The TV

distance between distributions π and π̃ is defined as

∥π − π̃∥TV = sup
A
|π(A)− π̃(A)|,

and corresponds to the maximum difference in probabilities assigned to any event by

the distributions π and π̃. It can also be expressed as follows:

∥π − π̃∥TV = inf
(x,y)∈Γ(π,π̃)

{P (x ̸= y)} , (1.6)

where the infimum is reached in accordance with the maximum coupling, i.e. a coupling

Γmax(π, π̃) where the probability that P{x = y} when x ∼ π and y ∼ π̃ is maximum.

Couplings for Markov chains involves creating a joint (Markovian) process (xt, yt), where

xt and yt represent states of the chains at time t, and where the process evolves such

that the marginal chains target the assigned distributions (π, π̃). A coupling is successful

when there exists a random variable τ ≥ 1 such that xt = yt for t ≥ τ , indicating that

the chains meet and remain together or faithful after meeting. From a practical point of

view, couplings can also be implemented and provide useful and versatile methodolog-

ical tools for monitoring convergence and for post-processing MCMC outputs. Among
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others, Jacob et al. (2020) have shown how to successfully construct coupled kernels for

various MCMC algorithms for which meeting time τ has a finite expected value.

Unbiased estimator

One potential application of constructing couplings for MCMC algorithms is to com-

pute an unbiased estimate of a functional, as described in Equation 1.5. This possibility

was demonstrated by Glynn and Rhee (2014). Writing the expectation as a telescopic

sum, for all k ≥ 0,

Eπ[f(x)] = lim
t→∞

E[f(xt)] = E[f(xk)] +
∞∑

j=1

E[f(xk+jL)− f(xk+(j−1))],

since for all t ≥ 0, xt and yt have the same distribution, the equivalence can be ex-

pressed as

E[f(xk)] +
∞∑

j=1

E[f(xk+j)− f(yk+(j−1))].

Finally, by exchanging of the expectation and the limit,

E

[
f(xk) +

∞∑

j=1

(f(xk+j)− f(yk+(j−1)))

]
, (1.7)

for which it is natural to derive an unbiased estimator from two coupled chains, xt and

yt, run for a finite time. Indeed, for t > τ the contributions in the sum (1.7) will be

null.

Convergence

A second important result on couplings of Markov chains is related to convergence

diagnostics. Under suitable assumptions, exploiting triangular inequalities from 1.6

Biswas et al. (2019) show

∥πt − π∥TV ≤ E

[
max

(
0,

⌈
τ − ℓ− t

ℓ

⌉)]
,

where ℓ denotes a delay between coupled chains and ⌈x⌉ denotes the smallest integer

greater than or equal to x. These upper bounds yield estimates for the total variation

distance and can be extended to also bound the 1-Wasserstein distance.
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Asymptotic variance estimation

Consider a function of interest f and a function g that satisfies the equation (I −
K)g = f − π(f), where K is the Markov operator and I is the identity. If f and g

belong to L2(π), the following relations hold with the asymptotic variance v(K, f) of a

Markov chain,

v(K, f) = Eπ[(g(x)−Kg(x0))
2] = 2π((f − π(f)) · g)− π((f − π(f))2) = (1.8)

= −v(π, f) + 2π((fπ(f)) · g). (1.9)

where v(π, f) is the variance of the function f for x ∼ π. In particular, considering as the

g function g =
∑∞

t=0K
tf(xt) −Ktf(yt), which can be estimated by ĝ =

∑τ−1
t=0 f(xt) −

f(yt), with xt and yt coupled chains, and combining it in (1.8) with an estimator of

π(f), one can derive the estimator of the asymptotic variance, as shown by Douc et al.

(2022).

1.5 Resampling methods

Bootstrap procedures were first introduced in 1979 by Efron (Efron, 1979). This

resampling-based methodology offers a potent way to quantify uncertainty under the

frequentist framework, even when traditional assumptions about data distribution are

uncertain or violated. Bootstrap methods are particularly valuable for scenarios involv-

ing skewed data, distributions with heavy tails, or cases where the sampling distribution

is unknown. The core idea is the following: instead of relying solely on the observed

data, bootstrapping involves repeatedly resampling the original data with replacement.

This creates numerous simulated datasets, each representing a plausible alternative to

the original sample. By examining how a statistic of interest varies across these Boot-

strap samples, it is possible to gain insights into its sampling distribution and construct

confidence intervals, perform hypothesis tests, and more. The procedure is characterized

by two key phases, the first of which is the actual bootstrapping phase.

1. Resampling - Bootstrapping: A significant number of Bootstrap samples are

drawn from the observed data set using a resampling mechanism.

2. Statistic Computation: For each Bootstrap sample generated, the statistic of

interest is calculated. This statistic can include measures of central tendency,

dispersion or parameter estimates for the model under consideration.
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When iteratively computing statistics of interest for these synthetic datasets, the goal is

to approximate the true sampling distribution associated with these specific statistics.

The final approximation is called the Bootstrap distribution, which in turn functions as

an approximate confidence distribution. Bootstrap procedures can be divided into two

main families depending on how the resampling phase is performed: non-parametric

and parametric methods. The choice between these two families of Bootstrap meth-

ods depends on the specific characteristics of the data and the analytical goals, with

parametric Bootstrap offering the advantages of complete model-based inference and

non-parametric Bootstrap excelling for more flexible and distribution-free settings.

1.5.1 Non-parametric Bootstrap

The non-parametric Bootstrap makes no a priori assumptions about the underlying

data distribution. It is a model-free approach that relies solely on the observed data.

and is basically quite simple and at the same time profound and versatile. It involves

the crucial step of generating numerous surrogate datasets through resampling with

replacement from the observed data, see Algorithm 6. This process mimics the stochastic

nature of sampling and captures the inherent variability of the data. The elegance of

the non-parametric Bootstrap lies in its ability to transform empirical data into a self-

contained universe of possible realizations.

Algorithm 6 Non-Parametric Bootstrap

1: Input: Observed data yobs = {y1, y2, . . . , yn}, number of resamples B.
2: for b = 1, 2, . . . , B do
3: Create a Bootstrap dataset y∗b by sampling from yobs with replacement n obser-

vations.
4: end for
5: return Bootstrap samples y∗1, y

∗
2, . . . , y

∗
B.

1.5.2 Parametric Bootstrap

The Parametric Bootstrap method operates under the foundational assumption that

a specific parametric model characterizes the data under observation. In the parametric

Bootstrap, the first step involves the estimation of model parameters based on the

observed data. In the context of the assumed model p(y|θ), the parametric Bootstrap

replaces the empirical distribution function with the plug-in estimator p(y|θ̂), where

θ̂ = θ(y1:n) generally represents the maximum likelihood estimator (MLE). Apart from

this modification, the technique is very similar to its non-parametric counterpart in all
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other aspects. Resampling is then performed from the fitted model using the estimated

parameters, as summarised in Algorithm 7. This approach is advantageous when prior

knowledge or theoretical considerations justify the assumption of a particular parametric

distribution. The choice of the specific statistic of interest for deriving the Bootstrap

Algorithm 7 Parametric Bootstrap

1: Input: Observed data yobs, parametric model p(y|θ), number of resamples B
2: Estimate the parameters of the parametric model using the original data: θ̂ =

arg maxθ L(θ|yobs), where L(θ|yobs) is the likelihood function.
3: for b = 1, 2, . . . , B do
4: Create a Bootstrap resample y∗b ∼ p(y|θ̂), where p(y|θ̂) is the fitted distribution
5: end for
6: return Bootstrap resamples y∗1, y

∗
2, . . . , y

∗
B

distribution has an impact in determining the precision and accuracy of the inference

results, nonetheless these are influenced by the model and the underlying population

distribution.

1.5.2.1 Improved Bootstrap

The selection of specific statistics, such as pre-pivoted quantities or bias-corrected

versions of the Bootstrap, can yield confidence intervals with superior properties com-

pared to standard percentile-based intervals, obtained by Bootstrap resamples. The

common idea behind the construction of improved intervals is based on the observa-

tion that the percentile Bootstrap intervals have higher precision when the estimate has

symmetric distribution properties.

t-Bootstrap. Let ψ denote the scalar parameter of interest, ψ̂ the estimate de-

rived from the original sample, and ψ̂∗ an estimate obtained after Bootstrap resam-

pling. Consider a monotone transformation of the parameter ψ 7→ m(ψ) and let

q(ψ, y) = (m(ψ) − m(ψ̂))/τ̂ an approximate studentized-pivot, where and τ̂ is a suit-

able estimate of the pivot standard deviation. Let Q(·) be the distribution function

of q(ψ, x). Then, a confidence distribution for the parameter of interest is C(h(ψ)) =

Q
(

(m(ψ)−m(ψ̂))/τ̂
)

. When Q(·) is unknown, it can be estimated via bootstrapping.

Let m(ψ∗) and τ̂ ∗ be the result of bootstrapping, then the Q(·) distribution can be

estimated as Q̂, via bootstrapped values of q∗ = q(ψ∗, x∗) = (m(ψ) −m(ψ̂∗))/τ̂ ∗. The

approximate CD is then

Ct−boot(ψ) = Q̂

(
m(ψ)−m(ψ̂)

τ̂

)
.



Chapter 1 - Statistical Inference 21

This Bootstrap method applies even when q(ψ, y) is not a perfect pivot, but is especially

successful when it is, because q∗ then has exactly the same distribution Q(·) as q(ψ, x).

Bias correction. Define KB[x] := P{ψ̂∗ ≤ x}, where P represents probability condi-

tioned on the observed sample. A uncorrected 1 − α lower confidence interval derived

from the Bootstrap can be obtained as ψL = K−1
B [α]. Indeed, suppose there exists a

monotone increasing transformation m such that ϕ = m(ψ) follows a normal distribu-

tion centered around m(ψ̂ + z0). This normal distribution can be used to construct

an unbiased confidence interval, subsequently adjusted through a back-transformation

to achieve an almost-unbiased confidence interval. Given such an m, the 1 − α lower

confidence bound for ψ becomes ψmL = m−1(m(ψ̂)+z0 +zα), with zα denoting the α-th

percentile of a standard N(0, 1) distribution, where z0 is termed the ”bias” associated

with m. For KB defined as above,

KB[ψ̂] = P{(m(ψ̂∗)−m(ψ̂) + z0) ≤ z0} = Φ(z0),

with Φ denoting the standard Normal distribution. Consequently, z0 = Φ−1[KB[ψ̂]].

Furthermore, for any 0 < α < 1,

1− α = Φ(−zα) = P{(m(ψ̂∗)−m(ψ̂) + z0) ≤ zα} = P{ψ̂∗ ≤ m−1(m(ψ̂)− z0 − zα)}.

Similarly, K−1
B [α] = m−1(m(ψ̂) − z0 − zα). This imply that a Bootstrap bias corrected

(BC) confidence distributions is obtained back-transforming a standard normal z,

CDBC-boot = K−1
B [Φ[2z0 + z]].

While the error in Bootstrap confidence intervals is in most cases Op(n
−1), it becomes of

order Op(n
−3/2) with bias correction procedures and for t−Bootstrap (see Diciccio and

Romano 1988, DiCiccio and Efron 1996 and Chapter 7 of Schweder and Hjort 2016). .

1.5.3 Permutations

The Non-parametric Bootstrap method exhibits a close alignment with the concept of

permutations, introduced by Fisher (Fisher, 1936) and further developed since then (Pit-

man, 1937, see e.g.). In permutation tests, data points are systematically rearranged in

all enumerable ways to assess the variability in the statistic of interest. Non-parametric

bootstrapping and permutations, are grounded in the same fundamental principle of

empirical data resampling, offering a means to explore and quantify uncertainty with-

out necessitating stringent parametric assumptions. These methods share a model-free
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nature, meaning that their resampling procedures don’t rely on specific parametric as-

sumptions. This shared core concept underscores their versatility and wide applicability

in a diverse array of statistical analyses.

A crucial distinction among the two methods is that Bootstrap tests rest upon the

foundational assumption of independence among observations. Conversely, permutation

tests adopt the less strict assumption of exchangeability. Thus, dependencies among ob-

servations are permitted, provided that the order of observations can be freely rearranged

without affecting the essential statistical characteristics of the dataset. In asymptotic

regime, permutation tests exhibit higher power than the non parametric Bootstrap, of-

ten equivalent to that of the most powerful parametric test Albers et al. (1978). For a

broader discussion, which goes beyond the scope of the introductory Chapter, see Good

(2004), Pesarin and Salmaso (2010) and references therein.

1.5.4 Monte Carlo beyond tractable models

Monte Carlo methods and Markov Chain Monte Carlo (MCMC) techniques are not

exclusively confined to Bayesian inference when sampling posterior distributions. They

also prove invaluable in scenarios where directly evaluating the likelihood of the model

is intractable. This situation arises, for example, when the distribution assumed for the

data is known only up to a normalizing constant, a value that is parameter-dependent.

In such scenarios, Monte Carlo methods can be used to obtain point estimators and

p-values.

In this context, Simulation-based inference and Likelihood-Free Inference approaches

have arisen as a fundamental suite of techniques for models where it is possible to gener-

ate simulations y ∈ Y at various parameter values θ ∈ Θ. This field has experienced sig-

nificant expansion in recent times.These methods emphasize leveraging the same process

responsible for producing observed data to generate pseudo-observations across various

parameter and aim to approximate posterior distributions when computing the proba-

bility density function of the model is either computationally infeasible or intractable. In

particualr, two primary families of approaches have been delineated within this domain:

Synthetic Likelihood, which directly formulates a likelihood function, and Approximate

Bayesian Computation (ABC), that relies mainly on measuring the difference between

simulated and observed data. In the following sections, we will provide a more detailed

description of these distinct approaches.
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MCMC for p-values

Besag and Clifford (1989) describes simulation-based methods for generating p-values

within a MCMC procedure. The ”parallel runs method” or ”hub-and-spoke” (Barber

and Janson, 2022) consists of running a reversible Markov chain backward from a state

x(1) for r steps using the transition kernel Q, leading to x(0). Then, starting from x(0), the

chain is run forward for r steps, and this process is repeated m− 1 times independently

to obtain states x(2), . . . , x(m) that are referred to as contemporaneous to x(1). These

states (x(1), . . . , x(m)) have an exchangeable joint distribution, π. Therefore, the p-values

are calculated under the assumption that x(1) comes from π. The rank of u(1) among

u(1), . . . , u(m) (where u = u(x) is a test statistic function of x) is uniformly distributed,

which allows the calculation of the standard p value. The parameter r must be chosen

sufficiently large to effectively explore the state space.

A second method, called ”serial run method” was also introduced: let x(1) be a

random draw from π. In this case, a chain with a stationary distribution π is created and

observations y(1), . . . , y(m) are made at intervals of r steps, running the chain backward

and forward. These observations are converted into values u(y(1)), . . . , u(y(m)), which

represent the test statistic. To create a legitimate p-value, the goal is to place u(x(1))

at the dth position, where d is randomly drawn from a uniform distribution between 1

and m. If u(y(d)) = u(x(1)), then, marginally over d (but not conditionally), the rank

of the observed test statistic m values would be uniformly distributed. This observed

rank can be used as a valid p-value. In practice, this involves sampling d first and then

running the chain forward from y(d) = x(1) to obtain y(d+1), . . . , y(m), and running it

backward to obtain y(d−1), . . . , y(1).

Monte Carlo MLE

The Monte Carlo maximum likelihood estimation (Geyer, 1991), aims to find the

maximum likelihood estimate (θ̂) when the likelihood function, p(yobs|θ) = h(yobs|θ)
c(θ)

. is

intractable for the presence of a normalizing constant, c(θ), defined as c(θ) =
∫
h(y; θ)dy,

which, together with its derivatives, cannot be calculated. The estimation is performed

by maximizing the ratio:

θ̂ = arg max
θ∈θ

(
ln

(
h(y(0)|θ)
h(y(0)|θ̄)

)
− ln

(
c(θ)

c(θ̄)

))
,
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where the following empirical mean can be used to approximate the ratio of the nor-

malizing constant
c(θ)

c(θ̄)
≈ 1

m

m∑

t=1

h(y(t); θ)

h(y(t); θ̄)
.

The latter estimator is recognizably based on importance sampling.

Indirect inference

One of the initial attempts to address inferential problems in absence of the likeli-

hood function can be traced back to Gourieroux et al. (1993) and it revolves around

the utilization of an auxiliary model denoted as M∗(ϕ), where ϕ represents an aux-

iliary parameter. The procedure involves fitting this auxiliary model to the data to

obtain a point estimator, denoted as ϕ̂. Subsequently, a binding function ϕ(θ) con-

necting the original and auxiliary models is considered, and this mapping is estimated

through simulation. This entails performing the following iterative process: for a given

grid of parameter values (θj ∈ Θ), R datasets are simulated and auxiliary models are

subsequently estimated. The outcomes of these model fittings for the same θj are then

averaged, resulting in ϕ(θj) = R−1
∑R

r=1 ϕr(θj). To draw inferences, the aim is finding

the parameter value within the grid that is most likely to have generated our estimated

model. In other words, the parameter, θ̂ that minimizes a loss function, typically the

Mahalanobis distance. The complete procedure is reported in Algorithm 8

Algorithm 8 Indirect Inference

Input: grid of values θj, j = 1, . . . , J

for j in 1, . . . , J do
for r = 1 to R do

Simulate dataset r
Compute ϕ̂r(θj)

end for
Compute ϕ(θj) = 1

R

∑R
r=1 ϕ̂r(θj)

Compute θ̂ = argmin
j

D(ϕ(θj), ϕ̂)

end for

Variants, based on different estimators for θ̂ were suggested by Smith Jr (1993) and

Gallant and Tauchen (1996), see (Sisson et al., 2018, Chapter 7) for a review.

Approximate Bayesian Computation

ABC algorithms (Rubin 1984, Tavaré et al. 1997, Marin et al. 2012) operate by

sampling values from the parameter spaces and focusing on values that are able to
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generate simulated data close enough to the observed data. Commonly, a distance

function which involves a set of summary statistics to reduce the dimensionality of

observed and simulated data is employed for this comparison and the summary statistics

are assumed to be informative for the model. Parameter values porposed are accepted

if the distance is such that δ(t(y∗), t(yobs)) < ε, for small ε. Parameter values otherwise

are rejected. The resulting sample of θ∗ obtained is drawn from an approximation of

the posterior distribution π(θ|y), given by

πABC
rej (θ|y) =

π(θ)p(t(y)|θ)Iδ(t(y),t(yobs))<ε∫
Θ
π(θ)p(t(y)|θ)Iδ(t(y),t(yobs))<εdθ

,

Variations and extension of the rejection sampler, based on techniques like Markov

Chain Monte Carlo (Marjoram et al., 2003), Sequential Monte Carlo (Toni et al., 2009;

Del Moral et al., 2012), Gibbs-type Clarté et al. (2021) allow to achieve lower ε values

with the same computational resources.

The resulting posterior inference depends on three types of errors or approximations:

the finite number of simulations, the amount of tolerance ε together with the associated

distance δ and finally the non-sufficiency of the summary statistics. To minimize the

loss of information, one can gradually include additional elements in the set of summary

statistics, such as higher order sampling moments (Fearnhead and Prangle, 2012). How-

ever, the increased number of summary statistics leads to the curse of dimensionality in

the evaluation of distances (Blum et al., 2013).

Recent alternatives to the evaluation of summary statistics are based on the direct

comparison of distributions by distance metrics (Bernton et al., 2019; Legramanti et al.,

2022) or divergence estimators derived by adversarial learning (Wang et al., 2022b). .

Bayesian synthetic likelihood

The use of synthetic or surrogate likelihood (SL) functions for summary statistics

represents an alternative to ABC, as introduced in Wood (2010) and further study in

Price et al. (2018). This approach aims at approximating the likelihood function of

the summary statistics by repeatedly simulating R independent samples from the same

parameter θ∗, and fitting a multivariate Gaussian density, obtaining µ̂(θ), Σ̂(θ) as the

sample moments of t(y∗). The approximated posterior has form

πSL(θ|y) =
π(θ)N(t(y)|µ̂(θ), Σ̂(θ))∫

Θ
π(θ)N(t(y)|µ̂(θ), Σ̂(θ))dθ

.
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The challenge posed by the curse of dimensionality in ABC, when dealing with dis-

tances computed in high dimensions, is somewhat alleviated by introducing a parametric

form for the likelihood function. Non parametric alternatives approaches, that use kernel

density estimation instead of the Gaussian fit can be more accurate than the SL when

the summary statistics are low-dimensional, but tend to get worse as the dimension

increases, see also Grazian and Fan (2020) and Drovandi and Frazier (2022).
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Confidence distributions computing

Simulation-based inference (SBI) plays a central role in modern computational statis-

tics and across various scientific disciplines. This heightened interest can be attributed

to the use of generative models, which aim to simulate data from complex mechanisms,

as stochastic differential equations in epidemiological models or in ecology studies. In

such cases, the data generating process defines the probabilistic model and in turns the

likelihood function only implicitly. This restricts the application of statistical inference

methods reliant on direct likelihood evaluation, hence why this setup is also referred to

as likelihood-free inference (LFI).

The cornerstone of SBI is Monte Carlo simulation, which declinates, depending on

the specific problem at hand into various techniques such as Bootstrapping (Efron 1979,

DiCiccio and Efron 1996, Efron 2003) and permutation methods (Anderson and Robin-

son, 2001), Sequential Monte Carlo and Particle Filters (Chopin and Papaspiliopoulos,

2020, e.g.), Approximate Bayesian Computation (ABC) (Beaumont et al. 2002, Marin

et al. 2012), Indirect Inference (II) (Gourieroux et al. 1993, Genton and Ronchetti 2003),

Synthetic likelihood (Wood 2010, Price et al. 2018, An et al. 2020), Certain techniques,

such as non-parametric Bootstrap and permutations, are essentially model-free. In con-

trast, others are fundamentally model-based.

This Chapter discusses the construction of confidence distributions, confidence curves

and confidence densities with finite coverage properties through the use of simulation

methods. The use of simulations avoids the need to rely on approximations of pivotal

quantities and thus on asymptotic assumptions about the size of the data. The method

is simple and can be applied to both regular models and less regular situations as it is

likelihood-free.

27
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We discuss some issues such as the choice of summary statistics, invariance under

reparametrizations, covering cases with a scalar parameters of interest as well as sce-

narios with nuisance parameters and parameter vectors.

2.1 Confidence distributions, curves and densities

computing

Confidence distributions (Xie and Singh 2013, Schweder and Hjort 2016, Hjort and

Schweder 2018) are a complete tool for performing frequentist inference, as they can

summarize all inference results for a parameter of interest based on an assumed para-

metric model. They provide point estimates and allow the assessment of their accuracy

for testing hypotheses. Similar to posterior distributions of the Bayesian framework,

confidence distributions convey the set of confidence intervals at an arbitrary level, and

include all intervals that hold the specified confidence level, along with measures of ev-

idence for fixed intervals in parameter space, and finally allow comparison of inference

results for the parameter of interest with results from multiple analyses.

Consider a sample y = (y1, . . . , yn) of size n from a random variable Y with assumed

parametric model f(y; θ), indexed by a d−dimensional parameter θ. Let θ = (ψ, λ),

where ψ is a scalar parameter of primary interest and λ represents the remaining (d−1)

nuisance parameters. A recent definition of a confidence curve cc(ψ) = cc(ψ, y) for ψ can

be found, among others, in Xie and Singh (2013). Let θ0 = (ψ0, λ0) the true parameter

point. Then, the random variable cc(ψ0) = cc(ψ0, Y ) should have a uniform distribution

on the unit interval and

Pθ0(cc(ψ0, Y ) ≤ α) = α, for all α.

Thus confidence intervals can be read off, at each desired level. When α tends to zero

the confidence interval tends to a single point, say ψ̃, the zero-confidence level estimator

of ψ or confidence median. In regular cases, cc(ψ) is decreasing to the left of ψ̃ and

increasing to the right, in which case the confidence curve cc(ψ) can be uniquely linked

to a full confidence distribution C(ψ) = C(ψ, y), via

cc(ψ) = |1− 2C(ψ, y)| =
{

1− 2C(ψ, y), if ψ ≤ ψ̃

2C(ψ, y)− 1, if ψ ≥ ψ̃.

With C(ψ) a CD, [C−1(α/2), C−1(1− α/2)] becomes an equi-tailed confidence interval
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of level 1 − α. Also, solving cc(ψ) = 1 − α yields cut-off points for ψ, identifying the

extremes of a 1−α confidence interval. Finally, by differentiating the CD, the confidence

density, cd(ψ) is obtained, where also point estimators can be easily read off, see Figure

2.1 for an illustration.

A general recipe to derive a CD is based on the inversion of a pivotal quantity. Sup-

pose q(ψ; y) is a monotone increasing function in ψ, with a distribution not depending

on the underlying parameter, i.e. q(ψ; y) is a pivot (Barndorff-Nielsen and Cox, 1994).

Thus Q(x) = Pθ(q(ψ;Y ) ≤ x) does not depend on ψ, which implies that

C(ψ) = Q(q(ψ; y)) (2.1)

is a CD. The corresponding confidence density for ψ is

cd(ψ) =
∂Q(q(ψ; y))

∂q(ψ; y)

∂q(ψ; y)

∂ψ
.

If the natural pivot is decreasing in ψ, then C(ψ) = 1−Q(q(ψ; y)).

In the preface of their book, “Confidence, probability and likelihood”, (Schweder and

Hjort, 2016) state “The price to be paid for an epistemic distribution not based on a prior

is that in most models only approximate confidence distributions are available, and they

might be more computationally demanding than the Bayesian posterior”. Indeed, exact

confidence intervals are analytically available just for some specific models for which a

closed form for the pivotal distribution is available. In most cases, while higher order

approximations of pivotal quantities may be derived (see e.g. Ruli and Ventura 2021)

an exact pivot does not exist. Thus, for understanding the behaviour of the designed

statistic, simulations are generally appealed.

In practice, retrieving a continuous function on the parameter space that serves as

CD in a simulation-based setting is perceived as a difficult task, analogous to that

of computing confidence intervals. Indeed, while obtaining a Monte Carlo p-value is

straightforward, by simulating synthetic realizations y∗r (r = 1, . . . , R) from the model

under the null hypothesis, H : ψ = ψ0, with the auxilium of a statistic t(·) through

p− val(ψ0) =
1

R

R∑

r=1

I{t(y∗r )>t(yobs)},

constructing confidence requires thorough computation. The same issue is encountered

in constrained Bootstrap (Diciccio et al. 2001, Lee and Young 2005), where a distinct

fitted distribution at each potential parameter value for the parameter of interest ψ is
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obtained, while for nuisance parameters constrained estimators λ̂ψ are used. For such

procedure there is no immediate way to obtain confidence intervals, but some computa-

tional solutions have been proposed, including the use of stochastic search techniques,

such as the Robbins-Monro method (see Lee and Young 2005 and reference therein).

Another possibility stands in using the Neyman construction of confidence intervals: for

a given significance level, tests across the parameter space are conducted, and inter-

vals encompass the values for which the null hypothesis is not rejected. This method

was recenlty adopted in Likelihood-free setup, in particular Dalmasso et al. (2021) and

Masserano et al. (2022) propose to train a classification machine learning algorithm to

calibrate a testing machinery for a fixed significance α, and then obtain confidence inter-

vals with this procedure. One drawback there is that the entire training phase must be

repeated to obtain confidence intervals for all levels, which is computationally extremely

demanding. In the context of simulation-based inference, a recently proposed method,

called Repro sampling (Xie and Wang, 2022), diverges from directly using hypothesis

tests with external calibration. The method employs a general mapping functions based

on an algorithmic model representation and a grid search algorithm is run along with the

computation of the empirical distribution of the mapping functions, for each significance

level.

Similarly, when the aim is deriving a CD, an alternative procedure (see e.g. Garcia-

Angulo and Claeskens 2022) involves computing p-values for multiple values within a

parameter space range and afterwards interpolating the results. This implies that for a

fixed computational budget it is required to allocate a number of simulations for each

parameter value, (Nθ) and a number of parameters (|Θ∗|) to be considered. Furthermore,

the interpolation step might not be easy in more than one dimension.

2.2 Monte Carlo based CDs

In contrast to the approaches mentioned in this introduction, we propose to use a

rejection sampler to build Monte Carlo-based confidence distributions. The algorithm we

consider is strongly inspired by Approximate Bayesian Computation (ABC) methods,

(Marin et al., 2012, among others). The proposed scheme, allows to align with the

underlying probabilistic framework while constructing confidence distributions, while

interpolation methods and stochastic search techniques used for constructing intervals

in this setting don’t completely leverage the nature of the problem. Also, the difference

among ABC and the methodology studied here mirrors the difference between Bayesian

and frequentist inference. The Bayesian inference process aims at ordering the parameter
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space by level of agreement with the observed data, directly using the likelihood function.

Consequently, the ABC posterior relies on the probability or likelihood of of obtaining

simulated datasets that match (or closely resemble) the observed data,

πABC(θ|yobs) ∝ Pr(y∗ = yobs|θ), if y∗ ∼ p(y|θ), θ ∼ π(θ). (2.2)

In the frequentist approach, inference reflects the stochastic ordering of the sample space

with respect to the assumed null hypothesis, reducing the data through a statistic, t(y).

The CD is therefore naturally linked to a p-value function, that writes

CD(θ) = p− val(θ) = Pr(t(y) > t(yobs)|θ). (2.3)

Note that (2.3), the event of interest has a positive probability mass, thanks to the

inequality, while in (2.2) the probability of such occurrence is zero, except when the

sample space is discrete, thus the equality is typically only approximately satisfied.

As rejection sampling can be used to approximate the posterior in ABC(2.2), the

same technique can be successfully used to estimate a function proportional to the CD

(2.3), see Algorithm 12. The other difference between the two settings lies in the use

of the proposal distribution, which in the second case can be a uniform function in a

sufficiently large parameter range without the need for transformations after changing

the parametrization. With the confidence distribution, it should be noted that the

density estimated by sampling must be monotonic, as the result is otherwise proportional

to a confidence curve. Since it is also expected that supC(θ) = sup cc(θ) = 1, the

normalized function, i.e. the function in the right co-domain (0, 1), can be recovered

from the density estimate by calculating the empirical supremum of the density estimate

and normalizing the function by this amount. If the estimated functional satisfies the

monotonicity condition (ii), a confidence density can also be obtained. We propose two

computational strategies for differentiating the CD, which are reported in Algorithms

10 and 11, respectively. The first procedure (10) is symmetric to the classical inverse

generation method and relies on the inversion of the CD: starting from the estimated

monotone CD, specifically form equi-spaced grid of values G = { j
R
, j = 0, . . . , R}, the

corresponding parameter values, namely the quantiles of the distribution are matched

to obtain CD-random variables. The second (11) directly operates differentiating the

function at the density estimates level based on a Gaussian kernel. This additional

differentiation step isn’t strictly essential for conducting inference. However, it enables

the straightforward identification of the shortest possible interval among all feasible

intervals. Similar to the Highest Posterior Density (HPD) intervals in the Bayesian
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framework, this might be referred to as Higher Confidence Density (HCD) intervals.

Algorithm 9 Accept-reject confidence curve/distribution computing for a
scalar parameter

Input: proposal p(ψ), summary statistic t(·), tobs = t(yobs).

for j ∈ 1, . . . , R do

Sample ψ∗
j ∼ p(ψ) and y∗j ∼ f(y;ψ∗

j )

Compute t∗j = t(y∗j )

Accept ψ∗
j if t∗j ≥ tobs else reject

end for

return ψ∗ with density ∝ ccR(ψ) a confidence curve/distribution

Algorithm 10 Confidence density via inversion

Input: ψ with density CR(ψ), grid of values G = { j
R
, j = 0, . . . , R}

Compute the density estimation of Ĉ(ψ),

Normalize Ĉ(ψ) = Ĉ(ψ)/max{Ĉ(ψ)}
for j ∈ 1, . . . , R do

Obtain the CD-random varaibles: ψ∗
j = Ĉ−1(Gj)

end for

return ψ∗ distributed as ĉdR(ψ).

Algorithm 11 Confidence density via differentiation

Input: ψ with density CR(ψ), bandwith h, ϕ(·) Gaussian density function

for j ∈ 1, . . . , R do

Compute ĉd(ψj) = 1
h
∑

1{ψ ̸=ψj}

∑
ψ ̸=ψj

2(ψ−ψj)

h
ϕ(

ψ−ψj
h

)

end for

resample ψ∗ with weights ĉd(ψj)

return ψ∗ distributed as ĉdR(ψ).

2.2.1 Computational details

One observation on the choice of the proposal distribution for unbounded parameter

space pertains the individuation of the proposal region. If the region chosen for the

proposal is symmetric with respect to the median of the CD, the expected number of

accepted values will be R/2. In practice, if the empirical proportion of rejections is far

from 1/2, the proposal mechanism can be improved focusing on a different region. This
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also allows to easily identify the confidence median with precision of order O(R−1/2).

This precision, as in other Monte Carlo methods can be improved using quasi Monte

Carlo methods to O(R−1) in one dimensional settings (Robert, 1994).

Instead, for the two step procedure using linear interpolation, let us denote with Θ∗

the set containing the values of the parameter of interest used for the simulations and

its cardinality by |Θ∗|. Then, for a fixed Simulation budget R it is needed to allocate

a number of points as distinct values on the parameter space, |Θ∗| and for each value a

number of Monte Carlo draws to obtain, Nθ, such that R = |Θ∗| × Nθ. Pointwise, on

the selected values θ∗ ∈ Θ∗ the precision will be of order O(N
−1/2
θ ), while after a linear

interpolation, the error is summed to that depending on the distance between the data

points, which is O((1/|Θ∗|)2) = O((Nθ/R)−2).

Another observation concerns bounded parameter spaces. To maintain a consis-

tent precision using the Kernel Density Estimation (KDE), we propose expanding the

bounded space B by considering an interval B ± ϵ as the range from which proposal

values are drawn. If these values are incompatible with the model, replacement should

only occur when they are utilized in simulating the data. This approach ensures that the

density estimation result at the boundaries of the parameter space reaches its asymptot

and prevents the values from decreasing due to numerical limitations.

2.2.2 Choice of summary statistics

The validity of the CD, in terms of I type errors and empirical frequentist coverages

does not depend on a specific choice of a summary statistic. However, the spread

of the CD, is related to the variability of the statistic, and to the power of a related

hypothesis test. Thus, sufficient summary statistics, when available, are to be preferred.

In some parametric models, when these are not easily obtained, a more general strategy

is using estimating equations,as proposed by Ruli et al. (2020). These can be written as

g(y∗, ψ∗), and can be compared to g(yobs, ψ̂), where ψ∗, y∗ are simulated. This choice is

particularly convenient with respect to the use of MLE since it allows to avoid running an

optimization algorithm at each simulation. In absence of a parametric model available

in closed form, either a relevant statistic elicited by expert, or an estimating equations

of an auxiliary model can be used, similarly to the ABC context Beaumont et al. (2002),

with the difference that only one statistic can be handled at a time for obtaining a CD.
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Figure 2.1: Illustration of inference summaries for a scalar parameter of interest ψ
using a confidence density: point estimators (mode, median, mean), (1−α)% quantile-
type confidence intervals, one-sided p-value and measure of evidence for “ψ1 < ψ <
ψ2”.

2.3 Examples: scalar parameter

2.3.1 Bernoulli

Consider a simple example with a Bernoulli model, where y ∼ Bernoulli(θ), θ ∈ [0, 1].

The sufficient statistic for this model is the sum of the observations:
∑n

i=1 yi. Inference

with a small sample size in this context poses challenges. For instance, the empirical

coverage of Wald-type intervals is known to be lower than the nominal coverage, while

for other methods such as Clopper-Pearson intervals, it tends to be higher than the

nominal (Gonçalves et al., 2012). Additionally, the extremes of the intervals can fall

outside the parameter space. Parametric Bootstrap is also unsuitable if the summary

statistic assumes zero as a possible value. Despite the simplicity of the model, situations

where the binomial distribution encounters zero observations have strong connection to

to the issue of zero-total-event studies in odds ratio models in meta-analysis, which is

difficult to handle.

In this simulation study 3 × 103 Monte Carlo replications were performed. In each

experiment 104 proposals are drawn from an equi-spaced sequence in [0, 1]. In each

experiment the true value of the parameter θ was set to 0.1.
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We compared two types of confidence intervals: Highest Confidence Density (HCD)

and quantile-based (Q) intervals. In each case, we computed the empirical length and

coverage of 90% confidence intervals and evaluated the II type error rate of corresponding

tests against specific alternative hypotheses: H∗
0 : θ0 = 0.15, H∗∗

0 : θ0 = 0.2.

Both methods controlled for the I-type error (false positive rate) as expected. How-

ever, HCD intervals were generally shorter, incorporating lower values and neglecting

values on the right tail of the confidence density. This characteristic makes them more

likely to reject false null hypotheses with true values greater than the assumed value

under the null hypothesis, resulting in higher power compared to Q-type intervals.

It is important to note that HCD intervals are not invariant to transformations of

the statistical model.

θ0 = 0.1 n = 10 n = 20
length I type II type length I type II type

θ = 0.15 θ = 0.2 θ = 0.15 θ = 0.2

HCD 0.292 0.091 0.959 0.707 0.205 0.084 0.868 0.612
Q 0.326 0.089 0.961 0.987 0.224 0.102 0.891 0.868

Table 2.1: Length of 90% level confidence intervals, I and II type errors for the
Bernoulli model based on 3000 replications.

To assess the impact of non-invariance of Highest Confidence Density (HCD)-type in-

tervals compared to quantile-based (Q-type) intervals under changes in parametrization,

we employed the transformation ϕ = log( θ
1−θ

).

We computed the sum of absolute errors (SAE) of the 90% confidence interval limits

(lower: L, upper: U) calculated for the true value θ = 0.2 and sample size n = 20. The

SAE is obtained as | log( θL
1−θL

) − ϕL| + | log( θU
1−θU

) -ϕU |. This calculation was repeated

over 100 simulations and results are reported in Table 2.2 (median and inter-quantile

range). While both methods exhibit errors due to numerical limitations, the results

indicate greater stability for quantile-based intervals compared to HCD intervals in this

scenario.

sae 1st Qu. Median 3rd Qu.
HCD 0.61 0.65 0.68

Q 0.07 0.10 0.17

Table 2.2: Comparison of higher confidence density-type (HCD) and quantile-type
(Q) intervals: impact on SAE for 90% confidence limits over 100 replications.
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2.3.2 Uniform

We consider as a second example the Uniform model, y ∼ Uniform(θ1, θ2), and

assume θ2 known. For a non parametric bootstrap it is trivial to understand that the

confidence intervals won’t contain the true value, since the MLE for the minimum in

the bootstrap replicates is at least the sample minimum, hence constantly biased. In

the parametric case, the initial guess bootstrap is also biased for the same reason. In

this case, the bias corrected intervals are not computable since the involved parameters

are infinite. The percentiles bootstrap intervals are constantly 0. In table 2.3 we report

a short simulation study that shows the poor performance of bootstrap within the

situation described when computing 95% confidence intervals compared to the method

proposed.

type n = 10 n = 50
basic 90.91 94.61
norm 89.95 94.11

CD-HCD 95.56 95.53
CD-Q 95.29 95.19

Table 2.3: Coverage of bootstrap and CD-based intervals for the Uniform’s minimum
problem.

2.3.3 Sum of lognormals

Consider the sum of lognormals model, given by:

ȳ = n−1

n∑

i=1

ezi , zi ∼ Z ∼ N(µ, 1), i = 1, . . . , n,

and a draw from the model for µ = 0, with ȳobs = 1.439, obtained by n = 5 realizations.

When n > 2, an analytical form for the distribution of the random variable ȳ is not

available; thus, furnishing a confidence interval for µ, despite the formal simplicity of the

model, is not straightforward in finite sample regime. We consider 105 proposal values

for µ uniformly in the interval (−4, 4) and obtain the CD based on ȳ together with

an approximate CD based on the Vanilla ABC algorithm suggested in Thornton et al.

(2022) with tolerance ϵ = 0.01 (Figure 2.2). Then, we run a simulation study in which we

compute the 95% confidence intervals obtained again with CDs and with approximate

likelihoods via ABC with a small tolerance (ϵ = 0.01). The resulting empirical coverage

based on 104 simulations and 104 proposal values for each of them is 94.9% (se = 0.2%),

against ABC’s 77.1% (se = 0.3%).
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Figure 2.2: Confidence distribution, confidence density and ABC posterior based
on a sample from the sum of lognormals model, with ȳobs = 1.439 and n = 5.

2.3.4 Application to fusion inference

One potential application of the proposed methodology is the so called fusion infer-

ence framework (Cunen and Hjort, 2022, and references therein), or multiverse-analysis

(Steegen et al., 2016) which aims at combining results obtained from different sources

of information or competing methods to enhance the robustness of the analysis. Indeed,

when inference is based on different data-reducing statistics, and confidence distributions

are derived via asymptotic pivots, these extra levels of approximation introduce arbi-

trariness and results will depend also on the choice of the pivot. In contrast, when con-

fidence distributions are obtained through simulations, the observed differences would

primarily be attributed to the choice of the statistic utilized rather than being influenced

by the quality of approximation for each pivot. We briefly illustrate how to combine

confidence through Implied Likelihoods, a method suggested by Efron (1993). This in-

volves the construction of a fictitious second dataset, doubling the original yII = (yn, yn),

whose likelihood function is L(θ; yII) ∝ L(θ; yn)2. The implied likelihood is retrieved by

L(θ) =
c(θ; yII)

c(θ; yn)
, (2.4)

where c(θ; y) is the confidence density. In practice, it is possible to perform this step

resampling the CD-random variables obtained from the analysis of the doubled dataset

with importance weights given by the distribution of the CD-random variables obtained
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on the original data. Importantly, the Implied Likelihood does not depend on the

parametrization used or on the model. Other recombination strategies can be consid-

ered; see for instance Singh et al. (2005) and Liu et al. (2014).

Suppose three independent laboratories have obtained the same measurement for

a quantity of interest from a sample of size n = 18. The objective is to combine

these results to make inferences about a parameter µ, representing the mean of the

phenomenon. The first lab reports as a summary of the data the mean (S1 = 31.04).

The second lab synthesises the results with the median (S2 = 30.69), accounting for

the possible influence of few outliers, while the third lab considered the logarithm of

the measures, trying to correct for some observed asymmetric behaviour, and furnishes

the mean of the logarithms (S3 = 3.43). From the diverse summaries/sources, one can

obtain the CDs and the implied likelihoods (IL) and combine them as components of a

mixture, as exemplified in Figure 2.3. The figure shows a strong alignment between the

full likelihood, available for the first lab’s analysis, the implied likelihood of first and

third labs.

Figure 2.3: Fusion data example: original sample (left) and combined likelihood
(red line), obtained by fusion of three ILs, related to different CDs (right). Black and
green dots represent the statistics given by the first and the second lab (S1, S2), the
third is not in the same scale of the x-axis (S3 = 3.43).
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2.4 Treatment of nuisance parameters

Algorithm 12 Accept-reject confidence curve/distribution computing with nui-
sance parameters

Input: proposal p(ψ, λ), profile estimating equation t(·), tobs = t(yobs), where yobs is

the observed sample.

for j ∈ 1, . . . , R do

Sample (ψ∗
j , λ

∗
j) ∼ p(ψ, λ) and y∗j ∼ f(y;ψ∗

j , λ
∗
j)

Compute t∗j = t(y∗j )

Accept ψ∗
j if t∗j ≥ tobs else reject

end for

return ψ∗ with density ∝ ccR(ψ) a confidence curve/distribution

In frequentist inference, there are several ways to handle nuisance parameters (Basu,

1975). Perhaps the two most common approaches are: 1) to plug-in nuisance quantities

with constrained estimates, a technique known as profiling ; 2) to integrate over the

parameter space. Importantly, profiled quantities usually exhibit invariance properties

under model reparametrization, making them a preferred choice. With the partition θ =

(ψ, λ), the estimating equation is similarly partitioned as g(y; θ) = (gψ(y; θ), gλ(y; θ)),

and a profile estimating equation for ψ has general form

gψ(y;ψ, λ̂ψ),

where λ̂ψ represents the constrained estimate of λ for each value ψ considered. To

obtain a confidence distribution in the presence of nuisance parameters, one solution is

to consider a profile estimating equation as above and a corresponding acceptance rule

gψ(y;ψ∗, λ∗) > gψ(yobs;ψ∗, λ̂∗ψ), (2.5)

where we denote as λ̂∗ψ = λ̂ψ(yobs) the constrained estimated nuisance parameter in the

observed sample. This form can be referred to as the profiled-plug-in method and the

CD obtained by (2.5) corresponds to

CD(ψ) ∝
∫ ∫

1gψ(y;ψ,λ)>gψ(yobs;ψ,λ̂ψ)p(y|ψ, λ)dλdy.

The estimator λ̂ψ does not depend on y, as it is a deterministic function of yobs and ψ.

Thus, if κ is a one-to-one transformation of the nuisance parameter, which is by a slight



40 Section 2.5 - Models with nuisance parameters: examples

abuse of notation λ = λ(κ), the CD transforms as follows when the parameterization is

changed

CD(ψ) ∝
∫ ∫

1gψ(y:ψ,κ)>gψ(yobs;ψ,κ̂psi)p(y|ψ, κ)
∂λ(κ)

∂κ
dκdy.

In the latter expression, integrating out in y, one obtains a quantity, that is equivariant

to κ or λ, since it is related to the distribution of the full score of the model where only

ψ is unknown. Thus the CD is invariant.

Figure 2.4 shows the contours of the likelihood function and the CDs for the shape

parameter of a Weibull model - i.e. y ∼Weibull(γ, β) - for a sample of n = 5 realizations

and for the shape parameter α of a generalized exponential distribution - i.e. y ∼
Gexp(α, λ)- with n = 20. For the parameters β and λ we considered the transformation

µ = 1/β and ν = 1/λ for which the CDs overlap. We also show the comparison with a

CD obtained for the Constrained Bootstrap, which is also invariant.

When the likelihood is intractable, the constrained maximization involved in the

profiling operation is not feasible. In these cases it is possible to resort a parametric

auxiliary model with a corresponding surrogate likelihood and estimating equation. In

some cases, finally, the maximization is computationally expensive. For instance, for

retrieving a solution with M -estimating functions, the numerical computation of an

integral is required, thus instead of the constrained estimator, λ̂∗ψ, one can consider a

generalized version with λ̂ equal to the global maximizer.

2.5 Models with nuisance parameters: examples

2.5.1 Adjusted score function

We consider the problem of obtaining confidence intervals from modified score ap-

proaches, introduced by Firth (1993). One of the main disadvantages is related to the

fact that obtaining Wald type intervals is that they can be outside of the parameter

space. Also, the empirical coverages can be far from the nominal for precision parame-

ters. The simulation-based approach does not rely on large sample approximation and

allows to recover the exact distribution of the pivot. The adjusted score functions in

a scalar parameter case are generally of form U(θ, y) + m(θ), (Kosmidis et al., 2020)

where U is precisely the score function and m(θ) depends on the model but is data in-

dependent, involving expected values of second and third derivatives of the score. Thus,

the sampling distribution of the adjusted score is identical to the sampling distribution

of the modified score. When the parameter is multidimensional instead θ = (ψ, λ), the

profiled version of the modified score function depends on data dependent estimates λ̂
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Figure 2.4: Contour plots for the likelihood function and CDs for the shape param-
eter of a Weibull (above) and Generalized exponential model (below) under transfor-
mation of nuisance parameters. CDs obtained after reparametrizations overlap with
original.

thus the sampling distribution is different from that derived from the standard score

function.

As an example, we consider a bivariate Gaussian regression model y ∼ N2(µ,Σ)

where µ = Xβ, β ∈ Rp and

Σ = σ2

[
1 ρ

ρ 1

]
.

We focus on the parameter ρ. The sample is of size n = 40, p = 5 regression coefficients

are used, and the true parameter point is β = (0.500.530.300.101.16), σ2 = 1, ρ = 0.9.
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Figure 2.5: Adjusted score example: confidence density obtained from the profile
modified score function.

The empirical means are ȳ = (1.431.45) and the empirical covariance matrix is S =[
12.91 12.40

12.40 12.53

]
.

For obtaining the CD, we draw 20000 proposals uniformly in a hypercube centered

on the point estimates and at least 4 standard deviations apart. In Figure 2.5 the

confidence density with the confidence median and the point estimate obtained from

the solution of the modified score is reported. The 95% equi-tailed confidence interval

based on the CD is [0.78 0.96], while with the Wald approximation is [0.83 0.96]. The

simulation-based method in this case is able to capture the asymmetry of the CD.

2.5.2 CD from M-estimating functions

The standard theory for CDs evolves around the use of likelihood methods for a

scalar parameter of interest ψ of a parametric model. However, it is well-known that

likelihood-based methods are not robust when the assumed distribution is just an ap-

proximate parametric model or in the presence of deviant values in the observed data.

In this case, it may be preferable to base inference on procedures that are more resistant,

that is which specifically take into account the fact that the assumed models used by

the analysts are only approximate. In order to produce statistical procedures that are

stable with respect to small changes in the data or to small model departures, robust

statistical methods can be considered (see, e.g., Ronchetti and Huber 2009, Heritier
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and Ronchetti 1994,Farcomeni and Ventura 2012 and references therein). In particu-

lar, we consider the class of M -estimators, that includes among others the maximum

composite likelihood estimator (see e.g., Varin et al. 2011), estimators based on proper

scoring rules (see, e.g., Dawid et al. 2016, and references therein), and classical robust

estimators (see e.g. Ronchetti and Huber 2009). Under broad regularity conditions, an

M -estimator θ̃ is the solution of the unbiased estimating equation g(θ) and it is asymp-

totically normal, with mean θ and covariance matrix V (θ) = K(θ)−1J(θ)(K(θ)−1)⊤,

where K(θ) = Eθ(∂g(θ)/∂θ⊤) and J(θ) = Eθ(g(θ)g(θ)⊤) are the sensitivity and the

variability matrices, respectively. The matrix Vg(θ) = V (θ)−1 is known as the Godambe

information and its form is due to the failure of the information identity since, in gen-

eral, K(θ) ̸= J(θ). Let us denote with G(θ) =
∑n

i=1G(yi; θ) the function such that g(θ)

is the gradient vector, i.e. g(y; θ) = ∂G(y; θ)/∂θ.

From the general theory of M -estimators, the influence function (IF ) of the estimator

θ̃ is given by

IF (y; θ̃) = K(θ)−1g(y; θ), (2.6)

and it measures the effect on the estimator θ̃ of an infinitesimal contamination at the

point y, standardised by the mass of the contamination. The estimator θ̃ is B-robust if

and only if g(y; θ) is bounded in y. Note that the IF of the MLE is proportional to the

score function; therefore, in general, MLE has unbounded IF , i.e. it is not B-robust.

Paralleling likelihood-based results, asymptotic robust inference on the scalar pa-

rameter of interest ψ can be based on first-order pivots, extending the theory of robust

scoring rules discussed in Hjort and Schweder (2018) and Ruli et al. (2022). With the

partition θ = (ψ, λ), consider the further partitions

K =

[
Kψψ Kψλ

Kλψ Kλλ

]
, K−1 =

[
Kψψ Kψλ

Kλψ Kλλ

]
,

and similarly for Vg and V −1
g . Finally, let λ̃ψ be the constrained M -estimate of λ, let

θ̃ψ = (ψ, λ̃ψ), and let ψ̃ be the ψ component of θ̃. Then, a profile Wald-type statistic

for the ψ may be defined as

wR(ψ) = (ψ̃ − ψ)(Ṽ ψψ
g )−1/2,
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and it has an asymptotic N(0, 1) null distribution. Similarly, the profile score-type

statistic

wsR(ψ) = gψ(θ̃ψ)⊤Kψψ(V ψψ
g )−1Kψψgψ(θ̃ψ)

has an asymptotic χ2
1 null distribution, while the asymptotic distribution of the profile

ratio-type statistic for ψ, given by WR(ψ) = 2
(
G(θ̃ψ)−G(θ̃)

)
, is νχ2

1, where ν =

(K̃ψψ)−1Ṽ ψψ
g . In view of this, for the adjusted profile ratio-type statistic to first-order

it holds

W adj
R (ψ) =

WR(ψ)

ν
∼̇χ2

1.

Finally, the adjusted profile root, analogous to (1.3), can be defined as

rR(ψ) = sign(ψ̃ − ψ)

√
W adj
R (ψ),

which has an asymptotic standard normal distribution. For the general theory of robust

tests see Heritier and Ronchetti (1994).

Similarly to the likelihood based CDs, a recipe to derive an asymptotic CD from

robust M -estimating functions is the following. Let us denote with qR(ψ; y) a robust

pivotal quantity, such as the profile Wald-type statistic wR(ψ) or the adjusted profile

scoring rule root rR(ψ). Then,

Cw
R(ψ) =̇ Φ

(
(ψ − ψ̃)(Ṽ ψψ

g )−1/2
)

(2.7)

and

Cr
R(ψ) =̇ Φ

(
sign(ψ − ψ̃)

√
W adj
R (ψ)

)
(2.8)

are first-order asymptotic CDs, and the corresponding confidence densities are, respec-

tively,

cdwR(ψ) =̇
ϕ
(

(ψ − ψ̃)(Ṽ ψψ
g )−1/2

)

√
Ṽ ψψ
g

and

cdrR(ψ) =̇ϕ

(
sign(ψ − ψ̃)

√
W adj
R (ψ)

) ∣∣∣∣∣
∂W adj

R (ψ)1/2

∂ψ

∣∣∣∣∣ .

Note that the Wald-type based confidence density cdwR(ψ) coincides with the asymptotic

first-order robust Bayesian posterior distribution for ψ (see, e.g. Greco et al. 2008 and
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Ventura and Racugno 2016).

In practice, using for instance (2.8), the confidence median is ψ̃ and an (1 − α)

equi-tailed confidence interval can be obtained as {ψ||rR(ψ)| ≤ z1−α/2}, where z1−α/2}
is the (1 − α/2)-quantile of the standard normal density. When testing, for instance,

H0 : ψ = ψ0 against H1 : ψ < ψ0, the p-value is p = Cr
R(ψ0), while when testing

H0 : ψ = ψ0 against H1 : ψ ̸= ψ0 the p-value is p = 2(1 − Φ(|rR(ψ0)|)). Furthermore,

a measure of evidence for a statement of the form “ψ1 < ψ < ψ2” can be computed as

Cr
R(ψ2)− Cr

R(ψ1).

To study the stability of robust CDs, let us write the robust pivotal quantity more

generally as qR(ψ;T (F̂n)), where F̂n is the empirical distribution function and T (F ) is

the functional defined by the unbiased M -estimating equation
∫
g(y;T (F )) dF (y) = 0,

where F = F (y; θ) is the assumed parametric model. In CD inference the tail area,

given by CR(ψ) = Φ(qR(ψ;T (F̂n)), plays a central role and thus we can consider the tail

area influence function (see, e.g., Field and Ronchetti 1990, and Ronchetti and Ventura

2001), given by

TAIF (y;T ) =
∂

∂ε
Φ(qR(ψ;T (Fε)))

∣∣∣∣
ε=0

, (2.9)

where Fε = (1− ε)F + ϵ∆y and ∆y is the probability measure which puts mass 1 at the

point y. The TAIF (y;T ) thus describes the normalized influence on the CD tail area

of an infinitesimal observation at y and, by considering its supremum, it can be used

to evaluate the maximum bias of the tail area on the ε-neighborhood of F . It can be

shown that

TAIF (y;T ) = ϕ(qR(ψ;T (F )))
∂qR(ψ;T (F ))

∂T (F )

∂T (Fε)

∂ε

∣∣∣∣
ε=0

, (2.10)

where the last term in (2.10) is the IF (2.6) of the M -estimator. Thus, the tail area

influence function for the CD tail area at the statistical model F is proportional to the

M -estimating function and this gives an immediate handle on robustness. Furthermore,

it is bounded with respect to y when the M -estimating function is bounded.

The application of (2.7) and (2.8) in the particular context of a robust scoring rule

has been discussed in Ruli et al. (2022). In particular, the Tsallis score (Tsallis, 1988)

is considered, which is given by

G(y; θ) = (γ − 1)

∫
f(y; θ)γ dy − γf(y; θ)γ−1, γ > 1,

with corresponding unbiased M -estimating function g(θ) = ∂G(y; θ)/∂θ (Ghosh and
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Basu 2013,Dawid et al. 2016), and with the parameter γ which gives a trade-off between

efficiency and robustness.

In this section, we study and compare simulation-based approach for computing

CDs based on robust M -estimating functions, to Bootstrap and a method based on

a frequentist reinterpretation of the ABC machinery (see, e.g., Bee et al. 2017, Ruli

et al. 2020, Thornton et al. 2022), whose properties have been derived by Rubio and

Johansen (2013) in a general setup. The idea consists in generating candidate parameter

values from an uniform distribution, computing a robust suitable summary statistic

using the simulated data and then accepting only the parameter values such that the

corresponding summary statistic is ”close” to its observed counterpart (see Algorithm

13).

Algorithm 13 Accept-reject robust ABC

Input: proposal p(ψ, λ), number of iterations R, robust summary statistic t(·), tobs =

t(yobs), where yobs is the observed sample, tolerance ε, distance ρ(·; ·)
for j ∈ 1, . . . , R do

Sample (ψ∗
j , λ

∗
j) ∼ p(ψ, λ) and y∗j ∼ f(y;ψ∗

j , λ
∗
j)

Compute t∗j = t(y∗j )

Accept ψ∗
j if ρ(t∗j ; t

obs) ≤ ε else reject

end for

resample the accepted (ψ∗, λ∗) with probability ∝ 1/p(ψ∗, λ∗)

return robust approximate normalized pseudo-likelihood ∝ confidence density

ĉd
abc

R (ψ)

In Algorithm 13, the summary statistics of Soubeyrand and Haon-Lasportes (2015)

or of Ruli et al. (2016, 2020) can be used. In particular, the first one is based directly

on the M -estimator ψ̃ as the summary statistic t(y) and a, possibly rescaled, distance

among the observed and the simulated value of the statistic. In the second one, a

rescaled version of the M -estimating function g(θ), evaluated at a fixed value of the

parameter, is used as a summary statistic t(y); this avoids repeated evaluations of the

consistency correction involved in the M -estimating function, which is instead neces-

sary for the Bootstrap. For a single parameter of interest, we propose to use instead

the profile estimating equation, and plugging in the value of proposals λ∗ for nuisance

parameters used to generate pseudo-data as equation 2.5. Note also that when using the

M -estimator as a summary statistic, the algorithm for solving the estimating equation

might not converge after a prefixed number of iterations, thus causing additional noise
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in the results. The treatment of the nuisance parameters resembles that of a general-

ized profile likelihood (Severini and Wong, 1992). Note that, assuming the regularity

assumptions of Soubeyrand and Haon-Lasportes (2015) and the usual regularity condi-

tions on M -estimators (Ronchetti and Huber, 2009, Chapter 4), then for n → ∞ the

robust confidence densities derived via simulation are asymptotically equivalent to the

Wald-type confidence density cdwR(ψ). Moreover, following Ruli et al. (2020), if g(y; θ)

is bounded in y, i.e. if the M -estimator is B-robust, then asymptotically the posterior

mode, as well as other posterior summaries of the robust confidence density ĉd
abc

R (ψ)

have bounded IF .

2.5.3 Applications to non-inferiority tests

The aim of this section is to introduce and apply CDs inference in the context of

non-inferiority testing, in which interest is in establishing if a new product is not un-

acceptably worse than a product already in use. Applications of non-inferiority testing

has revealed an attractive problem in medical statistics, biostatistics, statistical quality

control and engineering statistics, among others. Here we focus in non-inferiority clini-

cal trials where the aim is to show that an experimental treatment is not (much) worse

than a standard treatment. Clinical practice, however, is not the only field of applica-

tion of these tests: in comparing the performance of sensors in industrial environment,

for instance, the margin may be linked to some difference in costs due to sensor func-

tioning. Other applications can be found in machine learning literature, where instead

the meaningful margin is related to the accuracy or to the speed in classification tasks.

In the process of evaluating the efficacy of an experimental treatment, it is common to

develop studies in which the two arms are the new and the standard therapy, respectively,

rather than the new and the placebo. This is because it is considered unethical to deprive

patients from a therapy that has already been proven to be beneficial. The underlying

research hypothesis to be verified is that new therapies have equivalent or non-inferior

efficacies to the ones currently in use. Both non-inferiority and superiority tests are

examples of directional (one-sided) tests (see, e.g., D’Agostino Sr et al. 2003, Rothmann

et al. 2011 and references therein). In particular, the non-inferiority test wants to test

that the treatment mean µN is not worse than the reference mean µS by more than

a given equivalence margin δ. The actual direction of the hypothesis depends on the

response variable being studied. This question can be formulated into a test procedure

for which the null hypothesis is

H0 : µS − µN ≥ δ,
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where δ > 0 is the equivalence margin, when higher values of the response variable mean

better results, versus

H1 : µS − µN < δ.

The scalar parameter of interest in this context is thus ψ = µS−µN , and non-inferiority

is claimed when the null hypothesis is rejected.
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Figure 2.6: Testing procedure with traditional comparative studies and
non-inferiority studies using confidence densities: vertical lines represent the
equivalence/non-inferiority margin (δ = −5).

The equivalence margin δ corresponds to the practical acceptable difference and

should be pre-specified before the data is recorded (see e.g. Garrett 2003). An overly

conservative margin might result in a high risk of not being able to claim non-inferiority

when it actually is non-inferior. Conversely, overly liberal margins could result in a

high risk of claiming non-inferiority when it actually is not non-inferior. A reasonable

margin would be best derived from a combination of factors: the expected event rate,

the duration of follow-up, and the number and nature of the events. However, arbi-

trary clinical judgment and the sponsor budget are of a great influence, resulting in a

somewhat subjective non-inferiority margin. It is not clear in some situations how to

perform the choice, and multiple thresholds could be plausible; in this respect, CDs are

particularly useful to perform sensitivity analyses. Indeed, in this situation a confidence

distribution on the difference ψ = µS −µN will simultaneously show the evidence of the

p-value against the null for a series of values δ, and decide for a reasonable δ with the

nominal control of the rejection level and possible alternatives.

Here we consider an example of trial where higher levels of the response variable

mean that the new treatment is effective. The aim is verifying that the new treatment

(N) is not unacceptably worse to the standard (S). Let us assume that n = 80 patients
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are randomized into two groups, and the model for the data is assumed to be

YS = µN + ψ + u, YN = µN + u, u ∼ N(0, σ2). (2.11)

The normal distribution on the error term is often the basis of statistical analyses in

medicine, genetics and in related sciences. Under this assumption, parametric inferential

procedures based on the sample means, standard deviations, two-samples t-test, and so

on, are the most efficient. However, it is well known that they are not robust when

the normal distribution is just an approximate parametric model or in the presence of

deviant values in the observed data (see, e.g., Farcomeni and Ventura 2012). In the

framework described by (2.11), we inspect the effect of adding some contamination in

the data of the new treatment group. In particular, in the contaminated scenario, 10%

of the error terms in the new treatment group are half-Cauchy distributed (see Figure

2.7).
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y

Figure 2.7: Non inferiority testing example: boxplots of recorded values for the new
treatment group and the standard group under two scenarios. Red dots represent
group means, while green dots represent group medians.

It is of interest to compare CDs inference for ψ based on the following approaches

(abbreviations are also used in Figure 2.8 and in the following) used to derive confidence

densities:

1. exact classical Wald-type confidence density based on wp(ψ), which is related to

the classical two sample t-test (Wald/Mean)

2. robust asymptotic Wald-type confidence density cdwR(ψ) based on the Huber’s

estimator (Wald/M-test)

3. approximate confidence density based on ABC (Algorithm 13) with robust Huber’s

estimator as summary statistics (ABC/M-est)
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4. approximate confidence density based on ABC (Algorithm 13) with the robust

Huber’s estimating equation as summary statistic (ABC/M-EE)

5. simulated confidence density (Algorithm 12) based on the robust Huber’s estimator

(CDensity/M-est)

6. simulated confidence density (Algorithm 12) based on the robust Huber’s estimat-

ing equation (CDensity/M-EE)

7. approximate confidence density based on ABC (Algorithm 13) with the difference

of medians as summary statistics (ABC/Median)

8. simulated confidence density (Algorithm 12) based on the difference of medians

(CDensity/Median)

9. parametric bootstrap confidence density (Boot/Basic)

10. parametric bootstrap with normal intervals confidence density (Boot/Norm)

11. parametric bootstrap with percentiles confidence density (Boot/Perc)

The nominal value of the mean difference between the treatment effects is ψ0 is fixed to

2.6, and for simulation-based confidence distribution as well as for those obtained by the

ABC-type algorithm we used 105 proposals and a tolerance level of 0.1. In the Huber’s

estimator we fix the tuning constant which controls the desired degree of robustness to

1.345, which imply that the estimator is 5% less efficient than the corresponding MLE

under the assumed model.

From the resulting confidence densities illustrated in Figure 2.8 we note that, when

the data come from the central model (left column) all the confidence densities are

in reasonable agreement, even if the confidence densities based on the median behave

slightly worse, with a greater variability. When the data are contaminated (right col-

umn), the non-robust confidence density (Wald/Mean) is less trustworthy as it drifts

away from the true parameter value (green dotted line). This is not the case however for

the robust confidence densities, which remain centred around the true parameter value.

We further note that in the contaminated case, the robust confidence densities based

on the M -estimating equation (ABC/M-EE and CDensity/M-EE) display the smallest

variability. For all these confidence densities, Table 2.4 gives the measures of evidence

for the statement “ψ > δ”, with the equivalence margin δ taken equal to 4 (black dotted

line in Figure 2.8). As a benchmark, one can consider the measure derived by the exact

t−distribution of the classical Wald-type confidence density in the non contaminated
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case, which is 0.08. The results, without and with the contamination mirror the be-

haviour of the confidence densities in Figure 2.8, in particular the non-robustness of

the likelihood-based confidence density (Wald/Mean). The most stable results under

contamination seem to be those obtained with M-EE approaches (0.09 with ABC/M-EE

and 0.05 with CD/M-EE). The same analysis could be done in principle for any margin

δ.
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Figure 2.8: Confidence densities for ψ based on 105 proposals, without (left column)
and with contamination (right column). Results for different choices of statistics are
reported for each row, with inferential techniques represented by different colors. The
black vertical dotted line represents the margin δ, the green one indicates ψ0.

Method 0% cont. 10% cont.
Wald/Mean 0.08 0.42
Wald/M-test 0.07 0.03
ABC/Median 0.24 0.20
ABC/M-EE 0.11 0.09
ABC/M-est 0.12 0.09
CDensity/Median 0.20 0.21
CDensity/M-EE 0.08 0.05
CDensity/M-est 0.14 0.11

Table 2.4: Confidence measures of evidence associated to Figure 2.8, for the null
hypothesis H0 : ψ > δ, with δ = 4 without and with contamination.

Simulation study

For investigating the behaviour of the several types of confidence densities, we per-

form a simulation study under two sample sizes settings, n = 40, 80 (20, 40 per group)

and for each of them we investigate two scenarios: one in which the assumptions of the
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model in (2.11) are met by the true data generating mechanism, and the second one

where 10% of the error terms in the new treatment group are half-Cauchy distributed

(as in Figure 2.7). The families of methods to derive the confidence densities considered

are the same as in the example above, and confidence distributions construction is based

again on exact and asymptotic pivotal quantities or simulation-based. For Rejection-

ABC-type confidence distributions the tolerance for the discrepancy was set to 0.1, the

true value of parameter of interest was set to ψ0 = 2.6, and the Huber’s tuning constant

to 1.345. The proposals for ψ were drawn from a Uniform random variable in [−3, 9],

for the parameter µN we sample from a Uniform in [110, 130], while for σ we generated

values from a Uniform [1, 8]. For the simulations, 4000 values were generated from the

proposals and a total of 2000 simulations were performed.

We compare the empirical coverages of 90% and 95% equi-tailed confidence intervals.

Results are synthetized in Tables 2.5 and 2.6. We also report in Tables 2.7 and 2.8 the

error associated to confidence median point estimators, in terms of bias (b =
∑R

r=1 θ̃r −
θ0), probability of underestimation (PU =

∑R
r=1 1{θ̃r<θ0}

) and I type error with α = 0.05.

We note that, under the central model, the Wald/Mean CD shows a good performance,

as well as some robust CDs (Wald/M-test, CDensity/M-EE and ABC/M-EE). With

contaminated data, the Wald/Mean CD tends to be affected by contamination, whereas

the robust CDs perform substantially better, with the CDs based on M -estimating

equations being preferred over those based on M -estimators. Asymptotic symmetric

confidence densities based on Wald-type robust CDs and ABC-type confidence densities

seem to be affected more by bias than the simulated CDs (see Tables 2.7 and 2.8). Note

finally that ABC-type results, even if behaving well, depend on a tolerance choice, hence

the results may degradate when the latter is not well calibrated.

As a final remark, note that an interesting aspect of this simulation study was the

difference among the approach of using robust M -estimating functions instead of robust

M -estimates, especially in the treatment of nuisance parameters.

Real data application

A class of problems requiring similar considerations to those of non-inferiority tests,

i.e. sensitivity analysis with respect to the reference margin δ, is that of superiority

studies (see Figure 2.9).

Here we analyze the data collected in a randomized controlled trial (see Carhart-

Harris et al. 2021 and Nayak et al. 2023) with the aim of assessing the superiority of a

new therapy with psilocybin (P) versus that with escitalopram (E), in treating major

depressive disorder. The dataset contains the scores obtained by n = 57 patients on a
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Contamination 0% 10%
n = 40 95% CI 90% CI 95% CI 90% CI
Wald/Mean 93.9 89.1 97.1 94.0
Wald/M-test 93.7 88.4 94.1 88.3
ABC/Median 97.1 93.4 97.7 93.7
ABC/M-EE 92.7 87.2 93.7 88.9
ABC/M-est 97.0 93.1 97.6 93.9
CDensity/Median 99.5 97.6 99.2 98.0
CDensity/M-EE 95.8 90.5 96.7 92.1
CDensity/M-est 99.4 97.3 99.2 98.0
Boot/basic 93.4 88.0 92.3 86.1
Boot/Norm 93.5 88.2 92.4 86.0
Boot/Perc 93.4 87.9 92.3 86.1

Table 2.5: Empirical coverages in a simulation study without and with 10% con-
tamination and n = 40.

Contamination 0% 10%
n = 80 95% CI 90% CI 95% CI 90% CI
Wald/Mean 95.5 90.0 95.9 92.2
Wald/M-test 95.1 89.6 93.9 87.9
ABC/Median 97.2 93.5 97.3 93.5
ABC/M-EE 93.3 86.9 92.7 87.3
ABC/M-est 97.5 93.6 97.2 93.9
CDensity/Median 99.1 97.6 99.2 97.5
CDensity/M-EE 95.9 89.4 96.4 92.5
CDensity/M-est 99.1 97.3 99.2 97.7
Boot/Basic 94.1 89.5 92.3 87.5
Boot/Norm 94.2 89.5 92.4 87.4
Boot/Perc 94.3 89.6 92.3 87.5

Table 2.6: Empirical coverages in a simulation study without and with 10% con-
tamination and n = 80.

questionnaire, before and after a 6-week period of therapy. The model considered for

the scores at the time of follow-up (FU) is the following

yFU = β0 + β1yBL + β2P + u, u ∼ N(0, σ2),

where yBL represents the value at the baseline and P is a dummy variable that equals 1

if the subject belongs to the group treated with the new therapy (psilocybin), and thus

the coefficient relates to the additional change with respect to the control group (esci-

talopram) after the therapy. A reduction of the score indicates a clinical improvement;

thus superiority is claimed if the estimate of the coefficient β2 is sufficiently lower than

0. In particular, in order to conclude in favour of meaningful superiority, the clinicians
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Contamination 0% 10%
n = 40 |b| PU I type err. |b| PU I type err.
Wald/Mean 0.01 0.51 0.06 5.57 0.65 0.03
Wald/M-test 0.00 0.51 0.06 0.23 0.42 0.08
ABC/Median 0.03 0.52 0.01 0.09 0.46 0.01
ABC /M-EE 0.00 0.51 0.03 0.23 0.42 0.03
ABC/M-est 0.01 0.51 0.01 0.23 0.42 0.01
CDensity/Median 0.15 0.55 0.01 0.03 0.51 0.01
CDensity/M-EE 0.11 0.55 0.03 0.11 0.46 0.03
CDensity/M-est 0.13 0.56 0.01 0.09 0.46 0.01
Boot/Basic 0.84 0.75 0.06 1.07 0.79 0.10
Boot/Norm 0.84 0.75 0.06 1.07 0.79 0.10
Boot/Perc 0.84 0.75 0.06 1.07 0.79 0.09

Table 2.7: Measures of stability of CDs: absolute bias (|b|), probability of underes-
timation (PU) and I type error (α = 0.05) of confidence estimators (medians) in the
simulation study with n = 40.

Contamination 0% 10%
n = 80 |b| PU I type err. |b| PU I type err.
Wald/Mean 0.02 0.49 0.05 1.76 0.58 0.05
Wald/M-test 0.01 0.49 0.05 0.19 0.42 0.08
ABC/Median 0.02 0.50 0.02 0.05 0.49 0.02
ABC/M-EE 0.02 0.48 0.03 0.19 0.42 0.03
ABC/M-est 0.01 0.49 0.01 0.19 0.42 0.02
CDensity/Median 0.07 0.53 0.01 0.02 0.51 0.02
CDensity/M-EE 0.08 0.53 0.03 0.11 0.45 0.03
CDensity/M-est 0.08 0.54 0.01 0.11 0.46 0.02
Boot/Basic 0.03 51.1 0.05 0.39 0.33 0.09
Boot/Norm 0.03 51.1 0.05 0.39 0.33 0.09
Boot/Perc 0.03 51.1 0.05 0.39 0.33 0.09

Table 2.8: Measures of stability of CDs: absolute bias (|b|), probability of underes-
timation (PU) and I type error (α = 0.05) of confidence estimators (medians) in the
simulation study with n = 80.

considered as reference a margin δ = −5.3. It is of interest to provide stable measures

of evidence for the statement “β2 > δ”, with δ = −5.3 (H0).

The MLE for the parameter β2 and its standard error are, respectively, −5.32 and

1.44, while the robust counterparts are −6.18 and 1.33. Note that after removing

two outliers the MLE become -6.23, with standard error 1.35. We resume the whole

confidence densities based on Wald-type methods together with simulated confidence

densities based on Huber’s estimators and Huber’s estimating equations in Figure 2.10.

As it can be noted the classical confidence density (Wald/Mean) is shifted to the right,

because of the presence of outliers. Evidence measures for different margins are reported
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in Table 2.9. Using the margin chosen by the clinicians (-5.3) there is no evidence of

superiority at level α = 0.1; however note that the measure of evidence computed with

the Wald-type confidence density (Wald/Mean) is the double of the ones computed with

the robust confidence densities. With a margin of δ = −3.5 all the robust procedure

would agree in claiming superiority with α = 0.1, while according to classical Wald-

type confidence density (Wald/Mean) there would not be enough evidence to conclude
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Figure 2.9: Example of making inference with confidence densities in superiority
test, with margin δ = −3.5.
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Figure 2.10: Real data example: boxplots representing pre-post differences of scores
in a group of subjects treated with psilocybin (P) versus escitalopram (E) (left),
accompanied by confidence densities for the parameter β2, indicating the difference in
efficacy of the two therapies (right).
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superiority.

−δ -3.5 -4 -4.5 -5 -5.3
Wald/Mean 0.11 0.18 0.29 0.41 0.49
Wald/M-test 0.02 0.05 0.10 0.19 0.26
ABC/M-est 0.00 0.00 0.14 0.14 0.29
ABC/M-EE 0.08 0.12 0.18 0.24 0.30
CDensity/M-est 0.03 0.09 0.14 0.21 0.28
CDensity/M-EE 0.07 0.14 0.17 0.22 0.28

Table 2.9: Measures of evidence for the hypothesis ”β2 > δ” for several margins.

2.6 Vector parameter

For a parameter vector, it is possible to obtain simulation-based confidence curves,

resorting to a global statistic for the model, as the likelihood ratio of the model, or that of

an a auxiliary model. Denote log-likelihood ratio test as W (y, θ, θ̂) = 2ℓ(θ̂, y)− (ℓ(θ, y).

Denoting with θ∗, y∗, θ̂∗ simulated parameters, simulated data and estimated parameters

from simulated data, respectively, the proposed θ∗ are accepted if

W (y∗, θ∗, θ̂∗) > W (yobs, θ, θ̂). (2.12)

We could generalize the procedure, if the inference focuses simultaneously on multiple

parameters in presence of nuisance parameters as well. Letting ψ be the vector parame-

ter of interest and λ the nuisance components, the proposed parameters will be accepted

if

W (y∗, ψ∗, ψ̂∗λψ∗) > W (yobs, ψ, ψ̂, λ̂ψ).

The general algorithm is given in 14.

Algorithm 14 Accept-reject confidence curve computing with parameter vec-
tor.

Input: Uniform proposal p(θ), number of iterationsR, global statistic t(·), tobs = t(yobs),

where yobs is the observed sample.

for j ∈ 1, . . . , R do

Sample (θ∗j ) ∼ p(θ) and y∗j ∼ f(y; θ∗i )

Compute t∗j = t(y∗j )

Accept ψ∗
j if t∗j ≥ tobs else reject

end forreturn θ∗ with density ∝ ccR(θ) a confidence curve.
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Figure 2.11: Bivariate confidence curve and regions for (σ2, ρ) in the bivariate nor-
mal model.

2.7 Examples with parameter vector

2.7.1 Multivariate normal with modified score functions

In the same setting of Example 2.5.1, we consider the construction of a confi-

dence curve based on the log-likelihood ratio test. Such confidence curve is illus-

trated in Figure 2.12. We also display the maximum likelihood estimator (red mark),

and the median bias reduced estimator (blue mark) and confidence regions of levels

[0, 0.2, 0.4, 0.6, 0.8, 0.9, 99] for (σ2, ρ), obtained by successive density estimation. Here

regression parameters (β1, . . . , βp) are treated as nuisance components.

2.7.2 SIR Epidemic Model

Consider a SIR (Susceptible-Infectious-Recovered) model, widely utilized in epidemi-

ology. The SIR model is a compartimental model defined on three distinct populations:

• ”S” represents individuals who are susceptible to the disease,

• ”I” represents individuals who are infectious,

• ”R” represents individuals who have recovered.
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t 0 1 2 3 4 5 6 7 8 9 10 11 12 13
yt 3 8 28 75 221 281 255 235 190 125 70 28 12 5

Table 2.10: Data of influenza outbreak in England (Anonymous, 1978).

The transmission of the disease occurs through interactions at times defined by the

occurrences of a Poisson process. Susceptibles become infected at a rate determined by

the product of the infectious contact rate β and the number of infectious individuals,

denoted as ”I”. Infectious individuals, on the other hand, can recover from the disease

at a rate denoted as γ.

N = S + I +R

dS = −β · I
N
· S

dI =
β · I
N
· S − γ · I

dR = γ · I.

Moreover N is the total population and is considered fixed.

We consider a dataset documenting the incidence of influenza cases within a boarding

school located in England. These data were originally reported as a graphical repre-

sentation in a study by Anonymous (1978). The specific numerical values presented

in Table 2.10 have been extracted by G. de Vries (2006). The aim of this example is

to show how to perform inference with a confidence curve in a multi-parameter model

where the likelihood function is intractable. Let g(θ) = g(θ, u1) be the generator of

the deterministic version of the SIR model, i.e. with constant number of events and an

initial number of infected u1 equal to one. As a surrogate pivotal quantity, we consider

the normalized Residual Sum of Squares of the number of predicted infected, given by

RSS(θ, y)− RSS(θ̂, y) = [y − g(θ)]⊤[y − g(θ)]− [y − g(θ̂)]⊤[y − g(θ̂)], (2.13)

where θ = (β, γ) and θ̂ the minimizer of the RSS. Note that (2.13) is used in analogous

way to (2.12), as a global statistic based on a surrogate model. It can be seen as a test

based on a quasi-likelihood where the loss function is the residual sum of squares.

Then, the confidence curve is obtained retaining parameter values θ∗ for which the

following inequality holds:

RSS(θ∗, y∗)− RSS(θ̂∗, y∗) > RSS(θ, y)− RSS(θ̂, y),
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Figure 2.12: Bidimensional confidence curve and equi-spaced confidence regions
(with levels 0.1-0.9) associated to the epidemic data. The point estimate is marked in
red.

where pseudo-datasets y∗ are obtained by θ∗ according to Algorithm 12.

2.8 Confidence distributions based on integral prob-

ability semimetrics

In conclusion, we mention the possibility to resort to a non-parametric derivation

of CDs based on integral probability semimetrics (Müller, 1997) or pseudo-metrics

(Ronchetti and Huber, 2009, Chapter 2). These divergences are classically associated

to the concept of stability, used as global tests and studied in the context of misspeci-

fied models where the meaningfulness of model features is uncertain, wherealse directly

comparing the distributions happens to be more natural (see for instance Bernton et al.

2019 and Legramanti et al. 2022).

For mitigating the effects of small departures from model assumptions, and possi-

ble dramatic changes of inferential conclusions due to unconvenient choices of pivotal

quantities and summaries, the use of non parametric procedures may be an alternative.

In particular, we focus on the Kolmogorov-Smirnov distance (dKS) and the Wasserstein

distance (dW ) for one-dimensional distributions, defined respectively as

dKS(P,Q) = sup
y
|P (y)−Q(y)|,

dW (P,Q) =

∫

Y

|P (y)−Q(y)|dy.
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The discrepancy furnishes global indication of potential agreement between the two dis-

tributions P and Q, analogously to a likelihood ratio test as in the likelihood-based

inference for correctly specified models. For estimating the distances, empirical cumu-

lative distribution functions (P̂n(y) and Q̂n(y), respectively) are used.

In general models, the non-asymptotic distributions of the statistics dKS(·, ·) and

dW (·, ·) are complex, and numerical methods are employed to compute exact p-values.

Here we suggest to rely on Algorithm 13 to derive CDs, once identifyed as summary

statistics suitable discrepancies with distribution stochastically monotone in a scalar

parameter of interest θ. In particular, let us consider the observed sample yobs and a

fixed reference sample yref, drawn from a completely known model f(y; θref). A sequence

of unilateral tests can be built by using as observed summary statistic in Algorithm 12

the quantity d(yobs, yref) = d(P̂ (yobs), Q̂(yref)), where d(·, ·) may be the Kolmogorov-

Smirnov distance (dKS) or the Wasserstein distance (dW ). Then, the CD is obtained

with the Accept-Reject scheme of Algorithm 12, evaluating

Prθ∗(d(y∗, yref) > d(yobs, yref)),

where y∗ is simulated from the central model y∗ ∼ f(y; θ∗). Also, by Algorithm 10 a

confidence density can be retrieved. To obtain a proper confidence distribution, the

distribution of the summary statistic should be stochastically ordered in the parameter

of interest. Hence it is convenient to draw yref from the model f(y; θ′), with θ′ being

the supremum of the proposal distribution support in Algorithm 12.

Otherwise, a serie of bilateral tests, directly comparing d(y∗, yobs) to zero, without a

reference sample, can also be performed, for obtaining a confidence curve instead of a

proper confidence distribution.

2.8.1 Example: “Non parametric” CDs

As in Legramanti et al. (2022), we consider a contamination study. The data yobs =

(y1, . . . , yn), with sample size n = 100, are realizations of a Gaussian random variable

N(θ, 1), with nominal value θ0 = 1. Within this setting, some scenarios of contamination

are investigated: for each one a percentage of observations is substituded with the most

extreme positive realization of a Cauchy of the same size. The amount of contamination

here is (5%, 10%, 15%), respectively. In particular, using Algorithm 12 we simulated

uniformly θ in [−3, 3] and used as a pivot the distance d(yobs, yref), where yref is drawn

from N(3, 1).
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As shown in Figure 2.13, although the sample mean is dragged, the confidence distri-

butions remain close to and concentrated around the nominal value of 1. In particular,

the test based on the Wasserstein distance is higly stable up to the 15% of contamina-

tion. Compared to the approximate posteriors, the CD based on Wasserstein distance

seems even more stable.

Let us denote with θ̃m the confidence median and let us focus on the Wasserstein

distance. Under the non contaminated sample (yθ0) the confidence median satisfies

Pr(dW (yθ̃m , yθref ) > dW (yθ0 , yθref )) = 0.5.

When considering a ϵ-contaminated sample (yθcϵ0 , with ϵ < 1% of the data are not

generated from the assumed model), we look for θ∗ that satisfies

Pr(dW (yθ∗ , yθref ) > dW (yθcϵ0 , yθref )) = 0.5. (2.14)

The difference θ∗ − θ̃m is the shift due to the contamination. Writing dW (yθcϵ0 , yθref ) as

dW (yθcϵ0 , yθref ) = (1− ϵ)dW (yθ0 , yθref ) + ϵ · dW (c, yθref ),

we can rewrite (2.14) as

Pr


dW (yθ∗ , yθref ) > dW (yθ0 , yθref ) + ϵ[dW (c, yθref )− dW (yθ0 , yθref )]︸ ︷︷ ︸

∆


 = 0.5.

As the term ∆ → 0, the confidence median is recovered. In particular this happens in

the trivial case, when ϵ→ 0 or if θref minimizes dW (c, yθref )−dW (yθ0 , yθref ), that means

it parametrizes the model which corresponds to the barycenter between the central one

and the model that generates the contamination. The optimal value cannot be known

in advance, but as an initial guess a nonrobust estimate could be considered.

For analysing the behaviour of resulting confidence densities under the extreme case

in which the contamination amount is ϵ = 0.2, the data yobs are still realizations of a

Gaussian random variable N(1, 1) and for the contamination a percentage of observa-

tions is substituded with realizations from a Cauchy. For the derivation of the CDs,

we consider different choices for the reference parameter θref = (3, 4, 5, 6, 10, 20, 40, 100)

(see boxplot of the data and confidence densities in Figure 2.14).
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Figure 2.13: Confidence densities and ABC posterior based on Kolmogorv-Smirnov
(KS) and Wassserstein (W) distances; vertical lines represent the sample means for
increasing level of contamination.
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Figure 2.14: Boxplot representing the data (left) and confidence densities based on
the Wasserstein distance with 20% of the data (ϵ = 0.2) from a contamination model
and different choices for the reference parameter. The empirical mean (dotted line) is
2.81, while the true value is 1, and the empirical mean of the uncontaminated sample
(1-ϵ × 100 % of the data) is 1.16.

2.9 Discussion

Summarily, the accuracy of confidence distributions, curves, and densities presented

in this Chapter is dependent solely on Monte Carlo errors, regardless of sample size con-

straints or deviations from Normality. While comparing the procedure to a parametric

bootstrap is natural, certain differences exist. A key point of contrast is the absence

of a preliminary estimate (e.g., maximum likelihood estimate) for simulation, allowing

the method to be suitable for complex models, although estimates might be necessary
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for nuisance parameters. In such cases, the confidence distributions, along with de-

rived confidence intervals or p-values, remain invariant under reparametrizations. In

scenarios lacking direct estimates for nuisance components, alternatives for eliminating

them based on marginalization are easily implementable. Additionally, in contrast to

bootstrap, the method doesn’t fail in absence of regularity conditions.

One further advantage to methods for obtaining reliable confidence intervals in

simulation-based inference recently proposed by Dalmasso et al. (2021) and Xie and

Wang (2022), lies in computational efficiency. The presented procedure allows acquir-

ing confidence intervals for all levels simultaneously, and eliminates the need to derive an

empirical distribution for every potential parameter space value. The method’s validity,

in terms of controlling Type I errors, remains unaffected by the statistic chosen, unlike

ABC procedures (Li and Fearnhead, 2018). Nonetheless, a precise selection would yield

shorter confidence intervals and more meaningful outcomes in any scenario. Related to

the choice of the summary statistic, one interesting aspect is the possibility of combining

CDs obtained from different sources or partial information.

As a final remark, we mention the possibility to adopt non parametric criteria and

statistics, other than just centrality measures, for deriving confidence distributions for

a scalar parameter of interest in presence of contamination. A central parametric model

is assumed but the observed data are evaluated in terms of non parametric pseudo-

distances from a reference model, directly based on the empirical cdfs. At present our

preliminary study is limited to models with a scalar parameter of interest, since adapting

these kind of test procedures to more complex models to deal with nuisance parameters

may require non parametric point estimation instead of the use of a reference model.





Chapter 3

Box ABC

3.1 Introduction

In this chapter, we introduce an algorithm designed to approximate the poste-

rior distribution. Unlike traditional ABC schemes, our approach incorporates a

probabilistic acceptance rule, eliminating the need for selecting and tuning the

threshold parameter ε. Although the method is not able to recover the true pos-

terior, it implicitly makes use of a pseudo-likelihood that enjoys some consistency

guarantees and has some connections to data depth functions (see e.g. Liu, 1990).

The method is currently developed to address problems where multiple summary

statistics are involved, but only one parameter is unknown. Possible extensions

are suggested in the final discussion.

3.1.1 ABC and the role of ε

In many applications, the evaluation of the likelihood function is either very com-

putationally expensive or not feasible. Likelihood-free methods, such as Approx-

imate Bayesian Computation (ABC) and Bayesian Synthetic Likelihood (BSL),

have emerged as invaluable tools in Bayesian inference. These methodologies lever-

age simulation-based approaches to approximate the likelihood function. BSL, pi-

oneered by Wood (2010) and extended by Price et al. (2018), facilitates inference

by constructing a synthetic likelihood for the summary statistics from simulated

data, thus a parametric approximation of the likelihood function. ABC, intro-

duced by Rubin (1984) and Tavaré et al. (1997), aims to generate simulated data

65
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sets (pseudo-data) that mimic the observed data without the need for explicit

likelihood computation. For this reason, the approximation is considered non-

parametric, as a particular form of the function is not given. Intuitively, if the

synthetic data match the observed data within a certain tolerance limit ε, it is

likely that the model parameters used in the simulations are plausible for the

model under consideration and in turns, their likelihood function. The distance

between pseudo and actual data is generally assessed using on a set of summary

statistics that are intended to be informative for the model. More in detail, let us

assume that it is possible to generate data from the model p(y|θ), with θ ∈ Θ ⊆ Rp

and let θ0 be the true value of θ, so that p(y|θ0) is the true data generating process.

We denote with yobs the observed data, of size n, with t : Rn → Rd a collection of

summary statistics of d < n components, with tobs = t(yobs) the observed summary

statistics and with δ : Rd×Rd → R+ a distance function. The idea of the simplest

(rejection) ABC algorithm (Algorithm 15) is to compare simulated data y∗, from

p(y|θ∗), with θ∗ generated from the prior proposal π(θ), to the observed data and

accept the proposed values θ∗ such that the latter discrepancy is relatively small,

i.e. δ(t(y∗), t(yobs)) < ε, with ε > 0 controlling the amount of the approxima-

tion. The resulting obtained sample of θ∗ is drawn from an approximation of the

posterior distribution π(θ|yobs), given by

πABC
ε (θ|t(yobs)) =

π(θ)p(t(y)|θ)Iδ(t(y),t(yobs))<ε∫
Θ
π(θ)p(t(y)|θ)Iδ(t(y),t(yobs))<εdθ

,

and lies in a neighbourhood of the posterior distribution. If t(y) is sufficient, as

ε→ 0 the distribution πABC
ε (θ|t(yobs)) converges to the true posterior (Biau et al.,

2015).

Algorithm 15 Accept-reject ABC

Input: prior π(θ), number of iterations R, summary statistic t(·), tobs = t(yobs), ε, distance δ(·; ·)
for j in 1, . . . , R do

Sample θ∗j ∼ π(θ) and y∗j ∼ p(y; θ∗j )
Compute t∗j = t(y∗j )

Accept θ∗j if δ(t∗j ; t
obs) ≤ ε else reject

end for

return accepted θ∗

The posterior inference involves multiple layers of approximation. First, the verifi-

cation of sufficiency is not straightforward, since it is not possible to isolate terms

that are sufficient without the likelihood function. For this reason, the resulting
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ABC posterior is often referred to as reduced or partial posterior. Alternatives,

such as non-parametric density estimation or approaches that bypass the need

for summary statistics, offer greater flexibility. However, these methods can be

inefficient, especially in high-dimensional spaces and when using non-informative

priors (Grazian and Fan, 2020).Secondly, there is the interplay between the tol-

erance ε and the distance measure δ. Setting the tolerance ε exactly to zero is

not feasible, given that the event corresponding to a null distance holds a measure

of zero, unless the data are discrete. There is also the Monte Carlo error, which

arises from computational constraints. Of particular interest is the trade-off due

to the number of accepted values and the relaxation of ε. In particular, there

exists an inverse relationship between the tolerance level and the required num-

ber of simulations needed to generate and retain sufficiently large Monte Carlo

samples from the posterior. Consequently, the choice of ε significantly determines

the accuracy of the derived reduced posterior when working with a fixed compu-

tational budget. There are generally two strategies for choosing such a tolerance

level: the first is to set ε = Qα(δ1, . . . , δR), i.e. the empirical α quantile of the

measured distances, in advance. This allows to bound the Monte Carlo error and

the resulting approximation depends mainly on the prior-posterior discrepancy.

A second possibility is to let ε decrease sequentially, which turns out to be more

computationally intensive as the final acceptance rate is unknown and eventually

tends to zero. Therefore, the first strategy is preferable. Finally, because of the

curse of dimensionality, in practice, ε must also increase with the dimension of the

summary statistic.

In practice, without infinite computational resources, it is sometimes difficult to

quantify the discrepancy between the estimated and exact posterior distributions,

and the practitioner’s choice remains problem dependent, mainly related to avail-

able computational resources. As a result, re-analyzing data sets of different or

larger sizes may lead to inconsistencies. The process of tuning the value of ε in

applications has also led to a body of research aimed at automating this choice by

improving the mechanism for proposing parameter values without compromising

computational efficiency. Recent work employs Metropolis-Hastings, Sequential

Monte Carlo or Gibbs-like strategies within the ABC algorithm, to achieve in-

creasingly precise target distributions or to evaluate smaller dimensional summary

statistics (see for example Del Moral et al., 2012; Simola et al., 2021; Clarté et al.,

2021; Karabatsos, 2021).
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3.2 Box-ABC: scalar case

Here, we aim to approximate the likelihood function without assuming a closed

model for the summary statistics, similarly to ABC. However, we consider an

approximated posterior where in the acceptance rule is not used a distance func-

tion and the choice and tuning of a threshold parameter. The goal remains to

maintain consistency with high acceptance rates. To avoid the need for defining

a distance metric and subsequently choosing a tolerance level, we adopt an alter-

native approach. For every sampled value θ∗ drawn from the prior distribution,

we generate two pseudo-samples, denoted as y∗1 and y∗2. The acceptance of θ∗ is

contingent upon the condition

t(yobs) ∈ B,

where B := B(t(y∗1), t(y∗2)) represents a ”box”, or more formally a hyper rectangle

with edges defined by the coordinates of the summary statistics of the two pseudo-

samples. In cases where the summary statistic is scalar, this ”box” corresponds to

an interval defined by t(y∗1) and t(y∗2) as its endpoints. In this case, the proposed

θ∗ is accepted if and only if

t(yobs) ∈ [t(1), t(2)], (3.1)

where t(1) = t(y∗)(1), t(2) = t(y∗)(2) correspond to the (scalar) ordered summary

statistics. By accepting according to rule (3.1), the algorithm returns a series

of values distributed according to a a pseudo-posterior, that will be denoted as

πbox(θ|y).

More precisely, the target distribution of the procedure is of form

πbox(θ|y) =
Lbox(θ)π(θ)∫

θ
Lbox(θ)π(θ)dθ

, (3.2)

with

Lbox(θ) ∝ Ft(t
obs|θ)[1− Ft(tobs|θ)],

where Lbox : Θ→ R+ is a pseudo-likelihood and the function Ft(t
obs|θ) is the cu-

mulative density function of t(y), once fixed the value of the summary statistic.

Assumption 1. The statistic t : Y → T ∈ is one-dimensional, and 0 < V ar(t(y)|θ) <
∞ for π-almost all θ.

The assumption that V ar(t(y)|θ) > 0 for π-almost all θ ensures that the intervals

of the form [t(1), t(2)) have positive probability of being non-empty.
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Lemma 3.1. Under Assumption 1, the procedure outputs samples from πbox(θ|tobs),
defined in (3.2)

Proof. Let θ ∈ Θ, and consider a pair of statistics following the pushed-forward

distribution induced by the summary statistic t applied to y ∼ p(y|θ). i.e.

(t1, t2)
iid∼ t#p(y|θ) We compute the probability of acceptance of θ as follows:

Pr(t(1) ≤ tobs < t(2)|θ) = Pr(t1 ≤ tobs < t2|θ) + Pr(t1 > tobs ≥ t2|θ),
= Pr(t1 ≤ tobs, tobs < t2|θ) + Pr(t1 > tobs, tobs ≥ t2|θ)
= Ft(t

obs|θ)[1− Ft(tobs|θ)] + Ft(t
obs|θ)[1− Ft(tobs|θ)]

= 2Ft(t
obs|θ)[1− Ft(tobs|θ)]

∝ Ft(t
obs|θ)[1− Ft(tobs|θ)].

We obtain the target distribution by a usual rejection sampling argument.

As in ABC, and in opposition to BSL, the approximation to the parametric model

can be considered non parametric, because no assumptions are made on the shape

of the model for the summary statistics, which only depends on the data generating

process. Similarly to ABC and BSL, the approximate posterior will reflect the

possible insufficiency of the summary statistics used.

Algorithm 16 Accept-reject Box-ABC

Input: prior π(θ), number of iterations R, summary statistic t(·), tobs = t(yobs)

for j ∈ 1, . . . , R do

Sample θ∗j ∼ π(θ) and y∗1j , y
∗2
j ∼ f(y; θ∗j )

Compute t∗1j = t(y∗1j ), t∗2j = t(y∗2j )

Accept θ∗j if tobs ∈ B(t(y∗1), t(y∗2)),

end for

return accepted θ∗

B(t(y∗1), t(y∗2)) is the box/hypercube having as edges the values of two samples’

summary statistics.

3.2.1 Variants: R samples with external interval

The procedure can be modified by sampling R > 2 datasets and subsequently

accept the corresponding generating parameter value if

t∗(1) ≤ tn ≤ t∗(R).
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Hereafter, we denote as Ft1tR the joint distribution of the ordered statistics and

ft1tR the joint density. Hence,

Pr(t(1) ≤ tobs) ≤ t(y(R)∗) =

∫ ∞

tobs

∫ tobs

−∞

ft1tRdt1dtR.

Following basics reasoning (see also Ahsanullah et al., 2013)

Pr(t(1) ≤ tobs) ≤ t(y(R)∗) =

∫ ∞

tobs

∫ tobs

−∞

ft1ftR [FtR − Ft1 ]R−2dt1dtR

=

∫ ∞

tobs

∫ tobs

−∞

ft1ftR

R−2∑

k=0

(
R− 2

k

)
F k
tR

(−Ft1)R−k−2dt1dtR

=
R−2∑

k=0

[

(
R− 2

k

)∫ ∞

tobs

∫ tobs

−∞

ft1ftRF
k
tR

(−Ft1)R−k−2dt1dtR]

=
R−2∑

k=0

[

(
R− 2

k

)∫ tobs

−∞

ft1(−Ft1)R−k−2dt1

∫ ∞

tobs
ftRF

k
tR
dtR].

With integration by parts of the undefined integral,
∫
ftRF

k
tR
dtR we obtain

∫
ftRF

k
tR
dtR = F k

tR
FtR −

∫
FtRkF

k−1
tR

ftRdtR = F k
RFtR − k

∫
ftRF

k
tR
dtR

where one can recognize inside the last term the original function. Thus, (1 +

k)
∫
F k
tR
dtR = F k+1

tR
, and finally

∫
F k
tR
dtR = F k+1

tR
/(1 + k). Using these results in

the defined integral,

=
R−2∑

k=0

[

(
R− 2

k

)
[1− FtR(tn)k+1]

(1 + k)

∫ tn

−∞

ft1(−Ft1)R−k−2dt1].

Similarly, consider the remaining-to-be-integrated part

∫
ft1(−Ft1)R−k−2)dt1 = F1(−Ft1)R−k−2 −

∫
F1(R− k − 2)(−1)R−K−3FR−k−3

1 ft1dt1

= F1(−Ft1)R−k−2 − (−1)R−K−3(R− k − 2)

∫
FR−k−2
1 ft1dt1,

with analogous reasoning it follows

∫
ft1(−Ft1)R−k−2)dt1(1 + (−1)R−K−3(R− k − 2)) = F1(−Ft1)R−k−2
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and ∫
ft1(−Ft1)R−k−2)dt1 =

F1(−Ft1)R−k−2

(1 + (−1)R−K−3(R− k − 2))
.

Hence,

Pr(t(1) ≤ t(yn) ≤ t(y(R)∗))

=
R−2∑

k=0

(
R− 2

k

)
[1− FR(tn)k+1]

(1 + k)

F1(−Ft1)R−k−2

(1 + (−1)R−K−3(R− k − 2))

t1, tRiid =
R−2∑

k=0

(
R− 2

k

)
[1− F (tn)k+1]

(1 + k)

F (tn)(−1)R−k−2F (tn)R−k−2

(1 + (−1)R−K−3(R− k − 2))

=
R−2∑

k=0

(
R− 2

k

)
[1− F (tn)k+1]

(1 + k)

(−1)R−k−2F (tn)R−k−1

(1 + (−1)R−K−3(R− k − 2))

=
R−2∑

k=0

(−1)R−k−2

(
R− 2

k

)
1

(1 + k)

[F (tn)R−k−1 − F (tn)R]

(1 + (−1)R−K−3(R− k − 2))

which is a polynomial function, not corresponding again to the likelihood amount,

and can be recognized to allow for acceptance easier.

3.2.2 Variants: R samples with internal interval

We can also study the behaviour of the algorithm when R > 2 samples are the

proposed value θ∗ is accepted if the summary statistic falls in the central inter-

val, i.e. [t(R/2), t(R/2+1)]. In this case, the pseudo-likelihood is proportional to

[Ft(tn|θ)(1 − Ft(tn|θ))]R/2. Indeed, let us recall that the joint probability density

function of two ordered statistics (r, s) among R is

ftr,ts(tr, ts) =
R!

(r − 1)!(s− r − 1)!(R− s)!ftr(tr)fts(ts)Ftr(tr)
r−1

[Fts(ts)− Ftr(tr)]s−r−1[1− Fts(ts)]R−s.

To us, s = r+ 1, R− s−1 = r−1 and r = R/2 since we consider the two median

values among R. Hence, by integrating over the right support, we have

∫ tn

−∞

∫ ∞

tn

R!

(R/2− 1)!(R/2− 1)!
ftr(tr)fts(ts)Ftr(tr)

R/2−1[1− Ftr(tr)]R/2−1dtrdts.

(3.3)
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For instance, with R = 4, we have that this equals

24

∫ tn

−∞

∫ ∞

tn

ftr(tr)fts(ts)Ftr(tr)[1− Ftr(tr)]dtrdts

with similar reasoning as before, we obtain

= 24
F 2(tn)

2
[

∫ ∞

tn

ftsdts −
∫ ∞

tn

ftsFtsdts]

= 24
F 2(tn)

2
[(1− F (tn))− (1− F (tn)2)

2
]

= 24
F 2(tn)

2
[
1

2
− F (tn)(1− F (tn)

2
)]

= 24
F 2(tn)

4
− F 3(tn)

2
+
F 4(tn)

4

= 6F 2(tn)(1− F (tn))2

∝ (F (tn)[1− F (tn)])2,

(3.4)

where we neglect the multiplicative constants. Now we can generalize the result

to the case of R samples, by induction. For R = 2 and 4 it is true that

[F (tn)(1− F (tn))]R/2.

Assume it is true for R∗, we then show that is even valid for R∗ + 2. This means

we have samples R/2 pairs of samples and we have observed tobs greater than R/2

and lower than R/2 of the summaries. Then, we sample independently another

pair of summaries and accept if and only if tobs one of the summaries is grater

than the observed and ne is lower, with probability F (tobs)(1−F (tobs)). Since the

drawn are independent from the previous we will get

F (tn)(1− F (tn))R
∗/2F (tn)(1− F (tn)) = [F (tn)(1− F (tn))](R

∗+2)/2.

3.2.3 Link to confidence distributions

In order to study the properties of the approximate posterior, πbox(θ|y) it is con-

venient to note that the function Ft(t
obs|θ) is a Confidence Distribution. Indeed,

a function Hn(·) = Hn(y, ·) on Y × Θ → [0, 1] is a CD for θ if (see e.g. Xie and

Singh, 2013):

C1 for each given y ∈ Y , Hn(·) is a cumulative distribution function on Θ;
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Figure 3.1: Instance of a confidence curve cc(tobs|θ), its complementary 1−cc(tobs|θ)
and their product.

C2 at θ = θ0, Hn(θ0) = Hn(yobs, θ0), as a function of the sample yobs, follows a

Uniform[0, 1] distribution.

Remark 3.2. If condition C1 requires that Ft(t
obs|θ) is stochastically increasing in

θ, for obtaining a CD, in Box-ABC the direction of the stochastic ordering does

not matter since the expression handles symmetrically both cases. Thus, we can

extend C1 to accomodate cases in which 1 − Hn(·) is a cumulative distribution

function on Θ.

Remark 3.3. Note that the assumption can be checked a posteriori by running

the accept-reject procedure described in Algorithm 16. If this does not hold,

the pseudo-likelihood corresponds to an approximation taking form cc(tobs|θ)(1−
cc(tobs|θ)), with cc(·) a confidence curve (Schweder and Hjort, 2016). In this case,

there is no guarantee of a miximizer.Figure 3.1 illustrates an instance of cc(tobs|θ)
(first panel), 1−cc(tobs|θ), and their product (third panel). The confidence median

in this case is not the maximizer of the resulting pseudo-likelihood.

Remark 3.4. Since any statistic gives valid Ft(t
obs|θ), we can derive some frequen-

tist properties, for Lbox(θ|t) that will be valid despite the choice of the statistic.

Remark 3.5. The concentration of Lbox(θ|tobs) is related to the spread of Ft(t
obs|θ)

and thus to the power of a test based on t (see e.g. Schweder and Hjort, 2016, and

refernces therein).

From this standpoint, it may be noted that in the scalar approach, the adoption of

such a rule, along with the generation of twice the data, does not offer substantial

information compared to deriving a Confidence distribution or confidence density,
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as presented in Chapter 2 of this thesis. However, the potential advantage will

become more apparent in the subsequent discussion, wherein the extension of the

box-ABC to incorporate multiple summary statistics unveils a more streamlined

and easily adaptable framework to that of CDs.

3.2.4 Properties of maximum pseudo-likelihood estimators

Median Unbiasedness. The maximizer of the pseudo-likelihood is exactly me-

dian unbiased. Define,

θ̃ = argmax Lbox(θ),Lbox(θ) = Ft(t
obs|θ)[1− Ft(tobs|θ)],

where the Ft(t
obs|θ) is normalized, i.e. 0 < Ft(t

obs|θ) < 1. It is easy to recognize

that θ̃ corresponds to the confidence median, i.e. θ̃ is such that Ft(t
obs|θ̃) = 1

2
. For

the latter it holds that if θ0 is the true value, Pr(θ̃ > θ0) = 1/2, for any n.

Asymptotic equivalence to MLE. Under standard regularity assumptions, the

MLE θ̂ satisfies Pr(θ̂ > θ0) →
n→∞

1/2,. From this we get an asymptotic equivalence

between θ̃ and θ̂.

Asymptotic distribution. To facilitate the study of the asymptotic distribution

of
√
n(θ̃−θ0), we employ a Central Limit Theorem argument under the assumption

1 that allows us to consider the convergence of the statistic t(y) to a standard nor-

mal distribution. Denoting the variance of t(y) as V the Confidence Distribution

and the standard asymptotic posterior distribution have the form

C(θ)→ Φ(1/V 1/2(θ − θ0)),

π(θ|y)→ 1/V 1/2ϕ(1/V 1/2(θ − θ0)),

where Φ and ϕ are the cdf and the pdf, respectively, of a standard Normal distri-

bution.

Lemma 3.6. Under the asymptotic regime, the the pseudo-likelihood can be ap-

proximated by

Φ(V −1/2(θ − θ0))(1− Φ(V −1/2(θ − θ0)))∫
Θ

Φ(V −1/2(θ − θ0))(1− Φ(V −1/2(θ − θ0)))dθ
,
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where the normalizing constant is given by

∫

Θ

Φ(V −1/2(θ − θ0))(1− Φ(V −1/2(θ − θ0)))dθ = (V/π)1/2.

In particular, if the variance of the summary statistic is of order O(n−1), the nor-

malizing constant will be O(n1/2) and the concentration of the box-pseudo-likelihood

will scale at rate O(n−1), since the numerator is O(n−1/2). Hence, for large n, the

concentration of the pseudo-likelihood and, in turn, the pseudo-posterior is expected

to be higher than that of the regular posterior.

For the proof we will use the following result.

Lemma 3.7. For any cumulative distribution function, it holds

∫ b

a

F (w) · 1dw = [F (w)w]ba −
∫ b

a

f(w)wdw = F (b)b− F (a)a−
∫ b

a

f(w)wdw.

Proof. Let us rewrite

∫ ∞

−∞

Φ(V −1/2(θ − θ0))(1− Φ(V −1/2(θ − θ0)))dθ =

=

∫ ∞

−∞

[Φ(V −1/2(θ − θ0))− Φ2(V −1/2(θ − θ0)))]dθ =

=

∫ ∞

−∞

Φ(V −1/2(θ − θ0))dθ −
∫ ∞

−∞

Φ2(V −1/2(θ − θ0)))dθ.

We recognize that Φ(θ)2 is the cumulative distribution function of a Skew-Normal

(SN) random variable (Azzalini, 1985) with shape equal to one. Thus, the mean

of a Skew-Normal random variable, SN(0, V, 1) is (V/π)1/2. Using (3.7) we have

∫ ∞

−∞

Φ(V −1/2(θ − θ0))(1− Φ(V −1/2(θ − θ0))dθ = (∞− 0)− (∞− V 1/2

√
π

) =
V 1/2

√
π
.

Consistency. Under the assumption V →
n→∞

0, and thanks to fist order asymp-

totic equivalence between θ̃ and θ̂, we recognize that θ̃ is consistent.

3.2.5 Example: Normal model

Consider a sample realization from a Normal model, yi ∼ N(0, θ), for i = 1, . . . , n

with θ = 1, a uniform prior π(θ) = Uniform(0, 6) and t(y) = V ar(y) as a summary
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statistic, with δ = |t(y) − tobs| distance function. We aim at comparing the Box-

ABC pseudo-posterior to that of ABC with varying sample size n = (10, 2000),

fixing the tolerance ε = 0.05 and the number of proposals to 106. In this setting,

the variance of the summary statistics changes with 1/
√
n. The total number

of accepted values, the fraction of accepted proposals on the total number of

generations from the model (Acc/Gen), the average computational time necessary

to obtain one accepted value (Time/Acc, with time expressed in seconds) are

shown in table 3.1. The implementation was done in R programming language

(R Core Team, 2015), and a single thread. A laptop CPU with a clock speed of

1.00 GHz was used. Note that the index (Acc/Gen) takes into account the fact

that Box-ABC requires two model generations from the same parameter setting.

The Resulting approximate posterior are compared to the true one in Figure 3.2.

Note that as the sample size increases and, conversely, as the variance of the

summary statistic decreases, for Box-ABC the acceptance probability decreases,

thus the cost per simulation increases, but the discrepancy prior-posterior does

not change. Conversely, without changing the prior/proposal, and with fixed ε,

for ABC the larger the sample size, the higher is the discrepancy prior posterior

agreement.

n=10 Acc/Gen Time/Acc n=2000 Acc/Gen Time/Acc
ABC 10969 0.01 2.7 10−3 8268 0.008 0.02
Box-ABC 42950 0.02 1.8 10−3 3006 0.002 0.10

Table 3.1: Synthesis of simulation results for the Normal model: absolute num-
ber of accepted proposals, proportion of accepted proposals on the number of gen-
erations from the model (Acc/Gen) and average computational time to accept once
(Time/Acc), with time expressed in seconds.

3.3 Box-ABC: multivariate statistics

Let us consider a more general case, where the summary statistic is multidimen-

sional, i.e. t = (t1, . . . , td) ∈ Rd, d > 1. Some difficulties naturally arise for

defining the “box”, as there might be a dependence structure of the vector of

summary statistics, and establishing a clear ordering in such case is not straight-

forward. If there is a positive correlation among all the components, it might

be natural extending the order of the first component to the other components.

Conversely, if the dependence is in the opposite direction, the order of the first

component might be transferred inversely to the others. Exploring the dependence
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Figure 3.2: Normal model: approximate posteriors via ABC and Box-ABC com-
pared to the true posteriorfor n = 10 (left) and n = 2000 (right).

structure, noting also that correlation might not be the most effective synthesis,

is something we aim to avoid.

Hence, we consider and study the properties of a box built on the ordering of each

component separately. The box in the multidimensional case is defined as

B = ×dj=1[t
∗(1)
j , t

∗(2)
j ],

where t
∗(1)
j and t

∗(2)
j are the order statistics along the j-th coordinate. Equivalently,

the parameter is accepted if

t
(1)
1 < tobs1 < t

(2)
1 & t

(1)
2 < tobs2 < t

(2)
2 & . . . & t

(1)
d < tobsd < t

(2)
d , (3.5)

Thus, using the partitioning t = (tj, t[−j]), where t[−j] = (t1, . . . , tj−1, tj+1, . . . , td),

B = ∩dj=1Bj, the corresponding pseudo-likelihood function can be written as

Lbox(θ) ∝ Pr(tobs ∈ B|θ) ∝
d∏

j

Pr(tj ∈ Bj|t[−j] ∈ B[−j], θ). (3.6)

3.3.1 Properties Box-ABC with multidimensional summaries

Consistency. Consider t ∈ Rd and θ ∈ R. To prove consistency in the multivari-

ate case, we consider the following assumptions.

Assumption 2. Under the true θ0 there exists τ s.t. t→ τ in probability.
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Assumption 3. V arθ0 [t(y)]→ 0 as n→∞.

Theorem Under Assumptions 2 and 3, a CD is such that for θ ̸= θ0 limn→∞

Hn(θ)[1−Hn(θ)]| → 0. All the elements in the product (3.6) are conditional CDs,

thus Box-ABC is consistent.

Median unbiasedness. To verify median unbiasedness, we write

Pr(t ∈ B) = Pr(t1 ∈ B1, t2 ∈ B2) = Pr(t1 ∈ B1|t2 ∈ B2)Pr(t2 ∈ B2),

considering first a bivariate summary.

1. (Trivial case): if t1 is independent of t2 it becomes Pr(t1 ∈ B1)Pr(t2 ∈ B2),

where both are maximized for θ0, hence the product is also maximized for θ0.

2. If t1 is not independent of t2, alone Pr(t2 ∈ B2) is maximized for θ0. Denote

the distribution of t1 conditionally on the event {t2 ∈ B2} with F1,B2(θ).

We further assume that F2 is symmetric. Then, there exists a region Bc
2

symmetric in the sample space T ∈ R2 with the same probability mass, i.e.

Pr(B2) = Pr(Bc
2) such that, each time a random interval B2 contains the

observed t2, a random interval Bc
2 is also formed by a set of two statistics

defined a box and containing the observed t2. The distribution of these

statistics in the region B2 ∪Bc
2 is symmetric and by construction its median

coincides with the median of the marginal distribution.

3.3.2 Comparison to Data Depth approaches

Multivariate data, unlike univariate data, lacks a universally agreed-upon method-

ology for ordering. While order statistics theory has long been established for

univariate data, extending this to multivariate cases remains challenging. The

necessity for ordering multivariate observations spans diverse domains, for tasks

such as estimating locations, identifying outliers, and enhancing visualization. Re-

searchers have proposed various approaches, often using concepts of data depth to

simplify the problem to a univariate context. Data depth functions (DD functions)

are important tools that provide a measure of centrality within the multivariate

sample space and guide the sequential ordering of points to ultimately delineate

nested central regions. Although there is no unanimous consensus, as the mul-

titude of depth notions leads to differing formulations of multivariate ordering,

these techniques typically involve assigning depth values to data points in relation

to their distribution, allowing ranking from the most distant outliers to the central
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points. For example, the Simplicial depth (SD) method introduced by Liu (1990)

determines the depth of a point by evaluating its presence within all combinations

of simplex formed by the data points. Another instance of HD, also known as

Tukey’s depth, in one dimension is used to as the p-value for bilateral tests:

2 min{Pr(Y ≤ yobs | θ), P r(Y ≥ yobs | θ)}.

The HD (Tukey’s Depth) in the multivariate case requires the definition of a convex

hull, which is the intersection of all halfspaces containing all sample points. The

level sets of the HD are defined as the intersections of halfspaces containing k < n

sample points. Other DD functions are instead based on distance notions, as the

Mahalanobis disance. For a comprehensive review, see Weller and Eddy (2015)

Dungang et al. (2022) consider the concept of DD to define confidence intervals for

multiparameter settings, called depth CDs, by ranking parameter values instead

of data points. They propose to use the distribution of non-parametric bootstrap

estimates to recover an approximate depth CD, motivated by the fact that efficient

exact algorithms for computing half-space and simplicial depths in dimensions

larger than 3 are not available. When examining the univariate counterpart of

the SD, i.e. two independent observations drawn from a univariate cumulative

distribution function, the SD is reduced to the form SD1(x) = 2F (x)[1F (x)], and

the point that maximises SD1(x) corresponds to the median of the population.

Note that the definition resembles that of the Box-ABC pseudo-likelihood function

in the scalar case. In Box-ABC, the ordering performed on the sample space

induces an ordering on the parameter space, similarly to the idea of the depth-

CD of Dungang et al. (2022). In a multivariate setting, instead of verifying that

one observation is central to all the obtainable simplexes, Box-ABC simulates

hyper-rectangles and assigns a measure of centrality of the (fixed) observation via

rejection sampling, to the parameter from which pseudo-observations are drawn.

In particular, the complexity related to the reliance on the simplex is reduced with

hyper-rectangles. While the CD furnishes a univariate ordering of the values of

Θ, Lbox(θ) gives a natural ordering of θ ∈ Θ from the center outward as a Data

Depth (DD) function.

3.3.3 Simulation study

Here we study the median unbiasedness of the maximizer in a model where three

summary statistics are used to resume information about a parameter of interest.
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Figure 3.3: Distribution of maxima of the “box”-pseudo-likelihoods in a simulation
study consisting of 1500 Replications from the multivariate correlated normal model.

We considered the following model:

yi ∼ Normal2(µ,Σ), with Σ =

(
1 0.9

0.9 2

)
, i = 1, . . . , 5.

We consider 1500 datasets obtained from this model. For each of them, we draw

10000 values from a uniform prior in [0, 5] for the parameter of interest µ, whose

nominal value was 2.2. For each dataset, we construct the Box-pseudo-likelihood

using as summary statistics the empirical means of the three components of the

normal, which are correlated. After a density estimation, we retrieve the maxi-

mizer of the likelihood. As shown in Figure 3.3 the estimator is median unbiased,

as expected. Since the distribution of the summary statistics is symmetric, it is

also unbiased. Finally, Figure 3.4 presents 10 replications of posteriors (shown

as continuous lines) and corresponding approximations (depicted as dashed lines)

based on Box-ABC, with each replication comprising 2 · 104 proposals. The color

scheme remains consistent for each dataset.
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Figure 3.4: Posterior distributions (continuous lines) for the parameter µ across
10 datasets drawn from the multivariate correlated normal model, alongside “box”-
approximations (dashed lines).

3.3.4 Example: Ricker’s Model

We consider the Ricker’s model (Ricker, 1954),which describes the evolution of the

number of animals of a certain species according to the equation

log(N(t)) = log(r) + log(N(t− 1))−N(t− 1) + σe(t),

where N(t) is the unknown population at time t, log(r) is the logarithmic growth rate,

σ is the standard deviation of innovation and e(t) is an independent Gaussian error.

Assuming N(0) = 0, the observed population at time t, yt, is a Poisson random variable:

yt ∼ Poisson(ϕN(t)) where ϕ is a scaling parameter. Suppose σ = 0.3, ϕ = 10, and

log(r) = 3.8, where the latter parameter only is unknown. The size of the dataset

considered is t = 50. Following Grazian and Fan (2020), the set of summary statistics

used are

1. the number of observations greater than 10,

2. the median count,

3. the maximum count,

4. the quantile of level 0.75,

5. the sample mean of the observations greater than 1.
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The prior distribution for the parameter of interest is log(r) ∼ Uniform(0, 10). For ABC

and Box-ABC two runs, with 105 and 106 simulations, respectively were performed and

for ABC a series of thresholds were considered: ε = 5.0, 10, 20, 30 with distance as

δ = ||t∗− tbox||2 was chosen to run to standard ABC. Results are displayed in figure 3.5,

while table ?? summarizes number of accepted values, fraction of accepted proposals

on number of simulations (Acc/Gen) from the model and average computational time

in seconds on a laptop CPU with a clock speed of 1.00 GHz necessary to obtain one

accepted value (Time/Acc).

R=105 Acc/Gen Time/Acc R=106 Acc/Gen Time/Acc
Box-ABC 303 0.15 0.467 2728 0.14 0.539
ABC ε = 5 46 0.05 4.884 113 0.02 5.549
ABC ε = 10 148 0.15 1.168 401 0.04 1.564
ABC ε = 20 204 0.20 0.363 1323 0.14 0.474
ABC ε = 30 258 0.26 0.208 2448 0.24 0.256

Table 3.2: Synthesis of simulation results for the Ricker’s model with five summary
statistics: absolute number of accepted proposals, proportion of accepted proposals
on the number of generations from the model (Acc/Gen) and average computational
time to accept once (Time/Acc), with time expressed in seconds.
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Figure 3.5: Results for the Ricker model: approximate posterior with five summary
statistics.

3.4 Discussion

In this Chapter, we have examined a strategy for obtaining an approximate poste-

rior distribution for performing inference in the absence of the likelihood function. The

approximated likelihood is related to the concept of Confidence Distribution. We have

focused on performing inference from many summary statistics without assuming a like-

lihood function for such summaries for a single parameter of interest. Missing from our

discussion is the treatment of multidimensional parameters. Ideally, the method can
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be extended to deal with many unknown parameters, by constructing a “box”, incor-

porating all the summary statistics available, as done in Section 3.3.4, but proposing

from a multidimensional parameter. Another idea is to consider partitions of summary

statistics that are informative for blocks of parameters, similar to what has been studied

by Clarté et al. (2021), thus working with the product of approximated full conditionals.

The investigation of theoretical properties in the case of vector parameters still needs

to be explored. Although the posterior is not recovered by the proposed method, since

the likelihood is replaced by a transformation of a confidence distribution (or a depth

CD) for one parameter at a time, we suggest that our proposal could be used as a

means of monitoring the quality of the ABC approximation and as a means of tuning

the tolerance parameters. This could be particularly beneficial for parameters where

the challenge lies in the lack of concentration of the marginal posterior with a small ε

range.





Chapter 4

Coupling of MCMC algorithms on

manifolds

4.1 Distributions on submanifolds

Various problems in statistics lead to the problem of sampling from a probability dis-

tribution on a submanifold. This restricted space can be obtained through rather simple

linear equations, or a more challenging set of functions, called constraints. Consider the

space RD and a constraint function q(x) : RD → Rm, (D > m ≥ 1). We consider

distributions with support the submanifold {x ∈ RD|q(x) = 0m}. In some models and

scenarios, a reparametrization, such as polar coordinates, may aid in restoring the di-

mensionality of the space and ease sampling and performing inference. For example, a

point on a three dimensional sphere can be represented using two angles, in the uncon-

strained space [0, 2π]× [0, 2π]. However, for certain cases, such reparametrizations may

not be available. Thus, samping distributions on such spaces might be challenging.

A commonly encountered example is the realm of positive semi-definite (PSD) matri-

ces, which include covariance matrices. If the covariance matrix is of dimension D×D,

the effective space is D(D + 1)/2 and the collection of PSD matrices forms a convex

cone, known as the semidefinite cone in the space of symmetric matrices (see for in-

stance Beskos and Kamatani, 2022). Other classical problems related to distributions

on submanifolds can be found in the field of directional statistics (see e.g. Mardia et al.

2000), with numerous applications in astrostatistics and biology. Other instances come

from the classical testing literature, where the constraints come from conditioning op-

erations which allow to eliminate nuisance parameters and gaining power. For instance,

consider an unknown parameter vector θ ∈ Rp, indexing a model p(y|θ), partitioned

85
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into θ = (ψ, λ), where ψ is the scalar parameter of interest. If a sufficient statistic

s(y) = (V, U) is such that the model factorizes as pU |V (u|v, ψ)pV (v|λ, ψ), then inference

can be carried on the conditional model pU |V , which does not depend on ψ. Often a

closed form pV |U is not given, suggesting to resort to MCMC algorithms (see e.g. Davi-

son 2003, Chapter 12 and Lindqvist et al. 2022). Diaconis et al., 2013 describe how

the problem arises in goodness-of-fit hypothesis testing, and more recently Barber and

Janson (2022) consider the similar framewok of Co-sufficient Sampling (CSS), that ad-

dresses the challenge of testing a composite null hypothesis in the presence of unknown

model parameters. CSS involves conditioning the analysis on the Maximum Likelihood

Estimator (MLE) of these parameters, and simplifies subsequent statistical testing and

analyses. In Bayesian statistics, conditioning is the key ingredient in the Bayes Theo-

rem. Following the previous notation, let π(θ) be the prior distribution. The posterior

is

π(θ|yobs) =
π(θ)p(yobs|θ)

p(yobs)
,

where the likelihood function p(yobs|θ) is given by the density function of the model for

fixed observed data yobs. In this framework, when the data generating process can be

represented as y = g(θ, u), with θ being the parameter vector, u a vector of random

inputs of dimension |u|, following ρ(u), and g(·, ·) a deterministic function, the likelihood

function can be written as P{g(u, θ) ∈ Gθ(yobs)|θ}, which is

∫

Gθ(yobs)

ρ(u)

det (∇ug(u, θ)∇ug(u, θ)⊤)1/2
.

and Gθ(y) = {u ∈ U : g(u, θ) = y} (Liu et al., 2022).

Graham and Storkey (2017) first identify this representation as the equation of a

submanifold, of dimension d − n, where d = p + |u|, providing a solution for sam-

pling posterior distributions with intractable likelihood functions, with strong links to

Approximate Bayesian Computation (ABC) type of problems. Hannig et al. (2016)

and Liu et al. (2022) identify a similar setting in the context of Generalized Fiducial

Inference, where constraints are defined in terms of data generating equations and pa-

rameter estimates. Bornn et al. (2019) encounter similar problems when embedding

moment conditions in Bayesian non-parametric priors, with applications e.g. to regres-

sion with instrumental variables, Gallant et al. (2022) list various cases in econometrics

and Hartmann (2008) describes related problem in the field of statistical mechanics and

in particular in simulation of molecular dynamics.

The main difficulty in sampling from a target probability distribution supported
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on a constrained set is that proposing values on the correct support is not immedi-

ate. Also constructing a standard Metropolis–Rosenbluth–Teller–Hastings (MRTH) al-

gorithm becomes more challenging when dealing with constrained spaces compared to

unconstrained scenarios. In the unconstrained case, the algorithm proposes new val-

ues in the neighborhood of the current chain value and accepts or rejects these values.

However, when dealing with constrained spaces or submanifolds, determining how to

propose moves within the submanifold becomes less straightforward. In particular, the

submanifold may have intricate geometric properties, making it complex to navigate

and ensuring that the sampled points satisfy the imposed nonlinear constraints adds

complexity.

Despite the challenges, a substantial and longstanding body of research provides

Markov Chain Monte Carlo (MCMC) algorithms tailored for sampling on constrained

spaces (see Chapter 3 in Rousset et al., 2010), encompassing various adaptations of dis-

cretized Langevin diffusions and Hamiltonian Monte Carlo techniques. The origins of

this field trace back to early contributions such as Andersen (1983) and a stream of re-

search stemming from the domain of molecular dynamics. Recently, a renewed attention

and consideration in Mathematics and Statistics, especially from Zappa et al. (2018),

highlighting the challenges and potentially proposing initial solutions. A more for-

mal treatment and methodological extensions were subsequently introduced by Lelièvre

et al. (2020), providing a framework for handling developments in this domain. These

approaches have demonstrated utility in addressing the aforementioned examples.

In this chapter, we study couplings of the transition kernels of some archetypical

MCMC algorithms designed to sample probability distributions on submanifolds, with

the random walk proposal of Zappa et al. (2018) as the primary case. Our goal is

to construct couplings that can be implemented to generate pairs of chains that coin-

cide exactly after a random number of iterations, called faithful couplings in Rosenthal

(1997).

Being able to generate faithful couplings of MCMC trajectories provides practical

benefits for the MCMC practitioner: unbiased estimators that are easy to parallelize

(Glynn and Rhee, 2014; Agapiou et al., 2018; Jacob et al., 2020), convergence diagnostics

in the form of upper bounds on the distance to stationarity after a fixed number of

iterations (Johnson, 1996, 1998; Biswas et al., 2019), and asymptotic variance estimators

that are useful to measure and compare the performance of MCMC algorithms (Douc

et al., 2022).
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4.2 Random walk MCMC on submanifolds

We establish the notation following the formalism presented by Lelièvre et al. (2020)

to describe the Random Walk Metropolis–Rosenbluth–Teller–Hastings algorithm intro-

duced by Zappa et al. (2018). Consider the submanifold

S = {x ∈ R
D | q(x) = 0 ∈ R

m}, (4.1)

in the ambient space RD, where q is a Rm-valued constraint function; i.e. S is the zero

level set of q : RD → Rm with D > m. We write ∇q(x) for the Jacobian matrix of q,

that is the D ×m matrix whose (i, j) entry is the derivative ∂qj(x)/∂xi. We consider

the goal of sampling from a probability distribution π, supported on S,

π(dx) =
1

Z
exp(−V (x))σS(dx), (4.2)

where V : RD → R is a potential function, σS(dx) is the surface measure induced by

the standard scalar product on RD, also called the Hausdorff measure on S and Z is

the normalizing constant. We assume that we can evaluate the potential function V at

all x ∈ S. If the potential V is constant then π is the uniform distribution on S. We

introduce the same smoothness assumptions as Lelièvre et al. (2020) as we will rely on

some of their results.

Assumption 4. The potential function V in (4.2) has two continuous derivatives, i.e. V

is C2.

We also make the following assumptions on the constraint function q.

Assumption 5. The function q is smooth (i.e. C∞), and S is a compact subset of RD.

For all x ∈ S, ∇q(x) is of full rank.

Under Assumption 5, Theorem 5.12 of Lee (2012) states that S is of codimension

m, i.e. is of dimension d := D − m. The tangent space of S at any x ∈ S, denoted

by Tx, is a d-dimensional vector space (Proposition 3.10 in Lee 2012). Its orthogonal

complement is denoted by T ⊥
x and is of dimension m. To obtain a orthonormal basis

for Tx, one numerically obtains a QR decomposition of ∇q(x):

∇q(x) = QxRx =
(
Nx Ux

)(Ax
0

)
, (4.3)

where Qx is a D×D matrix with orthonormal columns, and Rx is a D×m matrix made

of an m×m upper triangular matrix Ax placed above D−m rows of zeros. We denote



Chapter 3 - Coupling of MCMC algorithms on manifolds 89

by Nx and Ux the matrices made of the first m and the last d columns of Qx; then Nx

forms a basis for T ⊥
x and Ux forms a basis for Tx. The orthogonal projection matrix

onto Tx can be written Px = ID −NxN
⊤
x , where ID is the D ×D identity matrix.

4.2.1 Random walk proposals on submanifolds

In the following we elaborate on the construction of an ergodic Markov chain taking

values in S with stationary distribution π. The general scheme used by algorithms in

the literature (Brubaker et al., 2012; Zappa et al., 2018; Lelièvre et al., 2019, 2020) to

explore the target space is as follows: if the chain is at point x ∈ S, it moves along the

tangent space to S at x; corrective steps are then taken to ensure that the proposal lies

on the submanifold; the proposal is finally accepted or rejected.

4.2.2 Projections along the submanifold

A key ingredient to explore probability distributions on submanifolds is Newton’s

method to project a point z ∈ RD onto S by following a direction b ∈ RD×m, which

in the present setting will be given by ∇q(x) for some x ∈ S. The idea is to define

f : Rm → Rm, with f(α) = q(x + bα), and to solve f(α) = 0 by iterating αt =

αt−1 − (∇f(αt−1))
−1f(αt−1), see Algorithm 17.

Algorithm 17 Newton’s method to project z ∈ RD onto S = {x ∈ RD : q(x) =
0} along b ∈ RD×m

1: function Newton’s method (z, b, q, max iteration, tolerance)
2: set α = (0, . . . , 0) ∈ Rm

3: set iteration = 0
4: while iteration ≤ max iteration and |q(z + bα)| > tolerance do
5: α = α− (b⊤∇q(z + bα))−1q(z + bα)
6: iteration = iteration + 1
7: end while
8: return α
9: end function

Assume that a Markov chain is currently at state x ∈ S. The idea of the random

walk proposal in Zappa et al. (2018) is to sample a deviation from x on Tx, of the form

x + Uxν ∈ Tx for some Rd-valued random variable ν with distribution pν . The point

x + Uxν can then be projected onto S along the direction of ∇q(x) using Newton’s

method. If successful, we obtain α ∈ Rm such that x+ Uxν +∇q(x)α ∈ S.
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This projection step can fail for two reasons. Denote

Fx(ν) = {y ∈ S : ∃α, y = x+ Uxν +∇q(x)α} .

First, the set Fx(ν) can be empty, in which case Newton’s method (starting from x+Uxν

and with direction ∇q(x)) is bound to fail. Second, Fx(ν) can be non-empty and yet

Newton’s method fails, for example because the maximum number of iterations was

reached before convergence. Denote by F̂x(ν) ⊆ Fx(ν) the subset of points y ∈ S of the

form x + Uxν + ∇q(x)α for some α which can be found using Newton’s method: it is

possible that Fx(ν) ̸= ∅ but F̂x(ν) = ∅. Lelièvre et al. (2020) entertain the possibility

of multiple elements in F̂x(ν), but here for simplicity we focus on the case where F̂x(ν)

is either empty or contains a single element. Effectively, we have restricted ourselves

to a deterministic projection method: even if Fx(ν) contains more than one element,

only one element can be discovered by our implementation of Newton’s algorithm, so

|F̂x(ν)| ≤ 1. Towards formalizing the proposal mechanism of Zappa et al. (2018), we

follow Lelièvre et al. (2020) and make the following observation:

∀x, y ∈ S, y ∈ Fx(ν)⇔ ν = Gx(y), (4.4)

with Gx : S → Rd defined for all x ∈ S as

Gx(y) = U⊤
x (y − x). (4.5)

Proposition 1 in Lelièvre et al. (2020) (under Assumptions 4-5, assumed throughout)

shows that Gx is “locally” a C1-diffeomorphism, for all y ∈ S except those such that

det∇q(y)⊤∇q(x) = 0. Introduce Cx = {y ∈ S : det∇q(y)⊤∇q(x) = 0}. For a given x,

this set could have non-zero mass with respect to σS . However, the set Nx = Gx(Cx) is

of measure zero with respect to the Lebesgue measure on Rd, according to Proposition

2 in Lelièvre et al. (2020). As a result, by sampling ν from a continuous measure on Rd

and constructing y = x+Uxν+∇q(x)α for some α, as described above, we end up with

P(y ∈ Cx) = 0.

4.2.3 Proposal distribution

We now define the proposal distribution q(x, dy) of Zappa et al. (2018) in two ways:

algorithmically and through its density. Algorithmically, from a current position x ∈ S:
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1. draw ν ∼ pν in Rd, absolutely continuous with respect to the Lebesgue measure

(for example ν ∼ Normal(0, I);

2. run Newton’s method (Algorithm 17) to project x + Uxν onto S along ∇q(x) to

obtain F̂x(ν);

3. if F̂x(ν) = ∅, set y = x, otherwise set y as the unique element in F̂x(ν).

In terms of density, the proposal distribution q(x, dy) on S corresponding to the above

mechanism is shown in Lemma 3 of Lelièvre et al. (2020) to be of the following form,

for x ∈ S,

q(x, dy) = δx(dy) r(x) + | detDGx(y)| · pν(Gx(y)) · 1(y ∈ ImF̂x \ Cx) · σS(dy). (4.6)

Here we abuse notation and define

ImF̂x =
⋃

ν∈Rd

F̂x(ν) =
{
y ∈ S : ∃ν ∈ R

d such that F̂x(ν) = {y}
}
,

the set of “Newton-reachable” points in S from x. The term detDGx(y) represents the

determinant of the differential of Gx at y ∈ S and can be computed as

detDGx(y) = detU⊤
x Uy. (4.7)

The Dirac mass at x in (4.6) corresponds to the cases where Newton’s algorithm fails,

i.e. F̂x(ν) = ∅. The associated probability can be written as

r(x) = 1−
∫

S

| detDGx(y)| · pν(Gx(y)) · I(y ∈ ImF̂x \ Cx)σS(dy). (4.8)

If y ∼ q(x, dy) is in fact equal to x, the chain remains at x. If y ̸= x, the chain moves

to y with a certain probability, following a standard Metropolis–Rosenbluth–Teller–

Hastings (MRTH) scheme, with acceptance ratio of the form π(y)q(y, x)/π(x)q(x, y).

The reverse proposal density q(y, x) features the indicator 1(x ∈ ImF̂y\Cy). To evaluate

it, we need to check if x could have been reached from y; this is called the reverse

projection check in Zappa et al. (2018). Note that we always have x ∈ Fy(ν⊤) for

ν⊤ = Gy(x), however we might have x ̸∈ F̂y(ν⊤), for example because F̂y(ν⊤) might be

empty: in that case, q(y, x) = 0 and thus the proposal y is rejected. If the reversibility

check goes through (i.e. F̂y(ν⊤) = {x}), y is accepted with probability

a(x, y) = min

(
1,

exp(−V (y)) · | detDGy(x)| · pν(Gy(x))

exp(−V (x)) · | detDGx(y)| · pν(Gx(y))

)
, (4.9)
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Figure 4.1: Left : submanifold S as a level set of a function q. Middle: x ∈ S, its
tangent space Tx, and the direction ∇q(x). Right : proposals obtained by Newton-
projecting points on Tx onto S following ∇q(x), with the possibility of failure.

where the ratio of determinants is equal to one because detDGx(y) = detU⊤
x Uy =

detDGy(x). The overall transition kernel of random walk MRTH is denoted by P (x, dy),

and pseudo-code is in Algorithm 18. Figure 4.1 provides some visual description of the

setup and the proposal mechanism.

Algorithm 18 MRTH kernel on a submanifold à la Zappa et al. (2018)

1: Input: x ∈ S
2: Compute QR decomposition of ∇q(x), and obtain Ux, an orthonormal basis for Tx.
3: Sample ν ∼ pν .
4: Run Newton’s method (Alg. 17) to find α ∈ Rm such that y := x+Uxν+∇q(x)α ∈
S.

5: if fail then return x.
6: end if
7: Compute QR decomposition of ∇q(y), and obtain Uy, an orthonormal basis for Ty.
8: Compute ν ′ = Gy(x) = U⊤

y (x− y).
9: Run Newton’s method (Alg. 17) to find α′ ∈ Rm such that x = y+Uyν

′ +∇q(y)α′.
10: if fail then return x.
11: end if
12: Draw U ∼ Uniform(0, 1).
13: if U < exp(−V (y)) · pν(Gy(x))/(exp(−V (x)) · pν(Gx(y))) then return y.
14: else return x.
15: end if

Lelièvre et al. (2020) consider a “Langevin” generalization, where instead of consid-

ering x+Uxν on Tx before projecting on S, we consider x−λ∇V (x)+Uxν, where ∇V is

the gradient of the potential in (4.2) and λ is a stepsize. This involves minimal changes

to Algorithm 18, and our contributions can be easily adapted to this change.
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4.2.4 Couplings of MCMC algorithms

The output of an MCMC algorithm is typically used to estimate integrals of the

form I =
∫
h(x)π(dx) for some test function h. The Markov Chain (Xt)t∈N generated

by iterating Algorithm 18 can be used to produce an estimator ÎT = 1
T

∑T
t=1 h(Xt) which

verifies ÎT
Pr−−−→

T→∞
I. However, this estimator is biased after a finite number of iterations,

since the elements (Xt) do not exactly follow π, so there are few guarantees for the

quality of the result after a finite number of iterations. Also, as is the case for many

MCMC algorithms, several tuning parameters must be chosen by the practitioner: the

distribution and variance of the random step ν; the parameters of Newton’s method;

the total number of iterations. In practice, these are selected using an ad hoc measure

of quality of the MCMC, but we lack a principled method to select these parameters or

to compare different MCMC algorithms targeting the same distribution π; we also lack

theoretical bounds on the quality of the MCMC output.

For the unconstrained case of a distribution with support in RD, a solution was

proposed by Biswas et al. (2019) and Jacob et al. (2020), using pairs of lagged coupled

Markov chains. We construct two Markov Chains (Xt)t and (X̃t)t. Marginally, each

chain follows Algorithm 18; the chains are coupled so that they eventually meet: at

some random time τ , Xτ = X̃τ−ℓ for some user-specified lag ℓ. Once the chains have

met, they stay together: ∀t ≥ τ,Xt = X̃t−ℓ.

With this framework, Glynn and Rhee (2014), and Jacob et al. (2020) show how

to build an unbiased estimate of I. Biswas et al. (2019) show that the Total Variation

distance between the target π and the distribution of the Markov Chain after t iterations

can be bounded:

dTV (πt, π) ≤ E

[
max

(
0,

⌈
τ − ℓ− t

ℓ

⌉)]
. (4.10)

In the remainder of this Chapter, we show how to build such coupled MCMC for

distributions constrained to a submanifold, and demonstrate the utility of this approach

on several examples.

4.3 Coupling random walk proposals on submani-

folds

We wish to couple two chains, currently at position x, and x̃ respectively. Thus,

we consider the problem of constructing proposal mechanisms, for Y ∼ q(x, dy) and

Ỹ ∼ q(x̃, dy) such that {Y = Ỹ } can occur, where q(x, dy) is the proposal distribution

of Zappa et al. (2018) described in Section 4.2.1. Here the projection on S can fail and
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thus q(x, {x}) can be non-zero. For simplicity, we rewrite the proposal density in (4.6)

as

q(x, dy) = r(x)δx(dy) + qs(x, y)σS(dy). (4.11)

We know how to evaluate qs(x, y) – the index s stands for “smooth” as it represents the

smooth part of the proposal distribution q(x, y) – and we do not necessarily know how

to evaluate r(x).

4.3.1 A first coupling

As described above, the problem is similar to the setting of Wang et al. (2021), who

consider couplings of MRTH kernels where the accept/reject step also induces a Dirac

mass at the current position and an extension of the g−coupling of Johnson (1998). The

total variation (TV) distance between y and ỹ satisfies (e.g. Lemma 1 in Wang et al.

2021)

|q(x, dy)− q(x̃, dy)|TV = 1−
∫

min(qs(x, y), qs(x̃, y))σS(dy),

and this is the maximal probability of the event {y = ỹ}, achieved by so-called “max-

imal couplings”. Algorithm 3 in Wang et al. (2021) samples from a maximal coupling

of transition kernels of Markov Chains, q(x, dy) and q(x̃, dy), and is reproduced in Al-

gorithm 19 here. The idea of the procedure is as follows: the next state of the x-chain

is proposed. If the proposal (y) is not rejected after a Metropolis-Hastings ratio check

(the transition kernel does not output a Dirac) and an attempt to set the position of

second chain equal to the first is successful, the same state is used as next position of the

chain. Otherwise, if one of the conditions is not met, it is checked whether the proposal

(ỹ) of the x̃-chain is such that a meeting is not possible, either because the proposal is

a Dirac or because an attempt to couple the proposals would fail. The validity of that

algorithm and its maximality are established in Proposition 2, Appendix A.1 of Wang

et al. (2021). In words, our coupling strategy consists in dealing with the rejections in

the proposal kernel as done for rejections of a transition kernel as Wang et al. (2021).

To draw Y ∼ q(x, dy), we draw ν ∼ pν and compute F̂x. If F̂x = ∅, then Y = x and

we cannot hope to output Ỹ = Y ; else let y be the single element of F̂x, and we have

Y = y, which is a realization of qs(x, dy). We now attempt to propose Ỹ = y by using

a maximal coupling of qs(x, dy) and qs(x̃, dy). We project y onto Tx̃, giving the unique

value ν̃ such that y ∈ Fx̃, namely

ν̃ = U⊤
x̃ (y − x̃). (4.12)
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If F̂x̃ = {y}, then qs(x̃, y) > 0 and the two chains may meet; else the chains cannot

couple at this step.

Algorithm 19 Max coupling of two kernels with point mass of form (4.11)

1: function Sample from max coupling(q(x, dy), q(x̃, dy))
2: Draw Y ∼ q(x, dy) and U ∼ Uniform(0, 1).
3: if Y ̸= x and U ≤ qs(x̃, Y )/qs(x, Y ) then
4: return (Y, Y ) (identical states).
5: else
6: while true do
7: Draw Ỹ ∼ q(x̃, dy).
8: if Ỹ = x̃ then
9: return (Y, Ỹ ).

10: else
11: Draw V ∼ Uniform(0, 1).
12: if V > qs(x, Ỹ )/qs(x̃, Ỹ ) then
13: return (Y, Ỹ )
14: end if
15: end if
16: end while
17: end if
18: end function

Note that to implement Algorithm 19 we need to evaluate ratios of the form qs(x, y)/qs(x̃, y),

which involves the computation of detDGx(y) = detU⊤
x Uy and detDGx̃(y) = detU⊤

x̃ Uy,

which is normally not required when running a single chain. Once we have a way of

coupling the proposals, we can use a common random uniform variable to accept/re-

ject Y for the first chain and Ỹ for the second chain. Alternatively, we may employ a

strategy to couple the MRTH kernels described in Algorithm 5 of Wang et al. (2021).

4.3.2 Scaling and reflection couplings

The above strategy makes it possible to obtain exact meetings, but scaling with

dimension is not expected to work well, since it is a direct adaptation of a standard cou-

pling of random walk MRTH (Johnson, 1998), which does not scale well with dimension,

even in an unconstrained space, as shown experimentally in Jacob et al. (2020). More

precisely, average meeting times of coupled chains are expected to increase rapidly with

dimension, even using an optimal scaling of the stepsize under which the mixing time

of the chain increases linearly.

In Jacob et al. (2020) it was shown experimentally that reflection couplings (e.g.

Bou-Rabee et al., 2018) of Normal proposals lead to shorter meeting times. Papp and
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Sherlock (2022) explain this phenomenon for spherical Normal targets and propose

another coupling that provide better (in a sense, optimal) performance for more general

targets. The key point is that meeting is only possible in high dimensions if the chains

are close, therefore short meeting times can only achieved by couplings that induce a

contraction between the chains. The naive maximal coupling described above acts as an

independent coupling when the chains are not close, and thus fails to induce contraction.

Below we first describe reflection couplings of Normal distributions and then describe

how they can be used in the submanifold setting.

Consider two chains at positions x and x̃, in the generic, unconstrained space RD.

First, observe that proposals variables x⋆ and x̃⋆, Normal(x,Σa) and Normal(x̃,Σa),

can be drawn as two rescaled standard normals, centered at the original positions x

and x̃, respectively. Hence, from the first chain a random perturbation is chosen, and

the proposed point is set to y = x+ Σ
1/2
a z, with Σ

1/2
a being the lower-triangular matrix

obtained by Cholesky decomposition of Σ and z standard Normal. While, for the second

chain, z̃ is chosen to point towards the opposite direction of z with respect to a vector

passing through x and y. This is summarized in Algorithm 20.

Algorithm 20 Reflection coupling of two Normal distributions with common
variance.

1: function Reflection coupling(x, x̃, Σ)
2: Compute e = Σ−1/2(x− x̃).
3: Compute ē = e/|e|22 where |u|22 =

∑D
i=1 u

2
i .

4: Draw z ∼ Normal(0, ID).
5: Compute z̃ = z − 2(ē⊤z)ē.
6: return x⋆ := x+ Σ1/2z ∼ Normal(x,Σ) and x̃⋆ := x̃+ Σ1/2z̃ ∼ Normal(x̃,Σ).
7: end function

Back to the submanifold setting, we focus on a default choice of distribution for

ν ∼ pν , which is a d-dimensional centered Normal(0,ΣT ) distribution. The immediate

difficulty in using reflection couplings with Algorithm 18 is that the proposals (pre-

projection) x + Uxν and x̃ + Ux̃ν̃ are supported on different spaces. It is simpler to

couple directly ν with ν̃ on Rd, but it is not directly clear how the current locations x

and x̃ can be used to design the coupling of ν with ν̃.

We observe that the variable x+Uxν has the same distribution as the vector x+PxQxξ

obtained by applying the orthogonal projector Px = ID−NxN
⊤
x to the Normal variable

Qxξ where ξ ∼ Normal(0,Σa), where Qx is the rotation matrix obtained by the QR
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decomposition of ∇q(x) as in (4.3), and with

Σa =

(
Σ∗ C

C⊤ ΣT

)
, (4.13)

for any choice of matrices Σ∗ and C such that Σa is symmetric positive definite.

For any z ∈ RD, we can see Qxz as Nxzn+Uxzt, where z = (zn, zt). Then multiplying

on the left by Px = ID−NxN
⊤
x , the orthogonal projector on Tx, we obtain x+PxQxξ =

x + UxZt where Zt ∼ Normal(0,ΣT ). The matrices Σ∗ and C play no role here, apart

from making Σa symmetric positive definite.

Therefore we can think of the proposal mechanism as 1) sampling ξ ∼ Normal(0,Σa)

in the ambient space, with a covariance matrix that does not depend on x, 2) left-

multiplying by Qx i.e. applying a rotation, 3) orthogonally projecting x+Qxξ onto Tx,
and 4) Newton-projecting x+ PxQxξ onto S following the direction of ∇q(x).

The advantage of the above view is that the first step, sampling ξ ∼ Normal(0,Σa)

in the ambient space, is directly amenable to a reflection coupling: indeed we can obtain

ξ and ξ̃ by reflection coupling of Normal(0,Σa) and Normal(0,Σa).

If ΣT is simply of the form s2Id with s > 0, then we can define Σa = s2ID, and

then ξ ∼ Normal(0, s2ID), with a covariance matrix that does not depend on x. So in

that case, we can directly define a reflection coupling between ξ ∼ Normal(x, s2ID) and

ξ̃ ∼ Normal(x̃, s2ID). For an intuitive depiction of such reflection coupling, see Figure

4.2.

If the reflection coupling strategy successfully induces contraction between the chains,

it can be used in a two-scale strategy, analogously to what it is presented in Papp and

Sherlock (2022):

1. if |x− x̃| > threshold, employ a contractive coupling.

2. if |x− x̃| ≤ threshold, employ a coupling that induces exact meetings.

4.3.3 Computational complexity

Algorithm 18 involves computing the QR decomposition of the matrix ∇q(x), which

is of order O(m2(D −m)) operations. This step is performed twice to find the bases of

∇q(x) and∇q(y). Computing points in the tangent space x+Uxν ∈ Tx and y+Uyν
′ ∈ Ty

has a cost of order O(Dd). One iteration of the Newton’s solver costs O(m2D),while

finding the reverse projections ν ′ = U⊤
y (x − y) is O(D). Overall, the cost is O(m2D).

When running two chains the additional cost to perform doubled number of operations

comes from finding ν̃ = U⊤
x̃ (x̃ − y), of order O(Dd), and evaluating differentials. For
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Figure 4.2: Depiction of a reflection coupling (left) in the augmented space, for
x and x̃ on a submanifold. The red segments represent ξ − x and ξ̃ − x̃, where
ξ ∼ Normal(x, s2ID) and ξ̃ ∼ Normal(x̃, s2ID) can be obtained by Algorithm 20.
Projections on the tangent space are represented as dashes segments tangent to the
submanifold (r ight) and the points y and ỹ represent the points projected through
Newton’s method.

the latter, the cost of computing the inner product, U⊤
x Uy, is O(d2D), while computing

the determinant of the resulting d × d matrix is O(d3). Hence, when the dimension of

the submanifold is greater than the codimension, i.e. d > m, there is an additional cost

in running the maximal coupling of the proposals.

The complexity of computing reflections instead is O(Dm), due to computation of the

projection matrix Px. If Σ is diagonal with all elements equal, instead one can directly

obtain the proposal from the second chain, as ν̃ = U⊤
x̃ Uxν, which is of complexity

O(Dd).

For this reason, it will be practical to use reflection couplings, which allow to move

the chains closer and minimize the attempts to use the maximum coupling, which is

computationally more costly, especially in higher dimensions.

4.3.4 Sequence of hyperspheres

To illustrate how the maximal coupling algorithm scales with the dimension of the

space, we consider the problem of sampling the Uniform distribution on a sequence of

Hyperspheres, HSd = {x ∈ RD :
∑D

i=1 x
2
i = 1}, with d = D − 1 in {5, 10, 15, 20}. We

choose the standard deviation for the proposals in the tangent space in order to have

comparable acceptance probabilities across all the dimensions. Note that since the radius

of the hypersphere is 1, we need ∥ν∥22 =
∑d

i=1 ν
2
i ≤ 1 for the orthogonal projections of

x + Uxν to exist at any point in HSd. Note that if ν ∼ Normal(0, Id), ∥ν∥22 ∼ χ2
d with
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E(∥ν∥22) = d, while rescaling ν ∼ Normal(0, Id/d), ensures that E∥ν∥22 = 1 and P(∥ν∥22 >
1) ≤ 0.5, with equality for d → ∞, as the Chi-square distribution becomes symmetric.

The expected proportion of accepted values, computed as P(χ2
d < d) is shown in Figure

4.3 together with the empirical proportion of accepted proposals. As expected, the

probability that the projection is successful is above 0.5 for any d. Note that the fraction

of accepted proposals in this example coincides with the fraction of successful reverse

projections since the distribution on the manifold is uniform and the sphere symmetric,

thus the Metropolis-Hastings ratio is always equal to 1, after reersibility is checked. We

also verified that the average number of iterations used to obtain successful projections

by Newton’s methods was weakly increasing, but comparable: 5.23, 5.52, 5.72, 5.85 for

the hyperspheres of dimension 5, 10, 15 and 20 respectively.

When running pairs of chains, initialized from opposite points respect to the origin

of the hypersphere, and with lag ℓ = 50, we observe that expected meeting times

increase linearly with the dimension of the space when the maximal coupling algorithm

is used at each iteration. Conversely, when combining maximal couplings with reflection

couplings, for chains at least σ apart, i.e. ∥x− x̃∥22 > σ = 1/
√
d, average meeting times

are constant, see Figure 4.4. This suggests interestingly that the mixing properties of

the algorithm, for this target distribution don’t depend on the dimension of the space

when the variance of the proposal distribution is set equal to 1/d.

Figure 4.3: Monitoring the fraction of successful proposals in different dimensions,
computed on chains of length 104.
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Figure 4.4: Meeting times using maximal couplings (left) and maximal couplings
combined with reflection couplings (right), based on 103 parallel chains. Dotted lines
represent average meeting times.

4.3.5 Goodness of fit example

A typical application of sampling over constrained spaces arises in the testing lit-

erature, where conditioning on sufficient statistics for the model under the null hy-

pothesis provides greater power for tests to the unconditional counterparts. In this

context, sampling over the constrained space is required to retrieve samples generated

under the null hypothesis. Diaconis et al. (2013) and Lindqvist et al. (2022) consider a

goodness-of-fit test to the Gamma distribution, under the sum and product condition

(S(x) =
∑n

i=1 xi, P (x) =
∏n

i=1 xi, with x ∈ Rn
+). In revisiting this example, we consider

a sample xobs of D = 20 data points, and define the submanifold as

G = {x ∈ R
20
+ |

20∑

j

xj = S(xobs),
20∏

j=1

xj = P (xobs)},

where S(xobs) = 34.8, P (xobs) = 2199.4. For the Zappa et al. (2018) ZHG random walk,

we study the impact of the maximum number of iterations in Newton’s method (4,5,10)

and the choice of standard deviation for the proposal in the tangent space (σ = 1/
√
D ≊

0.22,0.3,0.4,0.5), we thus have 12 setups to compare. Figure 4.5 is based on single runs

of chains, each of length 104, but with different configurations of tuning parameters, and
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shows the fraction of cases where the algorithm ZHG proposes a valid point y ∈ G (left),

finds the current state with the reverse projection (center), and accepts the proposal y

as a new state (right). The last step involves verifying that yj > 0, ∀j. Note that as σ

increases, i.e. with larger proposals, Newton’s method tends to fail in finding points on

G. When the number of allowed iterations for the projection step is 4, this probability

decreases quite rapidly. When the number of iterations is 10 (green line), Newton’s

method yields higher rates of proposals satisfying the constraints, even with fairly large

values of σ, but a good fraction of these proposals are discarded in the acceptance phases

(about 20% of them with σ = 0.5, right panel). The further question we aim to answer

using meeting times drawn with coupled chains is whether a lower acceptance probability

depending on larger proposals is compensated by a fast convergence. We used maximal

couplings when the chains were close, i.e. ∥x− x̃∥22 < σ, otherwise reflections couplings,

as explained in Section 4.3.2 and for each setting we considered 20 parallel chains.

In Figure 4.6 we show meeting times obtained from coupled chains initialized on the

observed set of points xobs at lag L = 5000. Our experiments show that choosing large

proposals, corresponding to acceptance probability of about 0.5, short meeting times can

be obtained, once an adequate number iterations for Newtons’s method are used (> 5,

green boxplots). In particular, using 5 iterations in Newton’s algorithm produces results

only slightly less good than with 10 steps, at half the computational cost. Instead, when

Newton’s method fails (blue boxplots, 4 iterations used), even if the final acceptance

probability is higher than 0.5, the meeting times are generally larger. Also, in Figure

4.6 we show the asymptotic variance estimation for the chains, which confirms that

when using only 4 iterations provide much worse results that when considering 5 or 10.

Finally, using coupled chains, we can compare the performance of the ZHG random

walk with that of an algorithm originally proposed by Diaconis et al. (2013), referred

to as DHS. In the latter, D − 2 data points (x3, . . . , xD) are updated in each iteration

using a random walk proposal, and the remaining ones are updated using

x1,2 =
(S − s)±

√
(S − s)2 − 4P/p

2
, (4.14)

with s =
∑D

j=3 xj, p =
∏D

j=3 xj, provided (S − s)2 > 4P/p and a random assignment to

x1, x2. The algorithm can be easily coupled by using a Thorisson maximal coupling of

the D − 2 dimensional unconstrained proposal, obtaining the remaining data points by

(4.14) and common random numbers for randomising the choice of x1 > x2 or x1 < x2.

When the chains are far apart, i.e., ∥x3:D− x̃3:D∥22 > δDHS, reflection couplings can also

be implemented, following Jacob et al. (2020). Chains are initialized with a lag ℓ of
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Figure 4.5: Proportion of successful proposals (left), reverse projections (middle)
and acceptance rate (right) in the Random walk ZHG on G with different standard
deviations (σ) for the proposal on tangent space and maximum number of iterations
allowed for Newton’s method.

5000 steps. After tuning the DHS random walk, we found that choosing a proposal

Normal(0, 0.7 · I), and δDHS = 2σ provided the lowest observed average meeting time.

In Figure 4.7 the corresponding bounds in total variation from stationarity, compared

to those of ZHG algorithm with σ = 0.5 and 10 Newton’s iterations. In this specific

problem, and dimension D = 20, we obtained better convergence guarantees for the

ZHG algorithm, for which about 500 iterations are required against 150000.

4.4 A note on maximal coupling of composite pro-

posals

The proposal mechanism described in Algorithm 18 can be cast into the form of a

composite proposal

y = Φ(x, ϵ), (4.15)

where x and ∗yY are the current and the proposed state respectively, ϵ indicates a

random perturbation and Φ encodes a deterministic transformation. In particular, can

we recognize in place of ϵ the proposal ν, while the deterministic function is given by

the projection steps with Newton’s method, once fixed the number of iterations. Also,

we can write explicitly the deterministic function Φ in place of (4.15), as

y = Gx(ν)−1F̂x(ν)I{F̂x(ν) ̸=∅} + x1{F̂x(ν)=∅}, (4.16)
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Figure 4.6: Meeting times (above) and estimate of asymptotic variance (below)
obtained by couplings of ZHG algorithm for different standard deviations (σ) for the
proposal on tangent space and maximum number of iterations allowed for Newton’s
method.

with F̂x(ν) defined in Section 4.2.

Similarly, the representation in (4.15) can be used to describe a broader class of

MCMC algorithms, with a primary example being Hamiltonian Monte Carlo with

leapfrog integrator. Hence, we observe that the corresponding coupling strategy ex-

plained in Section 4.3, can be extended to such family of proposals. In particular, when

considering two chains X, X̃ evolving with the same scheme, if the point y is proposed

from the first one, X, in order to obtain exact meetings, the random perturbation ϵ̃ from

the second chain can be chosen in such a way that y = Φ(X̃, ϵ̃). Denoting by Φ−1
a (·)

the inverse map with the first argument fixed to a, we can write ϵ̃ = Φ−1
x̃ (y) to deter-

mine the necessary perturbation that applied to the secondary chain delivers y. In some

cases, Φ−1 has a closed form solution, as (4.12) in the random walk on submanifolds,
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Figure 4.7: Comparison of upper bounds on distance from stationarity of tuned
DHS and ZHG random walks on the submanifold G.

in other cases, where an explicit expression is not available, the necessary perturbation

that drives the chain to y can be obtained by running an optimization routine, finding

ϵ̃ = arg min
ϵ
∥Φ(x̃, ϵ)− y∥2, (4.17)

where quasi-Newton or Nelder-Mead, implemented in statistical software (e.g., Mo-

gensen and Riseth 2018), can be utilized. The minimum of the target function in (4.17)

is zero. Since as previously observed, numerical methods can fail in finding it, to the

end of providing a coupling strategy that is valid, in the following we elaborate on this

possibility. We assume we have access to the result of the numerical optimizer in terms

of a function y 7→ Φ̂−1
x (y) that returns either “fail”, in case the minimum is different

than zero, or the exact value Φ−1
x (y). The function Φ−1

x : RD → RD does not have an

explicit form and needs to be approximated numerically. For fixed x and y, we define

the optimization program

min
v′
|y − Φx(v

′)|2. (4.18)

Without direct access to Φ−1
x , we can use numerical optimization methods to solve

(4.18).

4.4.1 Coupling of Hamiltonian Monte Carlo kernel

To illustrate the concept, consider (unconstrained) Hamiltonian Monte Carlo on

RD, The Hamiltonian Monte Carlo (HMC) algorithm is a MCMC method introduced

to Bayesian computation by Neal (1993) and extensively used since then (Neal, 2011;
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Betancourt et al., 2017). The proposals for the next state of the chain are generated

by simulating the evolution of the position x and momentum v in response to the total

energy of the system represented by the Hamilton function H(x, v),

dx

dt
=
∂H

∂v
(4.19)

dv

dt
= −∂H

∂x
. (4.20)

Each iteration of the MCMC scheme involves sampling a momentum variable v from

a Gaussian distribution with zero mean and covariance matrix M and run a numerical

integrator for n steps, that approximates the evolution given by (4.19) and (4.20), lead-

ing to a proposal y. The numerical integrator, for assigned initial position x, number of

steps n and momentum v is deterministic. The mechanism for generating a proposal,

using the leapfrog integrator, is summarized in Algorithm 5. The endpoint of the Hamil-

tonian trajectory is then accepted or rejected with a Metropolis-Hastings step based on

the ratio of the target densities at the current and proposed states.

In the context of the current discussion, let us imagine a pair of chains running in

parallel. After we have proposed a new position y of one of them according to algorithm

5, the momentum of the second one can be chosen such that the chain is led to the same

point y as the first chain after the deterministic transformation induced by the leapfrog

integrator for given initial conditions. A similar argument is presented in Bou-Rabee

and Eberle (2023). In particular, writing the leapfrog integrator with initial conditions

as L(x, v), a meeting would be possible for

ṽ = arg min
v
∥L(x̃, v)− y∥2 with L(x̃, ṽ)− y = 0,

where ṽ is the numerical solution of an optimization routine.

Previous research presented as Heng and Jacob (2019) investigating couplings for

HMC has used contractive couplings that utilise joint momentum updating. However, to

obtain exact meetings these kernels are combined to Metropolis Random walk through

mixture. Similarly, in Xu et al. (2021), contractive and optimal transport couplings,

which are able to bring HMC chains closer together, are combined with a Metropo-

lis kernel. In contrast, the strategy proposed here uses the exact same HMC kernel.

The advantages of using a coupling that brings about the exact meetings are multiple.

Firstly, it could make it possible to possibly obtain the meetings faster and bounds in

total variation. Second, unlike other work that relies on a mixture of kernels, it does

not require additional parameters to be set. Thirdly, and most importantly, this design
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Algorithm 21 Coupled HMC Kernels

Require: current states x, x̃ ∈ RD, numerical precision δ, maxit,
1: function CoupledHMCKernel(x, x̃)
2: identical←FALSE
3: draw v ∼ N(0,M)
4: y, vK ←Leapfrog(x, v,K, η)
5: ṽ ← Φ̂−1(y, x̃)
6: v′ ← Φ̂−1(y, x)
7: ỹ, ṽK ←Leapfrog(x̃, ṽ, K, η)
8: if y = ỹ and v′ = v then

9: D = | det(∇vLeapfrog(x, v))|
10: D̃ = | det(∇ṽLeapfrog(x̃, ṽ)|
11: sample W ∼ Uniform(0,1)

12: if W < p(ṽ)D

p(v)D̃
then

13: identical←TRUE
14: return (y, vK) and (y, ṽK)
15: end if

16: else

17: done←FALSE
18: while done←FALSE do

19: draw ṽ ∼ N(0,M)
20: ỹ, ṽK ←Leapfrog(x̃, ṽ, K, η)
21: v ← Φ̂−1(ỹ, x)
22: v′ ← Φ̂−1(ỹ, x̃)
23: y, vK ←Leapfrog(x, v,K, η)
24: if ỹ ̸= y or v′ ̸= ṽ then

25: done←TRUE
26: return (y, vK) and (ỹ, ṽK)
27: else

28: D̃ = | det(∇ṽLeapfrog(x̃, ṽ)|
29: D = | det(∇vLeapfrog(x, v))|
30: sample W̃ ∼ Uniform(0,1)

31: done← W̃ > p(v)D̃
p(ṽ)D

32: end if

33: end while

34: return (y, vK) and (ỹ, ṽK)
35: end if

36: end function

is based exactly on the transition kernel of HMC, thus performance measures and con-

vergence diagnostics such as the distance from stationarity and the asymptotic variance

of the chain obtained by the coincidence of times reflect the properties of the original

HMC scheme -not to a mixture of kernels- and provide guidelines for tuning the original

HMC. One drawback is that in practice, the numerical solver may be chosen to have

machine precision and take more time depending on the difficulty of the coupling. And

in higher dimensions, the computational effort required to solve the optimisation prob-

lem becomes demanding. Finally, the function Φ must be invertible. The invertibility

of v 7→ Φx(v) is defined everywhere under a smoothing condition in Lemma 4 of Chen

and Gatmiry (2023), restated below.
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Lemma 4.1 (Lemma 4 in Chen and Gatmiry 2023). Suppose that V : RD → R is M-

smooth: ∇2V (x) ⪯ MID, where ID is the D ×D identity matrix, i.e. MID −∇2V (x)

is positive semi-definite. Choose K and η such that KηM1/2 ≤ 1/4. Then the map

v 7→ Φx(v) is invertible for all x ∈ RD.

In words, invertibility of Φx means that for any x and y, there exists a unique velocity

v such that the leapfrog integrator starting from (x, v) yields the location y after K steps

with stepsize η. In the sequel, we assume that Φx is invertible for all x. In order to avoid

checking the assumptions at each iteration of the chain, one practical possibility is using

in combination of contractive couplings and a local one-shot coupling when chains are

closed or when the loglikelihood is nearly the same. This strategy is broadly applicable

for distributions whose log-density is non-globally gradient Lipschitz or non-globally

concave.

Consider two chains in positions denoted by x and x̃ in RD. We assume that the

function v 7→ Φx(v) is invertible with inverse y 7→ Φ−1
x (y). Then the change-of-variable

formula gives

q(x, y) = Normal(Φ−1
x (y); 0, ID)| detDΦ−1

x (y)|. (4.21)

To evaluate the determinant we can use the equivalence, for v, y such that y = Φx(v),

| detDΦ−1
x (y)| = | detDΦx(v)|−1, (4.22)

so that it becomes easy to evaluate these determinants with an implementation of leap-

frog integration that supports automatic differentiation.

If we can evaluate (4.21) for all x, y, we can implement the coupling described by

Gerber and Lee (2020), recalled below.

Define, for some C < 1, and for the current positions x, x̃,

ϕ : y 7→ min(C · 1(Φ̂−1
x (y) ̸= fail & Φ̂−1

x̃ (y) ̸= fail), w(y)). (4.23)

This is zero if the numerical optimizer fails to invert either Φx(y) or Φx̃(y). Otherwise,

ϕ(y) equals min(C,w(y)), and w(y) involves evaluations of both Φ−1
x (y) and Φ−1

x̃ (y).

With this in place, the coupling algorithm of y ∼ q(x, ·) and ỹ ∼ q(x̃, ·) can be obtained

as follows:

1. Sample y ∼ q(x, ·). With probability ϕ(y), set ỹ = y and stop,

otherwise go to step 2.
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2. Sample ỹ ∼ q(x̃, ·) and stop with probability 1− ϕ(ỹ)/w(ỹ), otherwise repeat.

As explained in Gerber and Lee (2020) the algorithm produces a valid coupling as

long as ϕ ≤ w, but is not necessarily maximal (e.g. if ϕ = 0, it reverts to an independent

coupling). Gerber and Lee (2020) consider ϕ : y 7→ min(C,w(y)) for C < 1 as a way

of controlling the variance of the computing cost of the algorithm. Recall that, when

using C = 1, the cost has a variance that goes to infinity as |q(x, ·)− q(x̃, ·)|TV goes to

zero.

4.4.2 Example: Banana-shaped distribution

We consider the nonconvex potential of a banana-shaped distribution on R2 (top

panel of Figure 4.8), given by the Rosembrock function, V (x1, x2) = (1−x1)2 + 10(x2−
x21)

2. The aim of this example is to illustrate the validity of the meeting-inducing

coupling scheme proposed for HMC and the gain in the estimation of TV bounds from

stationarity against the mixture of two couplings.

Figure displays, for two fixed current states, points obtained by running the leapfrog

integrator for 15 steps from a single chain (blue dots), a collection of points obtained

from a second chain coupled with the first one (red triangles) and a second chain which

is not coupled with the first one. Possible meeting points are marked as stars. In the

third panel of Figure 4.8 we display the marginal distribution of proposals obtained by

coupling and not coupling the second chain with the first one, to prove the validity of

the evolution scheme of the coupled chain.

In order to evaluate the performance of the coupling strategy proposed, we compare

it to the mixture of HMC and Random walk kernel of Heng and Jacob (2019), which is

Kmix = 0.95qHMC + 0.05qRW. Specifically, the number of leapfrog steps in this example

were set to 500, and their size to 1/500. For the RW propsal, a Gaussian with standard

deviation equal to 0.01 was used.

Furthermore, to obtain bounds in total variation from stationarity, we run 500 parallel

chains. Specifically, these were initiated from a Uniform distribution in the interval

[−5, 5]2, and with a lag of 20 iterations. TV upper bounds obtained by meeting times

of tuned coupled HMC employing meeting-inducing couplings and tuned mixture of

HMC and random walk are displayed in the bottom panel of Figure 4.9, with the first

method exhibiting faster meeting times and providing lower bounds. In fact, the average

convergence time of a pair of chains across 500 runs required about 19 HMC iterations

against 158 iterations of the mixture of kernels. By employing an implementation in

the Julia programming language this took about 1.6 seconds for each pair of chains.
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Figure 4.8: Comparison of joint and marginal proposal distribution from single
chains and coupled chains.
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Figure 4.9: Bounds in total variation from stationarity for the banana-shaped dis-
tribution by meeting-inducing couplings for HMC and mixture of HMC and RW.

4.5 Discussion and future developements

We mention a possible extension of coupling schemes for random walk on submani-

folds to Langevin diffusion and HMC kernels on submanifolds. Indeed, one immediate

generalization of the random walk MRTH algorithm is the Metropolis Adjusted Langevin

algorithm (MALA), based on the discretised Langevin diffusion. Denoting by γ the dis-

cretisation step, and by ∇(−V (x)) the gradient of the log-target, the proposal on a

submanifold can be written as

x+ γ∇(−V (x)) + Uxν, (4.24)

followed by a projection step using Newton’s method. Note that the point defined by

(4.24) is not on the tangent space of the submanifold at x, hence, for coupling this vari-

ant is sufficient to consider a proposal centered at x+ γ∇(−V (x)) and x̃+ γ∇(−V (x̃))

instead of in x and x̃ respectively. Lelièvre et al. (2019) consider a more sophisticated

algorithm, called Generalized Hamiltonian Monte Carlo (GHMC), where a constrained

integrator, RATTLE, is employed and at each MCMC iteration only a partial refresh-

ment of the momentum is performed. For such case, if only one integration step is

considered, the expression of the momentum can be found to be Langevin diffusion with

partial refreshment in closed form Lelièvre et al. (2019). If more than one integration

step is done, one strategy could be to couple this in the same way that we couple un-

constrained HMC in Section 4.4.1, i.e. using numerical inversion. Since this is expected

to be computationally intensive, following Heng and Jacob (2019), another solution is

proposing same momenta for the pair of chains, and when the chains are close, using
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the meeting inducing coupling of random walks.

In the study of couplings for HMC, the invertibility condition seems to be the most

difficult to handle. One potential solution involves adapting the Hamiltonian Monte

Carlo (HMC) method by constraining the flow when multiple momenta guide the chain

to the same point, selecting randomly, only one of these trajectories to proceed, simi-

larly to ideas in Lelièvre et al. (2020). In alternative, the choice can be deterministic,

by introducing additional constraints, as for instance choosing the shortest path, or the

smallest momentum, or rather identifying the closest velocity ṽ to the one proposed

v. But also, there may be not velocity ṽ such that y = Φ(x̃, ṽ). Also, the complexity

of the optimization routines could become high in multidimensional settings, and tai-

lored optimization routines could be needed. These aspects could be object of future

investigations.





Chapter 5

Manifold-Based Sampling from

Generic Target Distributions

5.1 Introduction

There is a growing range of sampling methods designed for target distributions that

are defined on a d-dimensional submanifold S of RD where d < D, defined as a level set

of a smooth function q : RD → Rm, known as the constraint. These techniques have been

primarily introduced to tackle sampling problems where a submanifold arises naturally.

For example, in Statistical mechanics, there is a need to generate representative samples

tied to a function linked with the energy level of a system, under fixed constraints,

termed in that context reaction coordinates (see e.g. Andersen, 1983; Rousset et al.,

2010). In Statistics, constrained sampling becomes valuable when handling hypothesis

testing or over-specified models (see for instance Diaconis et al. 2013; Bornn et al. 2019;

Graham and Storkey 2017; Liu et al. 2022).

However, the ability to sample from submanifolds extends beyond these specific appli-

cations and proves beneficial in generic sampling problems within unconstrained spaces

(Rd). Recent work by Au et al. (2023), Graham et al. (2022) proposes the artificial intro-

duction of a submanifold embedded in a higher dimensional space to facilitate sampling

from a target distribution originally defined on unconstrained state spaces. Similarly,

in this Chapter, we identify two ways to introduce a submanifold related to the global

shape of the target distribution, by augmenting the state space or by conditioning on

relevant directions of the function of interest. The ideas presented aim to utilize intrin-

sic geometric information of the target distribution to efficiently explore the space by

devising convenient proposal mechanisms.

113
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5.1.1 Use of geometric information in MCMC

Markov chain Monte Carlo (MCMC) methods stand as the bedrock of Bayesian anal-

ysis, wielding the machinery necessary for precise uncertainty quantification (Metropolis

et al., 1953; Hastings, 1970; Tierney, 1994; Roberts and Rosenthal, 2004; Robert and

Casella, 1999; Liu, 2008). Careful design of proposal for the sampling mechanisms is

central in dictating the efficiency of MCMC algorithms, enabling to explore complex pa-

rameter spaces and ease converge to the desired posterior distribution. For fast exploring

the target distribution it is crucial to enforce the alignment of proposals with relevant

direction, especially when the size of the step is large, and successively accept the new

states with high probability, Green et al. (2015). Often, performing such types of steps

is possible if the proposal is tailored to mirror the specific characteristics of the target

distribution, such as local shape and scale (Rosenthal et al., 2011; Andrieu and Thoms,

2008). A general approach to achieve this is by defining the negative log-posterior distri-

bution as a potential energy function within a fictitious physical system. The dynamics

of the MCMC chains can be then guided by discretized trajectories following the motion

equation along relevant directions of the potential energy function as in Hamiltonian

Monte Carlo (Duane et al., 1987; Neal, 1999, 2011). More advanced use of geometric

information has further proven successful, for instance, in Hamiltonian Monte Carlo,

Girolami and Calderhead (2011) introduce the Fisher information matrix as the metric

tensor in the Hamiltonian dynamic, serving to align the geometry of the target distribu-

tion with the coordinate system and implicitly perform tuning. More recently, for certain

classes of models where the posterior distribution is marked by strong anisotropy, Au

et al. (2023) show how it is feasible to sample from the target introducing a distribution

supported on a manifold embedded within a higher-dimensional space, demonstrating a

comparable efficiency to a well-preconditioned Hamiltonian Monte Carlo while offering

computational advantages.

With the aim of sampling from a highly anisotropic posterior distribution for a vector

parameter θ, which is typical of certain models with additive noise terms, Au et al.

(2023) pioneered an elegant solution that transforms the latter distribution, originally

defined on Rd onto a lifted distribution on a submanifold embedded within a higher-

dimensional space. In the augmented space, n Gaussian latent variables, denoted as η,

are introduced, where n is of the same number of the observations from the model, yobs,

and the submanifold has the form

S = {(θ, η) : yobs = F (θ) + σ(θ)η}, (5.1)



Chapter 5 - Sampling using manifolds as a general device 115

where F (θ) is a function that depends on the model and σ is a scale parameter. The

auxiliary distribution can be written as

π̄(θ, η|Y ) ∝ π(θ)Normal(η; 0, 1)1{Y=F (θ)+ση}(det J(θ, η))−1/2(θ, η), (5.2)

where π(θ) is the prior and the correction term, (det J(θ, η))−1/2 is obtained from the co-

area formula, with J(θ, η) = ∇q(θ, η)⊤∇q(θ, η) and ∇q the Jacobian matrix of q(θ, η) =

Y −F (θ)−ση. The θ-marginal of (5.2) corresponds to the original posterior distribution.

When the diffusion of the target decreases, i.e. as σ → 0, the peakedness of the manifold

increases. Consequently, a constant step size with which the Markov chain moves along

S adapts seamlessly without the need for it to be adjusted even in scenarios of extreme

anisotropy.

Similarly, but for a broader class of models, in this chapter we present some strate-

gies for enhancing the exploration of general target distributions by implementing con-

strained moves based on intrinsic geometric information based on the construction of an

artificial submanifold. The idea revolves around two core concepts: 1) proposing moves

that align with the distribution’s shape and 2) incorporating substantial step sizes for

effective exploration.

5.2 Sampling on the graph of a function

The first way to introduce such artificial submanifold for sampling from a generic

d-dimensional target π, is by defining a distribution on the graph of a function f :

Rd → R. For the function f , various representations can be considered, such as π(·) up

to a multiplicative constant, or log(π(·)) up to an additive constant, or other smooth

transformations, as tempered versions of π used in sequential Monte Carlo (see e.g. Dai

et al. 2022). Denoting by G(f) the “graph map” function (Simon, 2014):

∀x = (x1, . . . , xd) ∈ R
d G(f)(x) = (x, f(x)), (5.3)

we can introduce an auxiliary variable xD ∈ R := f(x) and define a submanifold as

S := G(f)(Rd) = {(x, xD) : x ∈ R
d, xD ∈ R

1|xD = f(x)}. (5.4)

Thus, S is a submanifold embedded in a D = d + 1-dimensional ambient space. The

auxiliary variable in (5.4) resembles that used in slice sampling (Neal, 2003). We use

this representation to propose a new strategy to sample from π.
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Defining the Jacobian matrix as

JG(f)(x) =
√

det(∇G(f)(x)⊤∇G(f)(x)) =
√

1 + |∇f(x)|2, (5.5)

where ∥∇f(x)∥2 is the squared 2-norm of the gradient of f at x, i.e. ∇f(x)⊤∇f(x), and

using the co-area formula, the density on G(f)(X) with respect to the surface measure

on S is given by

πG(f)(x, xD) ∝ π(x)(1 + |∇f(x)|2)−1/2. (5.6)

5.2.1 Effects of moving on the graph

Let us assume that we run the algorithm of Zappa et al. (2018) on S with f =

log(π), discussed in Section 4.2. The constraint function is q(x, xD) = f(x)− xD, with

∇q(x, xD) = (−∇f(x), 1)′. We write z for the pair (x, xD). To simplify the reasoning,

we consider the case d = 1 and propose steps ν ∼ Normal(0, σ2). Note first that

multiplying a tangential step ν by the basis of the tangent space Uz of S at z rescales

the proposal according to the magnitude of the absolute value of the gradient of the

instrumental function f . As a limiting case, when the function f is flat, the proposal

on the x− coordinates (d dimensional) coincides with the proposal of Tz. Conversely,

if the gradient of f is steep, only a small part of the motion along Uz is conserved on

the d dimensional support of the target distribution. Then, the new state proposal is

obtained by Newton projection of z + Uzν onto S. Since d = 1, the vector orthogonal

to ∇q(z) is (−∇2q(z),∇1q(z)), and Ux is obtained by normalization of that vector. If

the function f is linear, then the proposal x∗ coincides with z + Uzν, since α = 0m, in

notation of Newton’s projections (Algorithm 17). In this case

x∗ = x− σϵ/
√

1 + |∇f(x)|2,

in particular, if the function is steep, (either with positive or negative gradient), the

increment on the state space (x coordinate) after one step will be small. Conversely, if

the function is flat, the proposal on the x− coordinates (d dimensional) coincides with

the proposal on Tz. When the function f is not linear, and α ̸= 0, the value of α can

depend on the curvature of the function. In particular, assuming α is obtained by one

iteration of Newton’s method, then it will satisfy

α = −f(x− σ/
√

1 + |∇f(x)|2ϵ)− f(x) + σϵ∇f(x)/
√

1 + |∇f(x)|2
∇f(x)∇f(x− σϵ/

√
1 + |∇f(x)|2) + 1

. (5.7)
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Figure 5.1: Graph of the sine function (x, sin(x)). Blue markers represent points
at which the function is locally convex, red markers represent points at which the
function is locally concave. The black lines represent the coordinates of x before the
projection steps, while blue and red lines those after the projection steps.

. In (5.2.1) α increases with σϵ.

Assuming ∇f(x+ ϵ)∇f(x) > 0, i.e. there is not a critical point between the original

state and the x-coordinate after the displacement, for fixed ϵ, and initial value x, let us

rewrite

α∗ = −(f(x− σ/
√

1 + |∇f(x)|2ϵ)− f(x))/∇f(x) + σϵ1/
√

1 + |∇f(x)|2
∇f(x− σ/

√
1 + |∇f(x)|2ϵ+ 1

note that the sign of α depends on the sign of

f(x− σ/
√

1 + |∇f(x)|2ϵ)− f(x). (5.8)

Finally, for fixed sign of (5.8), and value x, the sign of α changes with the sign of ∇f(x).

Thus, the sign of α is determined by the position of the tangent space at the proposal

point with respect to the function f . This is also intuitively shown in Figure 5.1. There,

the function is locally convex if evaluated at points corresponding to blue markers, while

on red markers the function is locally concave. From each point a proposal in the tangent

space is drawn, either climbing the local mode or descending from it. The vertical black

line shows the increments on the state space before the projection step, while blue and

red lines shows the arrival x position after finding projections. In summary, the position

of the chain after one iteration depends on the peakiness of the auxiliary function f and

at the same time on its curvature.
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5.2.2 Example: Multimodal target

We consider a mixture of four normal random variables in R2, centered at (−5, 5),

(−2,−2), (1, 1) and (4,−4) and with weights of 0.3, 0.2, 0.2 and 0.3 respectively. The

covariance matrices are diagonal with non-isotropic components and scales smaller with

respect to the distances between the means, which are reported in Table 5.1. The target

distribution is therefore multimodal, as shown in the first panel of Figure 5.2. The

remaining panels in Figure 5.2 show samples obtained with standard MRTH, MALA

and graph-based sampling based on 50000 iterations. In a simple random walk, to

move between modes, one must choose a step size of the same order of magnitude as

the distance between modes to move between all regions, but at the same time the

acceptance rate becomes negligible. To obtain the results shown in Figure 5.2, the

step size was chosen equal to σ = 2.3 and the acceptance probability was 0.02. When

such a step size is chosen, the sampler jumps between modes and fails in exploring the

mode centered at (−2,−2). Similarly, MALA struggles to visit all the modes and also

has vanishing acceptance rate when choosing relatively large stepsize. Moving on the

graph with a step size of 1.5, allows to move through the four modes with an acceptance

probability of 0.10, exploring the modes locally, especially the mode centred at (−2,−2),

for which it is difficult to construct a good proposal due to anisotropy. For the sample

obtained by the latter strategy, the percentage of draws such that x2 > 2.5, thus are

compatible with the first component of the mixture was as expected 0.3.

(-5,5) (-2,-2) (1,1) (4,-4)
(-5,5) - 7.62 7.21 12.73

(-2,-2) 7.62 - 4.24 6.32
(1,1) 7.21 4.24 - 5.83

(4,-4) 12.73 6.32 5.83 -

Table 5.1: Mixture of four Normals: distance between the four modes.

While graph-based moves seems helping in this example, extensions to multimodal

targets in higher dimensional settings might be less convincing by only using the log-

target distribution as graph map.

5.3 Improving MCMC by walking on level sets

In some challenging sampling scenarios—where the target distribution exibits strong

anisotropy, significant inter-component correlations, or within high-dimensional set-

tings— a strategy for devising proposal moves is aligning with the shape of the target
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Figure 5.2: Mixture of four Normals: contour plot, and draws of length 50000
obtained by sampling on the graph, random walk, MALA.

function. Methods that use geometric information about the target as gradients, ex-

ploring specific directions, with Hamiltonian Monte Carlo (HMC) among others, have

demonstrated to be successful in this context, being effective when global reparametriza-

tions are not sufficient to meaningfully reshape the target. Instead of relying on gradient

based methods and introducing a phase space, as in HMC, we propose to improve the

exploration of the target space by introducing constrained moves defined upon intrinsic

geometric information of the target. We propose to achieve such alignment between

proposal and shape of the target distribution by interweaving standard MCMC moves

with moves designed for targets supported on the level sets of the target distribution.
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This is achieved by conditioning on the value of a nonlinear function q:

π(x|q(x) = 0) ∝ π(x)(det J(x))−1/21{(q(x) = 0}, (5.9)

where J(x) = ∇q(x)∇q(x)⊤ is the Gram matrix, see (4) in Au et al. (2023). In practice,

it is equivalent to use q(x) = log π(x) or directly q(x) = π(x) assuming smoothness

conditions on π(x). In this case, the submanifold is defined only upon one constraint

(m = 1).

Note that by construction along the same contour, the acceptance probability only

depends on the ratio of the proposals pν(ν
′)/pν(ν) and on the ratio of jacobian-related

terms J(x). If the contour levels were spheres (for symmetric distributions) the ratio

would be equal to one, independently on the dimension of the space.

In order to explore fully the target π, then these moves need to be combined with

moves that enable to change between level sets. The algorithm operates alternating

moves on a fixed contour set and free steps, that can be performed with any MCMC

kernel that leaves π invariant. A schematic description of the algorithm is in Algorithm

22.

Algorithm 22 Alternate kernel

Markov chain currently at state Xt, target distribution π, unconstrained reversible
Markov kernel KU

1: Compute q0 = log π(Xt).
2: Define q(x) = log π(x)− q0
3: Call algorithm 18 with distribution (5.9) on S
4: Perform an unconstrained move with kernel KU to obtain Xt+1.

In particular, for the unconstrained kernel, we can consider several options, as stan-

dard random walk, or MALA. Alternatively, one could encourage moves between con-

tours that are exactly or approximately orthogonal to the current contour set.

A similar idea is considered by Ludkin and Sherlock (2023), who introduce Hug and

Hop, an Algorithm that interweaves a series of moves along fixed contour sets (Hug-

kernel) using the Bouncy Particle Sampler (see e.g. Bouchard-Côté et al. 2018) and

across contour levels (Hop-kernel), using a mechanism that resembles a preconditioned

MALA, to promote the transition of maximizing the change in log-posterior value. This

can be obtained by proposing a new point via a proposal distribution with a higher vari-

ance in the direction of the gradient and a lower variance in the directions perpendicular

to it. In particular, if the target distribution is symmetric, the Hug-kernel maintains

successive steps of the chain along a fixed contour set as the constrained moves, while

in non-symmetric targets Hug-moves only approximately follow such sets. The results
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of a single constrained move would be similar of that obtained with several hug steps of

small size.

5.3.1 Example: multivariate normals

We consider a sequence of multivariate normals of dimension d = (5, 10, 15, 20, 25)

centered at the origin 0d and with covariance matrix is given by Σ = I/d. We want to

compare the performance of HMC, random walk and alternating moves on level sets. In

particular, we consider alternating contour moves and random walk as well as contour

moves and moves along the gradient. To choose the hyperparameters HMC, we set

the number of leapfrog steps to 10 and change the step size to obtain an acceptance

rate of 0.90. For the random walk kernel, used alone or in combination with contour

moves, we choose independent proposals with a variance of 2.382/d2, which allows us

to achieve an acceptance rate of 0.25 for each d. For moves on contour planes, we

choose independent d − 1-dimensional proposals with a covariance matrix 0.5 · I/d,

which allows to obtain acceptance rate equal to 1, as d increases, and for movements

along the gradient direction, we choose a one-dimensional proposal with variance equal

to 1/d. The chains were initialized from the stationary distribution and run for 5000

iterations. For the comparison, we consider the effective sample size (ESS) for the

function h(x) = x2 calculated on each marginal draw from the target. Figure 5.3 shows

the minimum over the d components of the ESS computed. Orange and purple lines,

associated to constrained moves on level sets, corresponding to the second and the third

lines from the bottom, seem to stabilize as d increases, while the green line (HMC),

with the highest ESS values, and yellow line (random walk), with lowest values seem to

depend more on the value d. With an implementation in Julia programming language

(Bezanson et al., 2017) on a laptop CPU with a clock speed of 1.00 GHz, the average

cost of performing one iteration (combining contour moves and moves between the level

sets) was 2.9 milliseconds when RW was used in combination versus 21 milliseconds

when moves along the gradient direction were used.

5.3.2 Example: Funnel distribution

To illustrate the benefits of leveraging the geometric properties of contour levels,

and of sampling on the graph, we consider Neal’s two-dimensional funnel distribution,

defined by the potential function:

V (x1, x2) = 0.5

(
x22
9

+
x21
ex2

+ log(2πex2)

)
.
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Figure 5.3: Comparison of minimum ESS for the function h(xj) = x2j , over all the
components j = 1, . . . , d on the multivariate normal example.

This distribution is renowned in the literature due to its complex shape. It exhibits on

one side a sharply constrained peak, collapsing on a line while the distribution remains

diffuse across R2 on the other side.

Figure 5.4 shows a sample of length 50000 obtained from random walk with inde-

pendent increments and standard deviation equal to 0.05, HMC with stepsize 0.05 and

10 timesteps, alternated random walk and contour walk moves and by sampling on the

graph with 2.5 stepsize. All the algorithms were allowed to perform small steps and

achieve hight acceptance probabilities, respectively 0.80 (random walk), 0.99 (HMC),

0.35 (contour walk), 0.42 (graph), while Effective Sample Size was 555 (random walk),

607 (HMC), 1662 (contour walk), 2500 (graph). Even if the acceptance probability

is globally higher than the latter two methods, both HMC and random walk display

difficulties in exploring the target. In particular, the minimum value reached by the

HMC algorithm over the second coordinate in this run was above -5. On the contrary,

moving on the contour sets or on the graph of the function seems more effective to ex-

plore the space, even in the region [−7,−5]. The average computational time based on

Julia implementation on a laptop CPU with a clock speed of 1.00 GHz to perform one

MCMC iteration with RW was about 1 microsecond, with HMC was 20 microseconds,

by sampling on the graph was of 58 microseconds, with alternate moves (contour walk)

159 microseconds.
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Figure 5.4: Comparison of random walk, HMC, contour moves and graph moves
one long run with the funnel distribution as target.

5.4 Discussion and future extensions

Inspired by the concepts presented in Au et al. (2023), we developed two strategies for

sampling from a target distribution by formulating an artificial submanifold sampling

problem. We’ll revisit and highlight novelties and advantages provided by such ideas,

some of which are under investigation.

Crucially, these strategies exhibit generality and are not confined to any specific

class of additive models. Also, the artificial constraints are always one dimensional,

and the augmented space is either of the same dimension of the original problem of

requires the introduction of one auxiliary variable. Finding the initialization point

of the chain is not more complex than a standard MCMC. In both the approaches

presented, one needs to fix an initial state x0 in the original d−dimensional space and
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either compute the value f(x0) of a one-dimensional auxiliary variable or fix the level set

as q(x0). Conversely, in general finding one initial point satisfying a set of potentially

high dimensional constraints of type 5.1 is challenging. Also, the complexity of the

algorithm naturally won’t depend on the number of observations from the model (n)

more than a standard gradient-based algorithm, as HMC, but only on the dimension of

the space d. As well, the adaptation of the proposal is automatically refined through

the use of projections. When sampling on the graph, the step size is contingent upon

the graph’s peakiness. In both graph-type and contour-type moves, the ultimate step

size is determined by the projection step, which offers substantial freedom as it enables

movement of any magnitude.

Finally, defining coupling strategies, especially for measuring the performance of

the algorithms introduced would represent a progressive stride in development of the

methodology.



Chapter 6

Objective priors with invariance

properties for e-value computation

6.1 Introduction

In Bayesian testing, nuisance parameters are additional parameters introduced into

the model to enhance its flexibility and realism, even though the main focus of infer-

ence usually revolves around a specific parameter of interest. Dealing with nuisance

parameters often entails the cumbersome task of eliciting information about these com-

ponents and performing multidimensional integration, which can significantly increase

computational complexity. This Chapter introduces novel methodologies for statistical

hypothesis testing within the framework of Bayesian inference, specifically focusing on

the computation of e-values and on the Full Bayesian Significance Test (FBST) the-

ory. It begins by presenting asymptotic expansions of the posterior distribution, which

serve to significantly reduce computational costs for the e-value calculation, particularly

in models with nuisance parameters. These expansions are highlighted for their abil-

ity to provide fast-converging numerical approximations. Furthermore, combined with

matching priors, the proposed approach offers the advantage of eliminating the need for

eliciting information on the nuisance components and for conducting multidimensional

integration, and it produces invariant e−values in the presence of nuisance parameters.

Recognizing the challenges posed by the intractability of deterministic approximations

of the posterior, the Chapter also provides computational strategies to enabling practical

implementation of the proposed methodologies.

The parametric framework that we consider can be described as follows. Consider a

random sample yobs of size n from a random variable Y with parametric model p(y; θ),

indexed by a paramater θ, with θ ∈ Θ ⊆d. Given a prior π(θ) on θ, Bayesian inference

125
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for θ is based on the posterior density

π(θ|yobs) ∝ π(θ)L(θ), (6.1)

where L(θ) represents the likelihood function based on p(yobs; θ). Interest is in particular

in the situation in which θ = (ψ, λ), where ψ is a scalar parameter for which inference

is required and λ represents the remaining (d − 1) nuisance parameters. In such case,

Bayesian inference for ψ is based on the marginal posterior density

πm(ψ|yobs) =

∫
π(ψ, λ|yobs) dλ ∝

∫
π(ψ, λ)L(ψ, λ) dλ, (6.2)

which for its computation requires both elicitation on the nuisance parameter λ and

multidimensional integration.

Asymptotic arguments are widely used in Bayesian inference through (6.1) and (6.2),

based on developments of so-called higher-order asymptotics (see, e.g., Reid 2003, Braz-

zale et al. 2007, Ventura et al. 2013, Ventura and Reid 2014 and Cabras et al. 2015).

Indeed, the theory of asymptotic expansions provides very accurate approximations to

posterior distributions, and to various summary quantities of interest, including tail

areas, credible regions and for the Full Bayesian Significance Test (see, e.g., Pereira

and Stern 1999 and Madruga et al. 2003). Moreover, they are particularly useful for

sensitivity analyses (see Kass et al. 1989, Reid and Sun 2010 and Ruli et al. 2014) and

also for the derivation of matching priors (see Datta and Mukerjee 2004, and references

therein). For instance, focusing on the presence of nuisance parameters, the Laplace

approximation to (6.2) provides

πm(ψ|yobs) =̈
1√
2π
|jp(ψ̂)|1/2 exp{ℓp(ψ)− ℓp(ψ̂)} |jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2
π(ψ, λ̂ψ)

π(ψ̂, λ̂)
, (6.3)

where ℓp(ψ) = logLp(ψ) = logL(ψ, λ̂ψ) is the profile log-likelihood for ψ, with λ̂ψ the

constrained maximum likelihood estimate (MLE) of λ given ψ, (ψ̂, λ̂) is the full MLE,

and jp(ψ) = −∂2ℓp(ψ)/∂ψ2 is the profile observed information. Moreover, jλλ(ψ, λ)

is the (λ, λ)−block of the observed information from the full log-likelihood ℓ(ψ, λ) =

logL(ψ, λ), and the notation =̈ indicates that the approximation is accurate to order

O(n−3/2) in moderate deviation regions (see, e.g., Severini (2000), Chapter 2). One

appealing feature of higher-order approximations like (6.3) is that they may routinely

be applied in practical Bayesian inference, since they require little more than standard

likelihood quantities for their implementation, and hence they may be available at little

additional computational cost over simple first-order approximations.
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In the presence of nuisance parameters, starting from approximation (6.3) it is pos-

sible to define a general posterior distribution for ψ of the form

π∗(ψ|yobs) ∝ π∗(ψ)Lp(ψ), (6.4)

where π∗(ψ) is now a prior distribution on ψ only. Bayesian inference based on pseudo-

likelihood functions – i.e. functions of ψ only and of the data yobs with properties similar

to those of a genuine likelihood function, such as the profile likelihood – has been widely

used and discussed in the recent statistical literature. Moreover, it has been theoretically

motivated in several papers (see, for instance, Ventura and Racugno 2016, Giummolé

et al. 2019, Leisen et al. 2020, Miller 2021, and references therein), also focusing on

the derivation of suitable objective priors. Especially when the dimension of λ is large,

there are two advantages in using (6.4) instead of the marginal posterior distribution

(6.2). First, the elicitation over λ is not necessary and, second, the computation of the

integrals in (6.2) is circumvented.

Focusing on (6.4), we are interested in testing the precise (or sharp) null hypothesis

H0 : ψ = ψ0 against H1 : ψ ̸= ψ0 (6.5)

using the measure of evidence for the Full Bayesian Significance Test (see, e.g., Pereira

and Stern 1999 and Madruga et al. 2003). The Full Bayesian Significance Test (FBST)

quantifies evidence by considering the posterior probability associated with the least

probable points in the parameter space under H0. Higher-order asymptotic computation

of the FBST for precise null hypotheses in the presence of nuisance parameters has been

discussed in Cabras et al. (2015).

The original measure of evidence for the FBST is not invariant under suitable trans-

formations of the parameter, a property which has been reached however in the more

recent definition of the e−value (see Pereira and Stern 2022 and Diniz et al. 2020, and

references therein). Neverthless, when working on a scalar parameter of interest, in the

presence of nuisance parameters, the e−value is not invariant with respect to marginal-

isations of the nuisance parameter and it must be used in the full dimensionality of the

parameter space. This requires elicitation on the complete parameters, numerical opti-

mization and numerical integration, that can be computationally heavy especially when

the dimension of λ is large. The aim of this contribution is to consider the e−value in

the context of the pseudo-posterior distribution π∗(ψ|yobs), suggesting in this respect a

suitable objective prior π∗(ψ) to be used in (6.4). More precisely, focus is on a particular

matching prior, which ensure invariance of the posterior mode of the pseudo-posterior



128 Section 6.2 - The FBST measure of evidence

distribution. As a consequence also Highest Probability Density credible (HPD) sets

are invariant, as well as the e−value.

6.2 The FBST measure of evidence

Suppose that we need to decide between two hypotheses: the null H0 and the al-

ternative H1. The usual Bayesian testing procedure is based on the well-known Bayes

factor (BF), defined as the ratio of the posterior odds to the prior odds in favor of the

null hypothesis. A high BF or its logarithm suggest evidence in favor of H0. However,

it is well-known that, when improper priors are used, the BF can be undetermined

and, when the null hypothesis is precise, as specified in (6.5), the BF can lead to the

so-called Jeffreys-Lindley’s paradox (see, e.g. Robert 2014). Moreover, the BF is not

calibrated, i.e. its finite sampling distribution is unknown and it may depend on the

nuisance parameter.

To avoid these drawbacks, in recent years an alternative Bayesian procedure, called

FBST, has been introduced by Pereira and Stern (1999) in case of sharp hypothesis

H0 identified by the null set Θ0, a submanifold of Θ of lower dimension. The FBST

quantifies evidence by considering the posterior probability associated with the least

probable points in the parameter space Θ0. When this probability is high, it favors the

null hypothesis, providing a clear and interpretable measure of support for H0 (see, e.g.

Madruga et al. 2001, Madruga et al. 2003 and Pereira and Stern 2022, and references

therein). The FBST is based on a specific loss function, and thus the decision made

under this procedure is the action that minimizes the corresponding posterior risk.

The FBST operates by determining the e−value, a representation of Bayesian evi-

dence associated to H0. To construct the e−value, the authors introduced the posterior

surprise function and its supremum given, respectively, by

πs(θ|yobs) =
π(θ|yobs)
r(θ)

and s∗ = πs(θ
∗|yobs) = sup

θ∈Θ0

πs(θ|yobs),

where r(θ) is a suitable reference function to be chosen. Then, they introduce the

tangential set Ty(θ
∗) defined as the set of parameter values for which the posterior

surprise function exceeds the supremum s∗, that is

Ty(θ
∗) = {θ ∈ Θ : πs(θ|y) > s∗}.

This set, often referred to as the Highest Relative Surprise Set, includes parameter values
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with higher surprise than those within the null set Θ0. The e−value is then computed

as

ev = 1−
∫

Ty(θ∗)

πs(θ|yobs) dθ,

and H0 is rejected for small values of ev.

The original FBST, as proposed by Pereira and Stern (1999) and Pereira and Stern

(2001), relies on a flat reference function r(θ) ∝ 1, so that this first version involved the

determination of the tangential set Ty(θ) starting only from the posterior distribution

π(θ|yobs). However, this initial version lacked invariance under reparameterizations.

Subsequent refinements of the FBST introduced the importance of reference density

functions, making the e−value explicitly invariant under appropriate transformations of

the parameter. Common choices for the reference function include uninformative priors,

like the uniform distribution, maximum entropy densities, or Jeffreys’ invariant prior.

In Druilhet and Marin (2007), the use of the Jeffreys’ prior, π(θ) ∝ |i(θ)|1/2, where

i(θ) is the Fisher information derived from L(θ), is discussed as the reference function

to derive invariant HPD sets and Maximum A Posteriori (MAP) estimators that are

invariant under reparameterizations. Note that the ev uses the full dimensionality of

the parameter space. Moreover, this measure is not invariant with respect to transfor-

mations of the nuisance parameters and the use of high posterior densities to construct

credible sets may produce inconsistencies.

Concerning the asymptotic behavior of the ev it can be proven that, under suit-

able regularity conditions as the sample size increases, with θ0 representing the true

parameter value (see Pereira and Stern 2022), it holds:

• If H0 is false, i.e. θ0 /∈ H0 , then ev converges in probability to 1.

• If H0 is true, i.e. θ0 ∈ H0 , then, denoting by V (c) = Pr(ev ≤ c) the cumulative

distribution function of ev, we have that V (c) ≈ Q(d − h,Q−1(d, c)), with d =

dim(Θ), h = dim(Θ0) and Q(k, x) the cumulative chi−square distribution with k

degrees of freedom.

In practice, the computation of ev is performed in two steps: (a) a numerical opti-

mization and (b) a numerical integration. The numerical optimization step consists in

finding the maximizer θ∗ of πs(θ|y) under the null hypothesis. The numerical integration

step consists of integrating the posterior surprise function over the region where it is

greater than πs(θ
∗|y), to obtain the e−value. These computational steps make the FBST

a computationally intensive procedure. Despite efficient computational algorithms for

local and global optimization, as well as numerical integration, obtaining precise results

for hypotheses like (6.5) is highly demanding, especially with large nuisance parameter
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dimensions. Numerical integration can be tackled by resorting to higher-order tail area

approximations, as reviewed in the Bayesian framework in Ventura and Reid (2014).

An application of asymptotic approximation to the FBST in its first formulation, i.e.

with reference function r(θ) ∝ 1, has been discussed in Cabras et al. (2015).

6.2.1 Asymptotic approximations for the e− value
A first-order approximation for the e−value, when testing (6.5), is simply given by

(see, e.g., Pereira et al. 2008, Diniz et al. 2012)

ev =̇ 2


1− Φ



∣∣∣∣∣∣
ψ0 − ψ̂√
jp(ψ̂)−1

∣∣∣∣∣∣




 , (6.6)

where the symbol ”=̇” indicates that the approximation is accurate to O(n−1/2) and

Φ(·) is the standard normal distribution function. Thus, to first-order, ev agrees with

the p−value based on the profile Wald statistic

wp(ψ) =
(ψ̂ − ψ0)√
jp(ψ̂)−1

. (6.7)

In practice, the approximation (6.6) of ev may be inaccurate, in particular when the

dimension of λ is large with respect to the sample size, because it forces the marginal

posterior distribution to be symmetric.

The practical computation of ev requires the evaluation of integrals of the marginal

posterior distribution. In order to have more accurate evaluations of ev, it may be useful

to resort to higher-order asymptotics based on tail area approximations (see, e.g., Reid

2003, Ventura and Reid 2014, and references therein). Indeed, the measure of evidence

involves integrals of the marginal surprise posterior density πms(ψ|yobs). In particular,

extending the application of the tail area argument to the marginal surprise posterior

density, we can derive a O(n−3/2) approximation to the marginal surprise posterior tail

area probability, given by

∫ ∞

ψ0

πms(ψ|yobs) dψ =̈ Φ(r∗B(ψ0)), (6.8)

where

r∗B(ψ) = rp(ψ) +
1

rp(ψ)
log

qB(ψ)

rp(ψ)
,
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with

rp(ψ) = sign(ψ̂ − ψ)[2(ℓp(ψ̂)− ℓp(ψ))]1/2

profile likelihood root and

qB(ψ) = ℓ′p(ψ)|jp(ψ̂)|−1/2 |jλλ(ψ, λ̂ψ)|1/2
|jλλ(ψ̂, λ̂)|1/2

π(ψ̂, λ̂)

π(ψ, λ̂ψ)

r(ψ, λ̂ψ)

r(ψ̂, λ̂)
.

In the expression of qB(ψ), ℓ′p(ψ) = ∂ℓp(ψ)/∂ψ is the profile score function.

Using the tail area approximation (6.8), a third-order approximation of the measure

of evidence ev can be derived. The approximation, assuming without loss of generality

that ψ0 is smaller than the MAP of πms(ψ|yobs), is given by

ev(ψ) =̈ 1− Φ(r∗B(ψ0)) + Φ(r∗B(ψ∗
0)), (6.9)

with ψ∗
0 the value of the parameter such that πms(ψ

∗
0|yobs) = πms(ψ0|y). Note that

Φ(r∗B(ψ0))− Φ(r∗B(ψ∗
0)) =̈

∫ ψ0

ψ∗

0

πms(ψ|yobs) dψ = 1− ev

in (6.9) gives the posterior probability of the HPD credible interval (ψ0, ψ
∗
0). Note also

that the higher-order approximation (6.9) does not call for any condition on the prior

π(ψ, λ), i.e. it can be also improper. Finally, when πms(ψ|yobs) is symmetric, Equation

(6.9) reduces to ev =̈ 2(1− Φ(r∗B(ψ0))).

While tail area approximations require little more than standard likelihood quantities

for their implementation and, in this respect, they are available at little additional

computational cost over the first-order approximation, they require elicitation on the

complete parameter θ and to choose the reference function r(θ).

6.3 An invariant objective prior

The aim of this section is to derive a default prior π∗(ψ) to be used in (6.4). To

this end, following Datta and Mukerjee (2004) we use the shrinkage argument, which

is a crucial procedure in the development of matching priors, i.e. priors that ensure,

up to the desired order of asymptotics, an agreement between Bayesian and frequentist

procedures. Examples of matching priors are (see Datta and Mukerjee 2004) for posterior

quantiles, for credible regions and for prediction. Here, we focus on a specific matching

prior, that ensures the invariance of the posterior mode in the posterior distribution
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(6.4). As a consequence, the invariance extends to HPDs, as well as the e−value,

achieved incorporating the reference function within the prior.

The proposed choice of the prior π∗(ψ), that makes the MAP and thus also HPDs and

the e−value invariant under 1-1 reparameterization, will depend on the log-likelihood

ℓ(θ) and on its derivatives. In regular parametric estimation problems, both the MLE

and the score estimating function exhibit an asymptotically symmetric distribution cen-

tered at the true parameter value and at zero, respectively. However, these asymptotic

behaviours may poorly reflect exact sampling distributions particularly in cases with

small or moderate sample information, sparse data, or complex models. Several pro-

posals have been developed to correct the estimate or the estimating function. Most

available methods are aimed at approximate bias adjustment, either of the MLE or

of the profile score function, also when nuisance parameters are present (see Kosmidis

2014 for a review of bias reduction for the MLE.the median modification of the score,

or profile score, does not rely on finiteness of the MLE, thereby effectively preventing

infinite estimates.

In practice, to derive the median matching prior prior π∗(ψ), we impose that the

MAP of π∗(ψ|y) coincides with a refined version of the MLE, obtained as the solution of

the median modified score function (Kenne Pagui et al., 2017). To introduce this new

invariant prior, we initially explore the scenario without nuisance parameters and then

the situation in which nuisance parameters are present.

6.3.1 No nuisance parameters

Let’s explore first the scenario where θ is scalar. In order to obtain median bias

reduction of the MLE, it is possible to resort to a modified version of the score function

of the form

t(θ) = ℓθ(θ) +m(θ), (6.10)

where ℓθ(θ) = ℓθ(θ; y
obs) = ∂ℓ(θ; y)/∂θ is the score function and m(θ) a suitable correc-

tion term of order O(1). In particular, the median modified score function assumes for

m(θ) the expression

m(θ) = −E(ℓθ(θ)
3)

6 i(θ)
.

The solution θ̃ to the equation t(θ) = 0 not only upholds equivariance under com-

ponentwise monotone reparameterizations but also approximates median unbiasedness

(Kenne Pagui et al., 2017). Note that likelihood inference based on (6.10) does not
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depend explicitely on the MLE. Indeed, the modified score function has been found

to overcome infinite estimate problems. Likewise the MLE, also θ̃ is asymptotically

N(θ, i(θ)−1), so that the Wald-type statistics only differ in location.

Since Bayes’ theorem is a statement of adittivity on the log scale log π(θ|y) =

log π(θ) + logL(θ)+constant, we observe that in the Bayesian framework m(θ) can be

interpreted as the derivative of the logarithm of a prior, that is m(θ) = ∂ log π(θ)/∂θ.

We are thus looking for a matching prior π∗(θ) such that

∂ log π∗(θ)

∂θ
= −E(ℓθ(θ)

3)

6 i(θ)
.

In the scalar parameter case, it is straightforward to show that the proposed median

matching prior takes the form

π∗(θ) ∝ exp

(
−1

6

∫
i(θ)−1E(ℓθ(θ)

3) dθ

)

∝ exp

(
1

6

∫
i(θ)−1(3E(ℓθθ(θ)ℓθ(θ)) + E(ℓθθθ(θ))) dθ

)
,

where ℓθθ(θ) = ∂ℓθ(θ)/∂θ and ℓθθθ(θ) = ∂ℓθθ(θ)/∂θ. The posterior based on the median

matching prior is thus

π∗(θ|yobs) ∝ exp

(
ℓ(θ)− 1

6

∫
i(θ)−1E(ℓθ(θ)

3) dθ

)
.

A first-order approximation for the e−value, when testing H0 : θ = θ0, is simply

given by

ev =̇ 2

(
1− Φ

(∣∣∣∣∣
θ0 − θ̃√
i(θ0)−1

∣∣∣∣∣

))
, (6.11)

which differs in location with respect to the classical first-order approximation for the

e−value based on the MLE. A second approximation for the e−value, when testing

H0 : θ = θ0, can be obtained from the asymptotic distribution of the modified score

function (6.10), that is

ev =̇ 2

(
1− Φ

(∣∣∣∣∣
t(θ0)√
i(θ0)

∣∣∣∣∣

))
. (6.12)

Although the first-order equivalence between (6.11) and (6.12), note that (6.11) is based

on an easily understandable comparison between estimated value and hypothetical value,
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taking estimation error into account, and is widely used in applications, but does not

satisfy the principle of parameterization invariance. On the other hand, t(θ)/
√
i(θ) is

parameterization invariant.

Note that, when using a predictive matching prior, i.e. a prior ensuring asymptotic

equivalence of higher-order frequentist and Bayesian predictive densities (see, e.g., Datta

and Mukerjee 2004), the term m(θ) in (6.10) corresponds to the Firth’s adjustment

mF (θ) = −(E(ℓθ(θ)
3) + E(ℓθθ(θ)ℓθ(θ)))

2i(θ)
.

In view of this, for general regular models, Firth’s estimate coincides with the mode of

the posterior distribution obtained using the default predictive matching prior. However,

lack of invariance affects this kind of adjustment (Kosmidis, 2014), unless dealing with

linear transformations.

Example 1: One parameter exponential family. For a one parameter exponential

family with canonical parameter θ, i.e. with density

f(y; θ) = exp{θa(y)−K(θ)}b(y),

the median modified score function has the form

t(θ) = ℓθ(θ) +
Kθθθ

6Kθθ

,

where Kθθθ = ∂3K(θ)/∂θ3 and Kθθ = ∂2K(θ)/∂θ2 = i(θ). In this parameterization, t(θ)

can be seen as the first derivative of the log-posterior

log π(θ|y) = ℓ(θ) + log i(θ)/6.

On the other hand, Firth’s modified score takes the form tF (θ) = ℓθ(θ) + Kθθθ/(2Kθθ).

The effect of the median modification is to consider the median matching prior π∗(θ) ∝
i(θ)1/6, while tF (θ) implies a Jeffreys’ prior πJ(θ) ∝ i(θ)1/2. Note that, for a one

parameter exponential family with canonical parameter θ, both π∗(θ)and πJ(θ) belong

to the family of invariant priors discussed in Hartigan (1964) and Hartigan (1965).

Example 2: Scale model. Consider the scale model f(y; θ) = (1/θ)p0(y/θ), where

p0(·) is a given function. Let g(·) = − log p0(·). We have E(ℓ3θ) = c1/θ
3, E(ℓ3θℓθ) = c2/θ

3

and i(θ) = c3/θ
2, with c1 =

∫
(y3g′′′(y)+6y2g′′(y)+6yg′(y)−2)p0(y)dy, c2 =

∫
(3yg′(y)+

y2g′′(y)−2y2g′(y)2− y3g′(y)g′′(y)−1)p0(y)dy and c3 =
∫

(2yg′(y) + y2g′′(y)−1)p0(y)dy.
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method Median matching Predictive matching Uniform prior Jeffreys
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Figure 6.1: Inference for the scalar parameter θ of the skew-normal model with
sample sizes n = 20, 30, 50, 200. The red line is used for the posterior obtained from
the median matching prior, the green one for the predictive matching prior, the violet
one for the Jeffreys’ prior and the blue one from an improper flat prior. The horizontal
lines identify tangential sets associated to the hypothesis H0 : θ = 3.

The median matching prior is thus π∗(θ) ∝ θ−c1/6c3 , while the Jeffreys’ prior for a one-

parameter scale model is πJ(θ) ∝ θ−1 and the prior associated to the Firth’s adjustment

is πF (θ) ∝ θ−(c1+c2)/2c3 .

Example 3: Skew-normal distribution. Consider a skew-normal distribution, with

shape parameter θ ∈, and density f(y; θ) = 2ϕ(y)Φ(yθ), where ϕ(·) is the standard

normal probability density function and Φ(·) is its cumulative density function. The

median correction term for the score function associated to the median matching prior

is (see Sartori 2006,Kenne Pagui et al. 2017)

m(θ) =
E(y3ϕ(yθ)3/Φ(yθ)3)

6E(y2ϕ(yθ)2/Φ(yθ)2)
.

In this setting, numerical integration must be performed to obtain the expected values

involved in m(θ).

In order to illustrate the proposed prior, we consider draws from the skew-normal

model with true parameter θ0 = 3 and increasing sample sizes (n = 20, 30, 50, 200, top-

left, top-right, bottom-left and bottom-right panels of Figure 6.1, respectively). The
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H0 n Flat prior Median m. prior Predictive m. prior Jeffreys’ prior

θ = 3 20 0.59 0.62 0.56 0.65
30 0.65 0.70 0.73 0.64
50 0.81 0.84 0.82 0.91
200 0.79 0.79 0.81 0.82

θ = 4 20 0.82 0.91 0.98 0.84
30 0.17 0.22 0.22 0.22
50 0.20 0.20 0.20 0.21
200 0.07 0.08 0.08 0.09

Table 6.1: Skew-normal: e-values for hypotheses H0 : θ = 3 and H0 : θ = 4.

posterior distributions are obtained with the method by Ruli et al. (2020), i.e. drawing

105 values and accepting the best 5%. The e−values associated to the null (true)

hypothesis H0 : θ = 3 and the (false) hypothesis H0 : θ = 4 are reported in Table

6.1. For comparison, also the Jeffreys’ prior (Liseo and Loperfido 2006), the flat prior,

with uniform reference function, and the predictive matching prior (Sartori 2006) are

considered. Progressive agreement among evidence values obtained with the proposed

median matching prior and the other priors for larger sample size is shown. Also, as

expected, progressively increasing n, the evidence values indicate agreement with the

true hypothesis H : θ0 = 3 and disagreement with the H : θ0 = 4 for all the priors used.

Anyway, note that the posterior distribution obtained with a flat prior, and a uniform

reference function, is proportional to the likelihood function that can be monotone. In

view of this, while the MAPs of the posterior based on the default priors are always

finite, in some samples the MAP of the posterior with the non-informative prior may

be infinite. An example of this effect is illustrated in Figure 6.2.

The properties of first-order approximations of the e−values have been investigated

by a simulation study, again with sample sizes n = 20, 30, 50, 200. Results are displayed

in Figure 6.3. Distributions of the e−value from the posterior based on the median

matching prior are better in terms of convergence to the Uniform distribution both for

small and moderate sample sizes. Moreover, score-type e−values are also preferable than

Wald-type e−values. For the results with the posterior distribution obtained with a flat

prior, we found 4.3%, 4.2%, 0.9%, 0% of infinite estimates for the sample sizes considered

in the simulation study, respectively and in these cases the e−value was considered as

0.
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Figure 6.2: Skew-normal model: an example of ∂ log π(θ|y)/∂θ (estimating equa-
tion) with a flat prior (blue line), the median matching prior (red line) the predictive
matching prior (green line) and the Jeffreys’ prior (violet line) in a sample where all
the observations are positive.

6.3.2 Presence of nuisance parameters

In the presence of nuisance parameters, in order to obtain median bias reduction of

the MLE, it is possible to resort to a modified version of the profile score function of

the form

tp(ψ) = ℓ′p(ψ) +m(ψ, λ̂ψ), (6.13)

where m(ψ, λ) a suitable correction term of order O(1). In particular, for the median

modified profile score function, the adjustment m(ψ, λ) assumes the expression

m(ψ, λ) = −κ1ψ +
κ3ψ
6κ2ψ

,

where κ1ψ, κ2ψ and κ3ψ are the first three cumulants of ℓ′p(ψ) (see Kenne Pagui et al.

2017, Section 2.2, for their expression). For the estimator ψ̃p, defined as the solution of

tp(ψ) = 0, parametrization equivariance holds under interest respecting reparametriza-

tions (Kenne Pagui et al. 2017).
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Figure 6.3: Skew-normal model: distribution of e−values from a simulation study
under the null hypothesis H0 : θ = 3, using a flat prior (blue line), the median
matching prior (red line), the predictive matching prior (green line), and the Jeffreys’
prior (violet line). The darker line is used for the approximation (6.11) while the
lighter for that based on (6.12).

Note that, also the context of nuisance parameters, we are in the situation in which

the proposed prior π∗(ψ) is known through its first derivative; this is typically the

situation with matching priors (see, e.g., Datta and Mukerjee 2004). Since the parameter

of interest is scalar, the posterior based on the median matching prior can be written as

π∗(ψ|yobs) ∝ exp

(
ℓp(ψ) +

∫
m(ψ, λ̂ψ) dψ

)
. (6.14)

A simple analytical way of approximating to first-order the posterior distribution

(6.14) based on the median matching prior is to resort to a quadratic form of tp(ψ). In

particular, the approximate posterior distribution for ψ takes the form

π∗(ψ|yobs) ∝̇ exp

(
−1

2
sp(ψ; yobs)

)
, (6.15)

where sp(ψ) = tp(ψ)2jp(ψ)−1 is a Rao score-type statistic based on (6.13) and the

symbol ∝̇ means asymptotic proportionality at first-order. In this case, a first-order
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approximation of the e−value, when testing H0 : ψ = ψ0, is given by

ev =̇ 2

(
1− Φ

(∣∣∣∣∣
tp(ψ0)√
jp(ψ0)

∣∣∣∣∣

))
. (6.16)

In this case, an higher order approximation via (6.3) would be impractical since a closed

form prior is not available. As an alternative, simulation-based approaches may be used

to derive the implied posterior distribution (6.14) based on the median matching prior.

The first one relies on Approximate Bayesian Computation (ABC) techniques, using ψ̃p

or the modified profile score function tp(ψ) as summary statistics; see Bortolato and

Ventura (2023) for the modification of the algorithm of Ruli et al. (2020) by using a

profile estimating equation. This first method introduces an approximation at the level

of the posterior estimation. The second one still relies on (6.13) but considers use of

Manifold MCMC methods (see ,e.g., Brubaker et al. 2012) to conditioning exactly on the

profile equation and not up to a tolerance level, as in ABC (see also Lewis et al. 2021 and

Graham and Storkey 2017 for similar ideas). The algorithm moves on the constrained

space {(y, ψ) ∈ Y × ⊖|tp(ψ̃p) = 0}, where ψ̃p is the solution of the estimating equation

on the original data. For the latter method, we need minimal regularity assumptions on

m(ψ, λ), which is assumed to be continuous, differentiable and available in closed form

expression. Note, for instance, that in the skew-normal example in Section 3.1 these

conditions are not met.

Example 4: Exponential family. If f(y; θ) is an exponential family of order d with

canonical parameter (ψ, λ), i.e. f(y;ψ, λ) = exp{ψt(y) + λ⊤s(y)−K(ψ, λ)}h(y), quan-

tities involved in m(ψ, λ) are simply obtained from derivatives of K(ψ, λ) (Kenne Pagui

et al., 2017). Note that, in this framework, ℓ′p(ψ)− κ1ψ is an approximation with error

of order O(n−1) of the score for ψ in the conditional model given s(y). Then, in the

continuous case, the MAP ψ̃p is an approximation of the optimal conditional median

unbiased estimator, and π∗(ψ|yobs) is related to the conditional likelihood for ψ given by

Lc(ψ) = exp(ψt(y) −Ks(ψ)); see Severini (1999) for a Bayesian interpretation of such

pseudo-likelihoods.

Example 5: Multivariate regression model. Consider a regression model of the

form

Yij = β0 + β1xi1 + β2xi2 + ϵij, i = 1, . . . , 20, j = 1, 2,

where it is assumed that ϵi ∼ N2(0,Σ), with Σ = σ2

(
1 ρ

ρ 1

)
positive definite matrix,

with σ > 0, −1 < ρ < 1 and (β0, β1, β2, σ
2, ρ) are unknown parameters. This model
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is widely used for instance in time series analysis, where the past observables are often

used as regression covariates. We focus on the problem of testing hypothesis on the

correlation coefficient ρ. For obtaining the posterior (6.14) for ρ we first compute the

MAPs with the median matching prior and also, for comparison, with the predictive

matching prior, which are respectively 0.953 and 0.92. Note that the expression of the

predictive matching prior for (ψ, λ) corresponds to the Firth’s adjustment to the score

function. The expressions of the modified profile estimating functions tp(ψ) and tF (ψ)

are obtained from Bortolato and Kenne Pagui (2023) and are available in closed form

expressions. Hence, the Manifold MCMC method can be used to obtain the implied

posteriors, whose approximation is comparable to that of any MCMC sampler. In

particular we used 20000 iterations.

We compare the posterior distribution obtained from a draw with true parameter

ρ0 = 0.95 based on the proposed median matching prior, with those obtained with the

predictive matching prior and with an inverse-Wishart prior for the covariance matrix

Σ with one degree of freedom and identity position, and uniform prior on the regression

parameters. The resulting posterior distributions are displayed in Figure 6.4. The hy-

pothesis of interest is H0 : ρ = 0.9, and a smaller e-value indicating disagreement with

the hypothesis should be preferable. The e−values are 0.25 with the median matching

prior, 0.36 for the predictive matching prior and 0.60 with the inverse-Wishart prior.

Note that the e−value based on the inverse-Wishart prior involves the constrained max-

imization and multidimensional integration, thus is not directly readable in Figure 6.4.

Indeed, one crucial difference is that the original e−value formulation links the evidence

of the null hypothesis to the evidence of a more refined hypothesis, choosing the MAP

under the null hypothesis for all the nuisance parameters, while in the alternative (tan-

gential) set all values are used, and integration is performed on the full dimensionality

of the space. On the contrary, in the proposed posterior based on the median matching

prior, the maximizer of nuisance parameters are taken both in the null and non null

sets.

Finally, for the posterior based on the inverse-Wishart prior, we also computed the

e-value based on high-order tail area approximation (6.9) of the marginal surprise poste-

rior, which is equal to 0.27. This procedure still avoids the multidimensional integration

but the result is not invariant to changes of parametrization.

Example 6: Logistic regression model. Let yi, i = 1, . . . , n, be independent re-

alizations of binary random variables with success probability πi. We indicate with

log(πi/(1−πi)) = ηi = xiβ the linear predictor, where xi = (xi1, . . . , xip) is a row vector

of covariates. For such a model, we assume that a generic scalar component of β is of
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Figure 6.4: Posterior distributions for the correlation parameter ρ of the bivariate
regression model obtained from MCMC draws and the three different priors.

interest and we treat the remaining components as nuisance parameters.

As an example, we consider the endometrial cancer grade dataset analyzed, among

others, in Agresti (2015). The aim of the clinical study was to evaluate the relationship

between the histology of the endometrium (HG) (encoded as a binary response variable)

of n = 79 patients and three risk factors: 1. Neovascularization (NV), that indicates

the presence or extent of new blood vessel formation; 2. Pulsatility Index (PI), that

measures blood flow resistance in the endometrium; 3. Endometrium Height (EH),

that indicates the thickness or height of the endometrium. A logistic model for HG,

including an intercept and using all the covariates (NV, PI, EH), has been fitted, but

maximum likelihood leads to infinite MLE of the coefficient β2 related to NV, due to

quasi-complete separation. This phenomenon prohibits the use of diffuse priors for

β2, since the corresponding posterior wouldn’t concentrate. Moreover, the e−value with

non-informative priors cannot be obtained also for any hypothesis concerning parameters

different from β2.

If we consider β2 as the parameter of interest, while the remaining regression coeffi-

cients are treated as nuisance parameters, the analysis with the median matching prior

allows to obtain a global proper posterior, with MAP equal to 3.86, open to interpre-

tation both in the original scale and in terms of odds ratios. Similarly, the posterior

based on the predictive matching prior, which in this model coincides with Jeffreys’ prior

π(β) ∝ |i(β)|1/2 is proper, with the MAP set at 2.92. The latter suffers from lack of

interpretability on different scales, since a different parametrization in estimation phase

would affect the results.
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rior distribution for β3 in the logistic regression model.

If we consider β3 as the parameter of interest, related to the risk factor PI, the MAPs

are -0.038 when using the median matching prior and -0.035 when using the predictive

matching prior. The e−values for the hypothesis H0 : β3 = 0 are 0.60 and 0.55,

respectively (see Figure 6.5). Likewise, the interpretation of e-values remains consistent

and independent of parametrization solely in the first case.

6.4 Discussion and remarks

Although (6.14) cannot always be considered orthodox in a Bayesian setting, the

use of alternative likelihoods is nowadays widespread, and several works focus on the

Bayesian application of some well-known pseudo-likelihoods. In particular, the pro-

posed posterior π∗(ψ|y) has the advantage of avoiding the elicitation on the nuisance

parameter λ and the computation of multidimensional integrals. Moreover, it provides

invariant MAPs, HPDs and e−values, without the adoption of a reference function.

Finally, we remark that frequentist properties of the MAP of the posterior based of the

proposed median matching prior in comparison with the MAP of the posterior based of

the predictive matching prior have been investigated in Kenne Pagui et al. (2017) and

Bortolato and Kenne Pagui (2023) for some of the examples discussed in this Chapter.

For inference on a full vector parameter θ, with d > 1 components, a direct exten-

sion of the rationale leading to (6.10) does not seem to be practicable due to lack of

a manageable definition of multivariate median. Actually, in Kosmidis et al. (2020)

it is shown how the method can be extended to a vector parameter of interest, in
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the presence of nuisance parameters, by simultaneously solving median bias corrected

score equations for all parameter components. This leads to componentwise third-order

median unbiasedness and parameterization equivariance. Moreover, the use of default

priors involving all parameter components, also the nuisance, becomes necessary to reg-

ularize likelihoods in case of monotonicity. We note that among the possible objective

priors that ensures invariance of the posterior, we did not focus on the Jeffreys’ in the

multidimensional case, since it often exhibits poor convergence properties. Conversely,

the default matching priors considered in this Chapter are easily generalizable to the

multidimensional case Kosmidis et al. (2020) preserving good convergence properties.

As a final remark, we highlight that this investigation opens to several topics of fu-

ture research. In particular, from a computational point of view, it could be of interest:

to develop a library of computational routines exploring the methods proposed in this

Chapter for a wide range of statistical models of interest, together with semi-automated

procedures for further expanding this library, as done for point estimation for General-

ized Linear Models in the R package brglm2 Kosmidis (2023). From a theoretical point

of view, it could be of interest to further explore the theoretical connections between the

e−value invariance properties and matching priors, to explore the existence of similar

connections in other classes of pseudo-likelihoods. Also, it would be to apply and ex-

tend the methodology to consider other objective priors used in Bayesian inference, such

as those obtained from scoring rules, as proposed by Leisen et al. (2020), as solutions

of differential equations or in the context of context of empirical and profile empirical

likelihoods, with a large number of nuisance parameters (see e.g. Bedoui and Lazar

2020).





Conclusions

Discussion

This dissertation focuses on two main research lines. The first line investigates the

computation of confidence distributions within the frequentist framework. This in-

cludes special attention to treating nuisance parameters, extensions to possible use of

multivariate statistics, applications to non-regular models and to likelihood-free setups.

The second line of research explores advanced methods for Markov chain Monte Carlo

(MCMC) algorithms on submanifolds, including coupling for MCMC algorithms on sub-

manifolds, with the aim of providing convergence diagnostics, parallelizing computation

and measuring the precision of MCMC methods. We have also proposed new sam-

pling schemes that are widely applicable for a range of problems in Bayesian statistics,

introducing artificial submanifold-based MCMC strategies. Finally, another method-

ological application and original contribution related to this line of research concerns

the computation of posterior distributions with non tractable priors.

Future directions of research

The investigation of the topics presented in this work paves the way for numerous

future research projects. These include the exploration of connections between the topics

examined as well as the deepening of the investigations carried out.

In Chapter 2, for example, we did not discuss elimination of nuisance parameters

through conditioning. We point out that it may be possible to combine constrained

simulations based on manifold-MCMC methods to produce conditional CDs, as well as

to use coupling methods to retrieve unbiased uncertainty quantification. Another point

to be explored is the connection and differences between simulation-based CDs when

using estimating equations and the constrained bootstrap, especially with respect to the

treatment of nuisance parameters. An interesting application could be the extension of

this framework to compute CD for lasso regressions (Tibshirani, 1996) working in high

145
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dimensional framework. From a computational point of view, all the algorithms used

in Chapter 2 and Chapter 3 are based on rejection sampling, but adaptive or iterative

schemes could be developed as well.

In Chapter 3, we did not examine the frequentist properties of the data depth func-

tions derived from the Box ABC method to derive valid confidence intervals. This

certainly represents an interesting area of research, with the possibility of combining in-

ferences from multiple summaries, as also mentioned in Dungang et al. (2022). Another

topic that should be further investigated is the convergence properties of the algorithm

in presence of many unknown parameters.

In the context of MCMC on manifolds, one line of research that is of particular

interest is the elaboration of meeting-inducing couplings for constrained Hamiltonian

Monte Carlo (see for example Lelièvre et al. 2019, Graham and Storkey 2017), by further

elaborating the strategy for HMC in the unconstrained case presented in Chapter 4.

For the MCMC algorithms presented in Chapter 5, where artificial submanifolds are

introduced to solve general sampling problems, a research direction not yet explored is

the use of tempered versions or other suitable, possibly simpler functions, instead of

the graph map. And also the consideration of other types of conditioning or smooth

surfaces, when considering alternate moves.

Finally, the use of estimating equations presented in Chapter 6, to deal with in-

tractable prior distributions can be extended to perform posterior inference in many

cases where the prior distribution emerges as the solution of partial differential equa-

tion, as those derived from scoring rules (see for instance Leisen et al., 2020). An open

question is whether the use of estimating equations can be extended in the context of

Generalized Fiducial Inference, replacing the data generating equations with the esti-

mating equations, for reducing the dimensionality of the sampling problem.
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Giummolé, F., Mameli, V., Ruli, E. and Ventura, L. (2019) Objective Bayesian inference

with proper scoring rules. Test 28, 728–755.



154 Bibliography

Glynn, P. W. and Rhee, C.-H. (2014) Exact estimation for Markov chain equilibrium

expectations. Journal of Applied Probability 51(A), 377–389.
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