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A B S T R A C T

In procedural knowledge space theory (PKST), a ‘‘problem space’’ is a formal representation of the knowledge
that is needed for solving all of the problems of a certain type. The competence state of a real problem solver
is a subset of the problem space which satisfies a specific condition, named the ‘‘sub-path assumption’’. There
could exist specific ‘‘symmetries’’ in a problem space that make certain parts of it ‘‘equivalent’’ up to those
symmetries. Whenever an equivalence relation is introduced for elements in a problem space, the question
almost naturally arises whether the collection of the induced equivalence classes forms, itself, a problem
space. This is the main question addressed in the present article, which is restated as the problem of defining a
homomorphism of one problem space into another problem space. Two types of homomorphisms are examined,
which are named the ‘‘strong’’ and the ‘‘weak homomorphism’’. The former corresponds to the usual notion
of ‘‘operation preserving mapping’’. The latter preserves operations in only one direction. Two algorithms are
developed for testing the existence of homomorphisms between problem spaces. The notions and algorithms
are illustrated in a series of three examples in which quite well-known neuro-psychological and cognitive tests
are employed.
. Introduction

Procedural knowledge space theory (Stefanutti, 2019; Stefanutti &
lbert, 2003) is at the meeting point between the theory of problem
paces (Newell & Simon, 1972) and that of knowledge spaces (Doignon
 Falmagne, 1985, 1999). In PKST, a ‘‘problem space’’ is a formal repre-

entation of the (procedural) knowledge that is needed for solving all of
he problems of a certain type (e.g., all the different problems that can
e conceived in the puzzle of the Tower of Hanoi, or all of the problems
n the Tower of London test or, still, all of the problems of exiting a
iven labyrinth, etc.). In this respect, the problem space is regarded
s the competence (state) of a perfect problem solver. The theory is
airly recent and its applications are not many, at the present time.
onetheless, a few interesting ones are worth mentioning: Stefanutti

2019) derived the problem space and the corresponding knowledge
pace for the puzzle of the buckets of water; Stefanutti, de Chiusole,
nd Brancaccio (2021) applied PKST to the neuropsychological test
f the Tower of London; an interesting application to the game of
o can be found in Sgaravatti (2022). Concerning problem-solving in
ducation, applications can be found in Stefanutti (2014) and, albeit
ith a different perspective, also in Augustin, Hockemeyer, Kickmeier-
ust, and Albert (2010) and Kickmeier-Rust and Albert (2010), who
eveloped computerized educational games.

The objective of PKST is twofold. On the one side, it aims at describ-
ng the ‘‘competence state’’ of a real problem solver, which could be

∗ Correspondence to: Department of Philosophy, Sociology, Education, and Applied Psychology, Via Venezia, 14, 35131, Padova, Italy
E-mail address: andrea.brancaccio@unipd.it (A. Brancaccio).

different from that of a perfect problem solver. In PKST, the competence
state of a real problem solver is a subset of the entire problem space
which satisfies a specific condition, named the ‘‘sub-path assumption’’.
Informally, this assumption states that a person who is capable of
solving a given problem, by following a certain solution path, will also
be able to solve all of the sub-problems that are encountered along that
solution path. The collection of all the competence states of a given
problem space is the ‘‘competence space’’.

The second objective of PKST is to describe and (possibly) predict
the observable behavior of a problem solver. This not only includes
the description and prediction of accuracy (i.e., correctness of the
problem solution) but also the description and prediction of the single
steps in the observable solution process carried out by an individual in
attempting to solve a given problem.

Informally, a problem space consists of a set of problem states (or
problem configurations) and a collection of rules that can be applied for
transforming any given problem state into another one in the problem
space. If the type of problem is ‘‘well-specified’’ (which is the case for
all the examples provided in the present article), then both the problem
states and the rules can be objectively stated, and the problem space
can be constructed (e.g., by a computerized procedure) and displayed.

The concept of a ‘‘problem state’’ is a primitive in PKST, and
therefore no assumptions are made concerning the details of its internal
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structure. Such assumptions should, eventually, be supplemented in
he specific applications of the theory. Whatever internal structure a
ingle problem state has, its representation could be more or less rich
n details and more or less tight to the way the problem state appears
o the eyes of the problem solver. However, in most cases, not all of
he details need to be considered for solving the problem.

There could exist specific ‘‘symmetries’’ in a problem space that
make certain problem states or certain rules ‘‘equivalent’’ up to those
symmetries. In turn, equivalences among problem states and equiv-
alences among transformation rules may give rise to equivalences
among problems. Whenever an equivalence relation is introduced for
the problem states or for the rules in a problem space, the question
almost naturally arises whether the collection of the induced equiva-
lence classes forms, itself, a problem space. This is the main question
addressed in the present article. An answer to this question solves
two distinct, though related open questions in PKST. The first one
is methodological: In certain applications, problem spaces tend to be
very large, giving rise to even larger competence spaces. Exploiting
symmetries can dramatically reduce the size of the problem space. The
econd question is theoretical and it is about the ‘‘psychological equiv-
lence’’ among problems. Two distinct problems are ‘‘psychologically
quivalent’’ if an individual that is capable of solving the former, is
lso capable of solving the latter, and vice versa. The problem-solving
ehavior of an individual may provide evidence in favor or against the
quivalence between certain problems, problem states, or operations.
he problem space homomorphism provides a tool for obtaining a
oarser and more abstract problem space from a concrete one. The
bstract problem space on the one side and the concrete problem spaces

on the other side are thus alternative models that can be tested against
empirical evidence through approaches like that described in Stefanutti
et al. (2021).

Two types of homomorphisms between problem spaces are exam-
ned. The strong homomorphism corresponds to the usual notion of

‘‘operation preserving mapping’’ that is found in abstract algebra. Most
importantly, it always gives rise to a congruence partition. In certain
ractical applications, the strong homomorphism imposes unnecessary
onstraints. Due to such constraints, certain problem equivalences, that
re required or expected to hold true in empirical observations, are
orbidden by the strong homomorphism. This is a problem that calls for
 weaker form of homomorphism. The weak homomorphism proposed

in this article preserves operations in only one direction, giving rise to
 weaker form of congruence partition.

This paper is organized as follows: Section 2 provides the necessary
athematical background on KST and PKST. In Section 3, the concept

f problem space is characterized as a ternary relation satisfying a
et of five axioms. Moreover, the concept of an incomplete problem
pace is introduced. Section 4 provides the definitions of two different

types of homomorphisms between two problem spaces and presents
ome theoretical results about them. In Section 5, two algorithms are
rovided that exploit the obtained theoretical results for building and
esting problem space homomorphisms. Section 6 shows, with three
xamples, the potential of the proposed approach for both research and
pplications. The examples refer to two planning and problem-solving
bility tests, namely the Tower of London test and the tower of Hanoi

task, and to a mental rotation task to study spatial abilities. A summary
nd some final remarks are given in Section 7.

2. Background

2.1. Homomorphism between algebraic structures

A homomorphism in algebra is a mapping between two algebraic
structures of the same type, that preserves their operations and rela-
tions (see e.g., Rotman, 2012). If the algebraic structures are as simple
s a single set of objects equipped with a single binary operation then,
ormally, given two algebraic structures (𝐴, ⋅) and (𝐵 , ⋆), where 𝐴, 𝐵
 m

2 
are non-empty sets, ⋅ is a binary operation for 𝐴, and ⋆ is a binary
operation for 𝐵, the mapping 𝑓 ∶ 𝐴 → 𝐵 is a homomorphism if
𝑓 (𝑎 ⋅ 𝑏) = 𝑓 (𝑎) ⋆ 𝑓 (𝑏), (1)

for every 𝑎, 𝑏 ∈ 𝐴. The concept of homomorphism has been extended
nd used in several scientific fields, such as physics, computer sci-

ence, biology, and psychology (e.g., Mohan, Devi, & Prakash, 2017;
Schuurman & Yarkony, 2006; Yoeli & Ginzburg, 1964). In psychology,
omomorphism is one of the key concepts for measurement. For in-
tance, the ordinal scale (Krantz, Luce, Suppes, & Tversky, 1971) is
he set of all the ‘‘order-preserving’’ homomorphisms from an empirical
tructure into a theoretical structure, preserving the relation ‘‘greater
or lesser) than’’.

A property of the homomorphism that will be useful in this work
is that it induces a congruence on its domain. A congruence is an
equivalence relation on an algebraic structure that is compatible with
the operation of the structure. More precisely, a homomorphism 𝑓 ∶
𝐴 → 𝐵 induces an equivalence relation ∼𝑓 on the set 𝐴, such that
iven any 𝑎, 𝑏 ∈ 𝐴, 𝑎 ∼𝑓 𝑏 if 𝑓 (𝑎) = 𝑓 (𝑏). This equivalence relation
s compatible with the operation ⋅ in the sense that 𝑎 ∼𝑓 𝑏 and 𝑐 ∼𝑓 𝑑
mplies 𝑎 ⋅ 𝑐 ∼𝑓 𝑏 ⋅ 𝑑. Because of this property, the binary operation ⋆
an be consistently defined at the level of the equivalence classes. Let
𝑎] = {𝑏 ∈ 𝐴 ∶ 𝑏 ∼𝑓 𝑎} be the equivalence class of 𝑎 ∈ 𝐴. Then, given
ny two 𝑎, 𝑏 ∈ 𝐴, [𝑎 ⋅ 𝑏] = [𝑎] ⋆ [𝑏].

2.2. Knowledge space theory

The theory of knowledge structures is a mathematical approach
to the assessment of human knowledge (Doignon & Falmagne, 1999;
Falmagne & Doignon, 2011). The main application of KST is to build
adaptive assessment tools that can recover ‘‘what an individual knows’’
y asking a minimum number of questions. Let 𝑄 be a nonempty

set of problems that can be created in a given field of knowledge
(e.g., statistics, mathematics, physics, etc.). Then, individual knowledge
is represented by a subset 𝐾 ⊆ 𝑄, called a knowledge state, and
it represents the subset of problems that an individual masters. A
knowledge structure  is the collection of all the existing knowledge
states in the population. Formally, a knowledge structure  is any
subset of 2𝑄, containing at least 𝑄 and the empty set ∅. Among the

ost important types of knowledge structures there are the knowledge
spaces which are closed under union, meaning that given any subfamily
 ⊆ , the union ⋃

 is in . A special case of a knowledge space is
the learning space, also known as a well-graded knowledge space, that
is characterized by the property such that for every non-empty state
𝐾 ∈  there is a problem 𝑞 ∈ 𝐾 such that 𝐾⧵{𝑞} is still in .

Several methods and procedures exist that can be applied to build
he knowledge structure, given the set 𝑄 (see e.g., de Chiusole, Ste-
anutti, & Spoto, 2017; Düntsch & Gediga, 1996; Heller, Augustin,

Hockemeyer, Stefanutti and Albert, 2013; Heller, Ünlü and Albert,
2013; Koppen, 1993; Spoto, Stefanutti, & Vidotto, 2016; Stefanutti,
Albert, & Hockemeyer, 2005). The general idea behind all of them is
o define relationships among the problems. Such relationships provide
onstraints that specify which subsets of 𝑄 are knowledge states. One
pproach to defining the relationships among problems is to take into

account the skills implied in the solution of a problem itself. Many
authors contributed to an extension of KST, named competence-based
knowledge space theory (CbKST; Heller, Augustin et al., 2013; Heller,

nlü et al., 2013; Stefanutti & Albert, 2003) that takes into account
the skills. Given a set 𝛱 of skills, the competence state of an individual
is a subset 𝐶 ⊆ 𝛱 . The two sets 𝑄 and 𝛱 are related through a skill
map (Doignon, 1994), that is a triple (𝑄, 𝛱 , 𝜏) where 𝜏 ∶ 𝑄 → 2𝛱
s a mapping assigning a nonempty subset of skills in 𝛱 to each of
he problems in 𝑄. Doignon (1994) describes two alternative models

for skill maps, that are named the conjunctive model and the disjunctive
odel. Given a problem 𝑞, under the conjunctive model, all the skills in
(𝑞) are necessary for solving problem 𝑞, whereas under the disjunctive
odel, any skill in 𝜏(𝑞) is sufficient.
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2.3. Procedural KST

Procedural KST (Stefanutti, 2019) is a framework derived from KST
or the formal modeling and assessment of human problem-solving. The
undamental notion in PKST is that of a ‘‘problem space’’ (Newell &

Simon, 1972). The concepts in this section summarize the theoretical
results obtained in Stefanutti (2019). They are explained with the help
of a concrete example based on the Tower of Hanoi (ToH) tasks. The
ToH tasks used in this example consist of three pegs and two disks of
different diameters that can slide into any peg. Disks can be moved,
only one at a time, from one peg to another, and the larger disk
cannot be placed over the smaller one. The objective of the task is to
match an ‘‘initial’’ and a ‘‘final’’ configuration of the problem in the
minimum number of moves. The strategies involved in solving the ToH
are extensively described in Section 6.1.

Let 𝛺 be a set of moves (named ‘‘operations’’ henceforth) and
1𝜔2 …𝜔𝑛 be a sequence of operations in 𝛺. Given two sequences
= 𝜔1𝜔2 …𝜔𝑚 and 𝛽 = 𝜔𝑚+1𝜔𝑚+2 …𝜔𝑛, their concatenation is the

equences 𝛼 𝛽 = 𝜔1𝜔2 …𝜔𝑚𝜔𝑚+1𝜔𝑚+2 …𝜔𝑛. The collection of all the
equences of operations of arbitrary finite length is
𝛺∗ =

⋃

𝑛∈Z+
𝛺𝑛,

where Z+ is the set of non-negative integer numbers. The collection 𝛺∗

includes the ‘‘empty string’’ of operations 𝜖.
A problem space is a triple 𝐏 = (𝑆 , 𝛺 , ⋅), where 𝑆 is a nonempty set

of problem states, 𝛺 is a nonempty set of operations, and ⋅ ∶ 𝑆 ×𝛺∗ → 𝑆,
is an operator satisfying, for all 𝑠 ∈ 𝑆 and 𝜋 , 𝜎 ∈ 𝛺∗, the following two
properties:

(P1) 𝑠 ⋅ 𝜖 = 𝑠,
(P2) (𝑠 ⋅ 𝜋) ⋅ 𝜎 = 𝑠 ⋅ 𝜋 𝜎.

The operator ⋅ is named operation application. A problem space can be
represented using a directed graph (digraph) (𝑆 , 𝐸), whose vertices are
the problem states in 𝑆, and the set 𝐸 of edges is defined by

𝐸 = {(𝑠, 𝑡) ∈ 𝑆2 ∶ 𝑠 ⋅ 𝜔 = 𝑡 for some 𝜔 ∈ 𝛺}

Fig. 1 shows the directed graph for a portion of the problem
space for the ToH with two disks. Each vertex in the directed graph
orresponds to a problem state in the subset 𝑆ToH = {𝑎, 𝑏, 𝑐 , 𝑑 , 𝑒}
hich contains five out of the nine possible problem states for the ToH

with two disks. The collection 𝛺ToH of operations consists of twelve
operations, six for the larger disk and six for the smaller one. Naming
‘‘left’’, ‘‘center’’ and ‘‘right’’, the three pegs, the operations for each of
he two disks are: (1) left to center; (2) center to right; (3) left to right;
4) center to left; (5) right to center; (6) right to left.

Let 𝛺ToH = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6, 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6} be the set of
operations, where, for 𝑖 ∈ {1, 2, 3, 4, 5, 6} each 𝑑𝑖 is a move related to
the smaller disk, whereas each 𝐷𝑖 is related to the larger disk. In Fig. 1
the directed edges are labeled by operations in 𝛺ToH. Only the directed
dges that transform a problem state 𝑠 into another problem state 𝑡

are represented in the figure, whereas self-connections are omitted for
larity.

A problem in the problem space 𝐏 is a pair (𝑠, 𝑡) of distinct states in
such that 𝑡 = 𝑠 ⋅𝜋 for some sequence 𝜋 ∈ 𝛺∗. The collection of all the

problems in 𝐏 is thus

𝑄 = {(𝑠, 𝑡) ∈ 𝑆2 ∶ 𝑠 ≠ 𝑡 and 𝑡 = 𝑠 ⋅ 𝜋 for some 𝜋 ∈ 𝛺∗}.

A path for the problem space 𝐏 is any pair 𝑠𝜋 ∈ 𝛱 = 𝑆 × (𝛺∗⧵{𝜖}).
A path 𝑠𝜋 ∈ 𝛱 is said to solve problem (𝑠, 𝑡) ∈ 𝑄 if 𝑠 ⋅ 𝜋 = 𝑡.
The collection of all the paths solving a certain problem (𝑠, 𝑡) ∈ 𝑄 is
denoted 𝜏(𝑠, 𝑡), and each of its members is named a solution path. Thus,
(𝑄, 𝛱 , 𝜏) with 𝜏 ∶ 𝑄 → 2𝛱 ⧵{∅} is a mapping from the domain to the
powerset of 𝛱 excluded the empty set. In Stefanutti (2019) solution
paths are regarded as (procedural) ‘‘skills’’. This identity stems from
3 
Fig. 1. Directed graph of a portion of the problem space for the two disks Tower of
Hanoi.

the fact that the solution paths are part of the unobservable individual
solution process. In many examples provided in this article, the solution
paths are directly observable. The term ‘‘skill’’ is not appropriate for
an observable solution path, which is part of the observable behavior.
Nonetheless, borrowing the terminology of CbKST, the triple (𝑄, 𝛱 , 𝜏)
is named the skill map of the problem space 𝐏.

A solution path 𝑠𝜋 is a sub-path of another solution path 𝑡𝜎 (denoted
y 𝑠𝜋 ⊑ 𝑡𝜎) if there are 𝛼 , 𝛽 ∈ 𝛺∗ such that 𝜎 = 𝛼 𝜋 𝛽 and 𝑡 ⋅ 𝛼 = 𝑠.

The sub-path relation ⊑ is a partial order (i.e., reflexive, transitive,
and antisymmetric) so that (𝛱 , ⊑) is a partially ordered set. A solution
path 𝑡𝜎 ∈ 𝛱 is cyclic if it has a sub-path 𝑠𝜋 ⊑ 𝑡𝜎 with 𝑠 ⋅ 𝜋 = 𝑠. It is
cyclic otherwise. The collection of all the acyclic solution paths in 𝛱
s denoted 𝛱̃ . If 𝑆 and 𝛺 are finite, then also 𝛱̃ is finite. Moreover,
ike 𝛱 , also 𝛱̃ is partially ordered by ⊑.

A subset 𝐶 ⊆ 𝛱 is said to respect path inclusion if the condition

𝑠𝜋 ⊑ 𝑡𝜎 , 𝑡𝜎 ∈ 𝐶 ⟹ 𝑠𝜋 ∈ 𝐶

is satisfied for all 𝑠𝜋 , 𝑡𝜎 ∈ 𝛱 . A subset of solution paths respecting
path inclusion is named a competence state of the problem space 𝐏. The
collection  of all the competence states is the competence space, which
turns out to be closed under both union and intersection (Stefanutti,
2019).

The collection of all the problems in 𝑄 that can be solved by an
individual whose competence state is 𝐶 ∈ , is
𝑝(𝐶) = {(𝑠, 𝑡) ∈ 𝑄 ∶ 𝜏(𝑠, 𝑡) ∩ 𝐶 ≠ ∅}.

It is worth noticing that 𝑝 ∶ 2𝛱 → 2𝑄 is a disjunctive problem
unction for the skill map 𝜏. This collection is named the knowledge
tate delineated by competence state 𝐶. A problem (𝑠, 𝑡) belongs to 𝑝(𝐶)
f and only if 𝐶 contains at least one of the solution paths solving (𝑠, 𝑡).
he collection  of all the knowledge states is the knowledge space
erived from the problem space 𝐏. The knowledge space turns out to
e closed under union and an algorithm for its automatic derivation
rom a problem space was presented in Stefanutti (2019).

Consider for example the subset 𝑄ToH = {(𝑎, 𝑒), (𝑏, 𝑒), (𝑐 , 𝑒), (𝑑 , 𝑒)} of
all the problems with final state 𝑒 obtainable from the problem space
in Fig. 1. The collection of all the acyclic solution paths is 𝛱ToH =
𝑎𝑑3𝐷4𝑑2, 𝑏𝑑6𝐷4𝑑2, 𝑐 𝐷4𝑑2, 𝑑 𝑑2}. For the collection of problems 𝑄ToH,
he skill map 𝜏ToH ∶ 𝑄ToH → 𝛱ToH is then defined as follows:

𝜏ToH(𝑎, 𝑒) = {𝑎𝑑3𝐷4𝑑2},

𝜏ToH(𝑏, 𝑒) = {𝑏𝑑6𝐷4𝑑2},

𝜏 (𝑐 , 𝑒) = {𝑐 𝐷 𝑑 },
ToH 4 2
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𝜏ToH(𝑑 , 𝑒) = {𝑑 𝑑2}.
It can be seen that every problem has exactly one solution path (in
general a problem may have more than one solution path).

At this point, the reader can easily check that the collection ToH of
ll the subsets of 𝛱ToH that respect path inclusion is:

ToH = {∅, {𝑑 𝑑2}, {𝑐 𝐷4𝑑2, 𝑑 𝑑2}, {𝑏𝑑6𝐷4𝑑2, 𝑐 𝐷4𝑑2, 𝑑 𝑑2},
× {𝑎𝑑3𝐷4𝑑2, 𝑐 𝐷4𝑑2, 𝑑 𝑑2}, 𝛱ToH}.

Finally, by applying the problem function 𝑝 to each competence state
n ToH the resulting knowledge space is obtained:

ToH = {∅, {(𝑑 , 𝑒)}, {(𝑐 , 𝑒), (𝑑 , 𝑒)}, {(𝑏, 𝑒), (𝑐 , 𝑒), (𝑑 , 𝑒)},
{(𝑎, 𝑒), (𝑐 , 𝑒), (𝑑 , 𝑒)}, 𝑄ToH}.

Stefanutti et al. (2021) proposed a probabilistic model, called the
Markov solution process model (MSPM), for the empirical valida-
tion of a knowledge space obtained from a problem space. More-
over, Brancaccio, de Chiusole, and Stefanutti (2023) extended to prob-
lem spaces the continuous Markov procedure for adaptive assessment
in KST (Falmagne & Doignon, 1988).

3. Relational characterization of a problem space and incomplete
problem spaces

This section is about the characterization of a problem space in
erms of a ternary relation 𝑅 satisfying five distinct axioms. Like in
he previous sections, 𝑆 denotes a nonempty and finite set of problem
tates, 𝛺 denotes a nonempty and finite set of operations, and 𝛺∗ is the

set of all sequences of 𝛺. Let then 𝑅 ⊆ 𝑆 ×𝛺∗ ×𝑆 be a ternary relation.
The five axioms for 𝑅 are as follows:

(PS1) for all 𝑎 ∈ 𝑆, (𝑎, 𝜖 , 𝑎) ∈ 𝑅 (identity);
(PS2) for all 𝑎, 𝑏, 𝑐 ∈ 𝑆 and all 𝜋 ∈ 𝛺∗, if (𝑎, 𝜋 , 𝑏), (𝑎, 𝜋 , 𝑐) ∈ 𝑅 then 𝑏 = 𝑐

(uniqueness);
(PS3) for all 𝑎 ∈ 𝑆 and all 𝜋 ∈ 𝛺∗, there is 𝑏 ∈ 𝑆 with (𝑎, 𝜋 , 𝑏) ∈ 𝑅

(completeness);
(PS4) for all 𝑎, 𝑏, 𝑐 ∈ 𝑆, and all 𝜋 , 𝜎 ∈ 𝛺∗, if (𝑎, 𝜋 , 𝑏), (𝑏, 𝜎 , 𝑐) ∈ 𝑅 then

(𝑎, 𝜋 𝜎 , 𝑐) ∈ 𝑅 (transitivity);
(PS5) for all 𝑎, 𝑏 ∈ 𝑆, and all 𝜋 , 𝜎 ∈ 𝛺∗, if (𝑎, 𝜋 𝜎 , 𝑏) ∈ 𝑅 then there

exists 𝑐 ∈ 𝑆 with (𝑎, 𝜋 , 𝑐) ∈ 𝑅 and (𝑐 , 𝜎 , 𝑏) ∈ 𝑅 (decomposition).

Theorem 1. The triple (𝑆 , 𝛺 , 𝑅) is a problem space if and only if all
xioms from (PS1) to (PS5) are satisfied by 𝑅.

Proof. Assume (𝑆 , 𝛺 , 𝑅) satisfies (PS1) to (PS5). The proof is given
by construction. Define the binary operator ⋅ ∶ 𝑆 × 𝛺∗ → 𝑆 such
that, for 𝑎, 𝑏 ∈ 𝑆 and 𝜋 ∈ 𝛺∗, 𝑎 ⋅ 𝜋 = 𝑏 iff (𝑎, 𝜋 , 𝑏) ∈ 𝑅. The binary
operator ⋅ is well-defined. In fact, by (PS3), for every choice of 𝑎 ∈ 𝑆
and 𝜋 ∈ 𝛺∗ there is 𝑏 ∈ 𝑆 with (𝑎, 𝜋 , 𝑏), hence the operator maps the
whole Cartesian product 𝑆 ×𝛺∗ to 𝑆. Moreover, it follows from (PS2)
that for every 𝑎 ∈ 𝑆 and every 𝜋 ∈ 𝛺∗, there is a unique 𝑏 ∈ 𝑆 with
(𝑎, 𝜋 , 𝑏) ∈ 𝑅. Then, by (PS1), for every 𝑎 ∈ 𝑆, (𝑎, 𝜖 , 𝑎) ∈ 𝑅, which implies
𝑎 ⋅ 𝜖 = 𝑎. Finally, for 𝑎, 𝑐 ∈ 𝑆, and 𝜋 , 𝜎 ∈ 𝛺∗, from (PS4) and (PS5) we
have that (𝑎, 𝜋 𝜎 , 𝑐) ∈ 𝑅 iff there is 𝑏 ∈ 𝑆 such that (𝑎, 𝜋 , 𝑏), (𝑏, 𝜎 , 𝑐) ∈ 𝑅,
which is equivalent to state that 𝑎⋅𝜋 𝜎 = 𝑐 if and only if 𝑎⋅𝜋 = 𝑏, 𝑏⋅𝜎 = 𝑐.
By substitution we obtain that 𝑎 ⋅𝜋 𝜎 = 𝑐 iff (𝑎 ⋅𝜋) ⋅𝜎 = 𝑐, which holds iff
𝑎 ⋅𝜋 𝜎 = (𝑎 ⋅𝜋) ⋅𝜎. The converse implication, from (𝑆 , 𝛺 , ⋅) to the ternary
relation 𝑅 is then trivial. □

Theorem 1 is nothing else than a re-definition of a problem space,
where the binary operator ⋅ is regarded as a ternary relation 𝑅 that
has properties of a functional relation (uniqueness and completeness).
Thus, for 𝑎, 𝑏 ∈ 𝑆 and 𝜋 ∈ 𝛺∗, we write 𝑅(𝑎, 𝜋) = 𝑏 if and only if
(𝑎, 𝜋 , 𝑏) ∈ 𝑅. The notation (𝑆 , 𝛺 , ⋅) is named the functional representation
of a problem space, whereas the notation (𝑆 , 𝛺 , 𝑅) is referred to as
 a
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the relational representation. One can easily convert the former into the
latter by setting, for all 𝑎, 𝑏 ∈ 𝑆 and all 𝜋 ∈ 𝛺∗, (𝑎, 𝜋 , 𝑏) ∈ 𝑅 iff 𝑎 ⋅𝜋 = 𝑏.

In the definition of a problem space (𝑆 , 𝛺 , ⋅) provided in Stefanutti
(2019), the dot operator ⋅ maps the whole Cartesian product 𝑆 × 𝛺∗

to the set 𝑆 of problem states. In other words it is a total function. In
practical applications, it might happen that not all operations 𝜔 ∈ 𝛺 are
applicable to a given problem state 𝑠 ∈ 𝑆. For instance, in the Tower
of Hanoi problem, the operation that consists of moving a disk from
the central peg to the right peg is not applicable if all disks are stacked
on the left peg. This constitutes no problem, because such cases are
represented through equalities of the form 𝑠 ⋅ 𝜔 = 𝑠, and the operation
𝜔 is said to be ineffective in problem state 𝑠.

Nonetheless, in certain applications, or for purposes like those dis-
ussed in the next sections of this article, defining the dot operator as

a partial function might prove to be more convenient. In this section,
a weaker form of problem space is introduced, which is named an
‘‘incomplete problem space’’.

Definition 1. Given two nonempty and disjoint sets 𝑆 and 𝛺, and a
ternary relation 𝑅 ⊆ 𝑆 × 𝛺∗ × 𝑆, the triple (𝑆 , 𝛺 , 𝑅) is an incomplete
problem space if 𝑅 satisfies (PS1) identity, (PS2) uniqueness, (PS4)
transitivity, and (PS5) decomposition, and does not satisfy (PS3) com-
pleteness. For 𝑎 ∈ 𝑆 and 𝜋 ∈ 𝛺∗, 𝑅(𝑎, 𝜋) is said to exist if and only if
there exists 𝑏 ∈ 𝑆 such that (𝑎, 𝜋 , 𝑏) ∈ 𝑅. Otherwise, we say that 𝑅(𝑎, 𝜋)
does not exist.

Thus, an incomplete problem space is just a problem space in which
ompleteness does not hold. Often, along the article, theoretical results
re provided that hold for both incomplete problem spaces and problem
paces. In those cases, to lighten the text statement, it is simply stated
hat the result holds for a (incomplete) problem space.

In the relational representation of a problem space, the dot ⋅ opera-
ion is replaced by a ternary relation 𝑅 ⊆ 𝑆 ×𝛺∗ × 𝑆. In the following,
ome properties of binary relations are extended to the ternary relation
𝑅. Such properties are used in the subsequent sections.

Definition 2. Given two ternary relations 𝑅1, 𝑅2 ⊆ 𝑆 × 𝛺∗ × 𝑆 their
composition is the relation

𝑅1 ∙ 𝑅2 = {(𝑎, 𝜋 𝜎 , 𝑐) ∈ 𝑆 ×𝛺∗ × 𝑆 ∶ (𝑎, 𝜋 , 𝑏) ∈ 𝑅1, (𝑏, 𝜎 , 𝑐) ∈ 𝑅2

× for some 𝑏 ∈ 𝑆}.

Definition 2 extends binary relation composition to the ternary rela-
ions that are of interest here in a rather obvious way. A straightforward

property of the composition is associativity (which also holds with the
composition of binary relations). Using the composition, the 𝑖th power
of a ternary relation 𝑅 is defined if 𝑖 > 0, in which case it is

𝑅𝑖 =

{

𝑅 if 𝑖 = 1;
𝑅 ∙ 𝑅𝑖−1 if 𝑖 > 1;

Definition 3. The reduction of the relation 𝑅 ⊆ 𝑆×𝛺∗×𝑆 is the subset

𝑅◦ = {(𝑎, 𝜋 , 𝑏) ∈ 𝑅 ∶ 𝜋 ∈ 𝛺},

whereas the transitive closure of 𝑅 is the least transitive relation 𝑈 ⊆
×𝛺∗ × 𝑆 including 𝑅.
The terms reduction and transitive closure are borrowed from the

theory of graphs (see, e.g. Aho, Garey, & Ullman, 1972), where they
have similar meanings with respect to directed graphs, rather than
roblem spaces.

It is worth noticing that the reduction may be, but need not be,
ransitive. Moreover, if the relation 𝑅 is that of a problem space, then its
eduction 𝑅◦ satisfies both (PS2) uniqueness and (PS3) completeness.

Trivially, uniqueness holds in 𝑅◦ because it holds in 𝑅 and 𝑅◦ ⊆ 𝑅.
oncerning completeness, given any 𝑎 ∈ 𝑆 and 𝜋 ∈ 𝛺, by completeness
f 𝑅 there exists 𝑏 ∈ 𝑆 such that (𝑎, 𝜋 , 𝑏) ∈ 𝑅. Hence, by definition, it
lso belongs to 𝑅◦.
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Theorem 2. Given any two ternary relations 𝑅, 𝑈 ⊆ 𝑆 × 𝛺∗ × 𝑆, the
elation 𝑈 is the transitive closure of 𝑅 if and only if 𝑈 = 𝑅∙, where
𝑅∙ =

⋃

𝑖∈Z+
𝑅𝑖,

and Z+ is the set of the positive integer numbers.

Proof. The proof will consists of showing that (i) 𝑅∙ includes 𝑅, (ii)
it is transitive and (iii) it is minimal. (i) The fact that 𝑅 ⊆ 𝑅∙ is
trivial, since 𝑅∙ is the union of all the 𝑅𝑖, including 𝑅 itself. (ii) If
(𝑎, 𝜋 , 𝑏), (𝑏, 𝜎 , 𝑐) ∈ 𝑅∙ then by definition of 𝑅∙ there are some numbers
𝑗 , 𝑘 > 0 such that (𝑎, 𝜋 , 𝑏) ∈ 𝑅𝑗 and (𝑏, 𝜎 , 𝑐) ∈ 𝑅𝑘. Since composition ∙
is associative, 𝑅𝑘+𝑗 = 𝑅𝑘 ∙ 𝑅𝑗 , hence (𝑎, 𝜋 𝜎 , 𝑐) ∈ 𝑅𝑘+𝑗 and, 𝑅𝑘+𝑗 ⊆ 𝑅∙

by definition. Therefore, 𝑅∙ is transitive. Finally, (iii) 𝑅∙ is minimal, if
given any transitive relation 𝑋, 𝑅 ⊆ 𝑋 implies 𝑅∙ ⊆ 𝑋. Given any of
such 𝑋, induction on 𝑖 can be used to show that 𝑅𝑖 ⊆ 𝑋 for all the 𝑖. The
case 𝑅 ⊆ 𝑋 in which 𝑖 = 1 holds by assumption. If 𝑅𝑖 ⊆ 𝑋 holds, and
(𝑎, 𝜋 𝜎 , 𝑐) ∈ 𝑅𝑖+1, then (𝑎, 𝜋 , 𝑏) ∈ 𝑅 and (𝑏, 𝜎 , 𝑐) ∈ 𝑅𝑖 for some 𝑏 ∈ 𝑆, by
definition of ∙. Therefore, given the premises (𝑎, 𝜋 , 𝑏), (𝑏, 𝜎 , 𝑐) ∈ 𝑋 and
(𝑎, 𝜋 𝜎 , 𝑐) ∈ 𝑋 by transitivity. It follows that 𝑅𝑖+1 ⊆ 𝑋. Finally, since
𝑅𝑖 ⊆ 𝑋 for all 𝑖 implies 𝑅∙ ⊆ 𝑋. □

Theorem 3. Let 𝐏 = (𝑆 , 𝛺 , 𝑅) be a problem space and 𝐼 = {(𝑎, 𝜖 , 𝑎) ∶ 𝑎 ∈
𝑆}. Given any 𝑈 ⊆ 𝑆 ×𝛺∗ ×𝑆 the following two conditions are equivalent:

(1) 𝑅 = 𝑈 ∙ ∪ 𝐼 ,
(2) 𝑅◦ ⊆ 𝑈 ⊆ 𝑅.

Proof. (2) ⟹ (1). Let (𝑎, 𝜋 , 𝑏) ∈ (𝑈 ∙ ∪ 𝐼) ▵ 𝑅, with ▵ the
ymmetric difference of two sets. Then, there are two cases: If 𝜋 ∈ 𝛺
hen obviously (𝑎, 𝜋 , 𝑏) ∈ 𝑅◦ ⊆ 𝑅 ∩ (𝑈 ∙ ∪ 𝐼), otherwise, 𝜋 = 𝜔1 …𝜔𝑛,

with 𝜔1,…𝜔𝑛 ∈ 𝛺. Therefore there are 𝑠1,… 𝑠𝑛−1 ∈ 𝑆 such that
𝑎, 𝜔1, 𝑠1) … (𝑠𝑛−1, 𝜔𝑛, 𝑏) ∈ 𝑅◦. Thus, by transitivity (𝑎, 𝜋 , 𝑏) ∈ (𝑈 ∙∪𝐼) ∩𝑅

and (𝑈 ∙ ∪ 𝐼) ▵ 𝑅 must be empty implying that 𝑈 ∙ ∪ 𝐼 = 𝑅. (1) ⟹ (2).
Given that 𝑅 = 𝑈 ∙ ∪ 𝐼 and 𝑈 ⊆ 𝑈 ∙, it immediately follows from
(𝑎, 𝜋 , 𝑏) ∈ 𝑈 that (𝑎, 𝜋 , 𝑏) ∈ 𝑅. Otherwise, suppose that there exists a
(𝑎, 𝜋 , 𝑏) ∈ 𝑅◦ ⧵ 𝑈 . Since 𝜋 ∈ 𝛺, there cannot be (𝑎, 𝜎 , 𝑐) and (𝑐 , 𝛼 , 𝑏) ∈
𝑈 ∙ ∪ 𝐼 such that 𝜋 = 𝜎 𝛼. Thus, (𝑎, 𝜋 , 𝑏) ∉ 𝑈 ∙ ∪ 𝐼 . □

It should be observed that Theorem 3 implies the uniqueness of the
reduction of any ternary relation 𝑅 ⊆ 𝑆 ×𝛺∗ × 𝑆. In fact, suppose that
there exist two subsets 𝑅′ and 𝑅′′ of 𝑅, that satisfy Definition 3. Then
t follows from Condition (2) of Theorem 3, that 𝑅′ ⊆ 𝑅′′ and 𝑅′′ ⊆ 𝑅′,

which imply 𝑅′ = 𝑅′′, showing that the reduction is unique.

4. Problem space homomorphisms

Problem spaces are formal representations of the possible solution
ays of a problem or of a family of problems. Especially in case

he problem space is complex and huge, it is unlikely that human
ndividuals solve problems by using a cognitive representation that
xactly reproduces the ‘‘concrete problem space’’. It is more likely

that such a representation undergoes various types of simplifications,
issing all those details of the reference problem space that are not

relevant to the problem solution.
Although complex, concrete problem spaces are often characterized

by various types of ‘‘symmetries’’. To give an example, in the problem
space of the Tower of London (ToL; Shallice, 1982) test every problem
state could be described as a 6-tuple (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) where 𝑥1, 𝑥2
nd 𝑥3 represent the three available positions on the left peg, 𝑥4 and
5 represent the two available positions on the central peg, and 𝑥6
epresents the only available position on the right peg. Additionally,
he set {0, 1, 2, 3} is used to represent the three colored balls, with
no ball’ represented by 0. In the 6-tuple representing a ToL state, the
pecific assignment of colors – for instance, numbers 1 for black, 2 for
 i
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red, and 3 for green – is completely inessential with respect to finding
a solution. Therefore, the problem that consists of transforming the
state (2, 3, 0, 0, 0, 1) into the state (1, 2, 3, 0, 0, 0) is ‘‘equivalent up to color
permutation’’ to the problem of transforming the state (3, 1, 0, 0, 0, 2)
nto the state (2, 3, 1, 0, 0, 0).

Symmetries allow to construct of simpler and more abstract rep-
resentations of the concrete problem space. The construction of an
abstract representation cannot occur in total arbitrariness, however.

here must be a guarantee that any solution of any problem in the
bstract representation can be tracked down to a solution of a problem
n the concrete problem space. This section is about the link between
he concrete and the abstract problem space. It takes on the form of a
pecial type of homomorphism between two problem spaces.

Definition 4. A weak homomorphism of a (incomplete) problem space
(𝑆1, 𝛺1, 𝑅1) into another (incomplete) problem space (𝑆2, 𝛺2, 𝑅2) is a
air (𝜙, 𝛾) of mappings 𝜙 ∶ 𝑆1 → 𝑆2 and 𝛾 ∶ 𝛺∗

1 → 𝛺∗
2 such that, for

𝑎, 𝑏 ∈ 𝑆1, 𝜋 , 𝜎 ∈ 𝛺∗
1 ,

(1) (𝑎, 𝜋 , 𝑏) ∈ 𝑅1 ⟹ (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2;
(2) 𝛾(𝜋)𝛾(𝜎) = 𝛾(𝜋 𝜎).
The pair of mappings (𝜙, 𝛾) is a strong homomorphism if it is a weak

homomorphism such that, for every 𝑎, 𝑏 ∈ 𝑆1 and every 𝜋 ∈ 𝛺∗
1 ,

(3) (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2 ⟹ ∃𝑐 ∈ 𝑆1 ∶ (𝑎, 𝜋 , 𝑐) ∈ 𝑅1, 𝜙(𝑏) = 𝜙(𝑐).
Moreover, the homomorphism is an isomorphism if both 𝜙 and

𝛾 are bijections. Furthermore, the mapping 𝛾 is said to be a monoid
omomorphism if 𝛾(𝜋)𝛾(𝜎) = 𝛾(𝜋 𝜎) for all 𝜋 , 𝜎 ∈ 𝛺∗

1 .

Condition (3) of the definition of a strong homomorphism requires
hat the operation is preserved bidirectionally, as in a standard ho-
omorphism. However, there are several empirical situations where

ertain problem equivalences are expected or required to hold, even
hough they violate Condition (3) of a strong homomorphism. The
ntroduction of a weak homomorphism allows for preserving the opera-
ion only in one direction, from the larger problem space to the smaller
ne, while maintaining the required problem equivalences.

The following series of three examples further clarifies these sce-
arios and illustrates the impact on the problem space. Specifically,
hey illustrate simple cases where the presence of ineffective triples

in a problem space makes it impossible to establish a homomorphism.
However, by removing the ineffective triples, while maintaining the
problem space essentially the same, a weak homomorphism can be
established. Furthermore, the examples demonstrate a situation where
the strong homomorphism does not hold due to the lack of complete-
ness (PS3), and other situations where the strong homomorphism holds
even between incomplete problem spaces.

Example 1. Let 𝐏1 = (𝑆 , 𝛺 , 𝑅1), 𝐏2 = (𝑆 , 𝛺 , 𝑅2), 𝐏3 = (𝑆′, 𝛺′, 𝑅3)
be three problem spaces with 𝑆 = {𝑎, 𝑏, 𝑐 , 𝑑}, 𝛺 = {𝛼 , 𝛽}, 𝑆′ = {𝑒, 𝑓},
𝛺′ = {𝛿} and

𝑅◦
1 = {(𝑎, 𝛼 , 𝑏), (𝑎, 𝛽 , 𝑎), (𝑐 , 𝛼 , 𝑐), (𝑐 , 𝛽 , 𝑑), (𝑏, 𝛼 , 𝑏), (𝑏, 𝛽 , 𝑏), (𝑑 , 𝛼 , 𝑑), (𝑑 , 𝛽 , 𝑑)},

𝑅◦
2 = {(𝑎, 𝛼 , 𝑏), (𝑐 , 𝛽 , 𝑑)},

𝑅◦
3 = {(𝑒, 𝛿 , 𝑓 )}

are the reductions of 𝑅1, 𝑅2, and 𝑅3, respectively. It should be observed
that, up to deletion of ineffective moves (triples), problem space 𝐏1 and
incomplete problem space 𝐏2 are essentially the same. Namely, 𝐏2 is
obtained from 𝐏1 by deleting from 𝑅◦

1 all triples of the form (𝑠, 𝜔, 𝑠)
with 𝑠 ∈ 𝑆 and 𝜔 ∈ 𝛺.

Let (𝜙 ∶ 𝑆 → 𝑆′, 𝛾 ∶ 𝛺 → 𝛺′) be a pair of mappings such that
(𝑎) = 𝜙(𝑐) = 𝑒, 𝜙(𝑏) = 𝜙(𝑑) = 𝑓 , and 𝛾(𝛼) = 𝛾(𝛽) = 𝛿. It is easily seen

hat (𝜙, 𝛾) is a weak homomorphism between 𝐏2 and 𝐏3. In fact, one
as (𝜙(𝑎), 𝛾(𝛼), 𝜙(𝑏)) = (𝜙(𝑐), 𝛾(𝛽), 𝜙(𝑑)) = (𝑒, 𝛿 , 𝑓 ) ∈ 𝑅3. It is not a strong
omomorphism because (𝜙(𝑎), 𝛾(𝛽), 𝜙(𝑏)) = (𝑒, 𝛿 , 𝑓 ) ∈ 𝑅3, however there
s no 𝑧 ∈ 𝑆 with (𝑎, 𝛽 , 𝑧) ∈ 𝑅 and 𝜙(𝑧) = 𝜙(𝑏).
2
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On the other side, concerning 𝐏1 and 𝐏3, we observe that (𝑎, 𝛽 , 𝑎) ∈
𝑅1, however (𝜙(𝑎), 𝛾(𝛽), 𝜙(𝑎)) is not in 𝑅3, showing that (𝜙, 𝛾) is not
a homomorphism between 𝐏1 and 𝐏3. It can be shown, indeed, that
o homomorphism at all can be established from 𝐏1 to 𝐏3. In fact,
onsidering that (𝑎, 𝛽 , 𝑎) is in 𝑅1, whatever value one assigns to 𝜙(𝑎),
(𝜙(𝑎), 𝛾(𝛽), 𝜙(𝑎)) ∈ 𝑅3 would imply 𝑒 = 𝑓 , which is false.

Example 2. An applicative example of the concepts presented so far
is the Tower of London test. This test involves three pegs of different
heights and three balls of different colors that can be moved between
the pegs according to certain rules. All possible configurations of the
balls are displayed in Fig. 4, and a detailed explanation of the problem
space of the test can be found in Section 6.2.

Regarding problem spaces 𝐏1 and 𝐏2 used in Example 1, we assume
that problem states 𝑎 and 𝑐 are, respectively, the configuration shown in
row 3 and column 1, and the configuration shown in row 3 and column
 of Fig. 4. Similarly, 𝑏 and 𝑑 are, respectively, the configuration in row
, column 1, and the configuration in row 4, column 3. The operation

𝛼 refers to moving the red ball from the leftmost peg to the center peg,
while 𝛽 refers to moving the black ball from the leftmost peg to the
center peg. Since, in configuration 𝑎, the black ball is already in the
center peg, operation 𝛽 is ineffective on it. Similarly, in 𝑐 the red ball
is below the black ones and cannot be moved, hence operation 𝛼 is
ineffective on 𝑐.

On the other hand regarding incomplete problem space 𝐏3, the
roblem state 𝑒 ∈ 𝑆′ is the ToL configuration in which two balls are on
he leftmost peg and one is on the center peg, regardless of the colors.
ikewise, 𝑓 ∈ 𝑆′ is the configuration in which two balls are on the

center peg and one is on the leftmost peg, regardless of the colors.
Lastly, the operation 𝛿 refers to moving a single ball from the leftmost
peg to the center peg.

The homomorphism (𝜙, 𝛾) establishes an equivalence up to color
permutation between problem states and operations, respectively. This
equivalence is likely to be psychologically relevant. However, as seen
n the previous example, it is not possible to define it as long as
neffective moves are considered. Therefore, a incomplete problem
pace is needed, in which such moves do not exist.

The third example presents two situations in which a strong homo-
orphism can be defined between problem spaces without incurring

nto the issues presented previously.

Example 3. Let 𝐏3 = (𝑆′, 𝛺′, 𝑅3), 𝑃4 = (𝑆 , 𝛺 , 𝑅4), 𝑃5 = (𝑆 , 𝛺 , 𝑅5),
be three incomplete problem spaces with 𝑆 = {𝑎, 𝑏, 𝑐 , 𝑑}, 𝛺 = {𝛼 , 𝛽},
𝑆′ = {𝑒, 𝑓}, 𝛺′ = {𝛿} and

𝑅◦
3 = {(𝑒, 𝛿 , 𝑓 )},

𝑅◦
4 = {(𝑎, 𝛼 , 𝑏), (𝑎, 𝛽 , 𝑑), (𝑐 , 𝛼 , 𝑏), (𝑐 , 𝛽 , 𝑑)},

𝑅◦
5 = {(𝑎, 𝛼 , 𝑏), (𝑎, 𝛽 , 𝑏), (𝑐 , 𝛼 , 𝑑), (𝑐 , 𝛽 , 𝑑)},

are the reductions of 𝑅3, 𝑅4, and 𝑅5, respectively. Let (𝜙 ∶ 𝑆 →
𝑆′, 𝛾 ∶ 𝛺 → 𝛺′) be such that 𝜙(𝑎) = 𝜙(𝑐) = 𝑒, 𝜙(𝑏) = 𝜙(𝑑) = 𝑓 , and
𝛾(𝛼) = 𝛾(𝛽) = 𝛿. Then (𝜙, 𝛾) is a strong homomorphism from 𝐏4 to 𝐏3
and from 𝐏5 to 𝐏3. Concerning 𝐏4 and 𝐏3, one has (𝜙(𝑎), 𝛾(𝛼), 𝜙(𝑏)) =
(𝜙(𝑎), 𝛾(𝛽), 𝜙(𝑑)) = (𝜙(𝑐), 𝛾(𝛼), 𝜙(𝑏)) = (𝜙(𝑐), 𝛾(𝛽), 𝜙(𝑑)) = (𝑒, 𝛿 , 𝑓 ) ∈ 𝑅4.
On the other side, from (𝑒, 𝛿 , 𝑓 ) ∈ 𝑅3 we have that all the following
triples are in 𝑅3:

(𝜙(𝑎), 𝛾(𝛼), 𝜙(𝑏)), (𝜙(𝑎), 𝛾(𝛼), 𝜙(𝑑)),
(𝜙(𝑎), 𝛾(𝛽), 𝜙(𝑏)), (𝜙(𝑎), 𝛾(𝛽), 𝜙(𝑑)),
(𝜙(𝑐), 𝛾(𝛼), 𝜙(𝑏)), (𝜙(𝑐), 𝛾(𝛼), 𝜙(𝑑)),
(𝜙(𝑐), 𝛾(𝛽), 𝜙(𝑏)), (𝜙(𝑐), 𝛾(𝛽), 𝜙(𝑑)).
If (𝜙(𝑥), 𝛾(𝜈), 𝜙(𝑦)) is any of such triples, then it has to be shown that
there is 𝑧 ∈ 𝑆 such that (𝑥, 𝜈 , 𝑧) is in 𝑅4. For (𝜙(𝑎), 𝛾(𝛼), 𝜙(𝑏)) such
triple is exactly (𝑎, 𝛼 , 𝑏); for (𝜙(𝑎), 𝛾(𝛼), 𝜙(𝑑)) it is again (𝑎, 𝛼 , 𝑏). Being
now straightforward, the check for the rest of the triples is left to the
reader. A similar check can be applied for verifying that (𝜙, 𝛾) is a strong
homomorphism from 𝐏5 to 𝐏3.
 p
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In the next Lemma it is shown that the neutral element 𝜖 of the
monoid 𝛺∗ is preserved under the weak homomorphism.

Lemma 1. Given two (incomplete) problem spaces 𝐏1 = (𝑆1, 𝛺1, 𝑅1) and
𝐏2 = (𝑆2, 𝛺2, 𝑅2), if (𝜙, 𝛾) is a weak homomorphism from 𝐏1 to 𝐏2, then
𝛾(𝜖) = 𝜖.

Proof. By contradiction, suppose that 𝛾(𝜖) = 𝜔 ≠ 𝜖. Since 𝜖 is the
neutral element of the monoid 𝛺∗

1 , it holds that 𝜖 𝜋 = 𝜋 𝜖 = 𝜋 for all
𝜋 ∈ 𝛺∗

1 . Let 𝜎 = 𝛾(𝜋). It follows from Definition 4 that 𝛾(𝜋)𝛾(𝜖) =
𝜎 𝜔 ≠ 𝜔 = 𝛾(𝜋 𝜖). Thus, 𝜋 𝜖 = 𝜋, but 𝛾(𝜋 𝜖) ≠ 𝛾(𝜋) which contradicts
he assumption that 𝛾 is a function. □

Obviously, Lemma 1 holds true also with a strong homomorphism.
he next theorem provides a characterization of the strong homo-
orphism between problem spaces. This result reconciles our defi-
ition of a strong homomorphism with the standard definition of a
omomorphism given in (1).

Theorem 4. If 𝑃1 = (𝑆1, 𝛺1, ⋅) and 𝑃2 = (𝑆2, 𝛺2, ⋆) are problem spaces,
then the pair of mappings (𝜙 ∶ 𝑆1 → 𝑆2, 𝛾 ∶ 𝛺∗

1 → 𝛺∗
2) is a strong

homomorphism of 𝑃1 into 𝑃2 if and only if, for all 𝑎, 𝑏 ∈ 𝑆1 and 𝜋 , 𝜎 ∈ 𝛺∗
1 ,

(i) 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑎) ⋆ 𝛾(𝜋);
(ii) 𝛾(𝜋 𝜎) = 𝛾(𝜋)𝛾(𝜎).

Proof. Define the ternary relation 𝑅1 by setting, for any 𝑎, 𝑏 ∈ 𝑆1, and
𝜋 ∈ 𝛺∗

1 , (𝑎, 𝜋 , 𝑏) ∈ 𝑅1 iff 𝑎 ⋅ 𝜋 = 𝑏. Analogously, define 𝑅2 by setting,
for any 𝑎′, 𝑏′ ∈ 𝑆2 and any 𝜋′ ∈ 𝛺∗

2 , (𝑎′, 𝜋′, 𝑏′) ∈ 𝑅2 iff 𝑎′ ⋆ 𝜋′ = 𝑏′.
Sufficiency: suppose that Conditions (i) and (ii) of Theorem 4 hold.
We want to show that (𝜙, 𝛾) is a strong homomorphism in the sense of
Definition 4. Condition (2) of Definition 4 immediately follows from
ii). Given the premises (𝑎, 𝜋 , 𝑏) ∈ 𝑅1 of Condition (1) of the same

definition, it immediately follows from the definition of 𝑅1 that 𝑎⋅𝜋 = 𝑏
and hence 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑏). . Thus, for Condition (i), 𝜙(𝑎) ⋆ 𝛾(𝜋) =
(𝑏), and hence (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2. This shows that Condition (1)
f Definition 4 holds. Given the premises (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2 of

Condition (3) of Definition 4, it follows from the definition of 𝑅2 that
(𝑎) ⋆ 𝛾(𝜋) = 𝜙(𝑏).

Thus, for Condition (i), 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑏). This last equality holds
ecause (𝑆1, 𝛺1, ⋅) is complete. Therefore there is 𝑐 ∈ 𝑆1 with 𝑐 = 𝑎 ⋅ 𝜋
nd 𝜙(𝑐) = 𝜙(𝑏). Finally, from the definition of 𝑅1 it follows that
𝑎, 𝜋 , 𝑐) ∈ 𝑅1. Hence Condition (3) holds.

Necessity: suppose that Conditions (1), (2), and (3) of Definition 4
hold true, so that (𝜙, 𝛾) is a strong homomorphism. Condition (ii)
obviously follows from Condition (2). Concerning (i), assume that, for
𝑎, 𝑏 ∈ 𝑆1 and 𝜋 ∈ 𝛺∗

1 it holds that 𝜙(𝑎⋅𝜋) = 𝜙(𝑏). Then there exists 𝑐 ∈ 𝑆1
such that 𝑎 ⋅ 𝜋 = 𝑐, and 𝜙(𝑐) = 𝜙(𝑏). Thus, it follows from Condition (1)
f Definition 4 that 𝜙(𝑎)⋆ 𝛾(𝜋) = 𝜙(𝑐), and since 𝜙(𝑐) = 𝜙(𝑏), we obtain
(𝑎)⋆ 𝛾(𝜋) = 𝜙(𝑏). Thus we have shown that, for any 𝑎, 𝑏 ∈ 𝑆1 and any
∈ 𝛺∗

1 , 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑏) implies 𝜙(𝑎) ⋆ 𝛾(𝜋) = 𝜙(𝑏). Conversely, assume
ow that 𝜙(𝑎) ⋆ 𝛾(𝜋) = 𝜙(𝑏), that is (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2. Then, by
ondition (3), there is 𝑐 ∈ 𝑆1 such that (𝑎, 𝜋 , 𝑐) ∈ 𝑅1 and 𝜙(𝑐) = 𝜙(𝑏).
hat is 𝑎 ⋅ 𝜋 = 𝑐 and 𝜙(𝑐) = 𝜙(𝑏), hence 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑐) = 𝜙(𝑏). We have
hus shown that, for any 𝑎, 𝑏 ∈ 𝑆1 and 𝜋 ∈ 𝛺∗

1 , 𝜙(𝑎)⋆ 𝛾(𝜋) = 𝜙(𝑏) implies
(𝑎⋅𝜋) = 𝜙(𝑏). Overall, Conditions (1) and (3) imply that for all 𝑎, 𝑏 ∈ 𝑆1
nd all 𝜋 ∈ 𝛺∗

1 , the equivalence 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑏) ⟺ 𝜙(𝑎) ⋆ 𝛾(𝜋) = 𝜙(𝑏)
olds true. Lastly, it is immediate that 𝜙(𝑎) ⋆ 𝛾(𝜋) = 𝜙(𝑏) for some
∈ 𝑆1. In fact, by setting 𝜙(𝑎) ⋆ 𝛾(𝜋) = 𝑐 for some 𝑐 ∈ 𝑆2, we have

𝜙(𝑎), 𝛾(𝜋), 𝑐) ∈ 𝑅2. Since (𝑆1, 𝛺1, ⋅) is complete, there must be 𝑏 ∈ 𝑆1
ith (𝑎, 𝜋 , 𝑏) ∈ 𝑅1, that is 𝑎 ⋅ 𝜋 = 𝑏. Hence 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑏). For Condition

1), it follows that 𝜙(𝑎)⋆ 𝛾(𝜋) = 𝜙(𝑏). Hence 𝑐 = 𝜙(𝑏). We thus conclude
hat 𝜙(𝑎 ⋅ 𝜋) = 𝜙(𝑎) ⋆ 𝛾(𝜋). □

Further, we characterize the (incomplete) problem space isomor-
hism.
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Theorem 5. Let (𝑆1, 𝛺1, 𝑅1) and (𝑆2, 𝛺2, 𝑅2) be two (incomplete) problem
paces, and let 𝜙 ∶ 𝑆1 → 𝑆2 and 𝛾 ∶ 𝛺∗

1 → 𝛺∗
2 be bijections. The pair (𝜙, 𝛾)

is an isomorphism between (𝑆1, 𝛺1, 𝑅1) and (𝑆2, 𝛺2, 𝑅2) if and only if, for
ll 𝑎, 𝑏 ∈ 𝑆1 and all 𝜋 ∈ 𝛺∗

1 ,

(𝑎, 𝜋 , 𝑏) ∈ 𝑅1 ⟺ (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2,

and 𝛾 is a monoid homomorphism.

Proof. Assume that (𝜙, 𝛾) is an isomorphism and that (𝑎, 𝜋 , 𝑏) ∈ 𝑅1 for
𝑎, 𝑏 ∈ 𝑆1 and 𝜋 ∈ 𝛺∗

1 . Then, obviously, (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2. On the
contrary, assume (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2. Then there is 𝑐 ∈ 𝑆1 such that
(𝑎, 𝜋 , 𝑐) ∈ 𝑆1 and 𝜙(𝑐) = 𝜙(𝑏). By the bijectivity of 𝜙, this implies 𝑐 = 𝑏.
Hence (𝑎, 𝜋 , 𝑏) ∈ 𝑅1. □

The strong homomorphism (𝜙, 𝛾) induces equivalence relations ∼𝜙
and ∼𝛾 on the two sets 𝑆1, and 𝛺∗

1 respectively. The obvious definitions
are as follows: Given 𝑎, 𝑏 ∈ 𝑆1, 𝑎 ∼𝜙 𝑏 iff 𝜙(𝑎) = 𝜙(𝑏); given 𝜋 , 𝜎 ∈ 𝛺∗,
𝜋 ∼𝛾 𝜎 iff 𝛾(𝜋) = 𝛾(𝜎). In the whole, these equivalence relations set up
a congruence. Precisely, for any 𝑎, 𝑏 ∈ 𝑆1, and any 𝜋 , 𝜎 ∈ 𝛺∗

1 , if 𝑎 ∼𝜙 𝑏
and 𝜋 ∼𝛾 𝜎 then 𝑎 ⋅ 𝜋 ∼𝜙 𝑏 ⋅ 𝜎. Similarly, if 𝜋 , 𝜋′, 𝜎 , 𝜎′ ∈ 𝛺∗

1 , 𝜋 ∼𝛾 𝜋′ and
𝜎 ∼𝛾 𝜎′ then 𝜋 𝜎 ∼𝛾 𝜋′𝜎′. This allows to extend the dot operation ⋅ to
equivalence classes. Namely, for 𝑠 ∈ 𝑆1 and 𝜋 ∈ 𝛺∗

1 , equivalence classes
are defined as [𝑠] = {𝑡 ∈ 𝑆1 ∶ 𝑠 ∼𝜙 𝑡}, and [𝜋] = {𝜎 ∈ 𝛺∗

1 ∶ 𝜎 ∼𝛾 𝜋}.
Then ⋅ is extended as follows:

[𝑎] ⋅ [𝜋] = [𝑎 ⋅ 𝜋],
meaning that, for every state 𝑎′ ∈ [𝑎], there exists a 𝜋′ ∈ [𝜋] such that
𝑎′ ⋅ 𝜋′ ∈ [𝑎 ⋅ 𝜋].

Things work rather differently with a weak homomorphism, for
which a weaker form of ‘‘congruence’’ exists, as the following theorems
state.

Theorem 6. Let 𝑃1 = (𝑆1, 𝛺1, 𝑅1) and 𝑃2 = (𝑆2, 𝛺2, 𝑅2) be incomplete
problem spaces, and (𝜙, 𝛾) be a weak homomorphism of 𝑃1 into 𝑃2. Let
moreover 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝑆1, and 𝜋 , 𝜋′ ∈ 𝛺∗

1 . If 𝑎 ∼𝜙 𝑎′, 𝜋 ∼𝛾 𝜋′, and both
𝑅1(𝑎, 𝜋) and 𝑅1(𝑎′, 𝜋′) exist, then 𝑅1(𝑎, 𝜋) ∼𝜙 𝑅1(𝑎′, 𝜋′).

Proof. If both 𝑅1(𝑎, 𝜋) and 𝑅1(𝑎′, 𝜋′) exist then

𝜙(𝑅1(𝑎, 𝜋)) = 𝑅2(𝜙(𝑎), 𝛾(𝜋)) = 𝑅2(𝜙(𝑎′), 𝛾(𝜋′)) = 𝜙(𝑅1(𝑎′, 𝜋′)).

Hence 𝑅1(𝑎, 𝜋) ∼𝜙 𝑅1(𝑎′, 𝜋′). □

While with (strong) homomorphisms, it always holds true that, for
ny 𝑎 ∈ 𝑆 and any 𝜋 ∈ 𝛺∗

1 , [𝑎]⋅[𝜋] = [𝑎⋅𝜋], this does not hold in general
with weak homomorphisms.

Define the ternary relation 1 ⊆ 𝑆1∕𝜙×𝛺∗
1∕𝛾 ×𝑆1∕𝜙, by setting, for

any 𝑎, 𝑏 ∈ 𝑆1 and any 𝜋 ∈ 𝛺∗
1 ,

([𝑎], [𝜋], [𝑏]) ∈ 1 ⟺ ([𝑎] × [𝜋] × [𝑏]) ∩ 𝑅1 ≠ ∅.

We say that 1([𝑎], [𝜋]) exists iff there is [𝑏] ∈ 𝑆1∕𝜙 with ([𝑎], [𝜋], [𝑏]) ∈
1. It should be noticed that ([𝑎], [𝜋], [𝑏]) ∈ 1 if and only if (𝑎′, 𝜋′, 𝑏′) ∈
𝑅1 for some 𝑎′ ∈ [𝑎], 𝜋′ ∈ [𝜋], and 𝑏′ ∈ [𝑏].

Theorem 7. For 𝑎 ∈ 𝑆1 and 𝜋 ∈ 𝛺∗
1 , 1([𝑎], [𝜋]) exists iff 𝑅1(𝑎′, 𝜋′)

exists for some 𝑎′ ∈ [𝑎] and some 𝜋′ ∈ [𝜋]. In that case,
1([𝑎], [𝜋]) = [𝑅1(𝑎′, 𝜋′)].

Proof. Assume 1([𝑎], [𝜋]) exists. Then there is [𝑏] ∈ 𝑆1∕𝜙 such that
[𝑎], [𝜋], [𝑏]) ∈ 1. This holds true iff there are 𝑎′ ∈ [𝑎], 𝑏′ ∈ [𝑏], and 𝜋′ ∈
[𝜋] such that (𝑎′, 𝜋′, 𝑏′) ∈ 𝑅1. Therefore 𝑅1(𝑎′, 𝜋′) must exist. Assume
ow that there exist 𝑎′ ∈ [𝑎] and 𝜋′ ∈ [𝜋] such that 𝑅1(𝑎′, 𝜋′) exists.

Then there is 𝑏 ∈ 𝑆1 such that (𝑎′, 𝜋′, 𝑏) ∈ 𝑅1. Hence ([𝑎′], [𝜋′], [𝑏]) ∩𝑅1 ≠
∅. Thus ([𝑎′], [𝜋′], [𝑏]) ∈ 1 and, hence ([𝑎], [𝜋], [𝑏]) ∈ 1. We thus
conclude that 1([𝑎], [𝜋]) exists. Moreover, suppose by contradiction
there exists [𝑏′] ∈ 𝑆1∕𝜙 with ([𝑎], [𝜋], [𝑏′]) ∈ 1. There are thus
(𝑎, 𝜋 , 𝑏) ∈ 𝑅1 ∩ ([𝑎] × [𝜋] × [𝑏]), and (𝑎, 𝜋 , 𝑏′) ∈ 𝑅1 ∩ ([𝑎] × [𝜋] × [𝑏′]). By
the uniqueness property of 𝑅1, we must have 𝑏 = 𝑏′. Hence [𝑏] = [𝑏′].
Thus we obtain 1([𝑎], [𝜋]) = [𝑏] = [𝑅1(𝑎, 𝜋)]. □
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5. Algorithms for testing problem space homomorphisms

In this section, two algorithms are presented. Given two problem
paces 𝐏1 = (𝑆1, 𝛺1, 𝑅1) and 𝐏2 = (𝑆2, 𝛺2, 𝑅2), the former algorithm

tests whether a given pair (𝜙 ∶ 𝑆1 → 𝑆2, 𝛾 ∶ 𝛺∗
1 → 𝛺∗

2) of mappings
s a (either weak or strong) homomorphism of 𝐏1 into 𝐏2. This is
pecifically accomplished by examining the reductions of 𝑅1 and 𝑅2.
he advantage of working with reductions is that they are smaller and
hus easier to handle. If (𝜙, 𝛾) is a weak homomorphism, then the latter
lgorithm transforms it into a strong homomorphism by adding the
mallest possible number of triples to the reduction of 𝑅1.

5.1. Testing the problem space homomorphism

In this section an algorithm is proposed which tests if a pair (𝜙, 𝛾),
where 𝜙 ∶ 𝑆1 → 𝑆2, and 𝛾 ∶ 𝛺∗

1 → 𝛺∗
2 , is a homomorphism

etween two (incomplete) problem spaces 𝐏1 = (𝑆1, 𝛺1, 𝑅1) and 𝐏2 =
𝑆2, 𝛺2, 𝑅2). Such algorithm works by testing the homomorphism on
he two reductions 𝑅◦

1 ⊆ 𝑅1 and 𝑅◦
2 ⊆ 𝑅2. The following two collections

are defined, which will be used in the sequel. The pre-image of 𝜙 is the
mapping 𝜙−1 with 𝑆2 as domain and 2𝑆1 as codomain such that, for any
𝑎 ∈ 𝑆2:

𝜙−1(𝑎) = {𝑎′ ∈ 𝑆1 ∶ 𝜙(𝑎′) = 𝑎},

and the pre-image of 𝛾 is the mapping 𝛾−1 with 𝛺∗
2 as domain and 2𝛺

∗
1

s codomain such that for any 𝜋 ∈ 𝛺∗
2

𝛾−1(𝜋) = {𝜋′ ∈ 𝛺∗
1 ∶ 𝛾(𝜋′) = 𝜋}.

Theorem 8 establishes that the existence of a weak homomorphism
between the two reductions is necessary and, if 𝛾 is a monoid homo-
morphism, also sufficient for having a weak homomorphism between
the two problem spaces.

Theorem 8. Let 𝐏1 = (𝑆1, 𝛺1, 𝑅1), 𝐏2 = (𝑆2, 𝛺2, 𝑅2) be two incomplete
problem spaces. Consider the pair (𝜙, 𝛾) of mappings 𝜙 ∶ 𝑆1 → 𝑆2, and
∶ 𝛺∗

1 → 𝛺∗
2 where 𝛾 is a monoid homomorphism. The implication

(𝑎, 𝜋 , 𝑏) ∈ 𝑅◦
1 ⟹ (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅◦

2 (2)

holds true for all (𝑎, 𝜋 , 𝑐) ∈ 𝑆1 × 𝛺∗
1 × 𝑆1, if and only if (𝜙, 𝛾) is a weak

homomorphism from 𝐏1 to 𝐏2.

Proof. Assume that Condition (2) holds true. To show that (𝜙, 𝛾) is a
weak homomorphism, it suffices to show that

(𝑎, 𝜋 , 𝑐) ∈ 𝑅1 ⟹ (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑐)) ∈ 𝑅2 (3)

holds for all (𝑎, 𝜋 , 𝑐) ∈ 𝑆1 ×𝛺∗ ×𝑆1. Suppose at first that 𝜋 ∈ 𝛺1. In this
ase since 𝑅◦

1 ⊂ 𝑅1, from Condition (2) it follows that (𝜙(𝑎), 𝛾(𝜔), 𝜙(𝑏)) ∈
◦
2. Hence, (𝜙(𝑎), 𝛾(𝜔), 𝜙(𝑏)) ∈ 𝑅2 immediately follows from 𝑅◦

2 ⊆ 𝑅2.
Suppose now that 𝜋 ∈ 𝛺∗

1⧵(𝛺1 ∪ {𝜖}). In that case, there exist
∈ 𝛺∗

1 , and 𝜔 ∈ 𝛺1 such that 𝜋 = 𝜎 𝜔. By (PS5) exists a 𝑏 ∈ 𝑆1 with
𝑎, 𝜎 , 𝑏), (𝑏, 𝜔.𝑐) ∈ 𝑅1. Assume that (𝜙(𝑎), 𝛾(𝜎), 𝜙(𝑏)) ∈ 𝑅2, from Condi-
ion (2) and the fact that 𝑅◦

2 ⊆ 𝑅2 it follows that (𝜙(𝑏), 𝛾(𝜔), 𝜙(𝑐)) ∈ 𝑅2.
y the transitivity property (PS4), this implies (𝜙(𝑎), 𝛾(𝜎 𝜔), 𝜙(𝑐)) ∈ 𝑅2.

The converse implication that Condition (2) holds true if (𝜙, 𝛾) is
 weak homomorphism immediately follows from the fact that 𝑅◦

1 ⊂
1 and 𝑅◦

2 ⊂ 𝑅2 and from the definition of a weak homomorphism
tself. □

Theorem 9, on the other hand, establishes that a pair of functions
s a strong homomorphism between two problem spaces if and only
f it is a strong homomorphism between their reductions. The the-
rem immediately follows from the definitions of strong and weak

homomorphisms, and from that of a reduction.
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Theorem 9. Let 𝐏1 = (𝑆1, 𝛺1, 𝑅1), 𝐏2 = (𝑆2, 𝛺2, 𝑅2) be two incomplete
problem spaces. The pair (𝜙, 𝛾) of mappings 𝜙 ∶ 𝑆1 → 𝑆2, and 𝛾 ∶ 𝛺∗

1 →

𝛺∗
2 , is a strong homomorphism from 𝐏1 into 𝐏2 if and only if it is a weak

homomorphism, such that the implication
(𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅◦

2 ⟹ ∃𝑐 ∈ 𝑆1 ∶ (𝑎, 𝜋 , 𝑐) ∈ 𝑅◦
1 , 𝜙(𝑏) = 𝜙(𝑐) (4)

holds true for all 𝑎, 𝑏 ∈ 𝑆1 and all 𝜋 ∈ 𝛺∗
1 .

The algorithm which tests the homomorphism between two incom-
lete problem spaces 𝐏1 = (𝑆1, 𝛺1, 𝑅1) and 𝐏2 = (𝑆2, 𝛺2, 𝑅2) consists of
hree steps:

1. The two reductions 𝑅◦
1 and 𝑅◦

2 are obtained from 𝑅1 and 𝑅2
respectively.

2. The algorithm iterates through 𝑅◦
1, and for each triple (𝑎1, 𝜔1, 𝑏1)

∈ 𝑅◦
1 the following condition is tested:

|{(𝑎2, 𝜔2, 𝑏2) ∈ 𝑅◦
2 ∶ (𝜙(𝑎1), 𝛾(𝜔1), 𝜙(𝑏1)) = (𝑎2, 𝜔2, 𝑏2)}| = 1. (5)

If Condition (5) is found to be false for anyone of the elements in
𝑅◦
1 then, the algorithm terminates and it is concluded that (𝜙, 𝛾)

is neither a weak nor a strong homomorphism. Otherwise, step
3 is entered.

3. The algorithm iterates through 𝑅◦
2, and for each triple (𝑎2, 𝜔2, 𝑏2)

∈ 𝑅◦
2 the following condition is tested for each (𝑎′, 𝜔′) ∈ 𝜙−1(𝑎2) ×

𝛾−1(𝜔2):

{𝑏 ∈ 𝜙−1(𝑏2) ∶ (𝑎′, 𝜔′, 𝑏) ∈ 𝑅◦
1} ≠ ∅ (6)

If Condition (6) is found to be false for any triple in 𝑅◦
2 then, the

algorithm terminates and it is concluded that (𝜙, 𝛾) is a weak
homomorphism. Otherwise, if Condition (6) is found to be true
for all triples in 𝑅◦

2, then it is concluded that (𝜙, 𝛾) is a strong
homomorphism.

Step 1 consist in the construction of the reductions 𝑅◦
1 and 𝑅◦

2 of the
two relations 𝑅1 and 𝑅2 respectively. Step 2 tests if each element in
the reduction 𝑅◦

1 is mapped to a single element in 𝑅◦
2. By Theorem 8

this is a sufficient condition for (𝜙, 𝛾) being a weak homomorphism.
Finally, Step 3 tests that given any (𝑠2, 𝜔2, 𝑡2), for each pair (𝑠1, 𝜔1) ∈
𝜙−1(𝑠2) × 𝛾−1(𝜔2) there is a problem state 𝑡1, with 𝜙(𝑡1) = 𝑡2 such
that (𝑠1, 𝜔1, 𝑡1). If this condition is false, the condition for the strong
homomorphism does not hold true.

5.2. Local completion of a problem space

Sometimes, only a weak homomorphism from an incomplete prob-
lem space to another one can be found. The minimum number of
hanges that must be applied to the original problem space to obtain a
trong homomorphism is studied in this section. The problem space re-
ulting from these changes is called a ‘‘local completion’’ of the original
roblem space. The term ‘‘local’’ is used to express that these changes
pply to certain localized areas of the problem space. In addition, an
lgorithm that constructs the local completion of a problem space is
escribed.

Definition 5. Let 𝐏1 = (𝑆1, 𝛺1, 𝑅1) and 𝐏2 = (𝑆2, 𝛺2, 𝑅2) and
𝐏3 = (𝑆1, 𝛺1, 𝑅3) be three (incomplete) problem spaces and (𝜙, 𝛾) be
 weak homomorphism from 𝐏1 to 𝐏2. Then, 𝐏3 = (𝑆1, 𝛺1, 𝑅3) is a local
ompletion of 𝐏1 if the following conditions hold:

(LC1) (𝜙, 𝛾) is a strong homomorphism from 𝐏3 to 𝐏2,
(LC2) 𝑅1 ⊆ 𝑅3.

Moreover, the local completion 𝐏3 is said to be minimal if there is
no other local completion strictly included in it. Furthermore, 𝐏3 is said
o be a least local completion if the distance |𝑅◦

3𝛥𝑅
◦
1|, where 𝑅◦

3 and 𝑅◦
1

re the reductions of 𝑅3 and 𝑅1, is minimum in the set of all the local
ompletions of 𝑅1.
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It should be noticed that the local completion of a problem space
need not be unique. As a counterexample, in Examples 1 and 3, the
pair (𝜙, 𝛾) is a weak homomorphism from 𝐏2 to 𝐏3, whereas it is a strong
homomorphism from 𝐏4 to 𝐏3 and also from 𝐏5 to 𝐏3. It can be easily
seen that both 𝐏4 and 𝐏5 are local completions of 𝐏2, since 𝑅2 = 𝑅4∩𝑅5.

Theorem 10. If (𝜙, 𝛾) is a weak homomorphism from 𝐏1 = (𝑆1, 𝛺1, 𝑅1)
to 𝐏2 = (𝑆2, 𝛺2, 𝑅2), and 𝐏1 is a problem space, then (𝜙, 𝛾) is also a strong
homomorphism.

Proof. It is sufficient to show that for all 𝑎, 𝑏 ∈ 𝑆1 and all 𝜋 ∈ 𝛺1 if
(𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2, then there exists 𝑐 ∈ 𝑆1 such that (𝑎, 𝜋 , 𝑐) ∈ 𝑅1
and 𝜙(𝑐) = 𝜙(𝑏). The existence of (𝑎, 𝜋 , 𝑐) ∈ 𝑅1 for some 𝑐 ∈ 𝑆 follows
immediately from completeness (PS3). In addition, (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑐)) ∈
𝑅2 since (𝜙, 𝛾) is a weak homomorphism by premises. Finally, since
(𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑐)) ∈ 𝑅2 and, (𝜙(𝑎), 𝛾(𝜋), 𝜙(𝑏)) ∈ 𝑅2, 𝜙(𝑐) = 𝜙(𝑏) by
uniqueness (PS2). Therefore, (𝜙, 𝛾) is a strong homomorphism. □

A trivial consequence of Theorem 10 is that a problem space that
atisfies the completeness property also satisfies the local completion
onditions with respect to any homomorphism (𝜙, 𝛾). Although, the
nverse implication does not necessarily hold.

Example 4. Let 𝐏1 = (𝑆 , 𝛺 , 𝑅), 𝐏2 = (𝑆′, 𝛺′, 𝑅′), be two incomplete
problem spaces with 𝑆 = {𝑎, 𝑏, 𝑐 , 𝑑}, 𝛺 = {𝛼 , 𝛽 , 𝛿}, 𝑆′ = {𝑒, 𝑓 , 𝑔},
𝛺′ = {𝜋 , 𝜎} and

𝑅 = {(𝑎, 𝛼 , 𝑏), (𝑎, 𝛽 , 𝑑), (𝑐 , 𝛿 , 𝑑)},
𝑅′ = {(𝑒, 𝜋 , 𝑓 ), (𝑔 , 𝜎 , 𝑓 )}.
Let (𝜙 ∶ 𝑆 → 𝑆′, 𝛾 ∶ 𝛺 → 𝛺′) be such that 𝜙(𝑎) = 𝑒, 𝜙(𝑏) = 𝜙(𝑑) = 𝑓 ,
𝜙(𝑐) = 𝑔, 𝛾(𝛼) = 𝛾(𝛽) = 𝜋, and 𝛾(𝛿) = 𝜎. The reader can easily see
that (𝜙, 𝛾) is a strong homomorphism from 𝐏1 to 𝐏2. Thus, 𝐏1 is a local
completion (of itself) with respect to (𝜙, 𝛾). Nevertheless, it is not a
problem space since 𝑅(𝑎, 𝛿), 𝑅(𝑏, 𝛼), and 𝑅(𝑏, 𝛽) do not exist.

The rest of the section concerns the development of an algorithm
that performs local completions, and it is named local completion algo-
rithm (LC algorithm). Let 𝐏1 = (𝑆1, 𝛺1, 𝑅1) and 𝐏2 = (𝑆2, 𝛺2, 𝑅2) be two
incomplete problem spaces and (𝜙, 𝛾) a weak homomorphism from 𝐏1
to 𝐏2.

The algorithm consists of two nested loops. At the outset, it sets
𝑈0,0 = 𝑅◦

1. The outer loop iterates through the triples in 𝑅◦
2. In each

iteration 𝑖 > 0 of the outer loop, a new triple (𝑎, 𝜔, 𝑏) ∈ 𝑅◦
2 is considered.

The inner loop iterates through the pairs in 𝜙−1(𝑎) × 𝛾−1(𝜔). In each
iteration 𝑗, a new pair (𝑎′, 𝜔′) ∈ 𝜙−1(𝑎) × 𝛾−1(𝜔) is considered, and the
following condition is tested:

{𝑏′ ∈ 𝜙−1(𝑏) ∶ (𝑎′, 𝜔′, 𝑏′) ∈ 𝑈𝑖,𝑗} = ∅. (7)

If condition (7) is found to be true, then an element 𝑏′ ∈ 𝜙−1(𝑏)
s arbitrarily chosen, and the collection 𝑈𝑖,𝑗+1 = 𝑈𝑖,𝑗 ∪ {(𝑎′, 𝜔′, 𝑏′)} is
onstructed. Otherwise, 𝑈𝑖,𝑗+1 = 𝑈𝑖,𝑗 . The inner loop terminates when
ondition (7) has been tested for all the pairs in the Cartesian product

𝜙−1(𝑎) × 𝛾−1(𝜔). The outer loop of the algorithm terminates when all
the triples in 𝑅◦

2 have been considered. The set 𝑈𝑛,𝑚 obtained out of
the last iteration 𝑛 = |𝑅◦

2| of the outer loop and the last iteration
= |𝜙−1(𝑎) × 𝛾−1(𝜔)| of the inner loop is a ternary relation such that

𝑅◦
1 ⊆ 𝑈𝑛,𝑚 ⊆ 𝑆1 ×𝛺1 × 𝑆1.

Theorem 11. The transitive closure of the collection 𝑈𝑛,𝑚 obtained by an
application of the LC algorithm to the reductions 𝑅◦

1 and 𝑅◦
2, is a least local

completion of 𝑅1.

Proof. In the first place we show that the condition of strong homo-
morphism given in Definition 4 is equivalent to the following one:

∀(𝑎, 𝜋 , 𝑏) ∈ 𝑅2,∀(𝑎′, 𝜋′) ∈ 𝜙−1(𝑎) × 𝛾−1(𝜋),∃𝑏′ ∈ 𝜙−1(𝑏) ∶ (𝑎′, 𝜋′, 𝑏′) ∈ 𝑅1

(8)
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Consider any 𝑎′, 𝑏′ ∈ 𝑆1 and any 𝜋′ ∈ 𝛺1 such that (𝜙(𝑎′), 𝛾(𝜋′), 𝜙(𝑏′)) ∈
𝑅2. The condition of strong homomorphism requires the existence of
an element 𝑐 ∈ 𝑆1 such that (𝑎′, 𝜋′, 𝑐) ∈ 𝑅1 and 𝜙(𝑐) = 𝜙(𝑏′). By setting
𝜙(𝑎′) = 𝑎, 𝜙(𝑏′) = 𝑏, and 𝛾(𝜋′) = 𝜋, we have that (𝑎, 𝜋 , 𝑏) ∈ 𝑅2 and for
every (𝑎′, 𝜋′) ∈ 𝜙−1(𝑎) ×𝛾−1(𝜋) there is a 𝑐 ∈ 𝑆1 such that, (𝑎′, 𝜋′, 𝑐) ∈ 𝑅1
and 𝜙(𝑐) = 𝜙(𝑏′) = 𝑏. This immediately implies Condition (8). The
onverse follows similarly. Given any (𝑎, 𝜋 , 𝑏) ∈ 𝑅2, by setting 𝑎 = 𝜙(𝑎′),
= 𝜙(𝑏′), and 𝜋 = 𝛾(𝜋′), we have that (𝜙(𝑎′), 𝛾(𝜋′), 𝜙(𝑏′)) ∈ 𝑅2. Since, by

Condition (8), for every (𝑎′, 𝜋′) ∈ 𝜙−1(𝑎) × 𝛾−1(𝜋) there exists a 𝑐 ∈ 𝜙(𝑏′)
such that (𝑎′, 𝜋′, 𝑐) ∈ 𝑅1 and 𝜙(𝑐) = 𝜙(𝑏′), it follows that (𝜙, 𝛾) is a strong
homomorphism.

Considering the LC algorithm, we now observe that given any triple
(𝑎, 𝜔, 𝑏) ∈ 𝑅◦

2 and any pair (𝑎′, 𝜋′) ∈ 𝜙−1(𝑎) × 𝛾−1(𝜔), Condition (7) holds
true if and only if
∃𝑏′ ∈ 𝜙−1(𝑏) ∶ (𝑎′, 𝜔′, 𝑏′) ∈ 𝑈𝑖,𝑗 (9)

is false. Whenever this happens the LC algorithm adds exactly one triple
(𝑎′, 𝜔′, 𝑏′) to 𝑈𝑖,𝑗 , such that 𝑈𝑖,𝑗 ∪ {(𝑎′, 𝜔′, 𝑏′)} satisfies Condition (7).
Therefore, when the algorithm terminates, Condition (9) will be satis-
fied for all triples (𝑎, 𝜔, 𝑏) ∈ 𝑅◦

2 and all pairs (𝑎′, 𝜋′) ∈ 𝜙−1(𝑎) × 𝛾−1(𝜔).
Thus, Condition (8) is satisfied for 𝑅◦

1 and 𝑅◦
2, and by Theorem 9 it

ust also be satisfied for 𝑅1 and 𝑅2.
Finally, since at every single step 𝑗 > 0 of the inner loop, at most

ne triple is added to 𝑈𝑖,𝑗 , the cardinality of 𝑈𝑛,𝑚 must be the smallest
ossible, therefore the solution must be a least local completion. □

6. Some application examples

In this section, three examples of different applications are pro-
ided. The first application is based on the classical test of the Tower
f Hanoi. It aims to show the impact that an abstract representation
as on the complexity of the problem space (i.e., number of problem
tates and operations) and, as a consequence, on the complexity of the
nowledge space (i.e., number of knowledge states). The second one is
ased on the Tower of London test and shows the use of the problem
pace homomorphism to formally represent a psychological hypothesis.
inally, the third example is based on the mental rotation task, in
hich a discrete representation of a continuous task is presented and
escribed.

6.1. Tower of Hanoi task

The Tower of Hanoi (ToH) is a task with a long tradition in studies
on problem-solving (see e.g., Ewert & Lambert, 1932; Gagne & Smith,
1962; Simon, 1975; Stefanutti & Albert, 2003). Its problem space is well
known, and many substructures and symmetries are evident in it. The
ToH consists of three pegs and 𝑛 disks of different diameters that can
slide onto any peg. The problem solver may move only one disk at a
time, and no larger disk may be placed over a smaller one. The ToH
task aims at matching the initial and the final configurations of the
problem in the minimum number of moves. Fig. 2 shows the problem
space representation of the ToH with 4 disks. The basic strategy to solve
 problem with a number 𝑛 of disks is a simple recursive strategy (called
oal recursion strategy), and its solution path can be decomposed into
ested subproblems. Given a tower of 𝑛 disks 𝑇𝑛, the stack of (𝑛 − 1)
isks is the (𝑛 − 1)th sub-tower 𝑇𝑛−1. The (𝑛 − 1)th sub-tower is simply
btained by removing the larger disk from 𝑇𝑛. Then, the goal recursion
trategy can be stated as follows: To move a tower 𝑇𝑛 from peg 𝑖 to peg
having a temporary peg 𝑘,

1. if 𝑇𝑛−1 is not empty, then move 𝑇𝑛−1 from 𝑖 to 𝑘;
2. move the larger disk from 𝑖 to 𝑗;
3. if 𝑇𝑛−1 is not empty, then move 𝑇𝑛−1 from 𝑘 to 𝑗;
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Fig. 2. Directed graph of the Tower of Hanoi problem space with four disks. The
olution path discussed in example (10) is highlighted in black in the figure.

Such strategy is recursive, as it calls itself for moving the tower 𝑇𝑛−1 in
both steps (1) and (3). As pointed out by Stefanutti and Albert (2003)
this strategy consists of two kinds of operations: moving a sub-tower with
𝑛 − 1 disks (denoted 𝑡𝑛−1) and moving a disk (denoted 𝑑). Consider, for
instance, the incomplete problem space 𝐏1 = (𝑆1, 𝛺1, 𝑅1) of the 4-disks
ToH represented in Fig. 2. It should be observed that the condition
(𝑎, 𝜔, 𝑎) ∉ 𝑅1 holds true for all 𝑎 ∈ 𝑆1 and all 𝜔 ∈ 𝛺1.

Problem state 𝑠1 in Fig. 2 represents the configuration in which the
hole 4-disks tower is stacked on the leftmost peg, whereas problem

tate 𝑠11 represents the configuration in which the 4-disk tower is
tacked on the rightmost peg. The shortest solution path that connects
𝑠1 to 𝑠11 (black edges in Fig. 2) is represented by the sequence:

𝑠1 𝑡1 𝑠2 𝑑2,4 𝑠4 𝑡1 𝑠3 𝑑3,7 𝑠7 𝑡1 𝑠8 𝑑8,5 𝑠5 𝑡1 𝑠6 𝑑6,14 𝑠14 𝑡1 𝑠13 …

𝑑15,16 𝑠15 𝑡1 𝑠16 𝑑16,9 𝑠9 𝑡1 𝑠10 𝑑10,12 𝑠12 𝑡1 𝑠11, (10)

where 𝑡1 ∈ 𝛺1 is the operation that moves the sub-tower with one disk,
and 𝑑𝑖𝑗 ∈ 𝛺1 is the operation that consists of moving a disk from one
peg to another, thus transforming problem state 𝑠𝑖 to problem state 𝑠𝑗 .

On the other hand, consider problem space 𝐏2 = (𝑆2, 𝛺2, 𝑅2)
depicted in Fig. 3. The solution path that solves (𝑠′1, 𝑠′11) (black edges in
Fig. 3) is represented by the sequence:

𝑠′1 𝑡2 𝑠
′
4 𝑑

′
47 𝑠

′
7 𝑡2 𝑠

′
5 𝑑

′
514 𝑠

′
14 𝑡2 𝑠

′
15 𝑑

′
159 𝑠

′
9 𝑡2 𝑠

′
11, (11)

where 𝑡2 ∈ 𝛺2 is the operation moving the sub-tower with two disks
and 𝑑′𝑖𝑗 ∈ 𝛺2 is the operation that consists of moving a disk from one
peg to another, thus transforming problem state 𝑠′𝑖 to problem state 𝑠′𝑗 .

A weak homomorphism (𝜙1, 𝛾1) is defined between 𝐏1, and 𝐏2,
where: (i) the problem states in 𝐏1 that are linked to one another
hrough operation 𝑡1 (e.g., 𝑠1, 𝑠2 and 𝑠17) are mapped to the same

problem state in 𝐏2 (e.g., 𝑠′1 = 𝜙1(𝑠1) = 𝜙1(𝑠2) = 𝜙1(𝑠17)); (ii)
𝛾1(𝑡1) = 𝜖; (iii) each of the three operations 𝑑14,13, 𝑑53,57, 𝑑54,52 is mapped
to itself by 𝛾1; and (iv) the remaining operations, namely those in
𝛺1⧵{𝑑14,13, 𝑑53,57, 𝑑54,52, 𝑡1} are mapped to operation 𝑡2 ∈ 𝛺2, which is
nterpreted as ‘‘moving a two-disks sub-tower’’.

A similar procedure can be applied for constructing a homomor-
hism between the incomplete problem space 𝐏2 = (𝑆2, 𝛺2, 𝑅2) and the

incomplete problem space 𝐏3 = (𝑆3, 𝛺3, 𝑅3), where 𝑡3 is the operation
of moving a three-disks sub-tower. In general, by applying the goal
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Fig. 3. Directed graph of the abstract representation of Tower of Hanoi problem space
with four disks. The solution path discussed in example (11) is highlighted in black in
the figure.

Table 1
Cardinalities of the goal and knowledge spaces of the ToH using different 𝑛 in the
oal recursion strategy. Column one displayed the number of disks 𝑛 involved in the
peration 𝑡𝑛, ‘‘move the tower with 𝑛 disks.’’ Columns two and three displayed the
ardinality of the problem spaces and knowledge spaces, respectively.
𝑡𝑛 |𝑆𝑛| |𝑛|

1 81 21,343,456,836
2 27 6,084
3 9 36

recursion strategy to the ToH it is possible to define a homomorphism
𝜙𝑛−1, 𝛾𝑛−1) between the ToH problem space with 𝑛 disks and the
roblem space with (𝑛− 1) disks. Recalling Example (10), the sequence

𝑠1 𝑡1 𝑠2 𝑑2,4 𝑠4 𝑡1 𝑠3 performs the following task: It moves the sub-tower
with one disk from the leftmost peg to the central peg (𝑡1), then it moves
the top disk from the leftmost peg to rightmost one (𝑑24), and finally it
moves the sub-tower with one disk from the central to rightmost peg
(𝑡1) creating a two-disk tower. The same sequence of moves described
above is mapped by the homomorphism to the sequence 𝑠′1 𝑡2 𝑠

′
4 in

Example (11). This sequence performs the task of moving the two-
isks tower from the leftmost peg to the rightmost one (𝑡2). In this
epresentation, the three operations that in 𝐏1 move, one at a time,
wo disks to form a two-disk tower are joined into a single operation.
n this sense, 𝐏2 can be seen as a problem space for the three disks ToH.

A knowledge space 1 for the collection of problems 𝑄1 = {(𝑠𝑖, 𝑠1) ∶
𝑠𝑖 ∈ 𝑆1⧵{𝑠1}} was derived from the problem space 𝐏1. In the collection
𝑄1 the problem state 𝑠1 ∈ 𝑆1 is the goal for all the problems. Similarly,
knowledge spaces 2 and 3 were derived from the problem spaces
𝐏2 and 𝐏3 on the collections 𝑄2 = {(𝑠𝑖, 𝑠′1) ∶ 𝑠′𝑖 ∈ 𝑆2⧵{𝑠′1}} and

3 = {(𝑠𝑖, 𝑠′′1 ) ∶ 𝑠𝑖 ∈ 𝑆3⧵{𝑠′′1 }}, respectively. It is worth noticing that
1(𝑠1) = 𝑠′1 and 𝜙2(𝑠′1) = 𝑠′′1 thus, the goal is preserved across the

different representations.
Table 1 shows the characteristics of the problem and knowledge

spaces obtained from the application of the goal recursion strategy.
In particular, it displays the number 𝑛 of disks involved in a single
operation 𝑡𝑛 (first Column), the number of problem states |𝑆𝑛| and
nowledge states |𝑛| (second and third Columns).

Table 1 shows that the number of knowledge states drastically
reduces by moving from the representation which is closer to the
10 
physical one (𝑡𝑛 = 1) to the most abstract representation of the concrete
roblem space (𝑡𝑛 = 3). In particular, the cardinality of the knowledge
pace derived from the concrete problem space exceeds twenty billions.
n contrast, the knowledge space derived from the two-disk tower
omomorphism has only 6084 knowledge states. The more abstract
epresentation gives only 36 knowledge states.

Several research questions can arise in comparing those problem
paces. For example, is the detailed representation of the task given
y 𝐏1 necessary? Or would a simpler model better explain the solution
ehavior of an individual? Is problem space 𝐏3 sufficient to discrimi-
ate between individuals with different problem-solving abilities? The
roblem space homomorphism ensures that any observed solution in
he concrete problem space can be linked to a solution in the abstract
ne. Thus, it allows testing these kinds of research questions by empir-
cally validating the knowledge spaces and comparing them by means
f statistical model selection criteria.

6.2. Tower of London test

The tower of London test is a neuropsychological test proposed
y Shallice (1982) as a variant of the ToH to study patients with frontal
obe lesions. The ToL consists of three pegs with different heights and
hree balls of different colors that can slide onto any peg. Fig. 4 depicts

all the possible ToL configurations.
Like the ToH, the ToL test aims at matching the initial and final

onfiguration in the least number of moves. The concrete problem
pace 𝐏ToL = (𝑆ToL, 𝛺ToL, 𝑅ToL) of the ToL consists of 6 × 6 = 36 different

problem states obtained as the Cartesian product of the six different
permutations of the three colors times the six spatial arrangements
of the balls in the pegs. Each problem state can be uniquely referred
to as a pair 𝑎𝑏 of numbers, where 𝑎 stands for one of the six spatial
arrangements whereas 𝑏 stands for one of the six color permutations.
The reader is referred to Stefanutti et al. (2021) for the complete list
of problem states codings.

Which characteristics of the ToL problem determine its difficulty is
a long-debated topic. The original hypothesis by Shallice was that two
problems with the same initial configuration have the same difficulty if
they can be solved using the same minimum number of moves. Within
the PKST approach, it is possible express this hypothesis in a formal
way. With this aim a few definitions are needed. Let 𝐏 = (𝑆 , 𝛺 , 𝑅) be a
problem space.

Definition 6. A solution paths (𝑠, 𝜋 , 𝑡) ∈ 𝑅 is a shortest path at 𝑠 ∈ 𝑆 if
and only if 𝑙(𝜋) ≤ 𝑙(𝜎) for all 𝜎 ∈ 𝛺∗ such that (𝑠, 𝜎 , 𝑡) ∈ 𝑅, where 𝑙(𝜋)
and 𝑙(𝜎) denote the length of 𝜋 and 𝜎 respectively. The distance 𝛿(𝑠, 𝑡)
from a problem state 𝑠 ∈ 𝑆 to another problem state 𝑡 ∈ 𝑆 is the length
of the string 𝜋 in a shortest path (𝑠, 𝜋 , 𝑡). By convention 𝛿(𝑠, 𝑡) = ∞ if
(𝑠, 𝜋 , 𝑡) ∉ 𝑅 for any 𝜋 ∈ 𝛺∗.

Let 𝑄ToL be the collection of all the problems that can be formulated
in the Tower of London problem space 𝐏ToL. Shallice’s hypothesis can
be formalized as follows:

Definition 7. Two problems (𝑠, 𝑡), (𝑠, 𝑔) ∈ 𝑄ToL are equivalent if given
he shortest paths (𝑠, 𝜋 , 𝑡) ∈ 𝑅ToL and (𝑠, 𝜎 , 𝑔) ∈ 𝑅ToL then 𝑙(𝜋) = 𝑙(𝜎).

In order to explore the implications of Definition 7 on the problem
pace, consider the following example:

Example 5. Considering the problem sub-space 𝐏1 = (𝑆1, 𝛺1, 𝑅1) of
the ToL show in Fig. 5.

Setting state 31 as initial configuration, the collection of all the
roblems in 𝐏1 is

𝑄1 = {(31, 21), (31, 51), (31, 22), (31, 52), (31, 12), (31, 42), (31, 32)}.
Under Definition 7, three equivalence classes are obtained for the
problems in 𝑄 . First, problems (31, 21) and (31, 51) that are solved by
1
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Fig. 4. The 6 × 6 = 36 different problem states of the Tower of London test. The six different spatial arrangements of the balls vary across rows and the six different permutations
f three colors vary across columns.
.

m

single operations. Second, problems (31, 22) and (31, 52) are solved by
trings of two operations. And finally problems (31, 12), (31, 42), and
31, 32) are solved by the shortest paths of length three.

Consider now a problem space 𝐏2 = (𝑆2, 𝛺2, 𝑅2) such that 𝑆2 =
𝑠0, 𝑠1, 𝑠2, 𝑠3}, 𝛺2 = {𝜔11, 𝜔12, 𝜔13, 𝜔14} and 𝑅2 = {(𝑠0, 𝜔11, 𝑠1), (𝑠1, 𝜔12,
2), (𝑠2, 𝜔13, 𝑠3), (𝑠3, 𝜔14, 𝑠3)}∙. We recall that ∙ denotes the transitive
losure of the relation. Consider moreover the pair of function (𝜙, 𝛾)
ith 𝜙 ∶ 𝑆1 → 𝑆2 and 𝛾 ∶ 𝛺∗

1 → 𝛺∗
2 defined in the following way:

𝜙(21) = 𝜙(51) = 𝑠1, 𝛾(𝜔1) = 𝛾(𝜔2) = 𝜔11,
𝜙(22) = 𝜙(52) = 𝑠2, 𝛾(𝜔3) = 𝛾(𝜔4) = 𝜔12,
𝜙(12) = 𝜙(32) = 𝜙(42) = 𝑠3, 𝛾(𝜔5) = 𝛾(𝜔6) = 𝛾(𝜔7) = 𝛾(𝜔9) = 𝜔13,
𝜙(31) = 𝑠0 𝛾(𝜔10) = 𝛾(𝜔8) = 𝜔14.

The provided definition of 𝛾 is restricted to the set 𝛺1, however it
an be easily extended to the whole 𝛺∗

1 by applying the fundamental
ule of the homomorphism. Thus, we also require that, given any 𝜋 , 𝜎 ∈
𝛺∗

1 , 𝛾(𝜋 𝜎) = 𝛾(𝜋)𝛾(𝜎).
We show that: (1) (𝜙, 𝛾) is a strong homomorphism and (2) this

last induces on the problems of problem space 𝐏1 the equivalence
classes required by Definition 7, thus showing that Shallice hypothesis
s respected.

Concerning point (1), 𝛾(𝜋 𝜎) = 𝛾(𝜋)𝛾(𝜎) is true by definition. More-
ver, we have

(𝜙(31), 𝛾(𝜔1), 𝜙(21)) = (𝜙(31), 𝛾(𝜔2), 𝜙(51)) = (𝑠0, 𝜔11, 𝑠1),
(𝜙(21), 𝛾(𝜔 ), 𝜙(52)) = (𝜙(51), 𝛾(𝜔 ), 𝜙(22)) = (𝑠 , 𝜔 , 𝑠 ),
3 4 1 12 2

11 
(𝜙(22), 𝛾(𝜔9), 𝜙(32)) = (𝜙(22), 𝛾(𝜔6), 𝜙(13)) = (𝜙(52), 𝛾(𝜔7), 𝜙(32)) = …
(𝜙(52), 𝛾(𝜔5), 𝜙(42)) = (𝑠2, 𝜔13, 𝑠3),
(𝜙(13), 𝛾(𝜔10), 𝜙(32)) = (𝜙(42), 𝛾(𝜔8), 𝜙(32)) = (𝑠3, 𝜔14, 𝑠3).

This shows that the weak homomorphism conditions are satisfied.
Additionally, since 𝐏1 is a problem space, by Theorem 10, (𝜙, 𝛾) is a
strong homomorphism.

As for point (2), it is now easy to see that the following equivalence
classes on the set of problem 𝑄1 are induced by the homomorphism
(𝜙, 𝛾), {(31, 21), (31, 51)}, {(31, 22), (31, 52)}, and {(31, 32), (31, 13), (31, 42)}
These are exactly the classes required by Definition 7. To conclude in
this example two problems are equivalent if they have the same length
and this assumption of problem equivalence is properly represented by
problem space 𝐏2 through homomorphism (𝜙, 𝛾).

The general rules that have been used for constructing both homo-
orphisms and the resulting problem space in Example 5 can now be

stated as follows:

Given a fixed initial problem state 𝑠1 ∈ 𝑆ToL, define (𝜙, 𝛾)
such that, for any 𝑠2, 𝑠3,∈ 𝑆ToL and any 𝜋 , 𝜎 ∈ 𝛺ToL such that
𝑅ToL(𝑠2, 𝜋) = 𝑡2 and 𝑅ToL(𝑠3, 𝜎) = 𝑡3:

(A1) 𝜙(𝑠2) = 𝜙(𝑠3) if and only if 𝛿(𝑠1, 𝑠2) = 𝛿(𝑠1, 𝑠3);
(A2) 𝛾(𝜋) = 𝛾(𝜎) if and only if 𝛿(𝑠1, 𝑠2) = 𝛿(𝑠1, 𝑠3) and 𝛿(𝑠1, 𝑡2) =

𝛿(𝑠1, 𝑡3).
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A homomorphism that respects both conditions (A1) and (A2) in-
duces in 𝐏ToL an equivalence relation on the set of problems that
s in agreement with Shallice’s hypothesis. Moreover, Condition (A1)

requires that all problem states at the same distance from the initial
state belong to the same equivalence class. Condition (A2) requires that
any two operations are equivalent if and only if they are applicable to
equivalent problem states and produce equivalent problem states.

6.3. Mental rotation tasks

The mental rotation tasks usually consist of ‘‘mentally transforming’’
a visual stimulus to match a given configuration. A common task for
assessing mental rotation ability for a three-dimensional (3D) object
is the Shepard–Metzler tasks (S–M tasks; Shepard & Metzler, 1971).
In the S–M task, participants are required to establish whether two
mages represent the same object rotated at different angles, or not. An
xample could be to match a 3D object with its rotation by 180 degrees
round the 𝑥 axis. Shepard and Metzler (1971) assumed that individuals

perform mental rotation in solving this task. Obviously, mental rotation
is not accessible to direct inspection, and it is only deduced from the
bservation of indirect measures. It is highly plausible that, if mental
otation really occurs, then the path inclusion assumption should stay
rue. In fact, a 180 degrees ‘‘mental rotation’’ should be the composition
f two separate 90 degrees ‘‘mental rotations’’. Thus, each of the two
0 degrees ‘‘mental rotations’’ should be a sub-path of the 180 degrees
ne.

Of course, the sub-path assumption could be false. For example,
180 degrees rotation may be easier to identify compared to the 90

degrees one. Therefore, in that case, the validity of ‘‘mental rotation’’
as stated above would be threatened. Nonetheless, PKST could still be
seful for empirically testing some of the necessary conditions of the
ental rotation hypothesis.

Several computational models of mental rotation can be found in
the literature (Peebles, 2019; Yurt & Sunbul, 2012). However, there is
no formal model of this cognitive task to the best of our knowledge.
Other than what discussed above the problem space could be used as
 discrete model of mental rotation at a certain level of granularity,
rrespective of the real (continuous or discrete) nature of the mental
otation itself.

The problem space presented in this section was constructed using
he 3D object proposed in the S-M task. This problem space is a discrete
epresentation of the continuous one under the assumption that, given
n initial configuration, the object can be rotated on only one axis at a
ime by an angle 𝛼. The granularity of the model depends on the size
f 𝛼.

Consider a simple example with the following characteristics: 𝛼 =
5◦; the object can rotate on the 𝑥 and 𝑦 axes; and the maximum
otation angle is 90◦ in each axis.

Given the initial configuration of the object in Fig. 6, the incomplete
problem space 𝐏 = (𝑆 , 𝛺 , 𝑅) is obtained. The set 𝛺 contains operations
f two types. Operations of the first type are rotations about the 𝑥 axis
enoted as 𝑥𝑠(𝛼), where 𝑠 is the problem state to which the rotation is
pplied and 𝛼 is the angle of the rotation. The second type of operations
re rotations about the 𝑦 axis are denoted 𝑦𝑠(𝛼). Since 𝛼 = 45◦ is fixed
n this example, it will be omitted. Thus the operation will be denoted

as 𝑥𝑠 and 𝑦𝑠, respectively.
Fig. 6 depicts problem space 𝐏, in which a clear symmetry appears

between the left and right branches. From this observation the hy-
pothesis arises that mental rotation skills could be independent of the
rotation axis. More precisely, if an individual can solve a problem (𝑠, 𝑡),
nd another problem (𝑠, 𝑡′) can be solved by a sequence of operations
hich is ‘‘symmetric’’ with respect to the one that solves (𝑠, 𝑡), then

hat individual can also solve (𝑠, 𝑡′). A sequence 𝜋 of operations is
‘symmetric’’ with respect to another sequence 𝜎 if (i) the two have
he same length and (ii) every single rotation about a given axis in 𝜎
12 
Fig. 5. Directed graph of the problem sub-space presented in Example 5.

Fig. 6. Directed graph of the problem space for the mental rotation task with angle
of rotation 𝛼 = 45◦.

corresponds to a rotation about the other axis in 𝜋 (e.g. if 𝜎 = 𝑥𝑦𝑥 then
= 𝑦𝑥𝑦).

This hypothesis gives rise to an abstract problem space 𝐏′ =
(𝑆′, 𝛺′, 𝑅′). A problem space homomorphism (𝜙, 𝛾) linked 𝐏′ and 𝐏.
Function 𝜙 maps the problem states of the left branch and their
symmetrical counterparts in the right branch to the same problem state
in 𝐏′ as follows:

𝜙(𝑠2) = 𝜙(𝑠3), 𝜙(𝑠9) = 𝜙(𝑠12), 𝜙(𝑠4) = 𝜙(𝑠7),
𝜙(𝑠10) = 𝜙(𝑠11), 𝜙(𝑠5) = 𝜙(𝑠6), 𝜙(𝑠14) = 𝜙(𝑠19),
𝜙(𝑠8) = 𝜙(𝑠13) 𝜙(𝑠15) = 𝜙(𝑠18), 𝜙(𝑠16) = 𝜙(𝑠17).

Given two sequences 𝜋 , 𝜎 ∈ 𝛺∗, 𝛾(𝜋) = 𝛾(𝜎) if and only if 𝜎 and 𝜋
are symmetric to one another.

Considering sequence 𝑥1𝑦2𝑦5 ∈ 𝛺∗ which solves problem (𝑠1, 𝑠10)
and sequence 𝑦1𝑥3𝑥6 ∈ 𝛺∗ which solves problem (𝑠1, 𝑠11), it follows
from the two equalities 𝜙(𝑠10) = 𝜙(𝑠11) and 𝛾(𝑥1𝑦2𝑦5) = 𝛾(𝑦1𝑥3𝑥6)
that (𝑠1, 𝑥1𝑦2𝑦5, 𝑠10), (𝑠1, 𝑦1𝑥3𝑥6, 𝑠11) ∈ 𝑅, and (𝜙(𝑠1), 𝛾(𝑥1𝑦2𝑦5), 𝜙(𝑠10)),
(𝜙(𝑠1), 𝛾(𝑦1𝑥3𝑥6), 𝜙(𝑠11)) ∈ 𝑅′. A similar check is straightforwardly
applied to all the problems in order to verify that (𝜙, 𝛾) is a weak

homomorphism.
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The example presented in this section is just one of the many
research questions that could be addressed using this approach. In
fact, the problem space and the knowledge space derived from it can
be the foundation for a computerized assessment tool, in which the
participants can rotate an object to its goal configuration in a number of
finite steps. Every single step would consist of a rotation by a constant
angle around a given axis. Moreover, the impact of different angle
izes or different rotation axes can be manipulated and studied. The
sefulness of a notion of homomorphism between problem spaces can

be particularly appreciated in the specific context of this example,
where problems are of a continuous nature. These last can be modeled
by an entire hierarchy of discrete problem spaces at different levels of
granularity, and related to one another by homomorphic functions.

7. Final remarks

The concept of problem space refers to an abstract representation
that the problem solver might have of a given task (Newell & Simon,
1972) or as a concrete representation of the physical structure of
the task that can be objectively constructed and displayed (see, e.g.,
Langley, Magnani, Schunn, & Thagard, 2005; Stefanutti, 2019; Zhang
 Norman, 1994). In this article, these two alternative notions of

problem space were linked by means of a homomorphism between
the two problem spaces. The concept of a homomorphism between
different problem space representations is not new (see e.g., Banerji &
Ernst, 1972; Chandrasekaran, 2011; Luger, 1976; Luger & Bauer, 1978).
Nonetheless, to our knowledge, there is no previous work in which a
roblem space homomorphism is developed within a formal theoretical
ramework.

A homomorphism between two problem spaces is a pair of mappings
hat preserve the relation among problem states and the sequence of
perations. The homomorphism allows tracing each abstract solution
ath back to a concrete one. Additionally, it links observed responses
n the concrete space to responses in the abstract space, which enables
he empirical validation of the abstract problem space through the
robabilistic model.

When some operations cannot be applied to all the problem states
and, therefore, the problem space is incomplete, the homomorphism
conditions are too strong. Therefore, a weaker kind of homomorphism
was introduced which preserves the relation 𝑅 when the problem
spaces are incomplete.

Two algorithms were developed in this article. The former one
tests whether a given pair of mappings (𝜙, 𝛾) is a homomorphism
between two problem spaces. The latter algorithm considers a weak
homomorphism (𝜙, 𝛾) and provides its local completion.

This work addresses two open questions in PKST. The first question
rises when problem spaces have a large number of states, such as in

mental rotation tasks, chess, or Go. In all these cases the problem space
s too large to be constructed. To overcome this limitation, one ap-
roach is to focus on a theoretically interesting portion of the problem

space, as shown by Stefanutti et al. (2021) for the Tower of London,
by Sgaravatti (2022) for the game of Go, and by Kickmeier-Rust and

lbert (2010) and Stefanutti (2014) in educational applications of
problem spaces. The alternative approach presented in this article
consists of building an abstract representation of the problem space,
which is smaller than the original one but homomorphic to it. Through
this alternative approach, larger portions of the problem space can be
considered. Section 6.1 provides a detailed example of this approach in
he context of the Tower of Hanoi.

The second open question concerns the psychological representation
f problem spaces. It is reasonable to assume that some characteristics
f the problems are not relevant to the human problem-solving pro-

cess. Once all irrelevant aspects have been removed, and the result is
omomorphic to the original problem space, what remains is a more
bstract representation. For example, if specific symmetries in problem
paces (e.g., the colors of the balls in the ToL) are hypothesized to
13 
be not relevant to the human problem-solving process, they could be
removed in an abstract representation of the problem space. Such a
more abstract model could then be tested against empirical evidence,
or instance, through the approach described in Stefanutti et al. (2021).

The definition of a problem space homomorphism between different
roblem space representations could provide a rigorous formal repre-
entation of specific hypotheses concerning the solution process. An

example of this type is offered in Section 6.2, with the Tower of London
test and the ‘‘Shallice hypothesis’’. Moreover, studying the relationship
between different problem spaces can give rise to new interesting
research questions. In the examples provided in the previous section,
it was the case of the mental rotation task where, different types of
ymmetries can be highlighted, by inspecting the problem space. Here
he research question was whether such symmetries give rise to rotation
roblems that are equivalent (in difficulty) with respect to the spatial

skills of a human individual.
Finally, the formal definition of problem space homomorphism,

together with the algorithms to test it, could be the foundation for
developing statistical procedures that start from a potentially large
oncrete problem space and tries to simplify it by extracting symmetries
nd equivalences from the response behavior of a sample of human
ndividuals.
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