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Abstract—An approach based on Artificial Neural Networks
(ANNs) for the average modeling non-linearities in power elec-
tronic converters is explored in this paper. The aim is to analyze
the effectiveness of non-linear autoregressive exogenous NARX-
ANN to realize an average black-box dynamic model of dc-dc
converters that includes converter non-linearities in time and
frequency domains within the same framework. The effectiveness
of the proposed solution is evaluated by means of simulation
and experimental results on a boost converter as test-case.
The validity of the model is verified by comparing the time
responses and transfer functions at different operating points,
focusing on the non-linearities caused by the coexistence between
the discontinuous conduction mode (DCM) and the continuous
conduction mode (CCM) in the same model.

Index Terms—Artificial Neural Network (ANN), modeling
power converter, discontinuous conduction mode (DCM), con-
tinuous conduction mode (CCM)

I. INTRODUCTION

Recently, broad interest is growing in the application of
artificial intelligence (AI) in numerous scientific and industrial
fields. Power electronic conversion circuits, and powerful dig-
ital controllers, present many compelling scenarios in which
AI methods may unleash unprecedented performances, new
features, and potential breakthrough applications [1].

An electronic power system, such as a smartgrid, commonly
comprises a large number of electronic power converters
(EPCs) from different manufacturers. Hence, owing to their
confidentiality, a system designer has no access to detailed data
about the internal structure of the converters, weakening the
stability assessment and critical fault responce of the whole
system. Therefore, conventional structural models based on
knowledge of power converter parameters may not be used
[2]. To overcomes these issues, it is necessary to estimate the
static and dynamic performance of the EPC either by directly
identifying its parameters or by determining an equivalent
structure that can emulates its behavior [3].

In literature, several approaches are available for power
converters modeling [4]. White-box models are derived by
applying first principles of physics, they accurately explain
the architecture of the system and provide a clear physical
interpretation of it. Switching models fall within this category.
Grey-box methods, however, are used when only a part of
the system architecture is known, for example the reduced-
order average models. These two methods have a common

drawback, they require some prior knowledge about the system
that is not always available.

Black-box modeling are model-free approaches that can
potentially overcome these limits. Black-box model param-
eters have no physical meaning, they are only a means of
matching input-output relationships. Input-output experiments
can therefore be used as the principal source of data for these
type of data-driven approach.

In the literature, black-box analytical methods are classified
according to the type of response that they are able to
reproduce. The structure of these methods is divided into three
categories: linear, static non-linear and dynamic non-linear [5].
In the linear approach, models are built to replicate the small-
signal behavior of the EPC at a specific operating point [6].

In the static non-linear structures the Wiener-Hammerstein
approach is the most common method and it is the most
widely used. In this approach, the dynamic behavior of the
system is described using a passive network (i.e., consisting
of passive components like capacitors, inductors or resistors),
while the non-linear behavior is described using voltage or
current sources controlled by non-linear functions [7], [8].
The main drawback is the linear dependency between the
complexity of the system to be modeled (e.g., the number
of poles and zeros) and the network modeling the non-linear
behavior.

In dynamic non-linear methods the polytopic functions
[5] are widely used. This approach describes the behavior
of non-linear systems by obtaining small-signal models at
different operating points and integrating them into a non-
linear structure using weighting functions [9]. In order to
achieve an accurate model of the EPC even in non-linearity,
it is necessary to define a large number of transfer functions.
However, this could lead to an increase in the complexity of
the obtained model.

Some approaches based on the use of AI are already present
in literature. In [10] a NARX-ANN is used for modeling a
synchronous boost converter in CCM without experimental
validation. A synchronous boost converter that operates in
CCM is modeled in [11] and [12] in time domain only, while
the frequency response accuracy is not addressed. An approach
for modeling both the DCM and CCM operating modes of a
converter using long short-term memory (LSTM) networks is
presented in [13], however the frequency response matching
is not investigated. In addition the LSTM-ANN, compared to
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Fig. 1: Closed-loop configurations of NARX-ANN model.

the NARX-ANN, has a more complex structure that brings a
higher number of parameters [14].

This paper is meant to be a preliminary investigation of
ANN-based modeling applied to EPC characterization. To
this end, the average small-signal model of a boost converter
is proposed using NARX-ANN able to precisely replicate
the converter dynamic behavior under different operating
points. NARX-ANN to model CCM operation has already
been applied with good results, while similar results are not
reported considering DCM operation. Moreover, this article
aims to demonstrate how it is possible to use NARX-ANN
not exclusively to replicate the behavior in time domain but
also to determine the small-signal transfer functions in DCM
and CCM.

Section II provides several theoretical concepts about the
NARX-ANNs and the reasons why they are used to achieve
the aim describes in this paper. Section III outlines the boost
converter used as test-case and shows the performance of the
NARX-ANN using simulation data. Furthermore, information
about the architecture of the ANN and indications on how the
dataset is designed are provided. While, Section IV describes
the experimental setup used for training the NARX-ANN and
verifies the effectiveness of the proposed solution in time and
frequency domains. Conclusions are reported in section VI.

II. BASICS OF NARX-ANN

To take into account the dynamic behavior of an EPC, an
ANN with a memory effect should be considered by anal-
ogy with a state-space representation of the system. Among
different types of recursive neural networks (RNNs) used for
time series prediction [15], a NARX-ANN has been adopted in
this work. NARX-ANN models can be used to model a wide
variety of non-linear dynamic systems and they have been
applied in various applications including time-series modeling
[16]. Unlike other types of RNN, such as LSTM-ANN, in
which the memory effect is implemented directly inside the
neurons (i.e., the atomic computing units of ANN), the NARX-
ANN are composed by two blocks as depicted in Fig. 1. A
multilayer perceptron artificial neural network (MLP-ANN) is
used to map the correlations between inputs and outputs, while
an external delayed feedback is used to delay outputs and pass
them as input to the ANN. The combination of the two blocks
replicates the meaning of a state function.

ANN-NARX models have two different architectures,
namely, the open-loop and the closed-loop architecture

(Fig. 1), also known as series-parallel and parallel architecture,
respectively.

The system equation describing the behavior of the NARX-
ANN in open-loop operation is

ŷ(k) = F [u(k), ...,u(k − n),y(k − 1), ...,y(k −m) ] (1)

where ŷ(k) is the predicted vector of the outputs at the k-
th instant, u(·) and y(·) are the input and output vectors of
the system respectively, and F (·) is the non-linear function
of MLP-ANN. The observation window of input and output
vectors is defined by n and m values that represent the
numbers of introduced delays in the NARX-ANN structure.
The system equation describing the behavior of the NARX-
ANN in closed-loop operation is

ŷ(k) = F [u(k), ...,u(k − n), ŷ(k − 1), ..., ŷ(k −m) ] (2)

where the predicted output ŷ(k) is a function of the input
vector u(·) and its own predicted outputs ŷ ignoring the
previous outputs of the system y(·).

The non-linear mapping function F (·) is initially unknown
and it is approximated during the training process.

In the proposed approach herein, the series-parallel archi-
tecture is used during the training processes, and the error
obtained from the comparison between the true value and
that estimated one is used to update the network weights.
Once the ANN is trained, it is converted into the closed-loop
architecture to allow multi-step ahead prediction.

The basic elements in an MLP-ANN are i) number of layers,
ii) number of neurons in each layer, iii) activation function of
each layer, iv) algorithm used during training process [17].

In MLP-ANNs there are at least three layers: the input,
the output and the shallow layer. The internal layers between
input and output are denoted as hidden layers. Commonly, the
higher the problem’s complexity (i.e., the complexity of the
function to be estimated), the higher the number of neurons
and hidden layers required. Unfortunately, it is not possible
to theoretically determine a-priori how many hidden layers or
neurons are needed for a given problem.

The output of a neuron is defined as a linear combination of
the inputs, and the resulting output is passed to a non-linear
function called activation function. The ability of an ANN
to be used for the analysis of non-linear problems is given
by the use of activation functions that are not linear. Among
different types of activation functions [18], in this work the
Sigmoid activation function is used for the hidden layers while
the ReLU one for the output layer.

III. TEST CASE: BOOST CONVERTER

To demonstrate the effectiveness of the NARX-ANN in
modeling non-linearities of an EPC, a boost converter is
considered as case study. DCM and CCM operations are
characterized in such a converter by two transfer functions
with different poles and zeroes, which is evidence of the non-
linear nature of the converter operation [19].

The theoretical model of the boost converter is shown in
Fig. 2 and its parameters are reported in Tab. I.
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Fig. 2: Model of the boost converter.

TABLE I: Boost converter parameters.

Parameter Symbol Value

Switching frequency fsw 20 kHz
Input Voltage Vin 150 V
Inductance L 340 µH
Capacitance C 5.7 µF
Inductance Resistance rL 500 mΩ
Capacitance Resistance rS 100 mΩ
Switching Resistance rS 50 mΩ
Duty Cycle δ 10-30 %
Output Current io 0.8-3 A

A. Dataset Definition

To address the problem analyzed in this paper, the dataset
characteristics must be designed to include information on
both static and dynamic operations at different operating
conditions.

For linear system, the AC sweep test is the typical and
most applied system identification method in power elec-
tronics. For example, a method to measure the loop-gain
frequency response experimentally through an AC sweep
test is presented in [20]. In [21], the small-signal frequency
response is obtained by applying Fourier analysis on the
impulse response using a pseudo-random binary signal as
approximation of white noise. Using this method, the required
time for characterization is drastically reduced in comparison
to the conventional AC sweep. While, [22] proposed a multi-
sine excitation in combination with Fourier analysis for fast
characterization of the control-to-output frequency response.

Nevertheless, EPCs are non-linear systems as the relation-
ships between input and output variables, in general, depend
on the operating point. When the model is aimed to describe
the converter over its whole operating range, it is necessary
to consider that small-signal analysis is not sufficient since
it describes the behavior only locally. Therefore, previous
approaches are in general valid for linear or linearised systems
at a specific operating point but not for large-signal analysis.

Consequently, the dataset must be constructed in such a
way that the ANN can model not only the steady-state and
the small-signal behavior at a specific operating point but
also the dynamic response during transitions between different
operating points, even changing the operating mode.

In order to fulfil the above specifications, the input signals
are randomly chosen over the entire operating range. The
system is excited by giving step waves as input signals to
explore the entire frequency spectrum.

B. Design of the NARX-ANN

Two independently variable model are used as inputs: the
duty cycle δ and the output current io. While the output
variables are the inductor current iL and the output voltage
vo.

The duty cycle is used as control variable and, in the small-
signal analysis, it allows to plot the transfer function between
the duty cycle and the output voltage Gδ,vo . The output current
is used as an input since it permits to verify the effectiveness
of the NARX model during rapid load transients. The inputs
and the outputs of the model are noted as follows:

u(k) =

[
δ(k)
io(k)

]
ŷ(k) =

[
îL(k)
v̂o(k)

]
(3)

A first evaluation of the validity of the proposed solution is
carried out using simulative results. The model of the boost
converter, shown in Fig. 2, is implemented in the Matlab&
Simulink environment and the dataset is collected.

Since the paper aims to develop the average model of a
boost converter, the waveforms are passed to a moving average
filter with a cut-off frequency that depends on the power
converter bandwidth. In this example, a sampling frequency
of 10 kHz is chosen.

The number of operating points uses to train the network
depends on the problem at hand and the accuracy required.
In this work, a total amount of 75,000 operating conditions
(in terms of δ and io) are used for the dataset, divided into
training (80 %), validation (10%), and testing (10%). To cover
the whole workspace during the training phase, the samples
of the input signals are randomly chosen over the whole
operating range. Each operating point is applied for a fixed
time depending on the dynamics of the system. In this work,
the δ and io operating points are changed at the same time
instant and are applied for 2ms.

The complexity of an NARX-ANN, in addition to the
number of layers and neurons, in the case of NARX-ANN, is
also given by the number of delays associated with the inputs
and outputs. Since the ANN is used to replicate the average
model of a converter, the minimum number of delays required
by the network can be set a-priori. In this test-case the input
signals are delayed of one step while, the output signals, are
two steps delayed. Additional tests are carried out to verify
the operation of the network with a greater number of delays,
but no significant improvements are recorded.

The inputs of the NARX-ANN are:

u(k) = [δ(k), io(k), δ(k − 1), io(k − 1), iL(k − 1),
vo(k − 1), iL(k − 2), vo(k − 2)]

(4)

and they are normalised between 0 and 1.
While the outputs are:

y(k) = [iL(k), vo(k)] (5)

Since all the inputs are normalised, the performance of
the model does not depend on the range of input variables.
Therefore, the same approach could be used to model an



TABLE II: NARX-ANN hyperparameters of simulation test.

Hyperparameter Value Hyperparameter Value

Training size 60,000 nr◦ of parameters 1527
Validation size 12,500 Optimizer Adam
Test size 12,500 Loss mse
nr◦ of Neurons in HL1 40 Learning rate 0.001
nr◦ of Neurons in HL2 20 Epochs 1598
nr◦ of Neurons in HL3 15 Training time 5400 s

15

20

25

30

35

δ
(%

)

0.8

0.9

1

1.1

i o
(A

)

1

1.5

2

2.5

i L
(A

)

Model
ANN

0 10 20 30
200

220

240

260

280

Time (ms)

v o
(V

)

Model
ANN

(a) DCM operating mode

10

15

20

25

30

δ
(%

)

2
2.2
2.4
2.6
2.8
3

i o
(A

)

0

2

4

6

i L
(A

)

Model
ANN

0 5 10 15 20
140

160

180

200

Time (ms)

v o
(V

)

Model
ANN

(b) CCM operating mode

Fig. 3: Comparison between model outputs and those predicted
by the neural network. In (a-b) the iL and vo waveforms in
DCM while in (c-d) in CCM.

equivalent boost converter with an higher input and output
values.

The NARX-ANN is developed using the library Tensorflow
2.8 on Python and the training phase is carried out in a
NVIDIA GeForce RTX 3070 Ti.

The hyperparameters of the NARX-ANN (Tab. II) are cho-
sen using a manual research algorithm and they are a trade-
off between accuracy and the amount of time required for the
training.

C. Simulation results

The NARX-ANN is first evaluated in the time domain.
To visualize the performance of the model, the RMSE is
computed on the test-set obtaining an error of 23mA for the
current and 271mV for the voltage.
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Fig. 4: Transition of the iL and vo between two operating point
in CCM operation.

Furthermore, in order to demonstrate how the ANN can
estimate the behavior of the boost converter in both DCM and
CCM operation, a small set of operating points in DCM and
CCM are chosen from the test-set and the performances are
evaluated in Fig. 3(a) for DCM operation and in Fig. 3(b) for
CCM operation.

As depicted in Fig. 3, ANN is able to accurately estimate
both the inductor current iL and the output voltage vo in both
converter operating modes, even during transition between two
working points (Fig. 4).

To show how a NARX-ANN model can be used for small-
signal analysis of a EPC, a transfer function for each operating
mode is shown in Fig. 5. The transfer functions are obtained
over a total of 20 points between 3Hz and the Nyquist
frequency of 5 kHz (dotted lines in Fig. 5).

In general, the small-signal analysis obtained by NARX-
ANN show good correlation with the model-derived analysis
with an error that increases as the Nyquist frequency is
approached.

NARX-ANN also presents similar results for other working
points that have not been reported in Fig. 5.

IV. EXPERIMENTAL SETUP

To verify the performance of the proposed approach using
real data, the prototype of Fig. 6 is used. The converter has the
same parameters of the simulation one and they are reported
in Tab. I.

The output current source in Fig. 2 is replaced with a
current-controlled load. It consists of a half-bridge converter
switching at 50 kHz with an active load in a constant-voltage
mode connected in parallel Vl equals to 380V. The output
current reference io is achieved via a current control loop
consisting of a proportional-integral regulator. In this case
each operating point is applied for 10ms in order to allow
the regulator to adjust the output current.

Both power converters are implemented in an in-house rapid
prototyping system using Imperix modules.

As depicted in Fig. 6(a), four variables are acquired using
the CompactRio FPGA environment provided by National In-
strument with a sampling frequency of 10 kHz. The sampling
variables are filtered inside the in-house rapid prototyping
system using a finite impulse response filter with a cut-off
frequency equal to the sampling one.

The characteristics with which the experimental dataset is
acquired are the same as those used for the design of the
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Fig. 5: Comparison of frequency responses between simulation
model and ANN for different operating points. (a) DCM: Gδ,v0

with δ=30% and io=1 A (b) CCM: Gδ,iL with δ=20% and io=2
A. The black dotted lines denotes the Nyquist frequency.

simulative one. Therefore a total amount of 75,000 operating
conditions are acquired to cover the whole workspace.

The hyperparameters of the ANN are the same as those
used for the experimental part shown in Tab. II. In this case
the time required by the training phase is 8500 s for a number
of epochs equal to 3201. The time required is longer than in
simulation because each operating point is applied for a longer
period.

The final error on the experimental test-set is 74mA for the
current and 980mV for the voltage

V. EXPERIMENTAL RESULTS

This section shows how the model developed using NARX-
ANN can be used to predict the system response in DCM and
CCM, in time or frequency domains using experimental data.

In Fig. ?? the response of the NARX-ANN, trained with the
experimental dataset, is evaluated versus the true output of the
system. While Fig. 8 shows a zoom-in of Fig. ?? during the
change of working point for current il and voltage vo in CCM
operating mode.

As for the simulation tests, the comparison between the
model frequency response and the one obtained using the ANN
model is drawing e the transfer functions are plotted in Fig. 9).
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Fig. 6: In (a) the schematic of the boost converter and the
current-controlled current source and in (b) the experimental
setup.

Although there is more noise in the experimental measure-
ments, the same conclusions can be drawn as in the simulation
test.

VI. CONCLUSION

An approach based on the application of NARX-ANN for
modeling non-linearities in power converters is presented. In
addition, several considerations have been made regarding the
criteria with which the dataset is designed. The validity of
the proposed model is verified in both time and frequency
domains by using and experimental measurements carried out
considering a boost converter as test-case. The experimental
results shown good matching in time and frequency domains
for both the operating modes of the converter even during
the transition between different working points. The proposed
method is considered as a first step in black-box modeling of
converters non-linearities using AI techniques.
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