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Abstract

The Ordinary Least Squares (OLS) regression is the most common method for fitting the δ2H-

δ18O relationship. Recently, various studies compared the OLS regression with the Reduced Major 

Axis (RMA) and Major Axis (MA) regression for precipitation data. However, no studies have 

investigated so far the differences among the OLS, RMA and MA regressions for water types prone 

to evaporation, mixing, and redistribution processes. In this work, we quantified the differences in 

terms of slopes and intercepts computed by the OLS, RMA, and MA methods for rainfall, snow and 

ice, stream, spring, groundwater, and soil water, and investigated whether the magnitude of such 

differences is significant and dependent on the water type, the datasets statistics, geographical or 

climatic characteristics of the study catchments.

Our results show that the differences between the regression methods were largest for the isotopic 

data of some springs and some stream waters. Conversely, for rainfall, snow, ice, and melt waters 

datasets, all the differences were small and, particularly, smaller than their standard deviation. 

Slopes and intercepts computed using the different regression methods were statistically different 

for stream water (up to 70.4%, n=54), followed by groundwater, springs, and soil water. The results 

of this study indicate that a thorough analysis of the δ2H-δ18O relationship in isotope hydrology 

studies is recommended, as well as considering the measurement errors for both δ2H and δ18O, and 

the presence of outliers. In case of small measurement errors and no significant differences between 

the slopes, we suggest the application of the widely used OLS regression. Conversely, if the 

computed slopes are significantly different, we recommend investigating the possible reasons for 

such discrepancies and prefer the RMA over the MA approach, as the latter tends to be more 

sensitive to data with high leverage (i.e., data points with extreme δ18O values).

Keywords: stable water isotopes; Ordinary Least Squares regression; Major Axis regression; stream 

water; Global Meteoric Water Line; catchment.
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1. Introduction

The relationship between δ2H and δ18O values (the isotopic ratios, R, for 2H/1H and 18O/16O are 

expressed as δ notation, where ) of water samples is commonly defined by 𝛿 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
―1) × 1000

a simple linear regression. In hydrological studies, the Ordinary Least Squares (OLS) method is the 

most common statistical regression for fitting the δ2H-δ18O relationship (Dansgaard, 1964; Hughes 

and Crawford, 2012; Carr 2012; Crawford et al., 2014; Boschetti et al., 2019; Putman et al., 2019). 

Conventionally, around 60 years ago Craig (1961) determined for the first time the δ2H-δ18O 

relationship of meteoric water at the global scale, the so called Global Meteoric Water Line 

(GMWL). Local meteoric water lines (LMWL) can then be computed at the regional scale. LMWLs 

are used to characterise the vapour masses originating precipitation over a certain area (e.g., Peng 

et al., 2015; Xu et al, 2019; Zannoni et al., 2019), determine the origin of groundwater and its 

interaction with surface waters (e.g., Rozanski et al., 1993; Wassenaar et al., 2011; Tan et al., 2016), 

and evaluate hydroclimatic processes in isotope-enabled climate models (e.g., Putman et al., 2019).

In many scientific fields, the OLS regression is not considered a proper method to define a linear 

relationship because there are no measurement errors associated with the independent variable 

(Cantrell, 2008; Smith, 2009; Carr, 2012; Harper, 2014; Keles, 2018). Conversely, alternative 

regression methods, such as the Reduced Major Axis (RMA, also known as the line of organic 

correlation and the geometric mean regression) and the Major Axis (MA, also known as least normal 

squares and orthogonal regression), consider the presence of errors for the independent variable. In 

the RMA regression the area of the triangle formed by the line and the data point is minimised, 

whereas in the MA, the orthogonal (perpendicular) distance from the line to the data point is 

minimised (Fig. 1). The RMA regression is symmetric, i.e., a single line defines the bivariate 

relationship regardless of which variable is “x” and which is “y”, while the OLS regression is 

asymmetric, so that the slope and the resulting interpretation change when the variables assigned to 

“x” and “y” are reversed (Rollinson, 1993; Helsel and Hirsch, 2002; Smith, 2009; Carr, 2012). 
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Basically, the important difference between the OLS regression method and the RMA and MA 

regression methods is that the former minimizes the error only for the ”y” variable whereas the two 

latter minimize the errors both in the ”x” and in the ”y” direction (Helsel and Hirsch, 2002). This 

makes, in principle, RMA and MA approaches more suitable to interpolate isotopic data as the two 

isotopes are independent from each other.

RMA and MA have also been proposed by IAEA (1992) for water isotopic data, and recently 

these approaches have been applied to LMWLs (e.g., Sánchez-Murillo et al., 2015; Kaseke et al., 

2016; Hervé-Fernández et al., 2016; Vreča and Malenšek, 2016; Le Duy et al., 2018; Hollins et al., 

2018; Qu et al., 2018; Wang et al., 2019). Various studies in isotope hydrology proposed the RMA 

and MA regressions as statistical methods that could be applied when a relationship is being sought 

between two variables, which are related by underlying physical processes (Argiriou and Lykoudis, 

2006; Hughes and Crawford, 2012; Crawford et al., 2014; 2017). Argiriou and Lykoudis (2006) 

were among the ones to propose the RMA regression as an alternative method to define the LMWL 

in Greece. Hughes and Crawford (2012) and Crawford et al. (2014) tested for the first time the 

hypothesis that the three different regression methods (the OLS, RMA, and MA) applied to the δ2H-

δ18O relationship of precipitation give quite different slopes and intercepts. Crawford et al. (2014) 

concluded that the RMA and MA regressions produced larger slopes than the OLS method, with the 

largest differences being for precipitation datasets from oceanic islands, coastal and Mediterranean 

sites, whereas differences in slope and intercepts between the various methods were smaller for 

continental sites. In addition, the RMA regression produced slopes in between those determined by 

the OLS and MA regressions, with the smallest values of root mean squared errors, indicating that 

the RMA method is more suitable for the computation of LMWLs compared to the MA regression 

(Crawford et al., 2014). 

Obtaining reliable parameters for LMWLs as well as regression lines for isotopic data of other 

water types is particularly important for research studies focusing on groundwater recharge (e.g., 

Gonzalez-Trinidad et al., 2017; Oiro et al., 2018), evaluating the effect of evaporation processes on 
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surface waters (e.g., Florea et al., 2017; Sharma et al., 2017; Shi et al., 2019) or investigating source 

waters based on evaporation lines (e.g., Evaristo et al., 2015; Javaux et al., 2016; Benettin et al., 

2018). For example, the visual inspection of the overlap between groundwater isotopic data and 

LMWL allows to better understand groundwater recharge processes (Boschetti et al., 2019). 

Furthermore, evaporation processes are usually evaluated in terms of deviation of samples from the 

GMWL or the relative LMWLs (Sharma et al., 2017; Shi et al., 2019). Penna et al. (2014; 2017b) 

compared the slopes and intercepts (based on the OLS regression) of isotopic data for different water 

types (snowmelt, ice melt, winter snowpack, stream water and groundwater) to the LMWL and 

assessed climatic conditions and/or evaporation effects in a glacierized catchment and in a 

snowmelt-dominated catchment of the Italian Alps. Similarly, but in a different environment, Klaus 

et al. (2015) used the slope and intercepts of OLS regression lines to highlight the role of the riparian 

zone to control baseflow in low-relief, forested catchments.

Recently, Boschetti et al. (2019) defined a new LMWL for northern Chile, computed by another 

method, called the error-in-variables (EIV) approach. They compared the LMWL obtained by the 

EIV method with the ones computed by the OLS, RMA, and MA regressions (and their weighted 

versions). They concluded that the EIV regression, which considers the combined standard 

deviation of the δ18O and δ2H values, produced a LMWL with a slope similar to those obtained with 

the other approaches. However, the EIV approach was considered more suitable than the OLS 

regression, because the EIV method accounts for measurements errors in both δ2H and δ18O 

(Boschetti et al., 2019). 

Beyond the studies mentioned above, we are not aware of any research that applied OLS, RMA, 

and MA regression methods to isotopic data from different water types prone to evaporation, mixing 

and redistribution processes, analysing the factors potentially affecting the differences between the 

three methods. Therefore, in this work, we aim to:
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1) quantify the differences in slopes and intercepts in the δ2H-δ18O relationship computed by the 

OLS, RMA, and MA methods for various water types (i.e., snow, ice and melt waters, stream water, 

shallow groundwater, spring, and soil waters);

2) investigate whether the differences in slopes and intercepts computed through the three 

regression methods are significant and affected by water type, datasets statistics, geographical or 

climatic characteristics of the selected catchments;

3) provide recommendations about the regression method to be applied in isotope hydrology 

studies.

2. Materials and methods

2.1. Selected study sites in Italy and sampling of water sources

In this study, the OLS, RMA, and MA regressions were applied to isotopic data collected from 

different water sources in nine catchments in north-eastern Italy (Fig. 2; Table 1). We chose these 

study sites for their different drainage areas as well as climatic and hydrological characteristics. The 

main features of the catchments, along with details of the sampled water sources are presented in 

Table 1. The study areas can be divided into: i) large basins (Po River, and Adige River); ii) 

mesoscale and nested catchments (Posina River at two outlets and its Ressi Creek sub-catchment, 

Vermigliana River, and Saldur/Saldura River); iii) small catchments (Noce Bianco Creek, and Rio 

Vauz Creek). 

In some catchments (i.e., Posina, Rio Vauz, Noce Bianco, Saldur, and Vermigliana) the isotopic 

composition was measured for different water sources at multiple sampling sites during various 

hydrological conditions (dry, wet, melt, and non-melt periods). Selected data include the isotopic 

composition of rain water, snow, glacier ice, melt water (snowmelt and glacier melt were grouped 

together), surface (stream) water, spring water, groundwater, and soil water, collected between 2010 

and 2017 (Table 1; Fig. 3). Stream waters were sampled in all the nine catchments. Stream waters 

were sampled both manually and by automatic water samplers depending on the accessibility of the 
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sampling sites. Snapshot manual sampling campaigns were carried out in the Po River from 2012 

to 2017 (Marchina et al., 2015; Marchina et al., 2016; Marchina et al., 2017; Marchina et al., 2019) 

and in the Adige River in 2013-2017 (Natali et al., 2016; Chiogna et al., 2018). In this study, in 

order to compare the Po and Adige stream water data to data from the other catchments, we selected 

only samples collected multiple times in the Po River at Pontelagoscuro and in the Adige River at 

Andriano, Verona, and Boara Pisani (Table 1). Stream water samples were collected monthly in 

Posina, Ressi, and Vermigliana at various sampling sites (Chiogna et al., 2014; Penna et al., 2015), 

whereas generally stream water samples were retrieved monthly from May to October in the snow- 

or glacier-melt dominated high-elevation catchments (Rio Vauz, Saldur and Noce Bianco). 

Additional stream water samples were collected at sub-daily temporal resolution during rainfall 

events in Vermigliana (Cano-Paoli et al., 2019), Posina, Ressi (Penna et al., 2015) and Bridge Creek 

catchment (BCC), a Rio Vauz subcatchment (Penna et al., 2017b), and snow- or glacier-melt-

induced runoff events in Saldur (Engel et al., 2016), BCC (Penna et al., 2016) and Noce Bianco 

(Zuecco et al., 2019a). Bulk rain water samples were collected approximately monthly in Ressi, and 

monthly from May to October in high-elevation catchments (Rio Vauz, Saldur and Noce Bianco). 

Rain water was sampled by 5-l high-density polyethylene bottles, equipped with a funnel and a layer 

of mineral oil to prevent evaporation. Samples bottles were capped and moved to the laboratories, 

where bulk samples were transferred into 50-ml high-density polyethylene bottles. Spring water 

samples were manually collected monthly from May to October, in Saldur (four sites), Rio Vauz 

(two sites) and Noce Bianco (one site), or during a snapshot campaign in summer 2012 at 46 springs 

in a 36-km2 catchment comprising Noce Bianco (Carturan et al., 2016). Shallow groundwater was 

sampled in six piezometers monthly in Ressi (Penna et al., 2015), five piezometers monthly from 

May to October in BCC (Penna et al., 2016; Zuecco et al., 2019b), and monthly in one well in 

Vermigliana (Chiogna et al., 2014). Soil water was extracted by suction cups from two sites (one in 

the hillslope, and one in the riparian zone, sampled occasionally during wet conditions in summer) 

in BCC, and by suction cups (three sites, one in the riparian zone and two in the hillslope, sampled 
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monthly) and cryogenic vacuum distillation (two sites, one in the riparian zone and one in the 

hillslope, sampled monthly from May to October) at different depths (10, 30, 40 and 60 cm) in 

Ressi. 

All the water samples for isotopic analyses were collected in 50-100 ml high-density 

polyethylene bottles, sealed without head space, whereas soil samples for the cryogenic extraction 

were collected in 12-ml glass vials. Cryogenic vacuum distillation was performed at the Faculty of 

Science and Technology of the Free University of Bozen-Bolzano, using the cryogenic method 

developed by Koeniger et al. (2011). All the samples were stored at 4 °C until the isotopic analyses.

2.2. Isotopic analyses

The isotopic composition was determined for most of the samples by laser spectroscopes, 

following the procedures reported in Penna et al. (2010; 2012). All the samples were calibrated with 

standards relative to the Vienna Standard Mean Ocean Water. Samples from Rio Vauz, Posina, 

Noce Bianco, and Saldur were analysed by the liquid water isotope analyser (off-axis integrated 

cavity output spectroscopy method, model DLT-100, manufactured by Los Gatos Research, 

California, USA) at the Forest Hydrology Laboratory of the Dept. of Land, Environment, 

Agriculture and Forestry of the University of Padova. The average standard deviation of 2094 

samples was 0.5‰ for δ2H and 0.08‰ for δ18O (Penna et al., 2016). Soil water samples collected 

in Ressi and extracted by cryogenic vacuum distillation were analysed by the water isotope analyser 

(cavity ring-down spectroscopy method, model L2130-i, manufactured by Picarro Inc., California, 

USA) at the Faculty of Science and Technology of the Free University of Bozen-Bolzano. 

Analytical uncertainty of δ2H and δ18O measurements was lower than 1.0‰ and 0.20‰, 

respectively. Samples collected from Po and Adige rivers were analysed by the liquid water isotope 

analyser (cavity ring-down spectroscopy method, model 24-d, manufactured by Los Gatos 

Research, California, USA) at the Dept. of Physics and Earth Science of the University of Ferrara. 

The average standard deviation of 366 samples was 0.7‰ for δ2H and 0.14‰ for δ18O. Samples 
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collected in Vermigliana were analysed by two isotope ratio mass spectrometers depending on their 

availability (SIRA II, VG Isogas, Middlewich, UK, and Isoprime, Manchester, UK). Analytical 

uncertainty (one standard deviation of reproducibility) of δ2H and δ18O measurements was 2.0‰ 

and 0.20‰, respectively (Chiogna et al., 2014).

 

2.3. Selection of European river data from the GNIR database

In order to detect the possible effects of climatic and geographical characteristics on the 

regression parameters, the OLS, RMA, and MA regressions were also applied to the European river 

data available from the global database of riverine stable water isotopes (Global Network of Isotopes 

in Rivers; Halder et al., 2015). The GNIR database is an electronic repository of river water isotopic 

data associated with geographical, physical, and chemical parameters. The GNIR database is 

publicly accessible online through the web-based Water Isotope System for Data Analysis, 

Visualization and Electronic Retrieval (WISER) interface at https://nucleus.iaea.org/wiser. We 

selected only stream water data comprising both δ2H and δ18O and the main characteristics of the 

catchment (such as latitude, longitude, and elevation of the sampling sites). In addition, information 

not included in the GNIR database (i.e., mean annual precipitation, mean annual temperature, and 

catchment size) was retrieved from literature for the selected catchments (e.g., Pawellek et al., 2002; 

Rank et al., 2006; Miljević et al., 2008; Halder et al., 2013). In total, we retrieved isotopic data from 

34 European river sites (Table S1).  

2.4. The OLS, RMA, and MA regressions

We applied the OLS, RMA, and MA regressions to each water type in each catchment (study 

catchments and selected data from the GNIR database). To fit the OLS, RMA, and MA regressions 

to δ2H and δ18O data (expressed in ‰), we used the equations reported in Helsel and Hirsch (2002) 

and Crawford et al. (2014). In the equations reported below, x and y represent δ18O and δ2H, 

respectively, n is the sample size, and r is the Pearson correlation coefficient.

https://nucleus.iaea.org/wiser
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In the OLS regression, the sum of the squares of the vertical distances from the best fitted line to 

the sampling points is minimized (Fig. 1). Based on this minimization, slopeOLS depends on r, and 

the ratio between the standard deviation (sd) determined for the y and x variables, as follows:

 (1)𝑠𝑙𝑜𝑝𝑒𝑂𝐿𝑆 = 𝑟 ×
𝑠𝑑𝑦

𝑠𝑑𝑥

The RMA regression is based on the minimization of the sum of the areas of the right triangles 

built with the sampling points and the best fit straight line (Fig. 1). slopeRMA was determined as:

 (2)𝑠𝑙𝑜𝑝𝑒𝑅𝑀𝐴 =  𝑠𝑖𝑔𝑛[𝑟]
𝑠𝑑𝑦

𝑠𝑑𝑥

where  represents the algebraic sign of the Pearson correlation coefficient, r. 𝑠𝑖𝑔𝑛[𝑟]

Based on Equations 1 and 2, the relationship between slopeOLS and slopeRMA can be written as:

                                                           (3)𝑠𝑙𝑜𝑝𝑒𝑂𝐿𝑆 = 𝑟 × 𝑠𝑙𝑜𝑝𝑒𝑅𝑀𝐴

This relationship between slopeOLS and slopeRMA implies that for positive correlations, such as 

between δ2H and δ18O, slopeRMA will always be larger than slopeOLS.

In the MA regression, the sum of the squared perpendicular distances from each sampling point 

to the best fitted line is minimized (Fig. 1). Thus, slopeMA was obtained as:

                                                            (4)𝑠𝑙𝑜𝑝𝑒𝑀𝐴 =  ― 𝐴 +
𝑟2 + 𝐴2

𝑟

where .𝐴 = 0.5(
𝑠𝑑𝑥

𝑠𝑑𝑦
―

𝑠𝑑𝑦

𝑠𝑑𝑥
)

The intercept was computed using the same equation for the three regression methods:

(5)𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =
∑𝑛

𝑖 = 1𝑦𝑖

𝑛 ―𝑠𝑙𝑜𝑝𝑒
∑𝑛

𝑖 = 1𝑥𝑖

𝑛

The standard errors (SE) of the slope and the intercept were calculated following the equations 

by Volk (1958):

(6)𝑆𝐸𝑠𝑙𝑜𝑝𝑒 =

∑𝑛
𝑖 = 1(𝑦𝑖 ― 𝑦𝑖)

2

𝑛 ― 2

∑𝑛
𝑖 = 1(𝑥𝑖 ― 𝑥𝑖)2

(7)𝑆𝐸𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑆𝐸𝑠𝑙𝑜𝑝𝑒
∑𝑛

𝑖 = 1𝑥2
𝑖

𝑛
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where  represent predicted δ18O data ( ).𝑦𝑖 𝑦𝑖 = 𝑠𝑙𝑜𝑝𝑒 × 𝑥𝑖 +𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Following Isobe et al. (1990) and Feigelson and Babu (1992), we also calculated the standard 

deviations of the slope and intercept obtained using the three different regression methods. This 

approach is suggested when the nature of the scatter about a linear relationship is unknown, i.e., as 

specified by Isobe et al. (1990) “the intrinsic scatter of the data dominates any errors arising from 

the measurement process”. 

Error propagation from the observations which are affected by measurement errors (δ2H and 

δ18O) was also applied to estimate the uncertainty in the slope and intercept. The uncertainty on 

the quantity of interest (Q) was calculated using the following equation (Fornasini, 2008):

                                                          (7)∆𝑄 = ∑𝑛
𝑖 = 1

∂𝑄
∂𝑋𝑖

∆𝑋𝑖

where  is the error in the quantity of interest (in our case slope or intercept), and Xi is the ∆𝑄

analytical uncertainty in the measurement of δ2H and δ18O. For this analysis, we focused only on 

the case of the OLS regression by applying the error propagation to the various datasets, using the 

specific analytical uncertainty of each isotopic analyser. In order to be more conservative in our data 

analyses, we considered an analytical uncertainty of 1.0‰ (δ2H) and 0.20‰ (δ18O) for the isotopic 

data obtained with the laser spectroscopes at the University of Padova, University of Ferrara and 

Free University of Bozen-Bolzano (Penna et al., 2016). For the Vermigliana data, we used the 

analytical uncertainty of 2.0‰ (δ2H) and 0.20‰ (δ18O), in agreement with earlier studies by 

Chiogna et al. (2014) and Cano-Paoli et al. (2019). For the GNIR data, we applied the error 

propagation analysis only to those datasets for which the uncertainty of the isotopic measurements 

was published (e.g., Halder et al., 2013; Rank et al., 2018). Analytical uncertainties and references 

for the GNIR data are reported in Table S2.

The Matlab scripts (MathWorks, Massachusetts, USA) used to compute the parameters and their 

uncertainties for the three regression methods, to propagate the error considering only the error in 
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the dependent variable and both in the dependent and independent variable are provided in the 

supporting information.

2.5. Data analysis

In order to compare the results obtained through the OLS regression with those deriving from 

RMA and MA methods, we computed the difference in the slopes ( ) and 𝑠𝑙𝑜𝑝𝑒𝑂𝐿𝑆 ― 𝑠𝑙𝑜𝑝𝑒𝑅𝑀𝐴/𝑀𝐴

the intercepts ( ), as well as the percentage increase (Eq. 8): 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑂𝐿𝑆 ― 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑅𝑀𝐴/𝑀𝐴

(8)𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = (100 
𝑠𝑙𝑜𝑝𝑒𝑅𝑀𝐴/𝑀𝐴

𝑠𝑙𝑜𝑝𝑒𝑂𝐿𝑆 ) ―100

Similarly to Crawford et al. (2014) and Boschetti et al. (2019), we used the Student’s t-test (or 

the Mann-Whitney rank sum test in case of non-normally distributed data) to determine whether 

the differences between the slopes were statistically significant (p≤0.05).

Then, we investigated the relationships between regression parameters and differences in slopes 

and intercepts with statistical indices of the stream water datasets and catchment characteristics by 

Spearman rank correlation analysis. The statistical indices included sample size, δ2H and δ18O 

ranges, coefficients of variation of δ2H and δ18O, and r computed between δ2H and δ18O. The 

catchment characteristics included catchment area, mean annual precipitation, mean annual air 

temperature, elevation of the stream water sampling sites, latitude, and longitude of the stream 

water sampling sites (Table 1). Correlations with p≤0.05 were considered statistically significant. 

All data analyses were performed using Microsoft Office Excel (Microsoft Corporation, USA) and 

Matlab.

3. Results

3.1. Relationships between δ2H and δ18O of different water types in selected catchments in 

Italy



13

Most of the isotopic data from the selected catchments in north-eastern Italy plotted along the 

GMWL (Fig. 3). Rainfall samples from Posina, Rio Vauz, Noce Bianco, and Saldur had a large 

variability in δ2H and δ18O and plotted very close to the GMWL, with no outliers. Indeed, the four 

slopes and intercepts obtained with the OLS regression were very similar to the GMWL slope (8.0) 

and intercept (10.0) (Table 2). As expected, snow, ice, and melt waters were more depleted in heavy 

isotopes compared to summer rainfall from the same catchments, and some samples slightly 

deviated from the GMWL (Fig. 3b). The parameters slopeOLS and interceptOLS of snow, ice, and 

melt waters differed from the same parameters determined for summer rain water, and while recent 

snow in Noce Bianco had a larger slope and intercept compared to GMWL, the melt water in the 

same catchment had a smaller slope and a negative intercept (Table 2). Sampled stream waters had 

smaller variability than rainfall (Posina, Rio Vauz, Noce Bianco, and Saldur) and snow, ice, and 

melt waters (Rio Vauz, Noce Bianco and Saldur). The parameters slopeOLS and interceptOLS varied 

considerably, with a minimum slope of 3.9 (Po at Pontelagoscuro) and a maximum of 9.3 (one 

sampling site in Vermigliana) (Fig. 3 and Table 2). Most of the stream water from Posina, Rio Vauz, 

Noce Bianco, and Saldur plotted along the GMWL (only for the small Ressi catchment some of the 

samples plotted above the GMWL). Conversely, stream water in the Vermigliana, Po, and Adige 

rivers displayed some scatter and some samples deviated from the GMWL. As expected, 

groundwater, spring water, and soil water generally exhibited an isotopic variability similar to 

stream water collected in the same catchment (i.e., Rio Vauz and Ressi), whereas slopeOLS and 

interceptOLS varied considerably with some waters having slopes (e.g., two springs in Rio Vauz and 

one spring in Noce Bianco; Table 2) much smaller than the slope of GMWL.

The error propagation analysis applied to the OLS regression showed that the variability in the 

isotopic data cannot be explained only by the uncertainty in the measurements. Indeed, for 67.2% 

of the datasets from north-eastern Italy (n=61, Tables 1 and 2), the propagated error in slopes and 

intercepts was smaller than their standard deviations. Considering the measurement precision (i.e., 

the average standard deviation of repeated measurements) as analytical uncertainty, we found for 
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more than 80% of the datasets from north-eastern Italy, a propagated error in slopes and intercepts 

smaller than their standard deviations. For 55.2% of the GNIR datasets (n=29, Table S2), the 

propagated error in slopes and intercepts was smaller than their standard deviations.

3.2. Differences between the OLS, RMA and MA regressions

For all three regression methods, rainfall had similar slopes (ranges for slopes were 7.5-8.1, 7.7-

8.3 and 7.9-8.4 for OLS, RMA and MA, respectively; n=4 sampling sites) and intercepts (ranges 

for intercepts were 7.9-14.8, 9.4-16.2 and 10.6-17.7 for OLS, RMA and MA, respectively; n=4) 

determined for the δ2H-δ18O relationship (Table 2 and Fig. 4). As expected, we observed that 

minimum and maximum slopes and intercepts were the smallest for the OLS regression and the 

largest for the MA regression. This increasing pattern in slopes and especially intercepts for the 

RMA and MA regressions compared to the classical OLS method was definitely more evident when 

considering the other water types (Fig. 4). Slopes and intercepts for the δ2H-δ18O relationship of 

snow, ice, and melt waters (n=5 sampling sites) obtained by the RMA and MA regression were 

larger than the ones computed by the OLS method, but this pattern was not very clear due to the 

small variability in the slopes and intercepts (Table 2). Conversely, large variations in slopes and 

intercepts determined by the three regression methods were found for stream (slopeOLS from 2.5 up 

to 9.3, slopeRMA from 4.3 up to 10.9, slopeMA from 4.7 up to 31.8, n=54 sampling sites) and spring 

waters (slopeOLS from 3.9 up to 7.9, slopeRMA from 7.1 up to 10.5, slopeMA from 7.7 up to 28.5, 

n=8). For instance, the largest variation was observed for a stream water sampling site in the 

Vermigliana with slope varying from 2.5±1.3 (slopeOLS±standard deviation), 9.0±14.3 

(slopeRMA±standard deviation) and up to 31.8±28.5 (slopeMA±standard deviation), and a spring 

water sampling site in Noce Bianco with slope varying from 3.8±4.1 (OLS), to 10.5±6.4 (RMA) 

and 28.5±14.5 (MA). An increase in slopes and intercepts from the OLS to RMA and MA regression 

method was also found for the δ2H-δ18O relationship of shallow groundwater (n= 12 sampling sites) 

and soil water (n=12) (Fig. 4 and Table 2).
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Relationships between slopeOLS (or interceptOLS) and slopes (or intercepts) determined by the 

RMA and MA methods confirmed that RMA- and MA-based parameters were much larger 

compared to the ones determined by OLS (Fig. 5). The overestimation was very large when 

comparing MA to OLS parameters, and the differences were particularly marked for the intercepts 

(Fig. 5d). For rainfall, the differences between the regression methods were limited, as also shown 

in Fig. 4, whereas for shallow groundwater and soil waters large differences were more common 

for extreme slopeOLS values (i.e., greater than 9 or lower than 6). The differences between the OLS 

parameters with the slopes and the intercepts determined by the RMA and MA methods were very 

large for some streams and springs (Fig. 5). However, we did not observe specific (e.g., geographical 

or climatic) patterns in the scattered overestimation for the various water types.

For each sampling site and water type, we quantified the percentage of increase in the slopes 

(Fig. 6) and the intercepts for the comparison between the RMA and MA regressions with the OLS 

method. Percentage increases in the slopes were small and quite similar for rainfall (median: 1.6% 

and 3.1% computed between OLS and RMA, and OLS and MA, respectively) and snow, ice, and 

melt waters (median: 1.5% and 3.0% computed between OLS and RMA, and OLS and MA, 

respectively). Median percentage increases in the slopes were also alike for spring and soil waters 

(about 4.5% and 9.0%, computed between OLS and RMA, and OLS and MA, respectively). For 

shallow groundwater, median percentage increase in the slopes was 8.8% and 18.2% (computation 

considering OLS and RMA, and between OLS and MA, respectively), while for stream waters 

medians reached 10.2% (between OLS and RMA slopes) and 20.8% (between OLS and MA slopes). 

Furthermore, it should be noted that, for all the water types, median percentage increases computed 

between OLS and RMA slopes were about half of median percentage increases calculated 

considering OLS and MA slopes (Fig. 6).

The analysis of the uncertainty in the regression parameters for each dataset (n=95) allowed us 

to determine whether the differences in the slopes and intercepts were significant. We found that 

for rainfall (n=4), snow, ice and melt waters (n=5) datasets, all the differences in the slopes and 
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intercepts were non-significant and smaller that their standard deviations (Fig. 7). The greatest 

proportion of datasets for which the differences between slopes and intercepts were larger than their 

standard deviations was observed for stream water (up to 70.4%, n=54), followed by groundwater 

(up to 66.7%, n=12), springs (up to 37.5%, n=8), and soil water (up to 16.7%, n=12). For stream 

water, springs, and groundwater, there were significant (p≤0.05) differences in the slopes; 

conversely, a similar difference was not found for soil water (Fig. 7a). As expected, the proportion 

of the differences between OLS and RMA parameters greater than slope and intercept standard 

deviations were lower than the proportions obtained considering the differences between OLS and 

MA parameters. The proportions obtained considering the differences in the slopes greater than the 

standard deviations (Fig. 7a) were very similar to the proportions obtained considering the 

differences in the intercepts (Fig. 7b), except for small variations in the proportions observed for 

groundwater and soil water. However, these discrepancies between the proportions for slopes and 

intercepts occurred only for few groundwater and soil water sites, possibly stemming from the 

intrinsic relationship existing between the two regression parameters, as described in Eq. 5. 

3.3. Relationships between the differences in the slopes and the intercepts with the 

characteristics of the datasets 

We observed small r values for two springs and several stream sampling sites, which led to large 

and negative differences between slopeOLS and slopeRMA (or slopeMA) (Fig. 8a,b). However, the 

magnitude of r (and therefore the differences in the slopes) seemed independent from the water 

type; indeed, except for stream water, the other water types had r values greater than 0.9, and 

differences between slopeOLS and slopeRMA (or slopeMA) were very close to 0. The relationship 

between sample size and the differences between slopeOLS and slopeRMA (or slopeMA) showed that, 

for small number of samples (<100), the differences in the slopes could be either very small (e.g., 

for rainfall, snow, ice and melt water, and soil water) or very large (e.g., for some spring water, and 

stream waters), while for large sample sizes the differences were usually small and close to 0 (Fig. 
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8c,d). The relationship between δ18O range and the differences in the slopes indicates that, for waters 

having a large (mainly temporal) variability (>6 ‰ in δ18O) in the isotopic composition (e.g., rainfall 

and snow, ice and melt waters), the differences in the slopes were very close to 0 (Fig. 8e,f). 

Conversely, for stream waters, springs, and groundwater sites with small δ18O ranges (<4 ‰), the 

differences between slopeOLS and slopeRMA (or slopeMA) were either small or very large. The 

relationships depicted in Fig. 8 (differences in the slopes vs. r, sample size, and δ18O range) were 

also reproduced for the differences in the intercepts (Fig. S1). As expected, we found that the 

resulted relationships and patterns in Fig. S1 were very similar to the ones observed in Fig. 8.

The Spearman correlation analysis performed between statistics of stream water data and the 

differences in the slopes and the intercepts (Table 3) confirms the strong relationships already seen 

in Fig. 8 and S1. We found positive and significant correlations (p<0.001) between sample size and 

the differences in the slopes and the intercepts (Table 3). The correlations determined for the 

differences between slopeOLS and slopeRMA (or slopeMA) and δ2H and δ18O ranges were also positive, 

although weak. Furthermore, the correlations were significant when we considered the differences 

in the slopes, but non-significant between the differences in the intercepts and δ2H range (but p<0.1). 

No significant correlations were observed between the differences in the slopes and the intercepts 

with coefficients of variation of δ2H and δ18O (Table 3). 

Compared to the dataset statistics, catchment characteristics did not noticeably affect the differences 

in the slopes and the intercepts (Table 3). Indeed, the correlations between the differences in the 

slopes and the intercepts with catchment area, elevation, and longitude of the stream and river water 

sampling sites were non-significant (ρs values were weak or very weak). However, we observed 

weak but significant correlations between the differences in the slopes and the intercepts with mean 

annual precipitation (p<0.01), and between mean annual air temperature and the differences in the 

intercepts (p<0.05). We found a positive and moderate correlation (p<0.001) between latitude and 

the differences in slopes and intercepts. An inspection of the relationship among these parameters 
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showed that the statistical significance was mainly driven by stream sampling sites in the 

Vermigliana, Presanella, Sava, Kokra, and Posina catchments. 

4. Discussion

4.1. Comparison of OLS, RMA and MA regressions applied to the δ2H-δ18O relationship 

As expected by the mathematical structure of the three regression methods (Helsel and Hirsch, 

2002; Keles, 2018), the largest slopes and intercepts were obtained by the MA regression, followed 

by slopes computed by the RMA method, and finally by the OLS regression (Fig. 4 and 5). Indeed, 

percentage increases in the slopes were all positive, and greater when considering OLS and MA 

(Fig. 6b) than OLS and RMA (Fig. 6a). We found for rainfall, snow, ice and melt waters data that 

the differences between the slopes and the intercepts determined by the three methods were very 

small (differences in the slopes varied between -0.40 and -0.04 (slopeOLS and slopeRMA), and 

between -0.81 and -0.08 (slopeOLS and slopeMA), Fig. 8) and similar to values found by Crawford et 

al. (2014) for precipitation data collected in central Europe. Conversely, for other water types 

(particularly for some stream and spring datasets), we observed that the differences in the regression 

parameters were even greater than those reported by Crawford et al. (2014), and sometimes greater 

than the standard deviations of slopes and intercepts (Fig. 7).

Furthermore, based on previous findings for precipitation data from coastal sites which are likely 

affected by kinetic fractionation (Crawford et al., 2014), we expected to find marked differences in 

the slopes and intercepts computed by the three methods for soil water isotopic data, which are 

usually more prone to evaporation processes. Indeed, some soil water samples had a clear 

evaporative signature (negative deuterium excess, Dansgaard (1964)), while others plotted close to 

the LMWL and GMWL (Fig. 3), likely reflecting the seasonality in evaporation as well as in the 

isotopic composition of local precipitation (Benettin et al., 2018). Despite this variability in the 

isotopic composition of soil water, we found that differences in slopes and the intercepts determined 

by the OLS, RMA, and MA regressions were usually small, non-significant and lower than their 
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standard deviations (Fig. 7). Therefore, based on our selected soil water datasets collected in 

continental study areas, we tend to exclude an influence of kinetic fractionation on the differences 

in the slopes and intercepts obtained by the three regression methods.

4.2. Factors influencing the differences in the slopes and the intercepts

Compared to previous studies (e.g., Hughes and Crawford, 2012; Crawford et al., 2014; Boschetti 

et al., 2019), our results indicate that the magnitude of the differences in the slopes and intercepts 

obtained by the three methods is primarily due to the correlation coefficient, r, computed between 

δ2H and δ18O, regardless of the water type (Fig. 8a,b and S1a,b, Table 3). Therefore, the larger the 

correlation between δ2H and δ18O data, the smaller the differences among the parameters determined 

by the three regression methods.

Our results also show that for large sample sizes and δ18O ranges, the differences in OLS, RMA, 

and MA fittings were usually small, regardless of the water type (Fig. 8 and S1). Conversely, for 

datasets with a small sample size and a small variability (expressed by δ18O ranges) in the isotopic 

composition, the differences in the slopes and intercepts were more erratic, probably due to a large 

influence of measurement errors and/or high-leverage data (i.e., data points with extreme δ18O 

values; Crawford et al., 2014). Because spring and stream waters are supposed to be more influenced 

by mixing processes rather than evaporation, and not all the datasets showed large differences in the 

regression parameters computed by the three methods, we argue that a dampened variability in the 

isotopic signature of a specific water source, combined with the measurement errors in δ2H and 

δ18O, could lead to different results in the regression based on the applied method. For instance, a 

dampened variability in the isotopic composition was observed for samples collected from stream 

waters in the Posina and the Vermigliana, and from a spring in the Noce Bianco (Fig. 3), but the 

(small) isotopic variability was still larger than the propagated errors. Furthermore, we exclude that 

evaporation processes affected the sampled waters of Posina and Noce Bianco because deuterium 

excess was rarely below 8.0 (data not reported). However, we also note that the dampened isotopic 
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variability could be biased by the small sample size and the sampling design which could not capture 

the true range in the isotopic composition of surface waters. In addition, the correlation analysis 

showed that the isotopic ranges (which consider the difference between the largest and smallest 

values in the dataset) had a more significant correlation with differences in the slopes and the 

intercepts than the coefficients of variation had (Table 3), probably because the latter describe just 

about the dispersion around the mean isotopic composition.

The correlation analysis performed for stream water datasets also showed moderate and 

significant correlations between the differences in the slopes and the intercepts with the latitude of 

the sampling sites and mean annual precipitation of the catchments (Table 3). The inspection of the 

relationship between latitude of the sampling sites and differences in the slopes and the intercepts 

showed that the correlation was mainly driven by few sampling sites (i.e., Vermigliana, Presanella, 

Sava, Kokra and Posina), apparently with different catchment characteristics, but with r values 

smaller than 0.8. Due to the different characteristics of the catchments in terms of area, climate, and 

elevation of the sampling sites, we are not able to formulate plausible explanations (except for the 

poor relationships between δ2H and δ18O) for the large differences among the parameters obtained 

by the OLS, RMA and MA methods.

Overall, the correlation analysis (Table 3) revealed that the differences in the slopes and the 

intercepts of stream waters were mainly affected by the statistical characteristics of the isotopic 

datasets rather than by the physical and climatic features of the catchments. However, this analysis 

was performed only for stream waters in continental sites in Europe and, therefore, our findings 

should be validated in other study areas in arid climates (as  done for precipitation by Hughes and 

Crawford, 2012) or at the global scale (Crawford et al., 2014; Nan et al., 2019).

4.3. Recommendations for the application of the different regression methods in isotope 

hydrology
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A literature review on the application of the OLS, RMA, and MA regression methods provides 

a multitude of studies in various disciplines, spanning from biology to astronomy. Many of these 

studies (e.g., Isobe et al., 1990; Smith, 2009; Kilmer and Rodriguez, 2017) tried to define some 

guidelines for the use of these regression methods depending on the investigated variables. 

However, previous research did not converge towards a unique set of guidelines because, before 

any application of the linear regression, a researcher should thoroughly examine the nature of the 

relationship between the two variables (i.e., cause vs. effect and asymmetric vs. symmetric 

partitioning of the variation) and quantify the measurement errors. 

In general, the RMA and MA methods should be adopted in the presence of measurement errors 

for both the x and y variables. However, many studies recommended caution in the use of the RMA 

and MA regressions. For instance, Smith (2009) suggested to use the OLS method if the variation 

can be partitioned asymmetrically into the x and y variables, and the RMA if the variation should 

be treated symmetrically. Kilmer and Rodriguez (2017) specifically analysed the problem of the 

measurement error in allometry, and they concluded that it is preferable to use the OLS regression 

compared to the RMA, even when there are large measurement errors because a correction for 

slope attenuation usually can be adopted. Conversely, Isobe et al. (1990) and Boschetti et al. (2019) 

indicated the EIV regression models as preferable over OLS, RMA, and MA in case the nature of 

the variability is mainly due to measurement errors. In addition, in the RMA regression, the slope 

does not depend on r but on its sign, and therefore the former cannot help to explain the underlying 

relationship between the two variables (Isobe et al., 1990).

The MA regression is rarely applied (compared to OLS and the RMA methods) because the 

uncertainty in the MA slopes is generally greater than the uncertainties simulated with other 

methods (Isobe et al., 1990). The MA parameters sometimes are very large (in some cases, e.g., in 

Tables 2 and S1, they are almost unrealistic), and more sensitive to outliers and data points with 

high leverage compared to the OLS and RMA regressions (Crawford et al., 2014).
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Based on our findings and on available isotope hydrology studies, before the application of the 

regression to the δ2H-δ18O relationship for both precipitation and other water types, we recommend 

to analyse the correlation between the two isotopes and the presence of outliers (and investigate 

their origin) and properly consider the measurement errors (e.g., by the analysis of the propagated 

errors). Then, we suggest to compute the regression lines based on the OLS, the RMA, and MA 

methods, and examine whether the isotopic variability is greater than the propagated errors. 

Finally, the resulting slopes should be compared considering the uncertainty in the estimates.

In case of small measurement errors and no significant differences between the slopes, we 

suggest the application of the widely used OLS regression. Conversely, if the computed slopes are 

significantly different, we recommend to investigate the possible reason (e.g., large measurement 

errors, dampened isotopic variability or presence of outliers), and then choose the RMA over the 

MA regression, especially as the latter is very sensitive to the presence of outliers or data with high 

leverage (Crawford et al., 2014). In case of very large measurement errors, an EIV approach should 

also be considered (Boschetti et al., 2019).

5. Conclusions

Recent studies compared the slopes and intercepts obtained for isotope precipitation data using 

the OLS regression with the parameters determined by the application of the RMA and the MA 

methods. Despite this recent research in isotope hydrology, no previous studies investigated the 

differences among the OLS, RMA, and MA regressions for water types prone to evaporation, 

mixing, and redistribution processes. Therefore, in this work, we quantified the differences in the 

slopes and intercepts computed by the OLS, RMA, and MA methods for various water types, and 

investigated whether the magnitude of the differences was affected by water type, dataset statistics, 

and/or by geographical/climatic characteristics of the selected datasets.

As expected by the mathematical structure of the three regression methods, we found that for all 

water types the MA regression always produced the largest slopes and intercepts whereas the OLS 
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method determined the smallest ones. The largest differences in the slopes and the intercepts were 

found for the isotopic data of some springs and streams. Conversely, for rainfall, snow, ice and melt 

water datasets, all the differences in the slopes and intercepts were smaller than their standard 

deviations. The largest proportion of datasets for which the differences between slopes and 

intercepts were greater than their standard deviations was observed for stream water, followed by 

groundwater, springs, and soil water. Our results show that the correlation between δ2H and δ18O is 

the main driver of the differences in the slopes and intercepts determined by the three regression 

methods, regardless of the water type; the stronger the correlation between δ2H and δ18O of the 

datasets, the smaller was the difference in the slopes (and the intercepts).

Based on our findings, in isotope hydrology applications we recommend to consider the 

measurement errors for both δ2H and δ18O and the presence of outliers, and to test whether the 

slopes computed by the OLS, RMA, and MA regressions are significantly different. In case of 

small measurement errors and no significant differences between the slopes, we suggest the 

application of the OLS regression. Conversely, if the computed slopes are significantly different, 

we recommend investigating the possible reasons for such discrepancies and preferring the RMA 

over the MA approach, as the latter tends to be more sensitive to data with high leverage.
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Tables

Catchment Area 
(km2)

Mean annual 
precipitation 

(mm)

Mean annual 
temperature 

(°C)

Sampling elevation 
for stream/river 
waters (m a.s.l.)

Data 
availability

Type of data 
(number of 

samples)

References for 
catchments and datasets

Rio Vauz 
Subcatchment: 

BCC
1.9 1220 4.1 1910, 1932 2010-2017

P (34), SIM (107), 
SW (477), SP (356), 

GW (157), SOW 
(22)

Penna et al. (2016), 
Penna et al. (2017b), 
Zuecco et al. (2018), 
Guastini et al. (2019)

Posina (at 
Stancari)

Subcatchments: 
Posina at Bazzoni, 

Ressi 

116 1708 10.3 387, 453, 598 2012-2018
P (55), SW (1387), 
GW (643), SOW 

(297)

Penna et al. (2013), 
Zuecco et al. (2014), 
Penna et al. (2015), 
Zuecco et al. (2016)

Noce Bianco 8.4 1233 -0.5 2298 2012-2016 P (40), SIM (130), 
SW (487), SP (52)

Carturan et al. (2016), 
Zuecco et al. (2019a)

Saldur 35.0 526 6.6 2150, 2333 2011-2013 P (46), SW (117), SP 
(72)

Penna et al. (2014), Engel 
et al. (2016), Penna et al. 

(2017a)

Vermigliana 104 1440 2.9
974, 1176, 1220, 
1226, 1342, 1436, 

1546, 1793
2011-2012 SW (201), GW (17) Chiogna et al. (2014), 

Cano-Paoli et al. (2019)

Adige (Andriano) 2642 718 7.7 242 2015-2017 SW (9) Natali et al. (2016), 
Chiogna et al. (2018)

Adige (Verona) 10900 837 14 67 2015-2017 SW (9) Natali et al. (2016), 
Chiogna et al. (2018)

Adige (Boara 
Pisani) 11954 718 13.3 5 2015-2017 SW (9) Natali et al. (2016), 

Chiogna et al. (2018)

Po 
(Pontelagoscuro) 70000 666 13.6 0 2012-2017 SW (27)

Marchina et al. (2015), 
Marchina et al. (2016), 
Marchina et al. (2019)
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Table 1. Main characteristics of the selected catchments in northern-eastern Italy and brief description of the available data. Water types are abbreviated 

as in: P - rainfall; SIM - snow, ice and melt water; SW - surface water (streams and rivers); SP - spring water; GW - groundwater; SOW - soil water.



39

OLS RMA MA
Catchment Water 

type slope 
(SE)

intercept 
(SE)

slope 
(SE)

intercept 
(SE)

slope 
(SE)

intercept 
(SE)

P 7.93 
(0.20)

11.44 
(2.03)

8.01 
(0.20)

12.25 
(2.04)

8.09 
(0.21)

13.04 
(2.05)

SIM 8.21 
(0.14)

11.44 
(1.94)

8.33 
(0.14)

13.10 
(1.95)

8.45 
(0.14)

14.74 
(1.97)

SW

6.79 
(0.38), 
6.93 

(0.18)

-4.24 
(4.81),

-2.94 (2.33)

7.70 
(0.39), 
7.80 

(0.19)

7.39 (4.96),
8.09 (2.40)

8.70 
(0.43), 
8.75 

(0.21)

20.16 
(5.43), 
20.12 
(2.62)

SP

5.80 
(0.26), 
4.55 

(0.56)

-17.66 
(3.30),
-32.76 
(7.06)

7.14 
(0.27), 
7.15 

(0.62)

-0.82 
(3.46), 0.22 

(7.81)

8.72 
(0.32), 
11.12 
(0.87)

19.16 
(4.03), 
50.45 

(10.98)

GW

6.76 – 
9.06 

(0.24 – 
0.70)

-5.36 – 
21.52 (2.95 

– 9.88)

7.47 – 
9.21 

(0.24 – 
0.72)

3.27 – 
23.32 (2.95 

– 10.08)

7.62 – 
9.97 

(0.25 – 
0.76)

5.78 – 
31.51 (2.98 

– 10.70)

Rio Vauz 
Subcatchment: 

BCC

SOW

8.34 
(0.40), 
4.64 

(0.60)

16.58 
(4.56),
-24.35 
(5.74)

8.38 
(0.40), 
5.16 

(0.62)

17.02 
(4.56),
-19.56 
(5.88)

8.42 
(0.41), 
5.69 

(0.66)

17.44 
(4.58),
-14.60 
(6.33)

P 8.12 
(0.23)

14.75 
(2.09)

8.29 
(0.23)

16.24 
(2.10)

8.45 
(0.23)

17.70 
(2.13)

SW

5.61 – 
7.75 

(0.07 – 
0.64)

-6.06 – 
12.79 (0.62 

– 5.71)

8.01 – 
8.16 

(0.07 – 
0.70)

15.26 – 
16.19 (0.62 

– 6.19)

8.57 – 
11.41 

(0.08 – 
0.91)

19.66 – 
45.43 (0.65 

– 8.11)

GW

6.09 – 
7.74 

(0.25 – 
0.62)

-2.92 – 
12.43 (2.21 

– 5.12)

7.81 – 
8.17 

(0.26 – 
0.64)

11.31 – 
16.00 (2.25 

– 5.24)

8.19 – 
9.95 

(0.28 – 
0.68)

14.38 – 
31.32 (2.37 

– 5.60)

Posina (at 
Stancari)

Subcatchments: 
Posina at Bazzoni, 

Ressi

SOW

6.56 – 
10.40 

(0.18 – 
1.14)

-4.59 – 
29.51 (1.03 

– 8.95)

6.88 – 
11.06 

(0.18 – 
1.16)

-3.31 – 
34.68 (1.03 

– 9.09)

7.20 – 
11.76 

(0.18 – 
1.21)

-2.02 – 
40.09 (1.03 

– 9.51)

P 7.53 
(0.27) 7.86 (2.49) 7.70 

(0.27) 9.44 (2.51) 7.88 
(0.27)

11.01 
(2.55)

SIM

6.17 – 
9.08 

(0.18 – 
0.52)

-12.07 – 
28.49 (2.60 

– 7.14)

6.57 – 
9.43 

(0.18 – 
0.53)

-6.56 – 
32.89 (2.61 

– 7.26)

6.98 – 
9.79 

(0.18 – 
0.55)

-0.96 – 
37.36 (2.64 

– 7.59)

SW 7.68 
(0.08) 7.51 (1.17) 7.90 

(0.08)
10.58 
(1.18)

8.12 
(0.09)

13.64 
(1.20)

Noce Bianco

SP

3.85 
(4.89), 
7.82 

(0.24)

-42.89 
(65.50), 

7.63 (2.96)

10.52 
(5.92), 
7.98 

(0.24)

46.38 
(79.27), 

9.63 (2.97)

28.53 
(13.28), 

8.15 
(0.25)

287.48 
(177.72), 

11.61 
(3.02)

P 8.03 
(0.13)

9.67
(1.37)

8.07 
(0.13)

10.13 
(1.38)

8.11 
(0.13)

10.58 
(1.38)Saldur

SW 7.90 
(0.40), 9.47 8.16 

(0.41), 
13.18 
(5.96), 

8.41 
(0.42), 

16.89 
(6.09), 
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8.13 
(0.21)

(5.91), 
12.87 
(3.10)

8.37 
(0.21)

16.34 
(3.12)

8.60 
(0.22)

19.81 
(3.19)

SP

6.99 – 
7.89 

(0.35 – 
0.59)

-4.30 – 
8.92 (4.80 

– 8.83)

7.34 – 
8.07 

(0.35 – 
0.60)

0.83 – 
11.98 (4.83 

– 8.94)

7.69 – 
8.25 

(0.36 – 
0.62)

6.02 – 
15.04 (4.91 

– 9.25)

SW

2.51 – 
9.26 

(0.87 – 
1.84)

-62.63 – 
25.61 

(10.89 – 
23.31)

7.60 – 
10.34 

(0.91 – 
2.30)

3.04 – 
38.04 

(11.35 – 
29.14)

9.15 – 
31.76 

(1.03 – 
6.50)

23.30 – 
307.59 

(12.85 – 
82.35)Vermigliana

GW 5.04 
(1.31)

-28.00 
(16.30)

7.15 
(1.42)

-1.75 
(17.66)

10.04 
(1.84)

34.25 
(22.91)

Adige (at 
Andriano) SW 7.23 

(0.85)
1.20 

(10.73)
7.57 

(0.86)
5.51 

(10.86)
7.92 

(0.89)
9.88 

(11.22)

Adige (at Verona) SW 7.80 
(0.76)

8.39
(8.85)

8.05 
(0.76)

11.35 
(8.92)

8.30 
(0.78)

14.31 
(9.13)

Adige (at Boara 
Pisani) SW 8.92 

(1.91)
21.01 

(21.84)
10.25 
(1.97)

36.19 
(22.58)

11.75 
(2.18)

53.33 
(25.03)

Po (at 
Pontelagoscuro) SW 3.93 

(0.77)
-26.98 
(6.82)

5.50 
(0.83)

-13.13 
(7.37)

7.57 
(1.06) 5.16 (9.39)

Table 2. Slopes, intercepts and their respective standard errors (SE) obtained by the application of the 

OLS, RMA and MA methods to the δ2H-δ18O relationship for different water types in the selected 

catchments in northern Italy. When there were more than two sampling sites for water type, we 

reported ranges in the slopes, intercepts and SE. Water types are abbreviated as in: P - rainfall; SIM 

- snow, ice and melt water; SW - surface water (streams and rivers); SP - spring water; GW - 

groundwater; SOW - soil water.   
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Spearman rank correlation coefficients (ρs) for the relationships between differences in the slopes and the 
intercepts with statistical indices of the datasets and catchment characteristics

Statistical indices: slopeOLS - 
slopeRMA

interceptOLS - 
interceptRMA

slopeOLS - 
slopeMA

interceptOLS - 
interceptMA

Number of sampling 
sites

Sample size (-) 0.50*** 0.50*** 0.50*** 0.49*** 54

δ2H range (‰) 0.28* 0.23 0.28* 0.24 54

δ18O range (‰) 0.38** 0.36** 0.38** 0.36** 54

Coefficient of variation of δ2H (-) 0.18 0.17 0.18 0.17 54

Coefficient of variation of δ18O (-) -0.06 -0.08 -0.06 -0.08 54

r computed between δ2H and δ18O (-) 0.99*** 0.98*** 0.99*** 0.98*** 54

Catchment characteristics:

Latitude (°) 0.56*** 0.57*** 0.56*** 0.57*** 54

Longitude (°) 0.14 0.17 0.14 0.16 54

Area (km2) 0.24 0.30 0.24 0.30 41
Mean annual precipitation (mm) -0.38** -0.42** -0.38** -0.42** 47
Mean annual temperature (°C) 0.28 0.34* 0.28 0.34* 46
Elevation of the sampling site (m) -0.20 -0.27 -0.20 -0.27 51

Significance codes: ***= p≤ 0.001; **= p≤ 0.01; *= p≤ 0.05.
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Table 3. Spearman rank correlation coefficients for the relationships between differences in the slopes and the intercepts (computed with the OLS, 

RMA and MA methods) with statistical indices of the stream and river water datasets and catchment characteristics. Number of sampling sites for 

which data were available is indicated in last column.
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Figures

Figure 1. Graphical rapresentation (modified from Crawford et al., 2014) of the three regression 

methods considered in this study: the OLS (Ordinary Least Squares), the RMA (Reduced Major 

Axis), and the MA (Major Axis) methods.

Figure 2. Location of the selected catchments in northern Italy. Mountainous areas are indicated in 

grey.

Figure 3. Dual-isotope plots for the δ2H-δ18O relationship for various water types sampled in the 

selected Italian catchments: a) Posina (including Ressi); b) Rio Vauz (including BCC); c) Noce 

Bianco; d) Saldur; e) Vermigliana; f) Po and Adige. Characteristics of the selected catchments and 

the collected samples are reported in Table 1.

Figure 4. Data plots with a) the slopes and b) the intercepts calculated with the OLS, RMA and MA 

regressions for the different water types. The three different methods are represented with three 

different filling colours (OLS-white; RMA-grey; MA-black).

Figure 5. Scatter plots between a) slopeOLS and slopeRMA; b) interceptOLS and interceptRMA; c) slopeOLS 

and slopeMA; d) interceptOLS and interceptMA. 

Figure 6. Percentage increases (reported in a logarithmic scale) in the slopes computed considering 

a) OLS and RMA, and b) OLS and MA for the various water types. Bars represent median percentage 

increases, while error bars indicate minimum and maximum percentage increases.

Figure 7. Proportion of datasets, grouped by water type, for which the differences between a) slopes 

and b) intercepts computed with the three regression methods (OLS-RMA and OLS-MA) were larger 
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than the standard deviations. In a), we indicated above each bar whether we found a significant 

difference between the slopes by the application of the Student’s t-test or the Mann-Whitney rank 

sum test (significant codes: NS=p>0.05; *= p≤ 0.05; **= p≤ 0.01; ***= p≤ 0.001).

Figure 8. Scatter plots between a) Pearson correlation coefficient, r, computed between 2H and 18O 

and difference in the slopes (OLS-RMA); b) r computed between 2H and 18O and difference in the 

slopes (OLS-MA); c) sample size and difference in the slopes (OLS-RMA); d) sample size and 

difference in the slopes (OLS-MA); e) δ18O range (difference between maximum and minimum) and 

difference in the slopes (OLS-RMA); f) δ18O range and difference in the slopes (OLS-MA).
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Abstract

The Ordinary Least Squares (OLS) regression is the most common method for fitting the δ2H-δ18O 

relationship. Recently, various studies compared the OLS regression with the Reduced Major Axis 

(RMA) and Major Axis (MA) regression for precipitation data. However, no studies have investigated 

so far the differences among the OLS, RMA and MA regressions for water types prone to evaporation, 
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mixing, and redistribution processes. In this work, we quantified the differences in terms of slopes 

and intercepts computed by the OLS, RMA, and MA methods for rainfall, snow and ice, stream, 

spring, groundwater, and soil water, and investigated whether the magnitude of such differences is 

significant and dependent on the water type, the datasets statistics, geographical or climatic 

characteristics of the study catchments.

Our results show that the differences between the regression methods were largest for the isotopic 

data of some springs and some stream waters. Conversely, for rainfall, snow, ice, and melt waters 

datasets, all the differences were small and, particularly, smaller than their standard deviation. Slopes 

and intercepts computed using the different regression methods were statistically different for stream 

water (up to 70.4%, n=54), followed by groundwater, springs, and soil water. The results of this study 

indicate that a thorough analysis of the δ2H-δ18O relationship in isotope hydrology studies is 

recommended, as well as considering the measurement errors for both δ2H and δ18O, and the presence 

of outliers. In case of small measurement errors and no significant differences between the slopes, we 

suggest the application of the widely used OLS regression. Conversely, if the computed slopes are 

significantly different, we recommend investigating the possible reasons for such discrepancies and 

prefer the RMA over the MA approach, as the latter tends to be more sensitive to data with high 

leverage (i.e., data points with extreme δ18O values).

Keywords: stable water isotopes; Ordinary Least Squares regression; Major Axis regression; stream 

water; Global Meteoric Water Line; catchment.

Figures

Figure 1. Graphical rapresentation (modified from Crawford et al., 2014) of the three regression 

methods considered in this study: the OLS (Ordinary Least Squares), the RMA (Reduced Major 

Axis), and the MA (Major Axis) methods.
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Figure 2. Location of the selected catchments in northern Italy. Mountainous areas are indicated in 

grey.

Figure 3. Dual-isotope plots for the δ2H-δ18O relationship for various water types sampled in the 

selected Italian catchments: a) Posina (including Ressi); b) Rio Vauz (including BCC); c) Noce 

Bianco; d) Saldur; e) Vermigliana; f) Po and Adige. Characteristics of the selected catchments and 

the collected samples are reported in Table 1.

Figure 4. Data plots with a) the slopes and b) the intercepts calculated with the OLS, RMA and MA 

regressions for the different water types. The three different methods are represented with three 

different filling colours (OLS-white; RMA-grey; MA-black).

Figure 5. Scatter plots between a) slopeOLS and slopeRMA; b) interceptOLS and interceptRMA; c) slopeOLS 

and slopeMA; d) interceptOLS and interceptMA. 

Figure 6. Percentage increases (reported in a logarithmic scale) in the slopes computed considering 

a) OLS and RMA, and b) OLS and MA for the various water types. Bars represent median percentage 

increases, while error bars indicate minimum and maximum percentage increases.

Figure 7. Proportion of datasets, grouped by water type, for which the differences between a) slopes 

and b) intercepts computed with the three regression methods (OLS-RMA and OLS-MA) were larger 

than the standard deviations. In a), we indicated above each bar whether we found a significant 

difference between the slopes by the application of the Student’s t-test or the Mann-Whitney rank 

sum test (significant codes: NS=p>0.05; *= p≤ 0.05; **= p≤ 0.01; ***= p≤ 0.001).
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Figure 8. Scatter plots between a) Pearson correlation coefficient, r, computed between 2H and 18O 

and difference in the slopes (OLS-RMA); b) r computed between 2H and 18O and difference in the 

slopes (OLS-MA); c) sample size and difference in the slopes (OLS-RMA); d) sample size and 

difference in the slopes (OLS-MA); e) δ18O range (difference between maximum and minimum) and 

difference in the slopes (OLS-RMA); f) δ18O range and difference in the slopes (OLS-MA).

Highlights

 Uncertainty in slopes of mixed waters is not explained by the experimental error

 Stream and spring isotopic data have significant differences in the slopes

 Evaporated soil water does not significantly affect the δ2H-δ18O relationship
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Supplementary material
OLS RMA MA

Catchment Sample 
size slope intercept

r
slope intercept slope intercept

DANUBE - 
Engelhartszell 112 7.38 2.58 0.98 7.50 3.90 7.61 5.20

DANUBE - 
Hainburg 412 7.37 2.42 0.98 7.54 4.31 7.70 6.17

DANUBE - 
Medvedovo 29 7.02 -1.90 0.94 7.44 2.65 7.87 7.32

DANUBE - 
Tulcea 78 5.41 -17.06 0.92 5.86 -12.54 6.33 -7.91

DANUBE - 
Vienna 321 7.54 4.62 0.98 7.71 6.48 7.88 8.33
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DRAU - 
Neubruecke 109 7.57 6.33 0.99 7.66 7.42 7.76 8.50

ILL - Gisingen 237 7.75 7.59 0.98 7.91 9.51 8.05 11.40
INN - 

Kirchbichl 126 7.75 7.29 0.98 7.86 8.87 7.98 10.42

INN - S'Chanf 194 7.84 7.18 0.98 8.00 9.27 8.16 11.34
INN - 

Schaerding 214 7.73 6.78 0.99 7.81 7.73 7.88 8.66

JALOVECKY 
CREEK - 

Dolina
277 7.46 7.24 0.90 8.29 16.70 9.19 26.92

JALOVECKY 
CREEK - 
Ondrasova

109 7.09 2.02 0.92 7.73 9.17 8.40 16.72

KOKRA - 
Mouth 17 6.32 -2.97 0.62 10.24 34.31 16.48 93.74

LEITHA - 
Deutsch-

Brodersdorf
112 7.50 5.06 0.96 7.77 7.93 8.05 10.81

MAAS - 
Eijsden 23 3.85 -20.81 0.90 4.27 -17.94 4.67 -15.08

MARCH - 
Angern 127 6.16 -9.79 0.98 6.29 -8.65 6.41 -7.54

MUR - 
Spielfeld 189 7.36 3.85 0.96 7.64 6.89 7.92 9.94

PRESANELLA 
- Trentino - P3 25 6.93 -2.88 0.64 10.88 46.17 16.98 122.06

PRESENA - 
Trentino - P11 8 8.23 12.75 0.95 8.66 18.19 9.10 23.78

PRESENA - 
Trentino - P9 24 5.66 -19.59 0.80 7.04 -2.37 8.71 18.30

RHINE - 
Diepoldsau 293 7.63 4.67 0.89 8.55 16.28 9.56 28.97

RHINE - 
Lobith 23 6.45 -7.26 0.73 8.79 14.75 11.92 44.11

RHINE - 
Lustenau 115 7.78 8.15 0.99 7.89 9.50 7.99 10.82

RHINE - Weil 129 7.39 1.64 0.91 8.12 9.49 8.89 17.86
RHONE - 
Chancy 78 8.14 9.39 0.82 9.93 30.36 12.07 55.46

RHONE - Porte 
du Scex 294 7.28 -0.79 0.90 8.09 10.54 8.97 22.77

SALZACH - 
Salzburg 257 7.51 4.82 0.98 7.67 6.78 7.83 8.72

SAVA - 
Jesenice na 
Dolenjskem

37 6.55 -0.53 0.72 9.09 22.64 12.53 54.10
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SAVA - 
Mostec 17 4.70 -17.33 0.64 7.30 6.35 11.22 42.00

SAVA - 
Smlednik 16 6.14 -5.09 0.68 9.05 22.67 13.27 62.80

SAVA - Sobec 16 3.86 -29.04 0.48 8.03 12.52 16.52 97.05
SCHELDE - 
S.V.Ouden 

Doel
21 5.14 -10.11 0.98 5.25 -9.57 5.36 -9.05

UHLIRSKA - 
Porsche Profile 126 6.40 -3.48 0.92 6.98 2.35 7.60 8.48

VAH - 
Liptovsky 
Mikulas

48 6.70 -2.12 0.95 7.09 2.00 7.48 6.20

Table S1. Samples size, Pearson correlation coefficient (r), slopes and intercepts obtained by the 

application of the OLS, RMA and MA methods to the δ2H-δ18O relation for stream water data 

retrieved by the GNIR database.

Analytical uncertainty
Catchment

δ2H (‰) δ18O (‰)
References

DANUBE - Engelhartszell
DANUBE - Hainburg

DANUBE - Medvedovo
DANUBE - Tulcea
DANUBE - Vienna

DRAU - Neubruecke
ILL - Gisingen

INN - Kirchbichl
INN - S'Chanf

1.0 0.10

Rank D., Wyhlidal S., Schott K., Weigand S., 
Oblin A., 2018. Temporal and spatial distribution 
of isotopes in river water in Central Europe: 50 
years experience with the Austrian network of 
isotopes in rivers. Isotopes in Environmental and 
Health Studies, 54, 115-136. DOI: 
10.1080/10256016.2017.1383906
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INN - Schaerding
LEITHA - Deutsch-

Brodersdorf
MARCH - Angern
MUR - Spielfeld

RHINE - Diepoldsau
RHINE - Lobith

RHINE - Lustenau
RHINE - Weil

SALZACH - Salzburg
KOKRA - Mouth

SAVA - Jesenice na 
Dolenjskem

SAVA - Mostec
SAVA - Smlednik

SAVA - Sobec

1.0 0.10

Ogrinc N., Kanduč T., Stichler W., Vreča P., 
2008. Spatial and seasonal variations in δ18O and 
δD values in the River Sava in Slovenia. Journal 
of Hydrology, 359, 303-312.
DOI: 10.1016/j.jhydrol.2008.07.010

PRESANELLA - Trentino - 
P3

PRESENA - Trentino - P11
PRESENA - Trentino - P9

2.0 0.20

Chiogna G., Santoni E., Camin F., Tonon A., 
Majone B., Trenti A., Bellin A., 2014. Stable 
isotope characterization of the Vermigliana 
catchment. Journal of Hydrology, 509, 295-305. 
DOI: 10.1016/j.jhydrol.2013.11.052

RHONE - Chancy

RHONE - Porte du Scex
0.4 0.07

Halder J., Decrouy L., Vennemann T.W., 2013. 
Mixing of Rhône River water in Lake Geneva 
(Switzerland-France) inferred from stable 
hydrogen and oxygen isotope profiles. Journal of 
Hydrology, 477, 152–164.
DOI: 10.1016/j.jhydrol.2012.11.026

VAH - Liptovsky Mikulas 1.0 0.20

Povinec P.P., Zéenišová Z., Šivo S., Ogrinc N., 
Richtáriková M., Breier R., 2013. Radiocarbon 
and stable isotopes as groundwater tracers in the 
Danube river basin of SW Slovakia. Proceedings 
of the 21st International Radiocarbon 
Conference. Radiocarbon, 55, 1017-1028. 
DOI: 10.1017/S003382220005815X

Table S2. Analytical uncertainty considered in the error propagation analysis for stream water data 

retrieved by the GNIR database.

Fig. S1. Scatter plots between a) Pearson correlation coefficient, r, computed between 2H and 18O 

and difference in the intercepts (OLS-RMA); b) r computed between 2H and 18O and difference in 

the intercepts (OLS-MA); c) sample size and difference in the intercepts (OLS-RMA); d) sample size 

and difference in the intercepts (OLS-MA); e) δ18O range (difference between maximum and 

https://doi.org/10.1017/S003382220005815X
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minimum) and difference in the intercepts (OLS-RMA); f) δ18O range and difference in the intercepts 

(OLS-MA).
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