
Aquaculture Reports 20 (2021) 100661

Available online 10 March 2021
2352-5134/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Data imputation and machine learning improve association analysis and 
genomic prediction for resistance to fish photobacteriosis in the gilthead 
sea bream 

Luca Bargelloni *, Oronzo Tassiello, Massimiliano Babbucci, Serena Ferraresso, Rafaella Franch, 
Ludovica Montanucci, Paolo Carnier 
Department of Comparative Biomedicine and Food Science, School of Agriculture and Veterinary Medicine, University of Padova, 35020, Legnaro, Italy   

A R T I C L E  I N F O   

Keywords: 
Disease resistance 
Genomic prediction 
Data imputation 
Machine learning 
Sea bream 

A B S T R A C T   

Disease resistance represents a key trait for breeding programs in aquaculture species. Here we re-analysed 
2bRAD sequence data from two experimental challenges of gilthead sea bream with Photobacterium damsealae 
piscicida. Using a high quality reference genome, we carried out variant calling and data imputation with Beagle 
to obtain a large set of SNPs (80,744). This allowed the identification of eight novel QTLs for resistance to 
photobacteriosis across different chromosomes and revealed a highly polygenic genetic architecture. 

Bayesian regression approaches and machine learning methods (support vector machines and linear bagging) 
were compared to evaluate relative performance to classify susceptible-resistant individuals. Both data sets 
showed higher Matthew Correlation Coefficient (MCC) and accuracy values for machine learning methods, 
particularly linear bagging, with 20–70 % increase in prediction performance. Overall, machine learning 
methods should be explored in parallel with parametric regression approaches to increase the chances of highly 
effective genomic prediction.   

1. Introduction 

Disease resistance is rapidly becoming one of the key traits to be 
selected for in most advanced breeding programs of aquaculture species 
(Chavanne et al., 2016; Houston et al., 2020) as the impact of infectious 
diseases on fish farming is recognized to be extremely relevant in terms 
of economic losses and animal welfare. Options to mitigate the impact of 
infections via vaccination, biosecurity, and pharmaceutical in-
terventions are often limited in farmed fish (Houston et al., 2020). Ge-
netic solutions might either complement or substitute such practices, 
which is particularly important for bacterial diseases, as pharmacolog-
ical treatments in farmed fish have dramatically increased the presence 
of antibiotic resistant strains with great environmental risks (Limbu 
et al., 2020). 

Photobacteriosis or fish pasteurellosis is a septicemia caused by the 
gram negative bacterium Photobacterium damselae subsp. piscicida, and is 
considered one of the most dangerous bacterial diseases in farmed fish 
species due to its wide host range, high mortality rate, and ubiquitous 
distribution (Andreoni and Magnani, 2014). In the gilthead sea bream, 

one of the most important species for aquaculture in Europe, photo-
bacteriosis recurrently causes massive mortalities especially in juvenile 
fish. Breeding for resistance to this disease has long been proposed as a 
possible strategy to reduce its impact as the trait was shown to have 
moderate heritability (Antonello et al. 2009). Two recent studies (Pal-
aiokostas et al. 2106, Aslam et al., 2018) have reported that using either 
genomic Best Linear Unbiased Prediction (GBLUP) or Bayesian methods 
based on 2bRAD genotyping-by-sequencing data significantly improves 
the accuracy of predicting phenotypes for resistance to photobacteriosis 
over pedigree BLUP. Here, we re-analysed these genomic data to test 
whether data imputation and machine learning (ML) might further in-
crease prediction accuracy. Genotyping-by-sequencing (GBS) data often 
present missing data randomly distributed across loci and individuals 
(Robledo et al., 2018) and might particularly benefit from data impu-
tation. The peculiar population structure in aquaculture species, with 
large families might provide an additional advantage in data imputation 
(Tsairidou et al., 2020). Finally, the recent availability of the first gilt-
head sea bream genome assembly (Pauletto et al., 2018) offered the 
opportunity to further improve both SNP calling and data imputation, 

* Corresponding author. 
E-mail address: luca.bargelloni@unipd.it (L. Bargelloni).  

Contents lists available at ScienceDirect 

Aquaculture Reports 

journal homepage: www.elsevier.com/locate/aqrep 

https://doi.org/10.1016/j.aqrep.2021.100661 
Received 31 December 2020; Received in revised form 20 February 2021; Accepted 3 March 2021   

mailto:luca.bargelloni@unipd.it
www.sciencedirect.com/science/journal/23525134
https://www.elsevier.com/locate/aqrep
https://doi.org/10.1016/j.aqrep.2021.100661
https://doi.org/10.1016/j.aqrep.2021.100661
https://doi.org/10.1016/j.aqrep.2021.100661
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aqrep.2021.100661&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aquaculture Reports 20 (2021) 100661

2

using the novel genome assembly to guide both processes (Pook et al., 
2020). 

Machine learning algorithms, which use data to model complex re-
lationships and which improve their prediction performances as data 
increase, are thought to hold the promise to boost the analysis of genetic 
and genomic data (Libbrecht and Noble, 2015). The application of ML to 
genomic prediction in plant and livestock genetics is increasingly pop-
ular (Nayeri et al., 2019), albeit it has not been used in aquaculture 
species yet. Several ML methods have been implemented for predicting 
either binary or categorical or continuous traits in several farmed spe-
cies (Nayeri et al., 2019). We tested here on binary survival data a 
classical supervised method, support vector machine (SVM), which has 
been extensively used for classification problems and relies on con-
struction of multidimensional hyperplanes that separate similarly 
labelled objects into linearly separable sets. The second implemented 
method is linear bagging (LB), an ensemble approach that combines the 
prediction of multiple ML algorithms, in this case linear models. Results 
of ML prediction were compared with parametric regression approaches 
based on Bayesian inference (BayesB, BayesC, and Bayes Ridge 
Regression). 

2. Methods 

2.1. Data imputation and Bayesian analysis 

Two 2bRAD data sets, which were already reported in Palaiokostas 
et al., 2016 and Aslam et al., 2018, were re- analysed here. Raw 
sequence data (PRJNA338774, PRJNA416847) were trimmed and 
filtered for low sequence quality. Burrows-Wheeler Aligner (Li and 
Durbin, 2009) was used to map all filtered reads against the sea bream 
genome (Pauletto et al., 2018). Variant calling was carried out using 
samtools-mpileup following a standard pipeline (http://www.htslib. 
org/workflow/#mapping_to_variant). Only single nucleotide poly-
morphism (SNP) mapping to the 24 sea bream linkage groups/scaffolds 
were included in all subsequent analyses. Data imputation was per-
formed using Beagle 4.1 with default options (Browning and Browning, 
2016). Two vcf files, one for each data set, were obtained, missing data 
that we were unable to predict and data with a minor allele frequency 
(MAF) of 1% were filtered out using vcftools (https://vcftools.github.io/ 
). 

Cervus version 3.0.7 (Kalinowski et al., 2007) was used to assign 
parentage of a total of 798 offspring. Cervus uses a likelihood-based 
approach to assign parental origin combined with simulation of 
parentage analysis to determine the confidence of parentage assign-
ments (Cervus uses simulation of parentage analysis to evaluate the 
confidence in assignment of parentage to the most likely candidate 
parent. As well as using observed allele frequencies the simulation takes 
account of the number of candidate parents, the proportion of candidate 
parents sampled, completeness of genetic typing and estimated fre-
quency of typing error when generating genotypes). Likelihood ratios 
are calculated allowing for the possibility that the genotypes of parents 
and offspring may be mistyped. Due to the maximum limit of loci that 
can be analysed by the software, four small datasets of 1500 randomly 
selected SNPs were created. Each Cervus run consisted of completing an 
allele frequency analysis, followed by a simulation of parentage analysis 
where the proportion of candidate parents sampled was set to 98 % and 
99 % loci typed with a 1% error rate. A minimum of 500 typed loci were 
required for progeny to be analysed, and the number of progeny simu-
lated was set to 100,000. 

The results of the four independent runs were then compared with a 
custom script to assess the concordance across independent SNP sets. 

For all individuals correctly assigned to a parental pair, we obtained 
mortality data from Palaiokostas et al., 2016 (PAL16) and Aslam et al., 
2018 (ASL18). For PAL16, mortality at day 10 was considered as the 
threshold for dividing individuals into two classes. For ASL18, mortality 
at day 10 was already discriminant between susceptible and resistant 

animals. 
Genome-wide association analysis (GWAS) was implemented in 

GCTA (Yang et al., 2011), using the module GCTA-MLMA with default 
options. Imputed 2bRAD data were first converted into PLINK (Purcell 
et al., 2007) format to be processed with GCTA. 

The software GCTB (Zeng et al., 2018) was implemented to estimate 
the genetic architecture (polygenicity) of the trait. Default options were 
selected with the following MCMC settings: –chain-length 25000, 
–burn-in 5000, and initial p = 0.1. 

Parametric regression methods based on Bayesian procedures per-
forming numerical integration through the Gibbs sampler as imple-
mented in the R package BGLR (Pérez and de Los Campos, 2014) were 
used for the prediction of phenotypes for mortality. Three probit models 
differing in the prior density used for marker genotype effects (BayesB, 
BayesC, and Bayes Ridge Regression; Pérez and de Los Campos, 2014) 
were implemented. In a probit model, the probability of mortality is 
linked to the linear predictor of a latent variable, the liability, according 
to the probit function. The liability is modelled through a linear 
regression on marker genotypes. It is assumed that mortality is observed 
when the liability exceeds a given threshold. In a Bayesian analysis, a 
prior probability density for marker genotype effects needs to be spec-
ified. Such prior density was a mixture of a point of mass at zero and a 
scaled-t slab, a mixture of a point of mass at zero and a Gaussian slab or a 
Gaussian prior for BayesB, BayesC or Bayes Ridge Regression, respec-
tively. Each Bayesian analysis was performed by generating a single 
Gibbs chain of 200,000 iterations. One Gibbs sample was saved every 
100 iterations and the initial 1 000 samples of the saved Gibbs chain 
were discarded. 

2.2. Machine learning analysis 

We build two classifiers based on two different machine learning 
methods: support vector machines (SVM) and linear bagging (LB) clas-
sifier. The prediction performance of Bayesian and machine learning 
methods was assessed with a stratified 12-fold cross-validation proced-
ure for ASL18 and a stratified 10-fold cross-validation procedure for 
PAL16. In both cases individuals of the same family were assigned either 
to training, validation or test set. The procedure of assigning all the 
individuals of the same family to the same cross-validation set was 
adopted to avoid the risk of overfitting. This has to be taken into account 
when comparing the results of this study with previous studies which did 
not adopt this caution and thus might be affected by overfitting. For 
ASL18 ten training subsets were created (>800 individuals in total), 
whereas for PAL16 eight training sets were generated (>600 individuals 
in total). For both data sets, 100 additional individuals formed the blind 
set. These non-overlapping training and validation sets were used to 
develop the Bayesian and machine learning classifiers and to evaluate 
their performance in prediction, respectively. Matthew Correlation Co-
efficient (MCC) was used to evaluate the quality of the prediction:  

• Matthew Correlation Coefficient 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√

With 
TP=number of true positive 
TN=number of true negative 
FP=number of false postive 
FN=number of false negative 
Kernel is the function that transforms input data into a space in 

which the data is separable. Here we adopted a linear kernel, which is 
the most appropriate for high-dimensional input spaces. The ML 
methods that we used are also characterized by the following parame-
ters whose values need to be set. These parameters are: C for SVM and ne 
(number of estimators) and mf (max feature) and ms (max sample) for 
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LB. The ms parameter was set to default value (ms = 1), while we chose 
to set the remaining parameters to the values which maximize the MCC 
value of the classification on the validation set. 

After training and parameter optimization, a final classification step 
was performed on a third set (test set) of approximately 100 non- 
overlapping samples for each data set (PAL16 and ASL18) to evaluate 
the performances of the trained classifiers on data which was not pre-
viously seen by the classifier. The performance of the binary classifiers 
were evaluated using also the following metrics:  

• Accuracy 

ACC =
TP + TN

TP + TN + FP + FN    

• False Positive Rate 

FPR =
FP

FP + TN    

• True Positive Rate 

TPR =
TP

TP + FN    

• Precision or Positive Predictive Value 

PPV =
TP

TP + FP 

Both SVM and LB classifiers were implemented in the python library 
sci-kit learn, using respectively sklearn.svm.SVC and sklearn.ensemble. 
BaggingClassifier methods (Pedregosa et al., 2011). Data analysis was 
executed on a server with the following specifics: 12 CPU 2 thread per 
core, processor Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz, RAM 
252Gb, Hard Disk 16Tb running on a GNU/Linux CentOS system version 
7. GNU Parallel was used to parallelize computing procedures for the 
machine learning methods. 

3. Results 

The pipeline for variant calling and data imputation yielded a final 
data set (quality, MAF, imputation) of 80,714 SNPs after all filtering 
steps (quality, MAF, imputation), across 798 samples for the PAL16 
experiment and 1060 individuals for ALS18. Parentage assignment 
provided highly consistent results across random SNP subsets and 
confirmed the presence of a highly skewed distribution of family size for 
the PAL16 experiment (data not shown). Mortality data were re- 
calculated from the original experiments to obtain binary survival 
data for all 798 (PAL16) and 1060 (ASL18) individuals that were re- 

analysed in the present study (Fig. 1). Cumulative mortality at day 10 
post-challenge was over 50 % for PAL16 and 38 % for ALS18. 

Genome-wide association analysis using GCTA showed no genome- 
wide significant loci associated to survival after day 10 for PAL16 
(Fig. 2), while 15 SNPs showed genome-wide significance for ASL18 
(Fig. 3) distributed across nine chromosomes. 

The GCTB implementation of a Bayesian method to assess trait ge-
netic architecture failed to reach convergence for PAL16, while for 
ASL18 a pi value of 0.0017 was obtained, which corresponds to 139 
SNPs (SD ± 35) significantly contributing to the trait. 

Accuracy and MCC values for prediction of survival after day 10 
using either parametric Bayesian methods or ML ones for both data sets 
are reported in Tables 1 and 2. Overall, higher accuracy and MCC values 
were achieved using ML methods: Performance of both parametric and 
non-parametric methods was consistently higher for the ASL18 data set. 
Optimal values for parameters c (SVM) and ne and mf (LB) were c =
0.01, ne = 500, mf = 0.8 and c = 0.01, ne = 100, mf = 0.8 respectively 
for PAL16 and ASL18. 

4. Discussion 

The implementation of a pipeline for variant calling that relies on the 
use of a high quality reference genome yielded a much higher number of 
loci (80,714) than previously reported for the same experiments. The 
final data set in Palaiokostas et al. (2016) counted 12,085 SNPs and the 
total number of analysed loci in Aslam et al. (2018) was 22,544. In 
addition to the use of a reference genome, the much larger number of 
identified SNPs might be explained with the less stringent settings for 
variant calling and the merging of two sets of data. More stringent op-
tions for SNP calling were enforced in the previous analyses because of 
the lack of a reference genome and the specific nature of 2bRAD data, 
which are characterized by very short sequence reads. Merging data 
from different studies becomes increasingly feasible as GBS is routinely 
applied for genetic analysis of various traits in the same species. 
Meta-analysis is generally deemed difficult and cumbersome, as it often 
is, but it might provide additional information at limited cost when 
properly implemented. The higher number of available loci, however, 
would have been rather useless in itself, had not be possible to signifi-
cantly increase the quality of genetic data using imputation. GBS 
generally provides a large set of genetic variants, without ascertainment 
bias, because SNP discovery and SNP genotyping occur simultaneously 
in the same population (Andrews et al., 2016). SNP arrays, on the other 
hand, are generally developed on one or more reference populations and 
once designed cannot be easily adapted to new populations. However, 
due to its intrinsic characteristics, GBS suffers of high rates of missing 
data. To mitigate such a problem, GBS data imputation has been suc-
cessfully used in several plant and animal species and data imputation 
significantly improved genomic prediction (Wang et al., 2020). As 

Fig. 1. Daily mortality data for PAL16 (left) and ASL18 (right). On the x-axis days post challenge, on the y-axis, number of dead fish on that day. A vertical line 
describes the threshold for considering susceptible (0) and resistant (1) individuals. For ASL18 no mortality was observed after day 10. 
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Fig. 2. Manhattan plot describing the results of GWAS for photobacteriosis resistance for PAL16 data. On the x-axis, sea bream chromosomes (Pauletto et al., 2018), 
on the y-axis the –log10 value of p associated to each SNP. 

Fig. 3. Manhattan plot describing the results of GWAS for photobacteriosis resistance for ALS18 data. On the x-axis, sea bream chromosomes (Pauletto et al., 2018), 
on the y-axis the –log10 value of p associated to each SNP. 

Table 1 
MCC values for phenotype prediction using different methods.  

Data set BayesB BayesC BayesRR SVM LB 

ASL18 0.39 0.38 0.39 0.47 0.48 
PAL16 0.11 0.13 0.15 0.18 0.19  

Table 2 
Accuracy of phenotype prediction using different methods.  

Data set BayesB BayesC BayesRR SVM LB 

ASL18 0.72 0.72 0.72 0.76 0.77 
PAL16 0.56 0.56 0.57 0.59 0.60  
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already mentioned, (Houston et al., 2020; Tsairidou et al., 2020), the 
typical population structure in fish breeding programs with large sib/-
halfsib families appears particularly favourable for genetic data impu-
tation as large haplotype blocks are expected. On the other hand, in 
several fish species reproduction occur through mass spawning, where a 
large number of males and females breed in uncontrolled crosses, but 
often only very few animals significantly contribute to the progeny. This 
leads to highly skewed family size distribution, which might determine 
higher accuracy in data imputation for individuals belonging to large 
families. Here, this might be the case of the PAL16 data set, which has 
been already shown to have two dominating half-sib families (Palaio-
kostas et al., 2016), while the ASL18 population originated from a series 
of controlled crosses (Aslam et al., 2018). At least for parentage 
assignment, the potential bias in imputation accuracy for PAL16 was not 
evident as for both data sets all reconstructed families were fully 
concordant with previously determined families. The great improve-
ment in the number of genotyped variants implementing genome-based 
variant calling and imputation for GBS data also suggests that in the 
future low coverage whole-genome sequencing might replace GBS as a 
valid alternative to array-based SNP genotyping. The sharp reduction in 
sequencing costs and increase in throughput (confront Table 1 in Logs-
don et al., 2020 for an updated summary of sequencing costs), the 
optimization of cost- and labour-effectiveness of library preparation, 
and the improvement in data imputation algorithms might soon make 
possible to use whole-genome sequencing as a routine genotyping 
method. 

GBS data imputation confirmed the absence of significant QTLs in 
the PAL16 data set as already reported (Palaiokostas et al., 2016). More 
importantly, it increased the number of significant QTLs for disease 
resistance in the gilthead sea bream in the ASL18 data set. While the 
single genome-wide significant QTL on chromosome 19 reported in 
Aslam et al., 2018 was confirmed, at least eight additional QTLs were 
identified. However, resistance to photobacteriosis appears to have a 
highly polygenic architecture as over 100 loci were estimated to 
contribute to the trait. This number is likely underestimated as the 
analysis was based on a relatively limited number of individuals and loci 
(Zeng et al., 2018). Indirect evidence of polygenicity comes from the 
results of genomic prediction using parametric methods. BayesB and 
BayesC showed similar prediction performance as Bayes Ridge Regres-
sion, which is equivalent to GBLUP (Goddard, 2009). It has been shown 
that variable selection models (BayesB and BayesC) perform better than 
GBLUP when large effect QTLs are present, but are comparable or less 
performant in case of a large number of small effect loci (Clark et al., 
2011). In fact, BayesB and BayesC performed equally to BayesRR on 
PAL16 data and slightly worse on ASL18 ones (Table 1). 

Both parametric regressions methods and ML had consistently high 
performance in phenotype prediction for ASL18. Such evidence is rather 
simply explained with the lower trait heritability estimated from PAL16 
data (h2 = 0.18) than from ASL18 (h2 = 0.54). In both data sets, how-
ever, prediction performance of ML methods was higher than that of 
parametric regression ones. Matthews Correlation Coefficient is gener-
ally considered the most informative index connecting all four measures 
in a confusion matrix, and it is particularly suited to measure the per-
formance of a binary classifier, in particular when there is a significant 
size bias between classes. Comparison of MCC values clearly suggested 
that performance of ML methods are 20–70 % better than that of 
parametric regression methods for PAL16 data and 20–23 % higher for 
ASl18 ones. In a recent study (Abdollahi-Arpanahi et al., 2020), several 
parametric regression and ML methods, including deep learning were 
compared under different simulated scenarios (moderate heritability, 
either small or large set of QTN, either presence of only additive effects 
or presence of non-additive effects). Parametric methods outperformed 
ML when only additive gene interactions were present. However, if 
non-additive effects were included ML ensemble methods, in particular 
gradient boosting showed significantly greater performance, confirming 
evidence from previous studies (e.g. Howard et al., 2014). The greater 

performance observed for ML methods, especially LB, in predicting 
photobacteriosis resistance is likely due to non-additive gene in-
teractions. As the presence of dominance or epistasis might be more 
frequent than generally thought, it could be useful to implement para-
metric regression approaches as well as ML and ensemble methods on 
the same data set and to empirically evaluate the relative performance of 
each method. While such an “extended” strategy might be more 
time-consuming, it would ensure a better chance for high prediction 
performance. In the present study, running times for SVM training were 
approximately five days per data set, and 10 days for LB. Therefore, it 
might be reasonable to explore several options. On the other hand, 
running time depended on the number of features, and for the ensemble 
method it depended also by the number of estimators used, therefore 
one should decide which is the right balance between exhaustiveness 
and time-effectiveness of the analysis. 

Finally, neither Bayesian parametric regression methods nor ML 
classifiers were able to predict phenotypes across data sets. When one 
algorithm was trained on PAL16 and used to classify ASL18 samples or 
vice versa, classification performance was null (data not shown). The 
trait might appear the same, i.e. the same host species, the same path-
ogen, survival at day 10 post infection. However, animal age/size, 
infection dynamics, and genetic background were different, making 
accurate prediction across experiments quite unlikely. 
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