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Abstract. Shaft-hole pattern fits based on the Boundary Condition design crite-

rion allows a 100% acceptability rate, but they may be not economically conven-

ient. If the rejection rate needs to be statistically quantified and the pattern is itself 

the alignment feature, therefore promoted as datum feature (Intrinsic datum sys-

tem), there is no trivial solution to create a tolerance stack-up: a unique assembly 

function cannot be determined. The focus of this contribution is “2x” patterns: 

different methodologies to create tolerance stack-up assessing assemblability are 

discussed and verified through Monte Carlo simulation. An equation to transform 

the variability seen from the Intrinsic datum system to the one seen from an ex-

ternal arbitrary reference system is given. The mutual distance between any two 

elements of an “nx” pattern is discussed and the implication of multiplicity and 

datum system is highlighted. A case, derived from an industrial case study, will 

be discussed by comparing the result from the simulated manual and automated 

assembly. A path towards “nx” patterns generalization is also presented. 

Keywords: Tolerancing, Boundary Condition, Virtual Condition, Tolerance 

Analysis, Rejection Rate. 

1 Introduction 

Shaft-hole pattern fits are widely used in mechanical assemblies. They can be used for 

many different purposes such as bolting of plates or flanges, accurate alignment with 

dowel pins, etc. The Boundary Condition design criterion is a simple tool, used in the 

design phase, for assigning the tolerance zones that satisfy the worst-case, therefore 

allowing a 100% acceptability rate; the method is described in appendix B “Formulas 

for positional tolerancing” of ASME Y14.5-2018 [1]. Throughout this contribution, the 

Boundary Condition is given by the collective effect of the Feature of Size (FoS) at its 
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Maximum Material Size (MMS) and the location tolerance; its value shall be used to 

determine clearance between parts and/or to determine gage sizes [1]. 

The Worst Case is unlikely to occur if the Cp is equal to or greater than one. There-

fore, tolerance allocation based on the statistical approach may be convenient from an 

economical point of view. Another reason to deviate from the Boundary Condition de-

sign criterion is that using the Worst Case approach a certain clearance is very likely to 

be present. Wobbling and/or vibrations may occur during operations, therefore decreas-

ing the perceived quality by the customer [2]. For these reasons, it may be required to 

choose a tighter nominal fit regardless of location and size tolerances. 

In all these cases, the result is a fit that does not comply with the Boundary Condition 

design criterion, implying a certain amount of scraps: the acceptability rate, or other 

metrics, must therefore be statistically quantified.  

When the Maximum Material Requirement (MMR) or Least Material Requirement 

(LMR) [3–5] modifier is used in the geometric specification of the pattern, the possible 

establishment of a relationship between location and size tolerances for each FoS adds 

further complexity but gives, as an advantage, the reduction of non-conformal, but still 

functional, parts [6].  

When a pattern of fits is located with reference to an External datum system (see 

Fig. 1.a), that functionally guarantees the alignment of the mating parts, the assembly 

equation is trivial and a tolerance stack-up analysis to compute the statistical metrics 

for each fit of the pattern can be performed. Indeed, each fit is independent of one an-

other. Fischer [7] presents a simple mono-dimensional model to perform a tolerance 

stack-up that can be used also in case of material requirements (MMR or LMR). Com-

mercial CAT (Computer Aided Tolerancing) software, e.g., CETOL 6σ™, 3DCS™, 

etc, can be used when the material requirement is applied to a FoS. 

However, when the pattern is the datum feature, that is when the pattern is itself the 

alignment geometry (see Fig. 1.b), each feature is located with respect to the best fit of 

the pattern, which can be considered as the centroid of the actual pattern.  Therefore, 

the actual contacts depend on the actual geometry of both mating parts. Consequently, 

it is not possible to know in advance in which of the single fits the contact will occur. 

Multiple assembly configurations are possible, and different assembly functions should 

be studied. The creation of a tolerance stack-up and the quantification of statistical met-

rics is not trivial since a unique, explicit, or implicit, assembly function is not definable.  

Scholz [8], discusses the riveting problem where two holes need to match, and a pin 

needs to enter both holes simultaneously (floating fastener). By assuming negligible 

hole and pin size variability, and true position part alignment, he shows that the position 

mismatch increases on the order of √log(𝑛). Considering “true alignment” in fact co-

incide with adopting an external datum system. Scholz states that the relative adjust-

ment between the parts, that arise when the “best alignment” is considered, adds “de-

pendency complications”. 

1.1 Aim of the paper 

The present contribution focuses primarily on the “2x” pattern, assessing different pos-

sible methodologies that can be applied to create a tolerance analysis when the pattern 
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of FoS is itself the alignment feature (i.e., datum feature). The differences and implica-

tions of the two different datum systems will be discussed and a general procedure to 

express the variability seen from the centroid in an external arbitrary cartesian reference 

frame will be presented. 

An analytical procedure to estimate the rejection rate, based on Root Sum of Squares 

(RSS) tolerance analysis, will be developed and presented. The procedure will be com-

pared to Monte Carlo Simulation. A path towards generalization to “𝑛x” pattern will 

also be discussed. 

Finally, a case derived from an actual industrial study case will be presented and 

discussed: a pattern of two shaft-hole fits. The holes are punched into sheet metal; the 

shafts protrude from a plastic injection moulded part. In the assembly, the alignment is 

given by the fit itself. Two configurations will be studied: one assuming a manual as-

sembly (Intrinsic datum), the second considering an automated assembly, and therefore 

the location tolerances given by the robotic arm (External datum).  

It is noteworthy to highlight that the proposed method is relevant in the (functional) 

design phase: it gives the designer the possibility to simulate the impact of his design 

intent regardless of subsequent manufacturing decisions.  

2 Materials and methods 

2.1 The updated linear stack-up model 

The model presented by Fischer [7], implemented in Excel, is used as a starting point 

for tolerance stack-ups. Several add-ons have been implemented to the model to in-

crease efficiency and flexibility; an integrated graphical representation of the result has 

also been developed. The updated worksheet internally computes a new nominal value 

and symmetric tolerance limits when asymmetric limits are assigned. It also allows to 

explicitly assign, in each row, the coverage factor 𝑘, used to convert the tolerance limit 

in terms of standard deviation. 

The worksheet has been modified to integrate the possibility to set the sensitivity 

coefficient (|𝑠|) using an adaptation of the formulas described by Cox [9, 10]. 

The output mean and variance are found with the following equations: 

  μOUT = ∑ |si|
n
i=1 ⋅ μi  (1) 

 σOUT
2 = ∑ (|si|)

2n
i=1 ⋅ σi

2  (2) 

It must be noted that for the computation of the mean of the output (μOUT), each input 

mean (μi) should be used with their positive or negative value according to the conven-

tion found in [7], allowing considering the absolute value of the sensitivity. 

Once the output mean and variance is known, the rejection rate can be easily found by 

integrating the Gaussian probability density function: 

r = ∫
1

√2πσOUT
2

LSL

−∞
exp {−0.5

(𝑥−μOUT)2

σOUT
2 } ∂𝑥 + ∫

1

√2πσOUT
2

+∞

𝑈𝑆𝐿
exp {−0.5

(𝑥−μOUT)2

σOUT
2 } ∂𝑥 (3) 

Where 𝐿𝑆𝐿 and 𝑈𝑆𝐿 are the lower and upper specification limits respectively. 
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2.2 General Hypothesis 

The general hypotheses that are used throughout the entire work are the following: 

• 𝑡𝑜𝑙pos refers to the location tolerance: the associated bilateral tolerance is half its 

value (±𝑡𝑜𝑙pos/2). 

• The coverage factor k is assumed equal to 3 for all input variables, i.e., 𝜎 =
𝑡𝑜𝑙

3
 . 

• The location variability is known from the datum system used in the specification. 

• All the sizes are non-correlated. 

• Feature locations are non-correlated if seen from an External datum system; corre-

lated if seen from the Intrinsic datum system. 

3 External vs Intrinsic datum system 

When the pattern of FoS is located with reference to an external, and independent, com-

pletely defined, datum system, see Fig. 1.a, regardless of the multiplicity, each element 

is not correlated to the others. As such the actual location of each element doesn’t imply 

any limitation in the position of the others: the covariance is null and the variance is the 

same for each element. 

 

Fig. 1. Different geometric specifications for a spacer with two holes: a) External Datum System; 

b) Intrinsic Datum System. 

In case of a pattern with multiple features, considering the 𝑖-𝑡ℎ and the 𝑗-𝑡ℎ  elements, 

the mutual distance variance (𝜎𝐿
2) can be expressed as follow. 

 𝜎𝐿
2 = var(𝐿) = var(𝑥𝑗 − 𝑥𝑖) =  𝜎𝑗

2 + 𝜎𝑖
2 − 2𝜎𝑖𝑗 = 2𝜎2  (4) 

Regardless of pattern multiplicity, the actual mutual distance between any two axes 

(i.e., derived feature) of the fits, from a statistical point of view, can therefore be written 

as: 

 L = Lnom ± √2 ⋅
tolpos

2
  (5) 
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When the pattern is specified with the CZ indication and is promoted as a datum feature, 

see Fig. 1.b, the datum system origin can be assumed as the centroid of the pattern. In 

this reference system, the centroid is fixed, as such 𝑥𝐺 = 0 and 𝜎𝐺 = 0. 

For a “𝑛x” pattern the centroid variance can be expressed as follow: 

 𝜎𝐺
2 = 0 = ∑

𝜎𝑖
2

𝑛

𝑛
𝑖=1 +

2

𝑛
∑ 𝜎𝑖𝑗𝑖>𝑗   (6) 

From the last equation, assuming the same variance for all the pattern elements and the 

same covariance for each pair of elements, the covariance can be found: 

 𝜎𝑖𝑗 = −
1

𝑛−1
𝜎𝑖

2  (7) 

Using this result, the variance for the mutual distance of any pair of a “𝑛x” linear pattern 

can be found. 

 𝜎𝐿
2 = 2

𝑛

𝑛−1
𝜎𝑖

2  (8) 

It is noteworthy that for an infinite pattern the result coincides with the one found for 

an External datum system; this means that the covariance decreases when the number 

of elements increases. At the infinite limit there is no more correlation and dependency. 

The mutual distance between two fits located from the centroid can be written as: 

 𝐿 = 𝐿nom ± √2
𝑛

𝑛−1
⋅

𝑡𝑜𝑙pos

2
  (9) 

It can be noted that the use of the Intrinsic datum system has an impact on the vari-

ability of the mutual distance between two elements of the pattern. 

3.1 Datum system transformation 

To perform a Monte Carlo simulation when dealing with an Intrinsic datum system, 

because of the dependency between the reference system and the actual pattern situa-

tion, it is not possible to directly sample the location of the pattern. It is necessary to 

base the sampling on an independent reference system. 

If 𝜎 is the variability (expressed as standard deviation) seen from the centroid refer-

ence system and �̃� is the variability seen from any external fixed reference system, the 

following relation can be found. 

 
�̃�

𝜎
= √

𝑛

𝑛−1
  (10) 

To prove equation (10) a Monte Carlo simulation has been performed for a “2x” and 

a “3x” patterns. Given a fixed value for the standard deviation seen from the external 

reference system, 500’000 samples have been simulated. Per each sample, the pattern 

location from the centroid is computed and statistical metrics are found and compared 

to the one seen from the External datum system, see Table 1 and Table 2.  
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Table 1. Monte Carlo simulation results for 2x pattern. 

External Reference System  Intrinsic Reference System  
Comparison 

𝑋1 𝑋2  𝑥1 𝑥2  

�̅�1 0.000 �̅�2 80.000  �̅�1 -40.000 �̅�2 40.000  Theoretical √
𝑛

𝑛 − 1
 1.414 

�̃�1 0.067 �̃�2 0.067  𝜎1 0.047 𝜎2 0.047  Experimental 
σ̃

σ
 1.416 

Table 2. Monte Carlo simulation results for 3x pattern. 

External Reference System  Intrinsic Reference System  
Comparison 

𝑋1 𝑋2 𝑋3  𝑥1 𝑥2 𝑥3  

�̅�1 0.000 �̅�2 80.000 �̅�3 160.000  �̅�1 -80.000 �̅�2 0.000 �̅�3 80.000  Theoretical √
𝑛

𝑛 − 1
 1.225 

�̃�1 0.067 �̃�2 0.067 �̃�3 0.067  𝜎1 0.054 𝜎2 0.054 𝜎3 0.054  Experimental 
σ̃

σ
 1.225 

 

The result of the simulation confirms the transformation formula, the error is well 

below 1% in both cases. Skewness and Kurtosis, not displayed, both confirm that in 

both cases the distribution seen from the centroid tends to normality as expected. 

4 2x Patterns stack-up 

In this section different methodologies to create a tolerance stack up when the reference 

system is based on the centroid are presented. The geometric specification for the shaft 

can be seen in Fig. 2, the specification for the holes in Fig. 1.b. The Boundary Condition 

for holes is 9.9 − 0.5 = 9.4 mm, while for shafts is 10 + 1 = 11 mm, therefore no 

100% fit is allowed, and the resulting rejection rate must be estimated. 

 

Fig. 2. Geometric specification for a two shafts cap 

4.1 Stack-up by cases 

For a “2x” pattern, one element can be considered as master and the gap can be 

evaluated on the second one. In this case, two different assembly equations can be 

found, and for each one, a unilateral gap can be analysed, see Fig. 3. 
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Fig. 3. Stack-up scheme 

With the first case, it is possible to compute the rejection rate for overshoot, the 

second case gives the rejection rate for undershoot. The overall rejection rate is the sum 

of the two. 

 

 

Fig. 4. External and Internal gap distribution and rejection rate, stack-up by cases 

A generalized gap, able to consider both internal and external gaps simultaneously, 

can be defined by applying a dummy upper limit equal to twice the mean gap, the re-

jection rate and other statistical metrics can be directly found in the worksheet, see Fig. 

5.  

 

Fig. 5. Generalized Gap distribution and Rejection Rate, stack-up by cases 

This method, generalized gap excluded, is a straightforward application of the model 

as described by Fischer [7] and, although consistent, does not use a rigorous definition 

of the datum system. In sections 4.2, 4.3, and 4.4 alternative methods, tested by the 

Authors, are proposed. 
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4.2 Symmetric stack-up 

Considering that the pattern is symmetric with respect to the datum system, the toler-

ance stack-up can be centered, considering the datum systems of the mating parts 

aligned. Consequently, one single fit can be studied. Two distinct unilateral gaps can 

be defined, see Fig. 6.a). 

 

Fig. 6. Stack-up scheme for all symmetric cases: a) Internal and external gaps for the symmetric 

stack-up; b) Elements use in the symmetric adjusted stack-up. 

As for the previous case, a generalized gap can be defined and statistical metrics 

computed, see Fig. 7. 

 

Fig. 7. Generalized Gap distribution and Rejection Rate, symmetric stack-up 

The rejection rate is higher than the one found with the previous method. In this case, 

the true position alignment is considered and the size of the two FoS are correlated. 

4.3 Symmetric adjusted stack up 

To overcome the limitation highlighted in 4.2, an adjustment to the model can be im-

plemented. Instead of studying only half of the pattern, the whole pattern is considered. 

The distance from the datum system of the second FoS is correlated to the first one, 

consequently, it cannot be added: the half distance must be duplicated instead, using a 

sensitivity of 2. Four gaps are now to be considered, but two by two are symmetrical. 

By considering the gaps given by the difference 𝐿max − 𝑙max (Sum of the external gaps) 
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e 𝑑min − 𝐷min (Sum of the internal gaps), it is possible to study, as for the previous 

cases, two unilateral gaps, see Fig. 6.b. 

A generalized gap can also be defined by adding a dummy upper limit as in the 

previous cases, see Fig. 8. 

 

Fig. 8. Generalized Gap distribution and Rejection Rate, symmetric adjusted stack-up 

In this case, the rejection rate is equal to the one found with the first method: it can 

represent the non-linearities due to the contact points. Moreover, since it starts from the 

datum system, the material condition can be added. 

4.4 Symmetric optimized stack up 

The model as described can be further optimized since the TED (Theoretically Exact 

Dimension, i.e., Nominal dimension) contribution can be neglected, it does not give 

any contribution to the gap, and the FoS contribution can be added once by using a 

sensitivity equal to 1 and scaling the tolerance of a factor 1 √2⁄  that adjust the contri-

bution to count the independence between the two-element sizes. However, this does 

not allow considering the material conditions. 

4.5 Monte Carlo Verification 

To verify the result of the proposed method a Monte Carlo simulation is used. The 

standard deviation associated to the localization of the FoS is “corrected” with the re-

lation given by equation (10), a total number of 500’000 combinations for the eight 

variables are initiated and both the external and internal gaps are calculated. If both 

gaps are positive the assembly is accepted. 

The variability seen from the centroid and its normality is checked. 

Over twenty re-computation of the simulation, the average rejection rate is 20.15% 

with a standard deviation of 0.06% against an analytical value of 20.16%. 

The analytical model is therefore considered verified. 
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5 Path towards generalization 

To generalize the proposed method to a “𝑛x” linear pattern it is first possible to de-

fine 𝑛 − 1 independent pairs of FoS in the pattern. 

For each independent pair, the method can be applied considering the location vari-

ability seen from the centroid of the pair that can be found equal to half of the variability 

of the mutual distance. The rejection rate (𝑟𝑖) for any pair can be determined, and the 

probability that the assembly is successful (𝑃 = 𝑃(𝑖) = 1 − 𝑟𝑖) as well. If each pair is 

considered stochastically independent 𝑃(𝑗|𝑖) = 𝑃(𝑗) ∀ 𝑗, 𝑖, the probability that both the 

𝑗-th and the 𝑖-th pairs can be assembled is 𝑃(𝑗 ∩ 𝑖) = 𝑃(𝑗)𝑃(𝑖) = 𝑃2. 

It can be easily derived that for a “𝑛x” pattern the probability to assemble the pattern, 

according to the given hypothesis, is 𝑃𝑛 = 𝑃𝑛−1. The rejection rate accordingly be-

comes 𝑟𝑛 = 1 − [1 − 𝑟]𝑛−1. 

Through Monte Carlo simulation, this equation was not verified: the probability of 

assembling a further pair of the pattern is less than the previous ones since the relative 

adjustment between the mating FoS depends on the actual situation of the previous 

pairs. 

A more general equation for the rejection rate is proposed: 

 𝑟𝑛 = 1 − [1 − 𝛽 ∙ 𝑟]𝑛−1  (11) 

Where 𝛽 ≥ 1 is a coefficient that needs further investigation to determine which 

parameters it depends on. 

The formalization of the method for a “𝑛x” pattern may be used also for rectangular 

and circular patterns. In the first case, a rectangular pattern (p x q = n) may be decom-

posed into two “𝑛x” patterns along the two principal directions. A “𝑛x” circular pattern 

may be considered as a linear “𝑛x” pattern if a curvilinear coordinate is used. 

6 The case study 

The geometric specification for the case study, derived from an actual industrial case, 

can be seen in Fig. 9. The dimensions and tolerances have been modified ensuring the 

same general proportions. 

Using the method proposed in section 4.3, the estimated rejection rate, under “best 

alignment” (manual assembly) is 24.16%. 

To simulate the automated assembly, first, the model presented in section 4.2 should 

be used to exclude the possible adjustment between parts during assembly. As second, 

two additional terms should be added, the first on the sheet metal part to describe the 

variability between the centroid of the pattern and the alignment features used by the 

robotic arm (not in the specification), the second on the cap side to describe the robotic 

arm precision. 
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Fig. 9. Geometric specification for the case study 

In the stack-up, the first term is assumed ±0.3mm, the second one ±0.1mm. 

The estimated rejection rate now becomes 32.72%. The difference (8.56%) stands 

for a fraction of parts that cannot be assembled by the specific assembly process that 

has been chosen.  

This value may be lowered by changing the automated assembly process considering 

its associated costs.  

It is noteworthy to highlight that the automated assembly adds another source of 

uncertainty to the stack-up. The functional specification for pattern fits should describe 

the assemblability as a necessary requirement for the mating parts. As a result of the 

case study, the assemblability of the pattern fit depends on the actual assembly process. 

For this reason, it is important to distinguish functional and manufacturing specifica-

tions: the latter should consider each step of the production (assembly included) and 

eventually tighten the tolerance values. The manufacturing specification should be used 

to tune the process since it transforms the functional specification assigning tighter lim-

its based on the whole manufacturing chain; the functional specification still represents 

the non-negotiable boundary that when exceeded does not guarantee functionality. 

7 Conclusions 

The aim of this contribution was to define a method to assess the rejection rate for a 

pattern of fits not compliant with the Boundary Condition design criterion with a par-

ticular focus on the case in which the pattern is itself the alignment feature. The 2x case 

was deeply investigated and a method based on RSS was proposed and verified through 

a Monte Carlo simulation. 

If an Intrinsic datum system is used, dependency among the locations of the features 

arises, equation (7) can be used to find the statistical covariance. 

Equation (10) has been presented and verified to perform Monte Carlo simulation 

when the Intrinsic datum system is used in the pattern specification. 



12 

 

 

The use of a dummy upper limit to study a single statistical bell for the two gaps that 

a fit create has been presented and the result was verified through Monte Carlo simula-

tion. 

A case, derived from an industrial study case, was presented and resolved: it was 

possible to simulate the difference between by hand and automated assembly. 

Equation (11) may represent the analytical generalization to a “𝑛x” linear pattern but 

further investigations are needed to fully define the β parameter; a generalization for a 

rectangular pattern should also be investigated.  

The analytical definition of a pattern fit may be used to define a new kind of Kine-

matic constrain to be used in stack-up analyses. The current practice consists in defining 

a primary and secondary fit to define the kinematic constrain between mating parts. 

It can also be used for formal computation of “nx” dowel pins where more than two 

pins with greater clearance behave as two tighter pins. 
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