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r é s u m é

Nous étudions les problèmes de partition de Cheeger et de p-valeur propre dépendant 
d’une fonction d’èvaluation Φ pour p ∈ [1, ∞). Nous prouvons l’existence et la 
régularité des minima, les relations entre ces problèmes, la convergence et la stabilité 
par rapport à p et à Φ.
© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and 

data mining, AI training, and similar technologies.

1. Introduction

1.1. Cheeger problem

The Cheeger constant of a measurable set Ω ⊂ Rd is defined as

h(Ω) = inf
{

Per(E)
|E| : E ⊂ Ω, |E| > 0

}
, (1.1)

where Per(E) and |E| are the distributional perimeter (refer to [28]) and the d-dimensional Lebesgue measure 
of E, respectively. The study of (1.1) has drawn a lot of attention in the past decades, see [14,24,35] for an 
exhaustive presentation.
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Even though (1.1) is purely geometrical in the stated form, h(Ω) has remarkable spectral properties. As 
noticed for p = 2 by Maz’ya [19,29,30] in Rd and by Cheeger [12] on a Riemannian d-manifold, and later 
extended to any p ∈ (1, ∞) in [2,23], (

h(Ω)
p

)p

≤ λ1,p(Ω),

where

λ1,p(Ω) = inf
{
‖∇u‖Lp : u ∈ W 1,p

0 (Ω), ‖u‖Lp = 1
}

(1.2)

is the first eigenvalue of the Dirichlet p-Laplacian on Ω. Actually, as proved in [21],

h(Ω) = lim
p→1+

λ1,p(Ω), (1.3)

so that h(Ω) may be thought of as the first eigenvalue of the Dirichlet 1-Laplacian on Ω.

1.2. Partition problems

A natural extension of (1.1) consists in finding clusters of Ω that minimize a combination of their isoperi-
metric ratios, see [15,16,32,33].

Given N ∈ N, an N -set of Ω is an N -tuple E = (E1, . . . , EN ) of pairwise disjoint subsets with positive 
measure Ei ⊂ Ω, called chambers of E. If, in addition, Per(Ei) < ∞ for each i = 1, . . . , N , then E is an 
N -cluster of Ω. Given a reference function Φ: RN

+ → [0, ∞) (for instance, any q-norm in RN ), we consider

HΦ,N (Ω) = inf
{

Φ
(

Per(E1)
|E1|

, . . . ,
Per(EN )
|EN |

)
: E is an N -cluster of Ω

}
. (H)

Concerning spectral analogs of (H), we have two possible natural formulations. On the geometric side, 
for any p ∈ [1, ∞), we introduce

L Φ,N
1,p (Ω) = inf {Φ (λ1,p(E1), . . . , λ1,p(EN )) : E is an N -set of Ω } , (Lp)

while, on the functional side, having in mind (1.2), we consider

ΛΦ,N
1,p (Ω) = inf

{
Φ

(
‖∇u1‖pp, . . . , ‖∇uN‖pp

)
: u = (u1, . . . ,uN )

}
, (Λp)

where the infimum runs on N -tuples u = (u1, . . . , uN ) of functions in W 1,p
0 (Ω) (or BV0(Ω), for p = 1) with 

pairwise disjoint supports and unitary p-norm.

1.3. Previous results and main aim

We are interested in studying (H), (Lp) and (Λp) and their relations under minimal assumptions on the 
reference function Φ.

Some partial results are already available in the literature. For the supremum norm Φ = ‖ · ‖∞, similarly 
to (1.3), the convergence of (Lp) to (H) as p → 1+ is established in [4], while several properties of the 
constant HΦ,N (Ω) are studied in [34] (see also the recent work [18]). For the 1-norm Φ = ‖ ·‖1, the equivalence 
between (H) and (Λp) for p = 1, as well as the relation between the superlevel sets of minimizers of (Λp)
with clusters minimizing (H), are proved in [11], while the behavior of HΦ,N (Ω) as N → ∞ is studied in [8].
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In passing, we mention that similar problems are considered in [5], where the Cheeger constant is replaced 
by the α-Cheeger constant for some α > 0, that is, the infimum on ratios of perimeter over the α-th power 
of the volume (see [36] for an account).

Our main aim is to extend the results of [4,11] to general reference functions, that may not even be 
norms. Moreover, we prove the stability of the constants as the reference function Φ changes, bridging the 
gap between the available results.

Even though we work in the Euclidean space, most of the results can be extended within the abstract 
framework of [14]. For the sake of completeness, at the end of every section, we remark how our results can 
be extended to more general settings.

1.4. Organization of the paper

In Section 2, we set the notation and the basic definitions. In particular, we list the assumptions on 
the reference function Φ we will use throughout the paper (see Section 2.4). In Section 3, we study the 
equivalence between (H) and (Lp) for p = 1, also providing regularity properties for their minimizers. In 
Section 4, we study (Λp) for p = 1, extending the results of [11] to a general reference function Φ and proving 
boundedness of minimizers. In Section 5, we prove the equivalence between (Lp) and (Λp) for p > 1 and 
the boundedness of minimizers of (Λp). We also generalize the convergence result of [4] as p → 1+, both of 
the constants and their minimizers. Lastly, in Section 6, we tackle the stability of (H), (Lp) and (Λp) with 
respect to a varying family of reference functions, proving convergence of the constants and their minimizers 
under natural equicoercivity assumptions.
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2. Notation and definitions

2.1. Notation

Given d ∈ N, we let |E| and Per(E) be the d-dimensional Lebesgue measure and the Euclidean perimeter 
of a Lebesgue measurable set E ⊂ Rd, respectively. For the theory of sets of finite perimeter, we refer the 
reader to [28].

We stress that, throughout the paper, we consider Lebesgue measurable sets only, and set inclusions are 
always meant in the measure-theoretic sense, i.e., E ⊂ F if |F \ E| = 0. Moreover, we shall always let 
Ω ⊂ Rd be a fixed non-empty, bounded, and open set.

Given N ∈ N and p ∈ [1, ∞], we let ‖ · ‖p : RN → [0, ∞) be the usual p-norm on RN , that is, for any 
v ∈ RN ,
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‖v‖p =

⎧⎪⎨⎪⎩
(∑N

i=1 |vi|p
) 1

p

, p ∈ [1,∞),

max { |vi| : i = 1, . . . , N } , p = ∞.

(2.1)

We consider the cone of N -vectors with non-negative components

RN
+ =

{
v ∈ RN : vi ≥ 0 for i = 1, . . . , N

}
,

and we partially order its elements component-wise, that is, given v, w ∈ RN
+ ,

v ≤ w, if vi ≤ wi for all i = 1, . . . , N ,

v < w, if v ≤ w and vi < wi for some i ∈ { 1, . . . , N }.

In particular, v ≥ 0 for all v ∈ RN
+ .

2.2. Cheeger constant

We recall the following standard definition.

Definition 2.1 (Cheeger constant). The Cheeger constant of F ⊂ Rd is

h(F ) = inf
{

Per(E)
|E| : E ⊂ F, |E| > 0

}
∈ [0,∞].

Any set E ⊂ F with |E| > 0 achieving the infimum is called a Cheeger set of F .

Note that h(F ) < ∞ whenever F ⊂ Rd contains a viable competitor, i.e., E ⊂ F with Per(E) < ∞
and |E| > 0. In particular, letting Ω be a non-empty, bounded, open set, one has h(Ω) < ∞, since we may 
consider any ball contained in Ω as a viable competitor.

2.3. N -sets and N -clusters

Here we define the competitors considered in the paper.

Definition 2.2 (N -set and N -cluster). Given F ⊂ Rd, an N -tuple E = (E1, . . . , EN ) is an N -set of F if 
Ei ⊂ F , |Ei| > 0 and |Ei ∩ Ej | = 0 for i �= j, and i, j = 1, . . . , N . We shall call each Ei a chamber of the 
N -set E.

If additionally the perimeter of each chamber is finite, i.e., Per(Ei) < ∞ for i = 1, . . . , N , we say that the 
N -set E is an N -cluster of F .

Note that any set F ⊂ Rd with |F | > 0 admits N -sets for any N ∈ N. Furthermore, any non-empty, 
bounded, open set Ω admits N -clusters for any N ∈ N, as one can consider the N -tuple E given by N
disjoint balls contained in Ω.

Given any N -set E of a set F ⊂ Rd as in Definition 2.2, we let

F E
i =

⋃
j �=i

Ej for each i = 1, . . . , N. (2.2)

Note that F E
i ⊂ F and Ei ⊂ F \ F E

i for each i = 1, . . . , N . The following definition was first introduced 
in [4].
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Definition 2.3 (1-adjusted N -cluster). An N -cluster E of a set F ⊂ Rd is 1-adjusted if

Per(Ei)
|Ei|

= h(F \ F E
i ) for each i = 1, . . . , N.

Remark 2.4. If the N -cluster E of a set F ⊂ Rd is 1-adjusted as in Definition 2.3, then

h(Ei) = Per(Ei)
|Ei|

for each i = 1, . . . , N. (2.3)

Indeed, since Ei ⊂ F \F E
i and due to the monotonicity of the Cheeger constant with respect to set inclusions 

(see [24, Prop. 3.5(i)]), we can write

Per(Ei)
|Ei|

= h(F \ F E
i ) ≤ h(Ei) ≤

Per(Ei)
|Ei|

, (2.4)

thus all inequalities are equalities. In particular, each Ei is a Cheeger set of F \F E
i (and of itself, of course).

2.4. Reference function

Throughout the paper, we let Φ: RN
+ → [0, ∞) be the reference function. From time to time, we will 

require Φ to possess some of the following properties:

(Φ.1) Φ is lower semicontinuous;
(Φ.2) Φ is coercive, i.e., there exists δ > 0 such that Φ(v) ≥ δ‖v‖1 for all v ∈ RN

+ ;
(Φ.3) Φ is increasing, i.e., if v, w ∈ RN

+ with v ≤ w, then Φ(v) ≤ Φ(w).

Properties (Φ.1) and (Φ.2) are quite natural to impose when dealing with existence results, as they 
guarantee lower semicontinuity and coercivity of the energy. Note that (Φ.2), once satisfied, holds with 
respect to any norm. Hence the choice of the 1-norm in (Φ.2) is made for convenience only. Property 
(Φ.3) allows to compare different energies, and thus it is quite natural to impose when comparing different 
minimization problems.

In Section 5 (specifically, Theorem 5.24) we need a stronger version of (Φ.1), while throughout Sections 4.4
and 4.5 a stronger one of (Φ.3). Precisely, we strengthen them as follows:

(Φ.1+) Φ is continuous;
(Φ.3+) Φ is strictly increasing, i.e., if v, w ∈ RN

+ with v < w, then Φ(v) < Φ(w).

Note that (Φ.1) (actually, the stronger (Φ.1+)) and (Φ.2) are met by any norm on RN . However, not all 
norms on RN satisfy (Φ.3). A counterexample for N = 2 is given by

(v1, v2) �→
√

4(v1 − v2)2 + v2
2, v = (v1, v2) ∈ R2.

The p-norm (2.1) satisfies (Φ.3) and, as long as p < ∞, also (Φ.3+). On the other hand, it can be easily 
checked that there exist reference functions Φ satisfying (Φ.1+), (Φ.2), and (Φ.3+) which are not norms on 
RN , since 1-homogeneity is not necessarily needed.

We stress that every statement in the present paper contains the bare minimum hypotheses on the 
reference function for it to hold. Nevertheless, assuming (Φ.1+), (Φ.2), and (Φ.3+), all results of the present 
paper hold true.
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2.5. (Φ, N)-Cheeger constant

We generalize Definition 2.1 to N -clusters as follows. Loosely speaking, given an N -cluster, one considers 
the N -dimensional vector given by the ratios of perimeter over measure of its chambers, and then evaluate 
it via a given reference function Φ. Definition 2.5 below was considered for the first time for Φ = ‖ · ‖p as 
in (2.1) with p = 1 in [10,11] and with p = ∞ in [4].

Definition 2.5 ((Φ, N)-Cheeger constant). The (Φ, N)-Cheeger constant of a set F ⊂ Rd is

HΦ,N (F ) = inf
{

Φ
(

Per(E)
|E|

)
: E is an N -cluster of F

}
∈ [0,∞], (2.5)

where, for brevity, we have set

Per(E)
|E| =

(
Per(E1)
|E1|

, . . . ,
Per(EN )
|EN |

)
.

A Φ-Cheeger N -cluster of F is any N -cluster E of F achieving the infimum in (2.5).

Remark 2.6. The notation and the definitions introduced in the present section can be restated verbatim in 
the abstract setting of [14].

Given any set F ⊂ Rd admitting an N -cluster, we have HΦ,N (F ) < ∞. In particular, this holds true for 
a non-empty, bounded, open set Ω as we can consider N disjoint balls contained in Ω.

3. Existence, properties and regularity of minimizers

In this section, we study existence and regularity properties of minimizers. First, though, it is useful to 
observe that the (Φ, N)-Cheeger constant has an alternate spectral-geometric definition. Indeed, we recall 
that h(F ) can be thought of as the first Dirichlet eigenvalue of the 1-Laplacian (refer to [14, Sect. 5]). 
We anticipate that, in Section 4.2, we will give a further equivalent spectral-functional definition of the 
(Φ, N)-Cheeger constant, where the competitors are given by suitable N -tuples of BV functions.

3.1. First 1-geometric (Φ, N)-eigenvalue

Below we introduce the definition of the first 1-geometric (Φ, N)-eigenvalue of a set F ⊂ Rd, and we shall 
see that, up to assuming (Φ.3), this is a viable alternative to Definition 2.5. We remark that the following 
has been used as a definition of (Φ, N)-Cheeger constant in [4,34] for the case Φ = ‖ · ‖∞.

Definition 3.1 (First 1-geometric (Φ, N)-eigenvalue). The first 1-geometric (Φ, N)-eigenvalue of a set F ⊂ Rd

is

L Φ,N
1,1 (F ) = inf {Φ(h(E)) : E is an N -set of F } ∈ [0,∞], (3.1)

where, for brevity, we have set

h(E) = (h(E1), . . . , h(EN )) .

A (1, Φ)-eigen-N -set of F is any N -set E of F achieving the infimum in (3.1). A (1, Φ)-eigen-N -cluster of 
F is any (1, Φ)-eigen-N -set E of F which is also an N -cluster.
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Just as we did for the (Φ, N)-Cheeger constant, we note that, if F ⊂ Rd is a set admitting an N -cluster, 
then L Φ,N

1,1 (F ) < ∞. In particular, this holds true for a non-empty, bounded, open set Ω.
We let the reader note that (3.1) is apparently different from (Lp) for p = 1 in the introduction. However, 

the two problems do coincide, as shown later on in Corollary 4.6.
It is worth noticing that, without loss of generality, one can consider N -clusters only in the above 

Definition 3.1 (provided that |F | < ∞) thanks to the following simple result.

Proposition 3.2. Given a set F ⊂ Rd with |F | < ∞, for any N -set E of F with h(E) ∈ RN
+ , there exists an 

N -cluster Ẽ of F such that h(Ẽ) = h(E) and Ẽi ⊂ Ei for i = 1, . . . , N . Consequently,

L Φ,N
1,1 (F ) = inf {Φ(h(E)) : E is an N -cluster of F } ∈ [0,∞],

and it is thus not restrictive to work with (1, Φ)-eigen-N -clusters of F only.

Proof. If E is an N -set of F with h(E) ∈ RN
+ , then, by Definition 2.2 each Ei has positive measure and a 

subset with positive measure and finite perimeter. Moreover, the inclusion Ei ⊂ F implies that |Ei| < ∞, 
and thus Ei admits a Cheeger set Ẽi ⊂ Ei, see [14, Sect. 3.1], so that h(Ei) = h(Ẽi) for i = 1, . . . , N . Hence 
Ẽ = (Ẽ1, . . . , ẼN ) is an N -cluster of F such that h(E) = h(Ẽ). We thus get that Φ(h(Ẽ)) = L Φ,N

1,1 (F ) and 
the conclusion follows. �

The following result proves that, assuming (Φ.3), Definitions 2.5 and 3.1 are in fact equivalent on a non-
empty, bounded, and open set Ω, generalizing [34, Prop. 3.5]. Moreover, a first relation between minimizers 
of the two problems is established.

Proposition 3.3 (HΦ,N (Ω) = L Φ,N
1,1 (Ω)). The following holds

L Φ,N
1,1 (Ω) ≥ HΦ,N (Ω).

If (Φ.3) is in force, then

L Φ,N
1,1 (Ω) = HΦ,N (Ω).

Moreover, any Φ-Cheeger N -cluster of Ω is also a (1, Φ)-eigen-N -cluster of Ω.

Proof. Given any N -cluster E of Ω, each Ei has positive measure and finite perimeter by Definition 2.2, and 
finite measure since Ei ⊂ Ω. Hence Ei admits a Cheeger set Ẽi, see [14, Sect. 3.1], i.e.,

h(Ei) = Per(Ẽi)
|Ẽi|

, for each i = 1, . . . , N. (3.2)

Note that Ẽ = (Ẽ1, . . . , ẼN ) is an N -cluster of Ω such that

h(E) = Per(Ẽ)
|Ẽ|

by (3.2), hence proving that HΦ,N (Ω) ≤ L Φ,N
1,1 (Ω).

Viceversa, we clearly have h(E) ≤ Per(E)/|E| for any N -cluster E of Ω. By (Φ.3), we hence get that

Φ(h(E)) ≤ Φ
(

Per(E)
|E|

)
(3.3)

for any N -cluster E of Ω, yielding L Φ,N
1,1 (Ω) ≤ HΦ,N (Ω).
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Finally, if E is a Φ-Cheeger N -cluster of Ω, then (3.3) yields that

L Φ,N
1,1 (Ω) ≤ Φ(h(E)) ≤ Φ

(
Per(E)
|E|

)
= HΦ,N (Ω) = L Φ,N

1,1 (Ω),

and thus E must also be a (1, Φ)-eigen-N -cluster of Ω, concluding the proof. �
The second part of Proposition 3.3 cannot be reversed, that is, (1, Φ)-eigen-N -clusters of Ω may not be 

Φ-Cheeger N -clusters of Ω, see also [4]. However, this holds in the case of 1-adjusted N -clusters (recall 
Definition 2.3). Precisely, we have the following result.

Proposition 3.4. Let (Φ.3) be in force. Then, any 1-adjusted (1, Φ)-eigen-N -cluster of Ω is also a Φ-Cheeger 
N -cluster of Ω.

Proof. If E is a 1-adjusted (1, Φ)-eigen-N -cluster of Ω, then, by (2.3),

Φ
(

Per(E)
|E|

)
= Φ(h(E)) = L Φ,N

1,1 (Ω).

Hence the conclusion immediately follows from Proposition 3.3. �
It is worth noting that, whenever the strict monotonicity property (Φ.3+) holds, any minimizer of (2.5)

is 1-adjusted.

Proposition 3.5. Let (Φ.3+) be in force. Then, any Φ-Cheeger N -cluster of Ω is 1-adjusted.

Proof. By contradiction, if E is a Φ-Cheeger N -cluster of Ω which is not 1-adjusted, then

Per(Ei)
|Ei|

> h(Ω \ ΩE
i ) for some i ∈ { 1, . . . , N } ,

where ΩE
i is defined as in (2.2). Since |Ω \ ΩE

i | < ∞ and Ei ⊂ Ω \ ΩE
i , by standard results (e.g., see [14, 

Sect. 3.1]) the set Ω \ ΩE
i admits a Cheeger set Ẽi, i.e., a set such that

h(Ω \ ΩE
i ) = Per(Ẽi)

|Ẽi|
.

Assuming i = 1 without loss of generality, the N -cluster Ẽ = (Ẽ1, E2, . . . , EN ) satisfies Per(Ẽ)/|Ẽ| <

Per(E)/|E|, therefore property (Φ.3+) implies the strict inequality Φ(Per(Ẽ)/|Ẽ|) < Φ(Per(E)/|E|), against 
the minimality of E. �

Summing up these results, and, in view of Proposition 3.2, restricting the class of competitors for L Φ,N
1,1 (Ω)

to N -clusters only, for a non-empty, bounded, and open set Ω we have the following chain of inclusions{
E ∈ arg min L Φ,N

1,1 (Ω)
}
⊇

{
E ∈ arg minHΦ,N (Ω)

}
⊇

{
E ∈ arg minHΦ,N (Ω) : E is 1-adjusted

}
=

{
E ∈ arg min L Φ,N

1,1 (Ω) : E is 1-adjusted
}
,

and if (Φ.3+) holds, the last set inclusion becomes a set equality.
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Remark 3.6. To rephrase the results of the present subsection in the abstract setting of [14], we just need to 
invoke [14, Th. 3.6], and hence we need to enforce that the perimeter-measure pair meets properties (P.4), 
(P.5), and (P.6) of [14, Sect. 2.1].

Finally, assuming (Φ.2), we can prove the following lower bound on HΦ,N(Ω), generalizing [34, Prop. 3.14].

Proposition 3.7. Let (Φ.2) be in force. Then,

HΦ,N (Ω) ≥ Nδd

(
|B1|
|Ω|

) 1
d

, (3.4)

holds, where δ is as in (Φ.2).

Proof. For any ε > 0, we let Eε be an N -cluster of Ω such that

HΦ,N (Ω) + ε ≥ Φ
(

Per(Eε)
|Eε|

)
.

By (Φ.2), the isoperimetric inequality on each chamber Eε
i , and the set inclusion Eε

i ⊂ Ω, we have

HΦ,N (Ω) + ε ≥ δ

N∑
i=1

Per(Eε
i )

|Eε
i |

≥ δd

N∑
i=1

(
|B1|
|Eε

i |

) 1
d

≥ Nδd

(
|B1|
|Ω|

) 1
d

,

and the conclusion follows by letting ε → 0+. �
Remark 3.8. It is worth noticing that Proposition 3.7 yields that HΦ,N (Ω) → ∞ as N → ∞, generalizing [34, 
Cor. 3.15].

3.2. Existence of minimizers

We now prove that 1-adjusted minimizers of (2.5) exist among N -clusters of a non-empty, bounded, and 
open set Ω, assuming (Φ.1)–(Φ.3). In virtue of Proposition 3.3, this also implies the existence of minimizers 
of (3.1), generalizing the corresponding results in [4,10,11,34]. Note that (Φ.2) here plays a crucial role, as 
it yields a uniform upper bound on the perimeters of an infimizing sequence.

Theorem 3.9 (Existence of minimizers of HΦ,N (Ω)). Let (Φ.1), (Φ.2), and (Φ.3) be in force. Then, Φ-
Cheeger N -clusters of Ω exist.

Proof. Let 
{

Ek : k ∈ N
}

be an infimizing sequence for HΦ,N (Ω) and let ε > 0. By (Φ.2), for all k ∈ N

sufficiently large we have that

∑
i

Per(Ek
i ) ≤ |Ω|

δ
Φ

(
Per(Ek)
|Ek|

)
≤ |Ω|

δ
(HΦ,N (Ω) + ε),

where δ > 0 is as in (Φ.2). Consequently, up to subsequences, Ek
i → Ei as k → ∞ in L1(Ω) for each 

i = 1, . . . , N , for some Ei ⊂ Ω. By the lower semicontinuity of the perimeter, we have Per(Ei) < ∞, while it 
is also easy to see that |Ei ∩ Ej | = 0 for i �= j with i, j ∈ { 1, . . . , N }. To conclude that E is an N -cluster of 
Ω, we need to check that |Ei| > 0 for all i = 1, . . . , N . If |Ej | = 0 for some j, then, thanks to (Φ.2) and the 
isoperimetric inequality, we can estimate
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HΦ,N (Ω) + ε

δ
≥ 1

δ
Φ

(
Per(Ek)
|Ek|

)
≥

N∑
i=1

Per(Ek
i )

|Ek
i |

≥
Per(Ek

j )
|Ek

j |
≥

Per(Bk
j )

|Bk
j |

= d

rk
, (3.5)

where Bk
j ⊂ Rd is any ball of radius rk > 0 such that |Bk

j | = |Ek
j |. Since |Ej | = 0, |Ek

j | → 0+ as k → ∞, 
and thus also rk → 0+ as k → ∞, contradicting (3.5). Therefore, E is an N -cluster such that, by the lower 
semicontinuity of the perimeter,

Per(E)
|E| ≤ lim inf

k→∞

Per(Ek)
|Ek| .

Now, owing to (Φ.3) and to (Φ.1), we get that

Φ
(

Per(E)
|E|

)
≤ Φ

(
lim inf
k→∞

Per(Ek)
|Ek|

)
≤ lim inf

k→∞
Φ

(
Per(Ek)
|Ek|

)
= HΦ,N (Ω),

yielding that E is a Φ-Cheeger-N -cluster of Ω and concluding the proof. �
From Proposition 3.3 and Theorem 3.9 we immediately get the following result.

Corollary 3.10 (Existence of minimizers of L Φ,N
1,1 (Ω)). Let (Φ.1), (Φ.2), and (Φ.3) be in force. Then, (1, Φ)-

eigen-N -clusters of Ω exist.

Remark 3.11 (More general version of Theorem 3.9). The assumptions on Ω yielding the validity of Theo-
rem 3.9 can be considerably weakened. In fact, it is enough to assume that Ω ⊂ Rd is a measurable set with 
|Ω| ∈ (0, ∞) containing at least one viable competitor. We omit the proof of this statement (also compare 
with the general approach of [14]).

3.3. Properties of minimizers

Let us collect some basic yet quite useful properties of Φ-Cheeger N -clusters, i.e., minimizers of (2.5).

Proposition 3.12 (Properties of Φ-Cheeger N -clusters). If E is a Φ-Cheeger N -cluster of Ω, then:

(i) enforcing (Φ.2), the following uniform lower bound

|Ei| ≥ |B1|
(

δd

HΦ,N (Ω)

)d

, for i = 1, . . . , N, (3.6)

holds, where δ > 0 is as in (Φ.2);
(ii) enforcing (Φ.3), E can be modified into a 1-adjusted Φ-Cheeger N -cluster.

Proof. We prove each statement separately.

Proof of (i). The proof is essentially the same as that of Proposition 3.7, the only difference being that 
one works with a minimizer E. We omit the simple details.

Proof of (ii). The proof is quite similar to the first part of the proof of Proposition 3.5. By standard 
results (e.g., see [14, Sect. 3.1]), Ω \ΩE

1 admits a Cheeger set Ẽ1, being ΩE
i defined as in (2.2). Consequently,

Per(Ẽ1)
˜ ≤ Per(A) for any A ⊂ Ω \ ΩE

1 such that |A| > 0.

|E1| |A|
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As this holds also for A = E1, we get that

h(Ẽ1,E2, . . . ,EN ) ≤ h(E).

By (Φ.3), the N -cluster (Ẽ1, E2, . . . , EN ) is a Φ-Cheeger N -cluster of Ω. Repeating this procedure N − 1
times on the remaining indexes gives the desired 1-adjusted Φ-Cheeger N -cluster of Ω and concludes the 
proof. �
Remark 3.13. To restate the results of the present subsection in the abstract setting of [14], the perimeter-
measure pair must satisfy properties (P.4), (P.5), and (P.6) in [14, Sect. 2.1] (this also ensures the validity 
of [14, Th. 3.6], needed in the proof of Theorem 3.9). Note that the lower bound (3.6) (and, consequently, 
also the one in (3.4)) requires a finer version of the isoperimetric property (P.6) of [14, Sect. 2.1], see, 
e.g., [14, Prop. 7.2] in the context of metric-measure spaces and the discussion in [14, Sect. 7.3] for non-local 
perimeter functionals.

3.4. Regularity of 1-adjusted minimizers

We now establish the regularity of 1-adjusted minimizers of (2.5), assuming (Φ.2). We adapt [4, Sect. 3], 
where the authors deal with 1-adjusted minimizers of (3.1) for the choice Φ = ‖ ·‖∞. We omit the full proofs 
and only detail the minor changes. To start, we recall the following two standard definitions.

Definition 3.14 (Mean curvature bounded from above). A set F ⊂ Ω has distributional mean curvature 
bounded from above at scale r0 ∈ (0, ∞] by g ∈ L1

loc(Ω) in Ω if

Per(F ;Br(x)) ≤ Per(E;Br(x)) +
∫

F\E

g dy

whenever Br(x) � Ω with x ∈ Rd, r ∈ (0, r0), and E ⊂ F with F \ E � Br(x).

Definition 3.15 ((Λ, r0)-minimizer of the perimeter). A set F ⊂ Rd is a (Λ, r0)-minimizer of the perimeter
in Ω, with Λ < ∞ and r0 ∈ [0, ∞], if

Per(F ;Br(x)) ≤ Per(E;Br(x)) + Λ|EΔF |

whenever E ⊂ Rd is such that EΔF � Br(x) ∩ Ω with x ∈ Rd, r ∈ (0, r0).

The following two results give curvature bounds for 1-adjusted minimizers of (2.5), inside a non-empty, 
bounded, and open set Ω, assuming (Φ.2).

Lemma 3.16 (Curvature bound, I). Let property (Φ.2) be in force. If E is a 1-adjusted Φ-Cheeger N -cluster 
of Ω, then the sets ΩE

i defined in (2.2), i = 1, . . . , N , have distributional mean curvature bounded from above 
at scale r0 = δd(HΦ,N (Ω))−1 by HΦ,N (Ω)δ−1 in Ω, where δ > 0 is as in (Φ.2).

Proof. The proof goes as that of [4, Lem. 3.3]. The first part of the argument requires the choice r0 =
δd(HΦ,N (Ω))−1 and (Φ.2). For the second part of the argument, to achieve the upper bound on the curvature, 
it is enough to observe that

Per(Ei) = h(Ei) ≤ ‖h(E)‖1 ≤ Φ(h(E)) = HΦ,N (Ω)
, (3.7)
|Ei| δ δ
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owing to the 1-adjusted hypothesis on the cluster, Remark 2.4 (see (2.3)), and to (Φ.2). We leave the simple 
details to the reader. �
Lemma 3.17 (Curvature bound, II). Let property (Φ.2) be in force. If E is a 1-adjusted Φ-Cheeger N -cluster of 
Ω, then each chamber Ei has distributional mean curvature bounded from above at scale r0 = δd(HΦ,N (Ω))−1

by HΦ,N (Ω)δ−1 in Ω, where δ > 0 is as in (Φ.2).

Proof. As E is 1-adjusted, by Remark 2.4 each chamber Ei is a Cheeger set of Ω \ ΩE
i for i = 1, . . . , N . 

Therefore, by standard results (e.g., see [25, Lem. 2.2]), Ei has distributional mean curvature bounded from 
above at scale r0 = δd(HΦ,N (Ω))−1 by h(Ω \ ΩE

i ) in Ω. Recalling (2.4) and using (Φ.2), we have

h(Ω \ ΩE
i ) = h(Ei) ≤ ‖h(E)‖1 ≤ Φ(h(E))

δ
= HΦ,N (Ω)

δ
,

so that the conclusion follows by noticing that, by Definition 3.14, if c1 > 0 is a bound from above to the 
distributional curvature, so it is any c2 > c1. �

The following result states that all chambers of a 1-adjusted minimizer of (2.5) on a non-empty, bounded, 
and open set Ω are almost minimizers of the perimeter in the sense of Definition 3.15.

Lemma 3.18 (Almost minimizer). Let (Φ.2) be in force. If E is a 1-adjusted Φ-Cheeger N -cluster of Ω, 
then each chamber Ei is a (Λ, r0)-minimizer of the perimeter in Ω, with Λ = HΦ,N (Ω)δ−1 and r0 =
δd(HΦ,N (Ω))−1, where δ > 0 is as in (Φ.2).

Proof. The proof goes as that of [4, Prop. 3.4]. The only relevant change is to use (Φ.2) to get an estimate 
similar to (3.7). We leave the simple details to the reader. �

In virtue of the standard theory for almost minimizers of the perimeter (refer to [28] for an account), 
we get the following regularity properties for 1-adjusted minimizers of (2.5) on a non-empty, bounded, and 
open set Ω.

Theorem 3.19 (Regularity). Let (Φ.2) be in force. If E is a 1-adjusted Φ-Cheeger N -cluster of Ω, then the 
following hold true:

(i) each ∂∗Ei ∩ Ω is of class C1,γ for every γ ∈ (0, 1/2);
(ii) each ∂Ei \ ∂∗Ei has Hausdorff dimension at most d − 8;
(iii) if d ≤ 7, then each ∂Ei is of class C1,γ for every γ ∈ (0, 1/2);
(iv) if H d−1(∂Ω) < ∞, then there exists a 1-adjusted Φ-Cheeger N -cluster Ẽ of Ω such that |Ẽi � Ei| = 0

and each Ẽi is open;
(v) if Per(Ω) < ∞, then each ∂∗Ei∩Ω can meet ∂∗Ω only tangentially, i.e., if x ∈ ∂Ei∩∂∗Ω, then x ∈ ∂∗Ei

and νΩ(x) = νEi
(x).

Proof. Due to Lemma 3.18, properties (i) and (ii) follow from the regularity theory of almost minimizers, 
see [28, Ths. 21.8 and 28.1]. Property (iii) is an immediate consequence of (i) and (ii). For property (iv), it 
is enough to set Ẽi = Ei \ ∂Ei for i = 1, . . . , N (see the proof of [4, Th. 3.5]). Finally, property (v) can be 
proved as in [26, App. A] or as in [27, Th. 3.5]. �

Finally, owing to Theorem 3.19 and to [37, Th. 1.1] (see also [13,20]), one can approximate the chambers 
of a 1-adjusted minimizing cluster from within the interior with smooth sets, both in L1 and in perimeter, 
provided that Ω is sufficiently regular.
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Corollary 3.20 (Approximation). Assume that Per(Ω) < ∞ and H d−1(∂Ω \ ∂∗Ω) = 0. If E is a 1-adjusted 
Φ-Cheeger N -cluster of Ω such that each chamber Ei is open, then there exist N -clusters 

{
Ek : k ∈ N

}
of 

Ω such that Ek
i � Ei, ∂Ek

i is smooth for all k ∈ N, Ek
i → Ei in L1(Ω) and Per(Ek

i ) → Per(Ei) as k → ∞, for 
each i = 1, . . . , N .

Proof. The proof is identical to that of [4, Prop. 3.6] and so we omit it. �
4. Relation with the functional problem

In this section, we introduce the functional variant of (3.1), and we shall see how it is related to (2.5). We 
adapt [11, Sect. 3] (see also [14, Sect. 5]), where the authors deal with Φ = ‖ · ‖1, omitting the full proofs 
and only detailing the minor changes.

4.1. BV0 space and the relation h = λ1,1

We start with the following definition of BV0 space, which we will use in the remainder of the paper.

Definition 4.1 (BV0 space). Given a set F ⊂ Rd, we let

BV0(F ) =
{
u ∈ BV (Rd) : u = 0 a.e. in Rd \ F

}
, (4.1)

and we let u ∈ BV0(F ; RN ) if ui ∈ BV0(F ) for i = 1, . . . , N .

Remark 4.2. Note that BV0(F ) may not coincide with the space of BV functions on F with null trace at the 
boundary, unless ∂F is sufficiently regular, see [11, Rem. 1.1]. Nevertheless, the usual Sobolev embeddings 
hold on a bounded F , as BV0(F ) ⊂ BV0(BR) with R > 0 such that F � BR.

We now introduce the usual, variational definition of first 1-eigenvalue.

Definition 4.3 (First 1-eigenvalue). The first 1-eigenvalue of a set F ⊂ Rd is

λ1,1(F ) = inf
{
|Du|(Rd) : u ∈ BV0(F ), ‖u‖L1 = 1

}
∈ [0,∞]. (4.2)

Remark 4.4 (Non-negative competitors). The competitors in (4.2) can be taken non-negative. Indeed, by 
the chain rule, if u ∈ BV0(F ), then also |u| ∈ BV0(F ) with |D|u||(Rd) = |Du|(Rd).

We recall the following standard result, relating the Cheeger constant of a set F , h(F ), to the first Dirichlet 
eigenvalue of the 1-Laplacian on the set F , λ1,1(F ), refer to [14, Th. 5.4] (refer also to [11, Prop. 2.1]). We 
remark that, in the given references, it is assumed that F has positive finite measure and contains at least 
one N -cluster, but this is not necessary, and the proof can be repeated almost verbatim.

Theorem 4.5 (h = λ1,1). Given a set F ⊂ Rd, we have h(F ) = λ1,1(F ).

As a simple yet quite useful consequence of Theorem 4.5, we get the following result.

Corollary 4.6. Given a set F ⊂ Rd, it holds that

L Φ,N
1,1 (F ) = inf {Φ(λ1,1(E)) : E is an N -set of F } ∈ [0,∞].
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Remark 4.7. Note that, by its very definition, BV0(F ) �= {0} if and only if λ1,1(F ) < ∞. If, in addition, F is 
bounded, then there exist eigenfunctions, that is, functions u ∈ BV0(F ) realizing the infimum in (4.2). To 
see this, it is enough to take an infimizing sequence, to use the compact embeddings (refer to Remark 4.2), 
and to exploit the lower semicontinuity of the total variation. Notice that, in virtue of Remark 4.4, we can 
also assume these to be non-negative. In particular, this holds true for any non-empty, bounded, and open 
set Ω. Moreover, if ∂Ω is sufficiently regular, then λ1,1(Ω) is the usual first eigenvalue of the 1-Laplacian 
on Ω.

Remark 4.8. The present subsection can be rephrased almost verbatim in the abstract setting of [14] (in 
particular, see [14, Sect. 5]) enforcing the validity of (P.1), (P.2), (P.4), and (P.7), the latter ensuring the 
validity of Remark 4.4.

4.2. First 1-functional eigenvalue

We provide an analog of Theorem 4.5 for the more general problem (2.5). We begin with the following 
definition, introducing our class of competitors, in the same spirit of [11].

Definition 4.9 ((1, N)-function). We say that u ∈ BV0(F ; RN ) is a (1, N)-function of F ⊂ Rd if ui ≥ 0, 
‖ui‖L1 = 1 and ui uj = 0 a.e. in F whenever i �= j, for i, j = 1, . . . , N .

Note that any N -cluster E of F naturally induces a (1, N)-function uE of F , by letting

uE =
(
χE1

|E1|
, . . . ,

χEN

|EN |

)
. (4.3)

The following definition was given in [11, eq. (7)] for the special case Φ = ‖ · ‖1.

Definition 4.10 (First 1-functional (Φ, N)-eigenvalue). The first 1-functional (Φ, N)-eigenvalue of a set F ⊂
Rd is

ΛΦ,N
1,1 (F ) = inf {Φ([u]1,F ) : u is a (1, N)-function of F } ∈ [0,∞], (4.4)

where, for brevity, we have set

[u]1,F =
(
|Du1|(Rd), . . . , |DuN |(Rd)

)
,

and, if no confusion can arise, we shall drop the reference to the ambient set F and write [u]1. Any (1, N)-
function u of F achieving the infimum is a (1, Φ)-eigen-N -function of F .

By (4.3), given any set F admitting an N -cluster, one has ΛΦ,N
1,1 (F ) < ∞, with ΛΦ,N

1,1 (F ) ≤ HΦ,N (F ). In 
particular, this holds for any non-empty, bounded, open set Ω.

4.3. Existence of minimizers of ΛΦ,N
1,1 (Ω)

Similarly to Section 3.2, we show that there exist minimizers of the spectral-functional eigenvalue 
ΛΦ,N

1,1 (Ω), up to assuming (Φ.1)–(Φ.3). Once again (Φ.2) plays the crucial role of yielding a uniform bound 
on the sequence of total variations of an infimizing sequence. This result generalizes [11, Th. 3.1].

Theorem 4.11 (Existence of minimizers of ΛΦ,N
1,1 (Ω)). Let (Φ.1), (Φ.2), and (Φ.3) be in force. Then, (1, Φ)-

eigen-N -functions of Ω exist.
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Proof. Let 
{

uk : k ∈ N
}

be an infimizing sequence for ΛΦ,N
1,1 (Ω) and let ε > 0. By (Φ.2), for all k ∈ N

sufficiently large we have that

ΛΦ,N
1,1 (Ω) + ε ≥ Φ([uk]1) ≥ δ|Duk

i |(Rd),

where δ > 0 is as in (Φ.2). Since Ω ⊂ Rd is bounded, the embedding BV0(Ω) ⊂ L1(Ω) is compact. Thus, 
up to subsequences, uk

i → ui as k → ∞ in L1(Ω) for i = 1, . . . , N , for some ui ∈ L1(Ω). It is easy to check 
that u is a (1, N)-function of Ω. Moreover,

Φ([u]1) ≤ Φ
(

lim inf
k→∞

[uk]1
)

≤ lim inf
k→∞

Φ
(
[uk]1

)
= ΛΦ,N

1,1 (Ω)

thanks to the lower semicontinuity of the BV seminorm, to (Φ.3), and to (Φ.1), readily yielding the con-
clusion. �
Remark 4.12 (More general version of Theorem 4.11). Similarly to Remark 3.11, Theorem 4.11 holds under 
weaker assumptions on Ω. In fact, it is enough to assume that Ω ⊂ Rd is a bounded measurable set with 
|Ω| > 0 containing at least one viable competitor. Note that the boundedness of Ω cannot be relaxed to 
|Ω| < ∞, as this does not necessarily guarantee the compactness of the embedding BV0(Ω) ⊂ L1(Ω). For a 
more detailed discussion, see [31, Sect. 9.1.7].

Remark 4.13. In order to rephrase the content of this subsection in the abstract setting of [14], we have, at 
least, to enforce properties (P.1), (P.2), and (P.4). Notice that the definition of ΛΦ,N

1,1 (Ω) we are using here—
that is, by considering only non-negative competitors—corresponds to the one appearing in [14, Rem. 5.9]. 
Enforcing (P.7) allows us to drop this restriction, thanks to Remark 4.4. Furthermore, in order to achieve 
Theorem 4.11, we need to ensure the compactness of the embedding BV0(Ω, m) ⊂ L1(Ω, m). Note that this 
holds in many of the frameworks discussed in [14, Sect. 7].

4.4. Relations with first 1-functional eigenvalue

In the following result we prove the equivalence of problems (3.1) and (4.4) under the validity of (Φ.3).

Theorem 4.14 (ΛΦ,N
1,1 (Ω) = L Φ,N

1,1 (Ω)). The following holds

L Φ,N
1,1 (Ω) ≥ ΛΦ,N

1,1 (Ω).

If (Φ.3) is in force, then

L Φ,N
1,1 (Ω) = ΛΦ,N

1,1 (Ω).

Moreover, if u is a (1, Φ)-eigen-N -function of Ω, then

E = ({u1 > 0 } , . . . , {uN > 0 }) (4.5)

is a (1, Φ)-eigen-N -set of Ω. Viceversa, if E is a (1, Φ)-eigen-N -set of Ω, there exists a (1, Φ)-eigen-N -
function u such that {ui > 0 } ⊂ Ei for all i = 1, . . . , N .

Proof. On the one hand, given ε > 0, we can find an N -set E of Ω such that L Φ,N
1,1 (Ω) +ε > Φ(λ1,1(E)), with 

λ1,1(E) ∈ RN
+ . Since Ei is a subset of a bounded set Ω, we get the existence of non-negative eigenfunctions 

of λ1,1(Ei), as noted in Remark 4.7.
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For each i ∈ { 1, . . . , N }, we now let ui ∈ BV0(Ei) be such that ui ≥ 0, ‖ui‖L1 = 1 and |Dui|(Rd) =
λ1,1(Ei). Hence u = (u1, . . . , uN ) is a (1, N)-function of Ω as in Definition 4.9 such that [u]1 = λ1,1(E). We 
thus get that L Φ,N

1,1 (Ω) + ε > Φ([u]1) ≥ ΛΦ,N
1,1 (Ω). The claim hence follows by letting ε → 0.

On the other hand, let u be a (1, N)-function of Ω. Using Definition 4.9, it is easy to check that E in (4.5)
is an N -set of Ω as in Definition 2.2. Hence, recalling Definition 4.3, in virtue of λ1,1(E) ≤ [u]1, we have 
that Φ(λ1,1(E)) ≤ Φ([u]1) by (Φ.3), yielding that L Φ,N

1,1 (Ω) ≤ ΛΦ,N
1,1 (Ω).

For the second part of the statement, if u is a (1, Φ)-eigen-N -function of Ω, then E in (4.5) satisfies 
λ1,1(E) ≤ [u]1. By (Φ.3), it follows that

L Φ,N
1,1 (Ω) ≤ Φ(λ1,1(E)) ≤ Φ([u]1) = ΛΦ,N

1,1 (Ω),

yielding that E is a (1, Φ)-eigen-N -set of Ω.
Now let E be a (1, Φ)-eigen-N -set. Hence, λ1,1(E) ∈ RN

+ , that is, λ1,1(Ei) < ∞ for all i = 1, . . . , N . Since 
Ei ⊂ Ω is a bounded set with |Ei| > 0, by Remarks 4.4 and 4.7, for all i = 1, . . . , N , there exists a function 
ui ∈ BV0(Ei) such that ‖ui‖L1 = 1, ui ≥ 0, and λ1,1(Ei) = |Dui|(Rd). Therefore, u = (u1, . . . , uN ) is a 
(1, N)-function of Ω such that

ΛΦ,N
1,1 (Ω) ≤ Φ([u]1) = Φ(λ1,1(E)) = L Φ,N

1,1 (Ω).

From the first part of the statement it follows that u is a (1, Φ)-eigen-N -function of Ω, and, by construction, 
{ui > 0 } ⊂ Ei for all i = 1, . . . , N . �
Remark 4.15. Theorem 4.14 yields that, up to possibly passing to a smaller N -subset, each chamber of a 
(1, Φ)-eigen-N -set of Ω is the zero superlevel set of a (1, Φ)-eigen-N -function of Ω. Actually, if a chamber 
Ei is a Cheeger set of itself, then the set inclusion is an equality. In such a case, ui = χEi

/‖χEi
‖L1 is a first 

eigenfunction of the 1-Laplacian on Ei (e.g., see [14, Cor. 5.5]). This happens on all chambers, for instance, 
if E is 1-adjusted.

We are ready to deal with the main result of this section, generalizing [11, Th. 3.3], proving that, 
assuming (Φ.3), for a non-empty, bounded, and open set Ω, the equality ΛΦ,N

1,1 (Ω) = HΦ,N (Ω) holds. In fact, 
assuming the stronger (Φ.3+), minimizers of one problem are naturally related to minimizers of the other 
problem (if they exist).

Theorem 4.16 (ΛΦ,N
1,1 (Ω) = HΦ,N (Ω)). Let (Φ.3) be in force. Then,

ΛΦ,N
1,1 (Ω) = HΦ,N (Ω). (4.6)

Moreover, under the stronger (Φ.3+), any (1, N)-function u is a (1, Φ)-eigen-N -function of Ω if and only 
if, for a.e. ti > 0 such that | {ui > ti } | > 0, for i = 1, . . . , N ,

E = ({u1 > t1 } , . . . , {uN > tN }) (4.7)

is a 1-adjusted Φ-Cheeger N -cluster of Ω. In particular, if E is a Φ-Cheeger N -cluster of Ω, then u in (4.3)
is a (1, Φ)-eigen-N -function of Ω.

For the proof of the second part of the statement of Theorem 4.16, we need the following result, which 
extends [11, Lem. 3.4].
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Lemma 4.17. Let (Φ.3+) be in force. If u is a (1, Φ)-eigen-N -function of Ω, then

| {ui > t } | > 0 and Per({ui > t })
| {ui > t } | = |Dui|(Rd)

for a.e. t ∈ R and each i = 1, . . . , N .

Proof. By (Φ.3+), if j ∈ { 1, . . . , N } and u, ū ∈ BV (Ω; RN ) are such that Φ([u]1) ≤ Φ([ū]1) and ui = ūi

for i ∈ { 1, . . . , N }\{j}, then |Duj |(Rd) ≤ |Dūj |(Rd), as in [11, eq. (10)]. Hence the proof is similar to that 
of [11, Lem. 3.4]. We omit the details. �
Proof of Theorem 4.16. The equality ΛΦ,N

1,1 (Ω) = HΦ,N (Ω) immediately follows by combining Proposi-
tion 3.3 and Theorem 4.14. We can hence deal with the second part of the statement, assuming (Φ.3+). We 
argue as in the proof of [11, Th. 3.3].

On the one hand, let u be a (1, Φ)-eigen-N -function of Ω and let ti > 0 be such that Lemma 4.17 applies 
to each i = 1, . . . , N . Therefore, we have

ΛΦ,N
1,1 (Ω) = Φ([u]1) = Φ

(
Per(E)
|E|

)
≥ HΦ,N (Ω),

being E the N -cluster in (4.7). Hence, in virtue of (4.6), E is a Φ-Cheeger N -cluster of Ω, which is 1-adjusted 
thanks to Proposition 3.5.

On the other hand, let u be a (1, N)-function of Ω such that, for a.e. ti > 0 with | {ui > ti } | > 0, E

as in (4.7) is a 1-adjusted Φ-Cheeger N -cluster of Ω. Now let t2, . . . , tN be such that | {ui > ti } | > 0 for 
i = 2, . . . , N , and set T = { t > 0 : | {u1 > t } | > 0 }. We claim that

t �→ Per({u1 > t })
| {u1 > t } | is constant for t ∈ T. (4.8)

By contradiction, if this is not the case, we can find t1, τ1 ∈ T, t1 �= τ1, such that

Per({u1 > t1 })
| {u1 > t1 } |

<
Per({u1 > τ1 })
| {u1 > τ1 } |

. (4.9)

Accordingly to our hypotheses, also

Ẽ = ({u1 > τ1 } ,E2, . . . ,EN )

is a 1-adjusted Φ-Cheeger N -cluster of Ω. Therefore, also owing to (2.3), we have

Φ(h(E)) = Φ
(

Per(E)
|E|

)
= HΦ,N (Ω) = Φ

(
Per(Ẽ)
|Ẽ|

)
= Φ(h(Ẽ)). (4.10)

Nevertheless, by (4.9), we must have that

h({u1 > t1 }) = Per({u1 > t1 })
| {u1 > t1 } |

<
Per({u1 > τ1 })
| {u1 > τ1 } |

= h({u1 > τ1 }),

yielding h(E) < h(Ẽ). By (Φ.3+), it must be Φ(h(E)) < Φ(h(Ẽ)), contradicting (4.10). This concludes the 
proof of the claimed (4.8).

Therefore, there exists h1 > 0 (as a consequence of the isoperimetric inequality and of the fact that 
| {u1 > t } | > 0) such that
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Per({u1 > t })
| {u1 > t } | = h1 for all t ∈ T.

Reasoning analogously for each i ∈ { 2, . . . , N }, we find constants hi > 0 such that

Per({ui > t })
| {ui > t } | = hi for all t > 0 such that | {ui > t } | > 0.

Recalling that, by definition of (1, N)-function ui ≥ 0, and owing to the coarea formula, the above equalities, 
Cavalieri’s principle (recalling that ‖ui‖L1 = 1), the fact that HΦ,N (Ω) = Φ(h1, . . . , hN ), and (4.6), we have

ΛΦ,N
1,1 (Ω) ≤ Φ([u]1) = Φ

⎛⎝ ∞∫
0

Per({u1 > t }) dt, . . . ,
∞∫
0

Per({uN > t }) dt

⎞⎠
= Φ

⎛⎝h1

∞∫
0

| {u1 > t } |dt, . . . , hN

∞∫
0

| {uN > t } |dt

⎞⎠
= Φ (h1, . . . , hN ) = HΦ,N (Ω) = ΛΦ,N

1,1 (Ω),

yielding that u is a (1, Φ)-eigen-N -function of Ω. The proof is complete. �
Remark 4.18. The equalities ΛΦ,N

1,1 (Ω) = L Φ,N
1,1 (Ω) = HΦ,N (Ω) can be achieved within the abstract setting 

of [14], enforcing properties (P.1), (P.2), (P.4), and also (P.7), which ensures the validity of Remark 4.4. 
A part of the argument can already be found in the proof [14, Th. 5.4].

4.5. Boundedness of functional minimizers

We end this section with the following result, generalizing the classical L∞ bound for minimizers of (4.2), 
on a non-empty, bounded, and open set Ω, see [9, Th. 4].

Proposition 4.19. Let (Φ.2) and (Φ.3+) be in force. If u is a (1, Φ)-eigen-N -function of Ω ⊂ Rd, then 
u ∈ L∞(Ω; RN ), with

‖ui‖L∞ ≤ 1
|B1|

(
HΦ,N (Ω)

δd

)d

for i = 1, . . . , N,

where δ > 0 is as in (Φ.2).

Proof. Fix j ∈ { 1, . . . , N }. By the second part of Theorem 4.16, we know that

Et = ({u1 > t1 } , . . . , {uj > t } , . . . , {uN > tN })

is a 1-adjusted Φ-Cheeger N -cluster of Ω for a.e. ti ∈ [0, ‖ui‖L∞), for i ∈ { 1, . . . , N } \ {j}, and for a.e. t ∈
[0, ‖uj‖L∞). Hence, fixed any such ti ∈ [0, ‖ui‖L∞), for i ∈ { 1, . . . , N }\{j}, by (3.6) in Proposition 3.12(i), 
we can estimate

| {uj > t } | = |Et
j | ≥ |B1|

(
δd

HΦ,N (Ω)

)d

for a.e. t ∈ [0, ‖uj‖L∞),

where δ > 0 is as in (Φ.2). Since ‖uj‖L1 = 1 the conclusion readily follows by integrating the above inequality 
and using Cavalieri’s principle. �



G. Saracco, G. Stefani / J. Math. Pures Appl. 189 (2024) 103593 19
Remark 4.20. Proposition 4.19 may be achieved in several other settings, in the spirit of [14], at least 
enforcing properties (P.1), (P.2), (P.4), and (P.7) of [14, Sect. 2.1], and by requiring a finer version of the 
isoperimetric property (P.6) of [14, Sect. 2.1], e.g., see [14, Prop. 7.2] in the context of metric-measure spaces 
and the discussion in [14, Sect. 7.3] for non-local perimeter functionals. In fact, Proposition 4.19 was inspired 
by the corresponding results in the non-local framework, e.g., see [7, Rem. 7.3] and [3, Cor. 3.11].

5. Relation with the spectral problem

Just as we defined the 1-geometric and the 1-functional eigenvalues L Φ,N
1,1 (F ) and ΛΦ,N

1,1 (F ) as variational 
problems set on BV0(F ), in this section we treat their counterparts defined on W 1,p

0 (F ). In particular, we 
show that the (Φ, N)-Cheeger constant HΦ,N (Ω) of a non-empty, bounded, and open set Ω can be recovered 
as their limits as p → 1+, under suitable assumptions on the reference function Φ. To do so, we adapt [4, 
Sect. 5], where the authors deal with Φ = ‖ · ‖∞.

5.1. W 1,p
0 space and lower bound on λ1,p

Throughout this section, we let p ∈ (1, ∞). We begin with the following definition, in the same spirit of 
Definition 4.1.

Definition 5.1 (W 1,p
0 space). Given a set F ⊂ Rd, we let

W 1,p
0 (F ) =

{
u ∈ W 1,p(Rd) : u = 0 a.e. on Rd \ F

}
, (5.1)

and we let u ∈ W 1,p
0 (F ; RN ) if ui ∈ W 1,p

0 (F ) for i = 1, . . . , N .

Remark 5.2. As similarly observed in Remark 4.2 for the BV space introduced in (4.1), W 1,p
0 (F ) may not 

coincide with the space of W 1,p functions on F with null trace at the boundary, unless ∂F is sufficiently 
regular. Nevertheless, the usual Sobolev embeddings hold on a bounded F , as W 1,p

0 (F ) ⊂ W 1,p
0 (BR) with 

R > 0 such that F � BR.

Remark 5.3. We remark that in [4], which we are extending, the authors consider a slightly different notion 
of Sobolev space. Fixed a non-empty, bounded, and open set Ω, they define the Sobolev space W̃ 1,p

0 (F ) for 
F ⊂ Ω as

W̃ 1,p
0 (F ) =

{
u ∈ W 1,p

0 (Ω) : u = 0 a.e. on Ω \ F
}
. (5.2)

We stress that, if Ω is chosen Lipschitz, then the spaces in (5.1) and in (5.2) coincide.

In analogy with (4.2), we can introduce the following definition.

Definition 5.4 (First p-eigenvalue). The first p-eigenvalue of a set F ⊂ Rd is

λ1,p(F ) = inf

⎧⎨⎩
∫
F

|∇u|p dx : u ∈ W 1,p
0 (F ), ‖u‖Lp = 1

⎫⎬⎭ ∈ [0,∞]. (5.3)

Remark 5.5 (Non-negative competitors). Similarly to Remark 4.4, the competitors in problem (5.3) can be 
taken non-negative, thanks to the chain rule for Sobolev functions.
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Remark 5.6. As similarly observed in Remark 4.7, by its very definition, W 1,p
0 (F ) �= {0} if and only if 

λ1,p(F ) < ∞. If, in addition, F is bounded, then there exist eigenfunctions, that is, functions u ∈ W 1,p
0 (F )

realizing the infimum in (5.1). To see this, it is enough to take an infimizing sequence (of non-negative 
competitors without loss of generality, in virtue of Remark 5.5), to use the compact embeddings (refer to 
Remark 5.2), and to exploit the lower semicontinuity of the Sobolev seminorm. In particular, this holds 
true for any non-empty, bounded, and open set Ω. Moreover, if ∂Ω is sufficiently regular, then λ1,p(Ω) is 
the usual first eigenvalue of the Dirichlet p-Laplacian on Ω.

The following result rephrases [23, App.], see also [21, Th. 3] and [14, Cor. 6.4]. We provide a sketch of 
its proof for the reader’s convenience.

Theorem 5.7 (Lower bound on λ1,p(F )). Given a set F ⊂ Rd, it holds

λ1,p(F ) ≥
(
h(F )
p

)p

.

Proof. Assuming λ1,p(F ) < ∞ without loss of generality, we can find u ∈ W 1,p
0 (F ) with ‖u‖Lp = 1. A simple 

application of the chain rule yields that v = |u|p−1u ∈ BV0(F ) with ‖v‖L1 = 1 and |Dv| = p|u|p−1|∇u|L d. 
Consequently, by Theorem 4.5 and Hölder’s inequality, we get that

h(F ) = λ1,1(F ) ≤ |Dv|(Rd) ≤ p

∫
Rd

|u|p−1|∇u|dx ≤ p ‖∇u‖Lp ,

so that ‖∇u‖pLp ≥ (h(F )/p)p, and the conclusion readily follows. �
Remark 5.8. The content of this subsection can be rephrased in the abstract setting of [14], once a proper 
notion of Sobolev space is introduced. We refer the reader to [14, Sects. 2.3.3 and 6.1]. We also stress that, 
in metric-measure spaces, one can rely on a plainer approach, see the discussion in [14, Sect. 7.1].

5.2. First p-geometric and p-functional eigenvalues

We introduce the following definition, in the spirit of the one given in [4, Sect. 5], extending our Defini-
tion 3.1 to also cover the case p > 1.

Definition 5.9 (First p-geometric (Φ, N)-eigenvalue). The first p-geometric (Φ, N)-eigenvalue of a set F ⊂ Rd

is

L Φ,N
1,p (F ) = inf {Φ(λ1,p(E)) : E is an N -set of F } ∈ [0,∞], (5.4)

where, for brevity, we have set

λ1,p(E) = (λ1,p(E1), . . . , λ1,p(EN )) .

Any N -set E of F achieving the infimum is a (p, Φ)-eigen-N -set of F .

Note that, as always for a non-empty, bounded, open set Ω, we have L Φ,N
1,p (Ω) < ∞, as λ1,p(Ei) < ∞ for 

i = 1, . . . , N , simply by choosing E as any collection of N disjoint open balls contained in Ω.
Just as we gave a functional counterpart to Definition 3.1 with Definition 4.10, we also define the func-

tional counterpart to the previous Definition 5.9. To do so, we first define our competitors, in analogy to 
Definition 4.9 (see also the auxiliary problem introduced in the proof of [4, Prop. 5.1]).
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Definition 5.10 ((p, N)-function). We say that u ∈ W 1,p
0 (F ; RN ) is a (p, N)-function of F ⊂ Rd if ui ≥ 0, 

‖ui‖Lp = 1 and ui uj = 0 a.e. in F whenever i �= j, for i, j = 1, . . . , N .

We can now introduce the following definition, which extends Definition 4.10 to p > 1.

Definition 5.11 (First p-functional (Φ, N)-eigenvalue). The first p-functional (Φ, N)-eigenvalue of a set F ⊂
Rd is

ΛΦ,N
1,p (F ) = inf

{
Φ([u]pp,F ) : u is a (p,N)-function of F

}
∈ [0,∞], (5.5)

where, for brevity, we have set

[u]pp,F = (‖∇u1‖pLp , . . . , ‖∇uN‖pLp)

and, if no confusion can arise, we shall drop the reference to the ambient set F and write [u]pp. Any (p, N)-
function u of F achieving the infimum is a (p, Φ)-eigen-N -function of F .

As always, when considering a non-empty, bounded, and open set Ω, we have that ΛΦ,N
1,p (Ω) < ∞, as a 

viable competitor is given by an N -tuple of Sobolev functions supported on N disjoint open balls contained 
in Ω.

The following result is the analog of Theorem 4.11, see also the proof of [4, Prop. 5.1], ensuring existence 
of minimizers when Ω is a non-empty, bounded, and open set.

Theorem 5.12 (Existence of minimizers of ΛΦ,N
1,p (Ω)). Let (Φ.1), (Φ.2), and (Φ.3) be in force. Then, (p, Φ)-

eigen-N -functions of Ω exist.

Proof. Let 
{

uk : k ∈ N
}

be an infimizing sequence for ΛΦ,N
1,p (Ω) and let ε > 0. By (Φ.2), for all k ∈ N

sufficiently large we have that

ΛΦ,N
1,p (Ω) + ε ≥ Φ([uk]pp) ≥ δ‖∇uk

i ‖pLp ,

where δ > 0 is as in (Φ.2). Since Ω ⊂ Rd is bounded, the embedding W 1,p
0 (Ω) ⊂ Lp(Ω) is compact. Thus, 

up to subsequences, uk
i → ui as k → ∞ in Lp(Ω) for i = 1, . . . , N , for some ui ∈ Lp(Ω). It is easy to see 

that u is a (p, N)-function of Ω with

Φ([u]pp) ≤ Φ
(

lim inf
k→∞

[uk]pp
)

≤ lim inf
k→∞

Φ
(
[uk]pp

)
= ΛΦ,N

1,p (Ω)

by the lower semicontinuity of the seminorms, (Φ.3), and (Φ.1). The claim follows. �
Remark 5.13 (More general version of Theorem 5.12). Similarly to Remark 4.12, to ensure Theorem 5.12
it is enough to assume that Ω ⊂ Rd is a bounded measurable set with |Ω| > 0 containing at least a viable 
competitor. As for Theorem 4.11, the boundedness of Ω cannot be relaxed to |Ω| < ∞, as this does not 
necessarily guarantee the compactness of the embedding W 1,p

0 (Ω) ⊂ Lp(Ω). For a more detailed discussion, 
see [31, Sect. 6.4.3].

Remark 5.14. The content of this subsection can be rephrased in the abstract setting of [14], once suitable 
Sobolev spaces are available, see [14, Sects. 2.3.3, 6.1, and 7.1].
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The following result states that the p-geometric and p-functional eigenvalues for a non-empty, bounded, 
and open set Ω coincide. Theorem 5.15 is the analog of Theorem 4.14, and we omit its proof since it can be 
repeated almost verbatim.

Theorem 5.15 (ΛΦ,N
1,p (Ω) = L Φ,N

1,p (Ω)). The following holds

L Φ,N
1,p (Ω) ≥ ΛΦ,N

1,p (Ω).

If (Φ.3) is in force, then

L Φ,N
1,p (Ω) = ΛΦ,N

1,p (Ω).

Moreover, if u is a (p, Φ)-eigen-N -function of Ω, then

E = ({u1 > 0 } , . . . , {uN > 0 }) (5.6)

is a (p, Φ)-eigen-N -set of Ω. Viceversa, if E is a (p, Φ)-eigen-N -set of Ω, there exists a (p, Φ)-eigen-N -
function u such that {ui > 0 } ⊂ Ei for all i = 1, . . . , N .

Remark 5.16. Analogously to the case p = 1, Theorem 5.15 yields that, up to possibly passing to a smaller N -
subset, each chamber of a (p, Φ)-eigen-N -set of Ω is the zero superlevel set of a (p, Φ)-eigen-N -function of Ω. 
Actually, if a chamber is open, then the set inclusion is an equality, since the corresponding eigenfunction 
is strictly positive on the entire chamber as a consequence of Harnack’s inequality, refer for instance to [22, 
Sect. 2].

Remark 5.17 (More general version of Theorem 5.15). As in Remark 4.18, the equality ΛΦ,N
1,p (Ω) = L Φ,N

1,p (Ω)
can be achieved under weaker assumptions on Ω—in fact, more generally, within the abstract setting of [14], 
at least enforcing properties (RP.1), (RP.2), (RP.3), (RP.4), (RP.+), and (RP.L) of [14, Sect. 2.3], and also 
property (P.7) of [14, Sect. 2.1]. For an account on the strategy, we refer to [14, Sect. 6.1] (recall also the 
plainer approach available in the metric-measure framework, see [14, Sect. 7.1]).

Theorems 5.12 and 5.15 immediately yield the following result.

Corollary 5.18 (Existence of minimizers of L Φ,N
1,p (Ω)). Let (Φ.1), (Φ.2), and (Φ.3) be in force. Then, (p, Φ)-

eigen-N -sets of Ω exist.

5.3. Boundedness of functional minimizers

We now provide an analog of Proposition 4.19 for minimizers of the problem (5.5), see Theorem 5.20
below, in the spirit of [7, Th. 3.3] (see also [17, Th. 3.2]). To this aim, we first need to introduce some 
terminology, as follows.

Definition 5.19 (C1 smoothness). We say that Φ: RN
+ → [0, ∞) is of class C1 if, for any v ∈ RN , there exist 

an open neighborhood V ⊂ RN of v in RN and Φ̃ ∈ C1(V ) such that Φ̃ = Φ on V ∩RN
+ . In this case, we let 

∇Φ(v) = ∇Φ̃(v).

It is worth noticing that, if Φ is of class C1 as in Definition 5.19, then ∇Φ(v) depends neither on the 
choice of the neighborhood V of v in RN nor of the extension Φ̃ of Φ in V , but only on the values of Φ in the 
closed cone RN

+ . In particular, if Φ is of class C1, then it is of class C1 in the interior of RN
+ . Furthermore, 
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as the reader may observe, Definition 5.19 may be relaxed in several ways, as it is not needed in its full 
force in the results below. We prefer not to stress this point here, as it is not of crucial importance.

We can now state the following analog of Proposition 4.19. Note that we do not treat the case p > N , as 
in this case the boundedness of minimizers of (5.5) trivially follows from Morrey’s inequality.

Theorem 5.20. Let Φ of class C1, p ≤ N , and u be a (p, Φ)-eigen-N -function of Ω ⊂ Rd. If ∂iΦ([u]pp) > 0
for some i ∈ { 1, . . . , N }, then ui ∈ L∞(Ω), with

‖ui‖L∞ ≤ Ci, (5.7)

where Ci > 0 depends on d, p, and λ1,p({ui > 0 }), and also on Ω if p = N , but is independent of Φ.

For the proof of Theorem 5.20, we need the following simple preliminary result.

Lemma 5.21. Let Φ be of class C1. If u is a (p, Φ)-eigen-N -function of Ω, then

∂iΦ([u]pp)

⎛⎝∫
Ω

|∇ui|p−2 〈∇ui,∇ϕ〉 dx− λ1,p({ui > 0 })
∫
Ω

|ui|p−2 ui ϕdx

⎞⎠ = 0 (5.8)

for every ϕ ∈ W 1,p
0 ({ui > 0 }) and i = 1, . . . , N .

Proof. Without loss of generality, we may assume i = 1. Let ϕ ∈ W 1,p
0 ({u1 > 0 }) be fixed. For ε ∈ R, we 

define uε = (uε
1, u2, . . . , uN ), where

uε
1 = |u1 + εϕ|

‖u1 + εϕ‖Lp

.

By definition, uε is a (p, N)-function of Ω, with uε|ε=0 = u. Due to the minimality of u, the map ε �→ Φ([uε]pp)
achieves a local minimum at ε = 0. Our aim is now to compute the derivative of this map at ε = 0. Let us 
start by observing that

[uε]pp =
(‖∇u1 + ε∇ϕ‖pLp

‖u1 + εϕ‖pLp

, ‖∇u2‖pLp , . . . , ‖∇uN‖pLp

)
(5.9)

for ε ∈ R since, by the chain rule, |∇|u1+εϕ|| = |∇u1+ε∇ϕ| a.e. in Ω. We observe that ε �→ ‖∇u1+ε∇ϕ‖pLp

and ε �→ ‖u1 + εϕ‖pLp are of class C1 in a neighborhood of ε = 0, since p > 1, the map t �→ |t|p belongs to 
C1(R), with derivative equal to t �→ p |t|p−2 t ∈ C0(R). Moreover, owing to Hölder’s inequality,

(|u1| + c |ϕ|)p−1 |ϕ| and (|∇u1| + c |∇ϕ|)p−1 |∇ϕ|

are in L1(Ω) whenever c ≥ 0. Consequently, by differentiating under the integral sign, we get that

d
dε

∫
Ω

|u1 + εϕ|p dx = p

∫
Ω

|u1 + εϕ|p−2 (u1 + εϕ)ϕdx

and, similarly,

d
dε

∫
|∇u1 + ε∇ϕ|p dx = p

∫
|∇u1 + ε∇ϕ|p−2 〈∇u1 + ε∇ϕ,∇ϕ〉 dx,
Ω Ω
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both derivatives being continuous with respect to ε ∈ R. Recalling that ‖u1‖Lp = 1, we see that

‖u1 + εϕ‖pLp ≥ 1
2

in a neighborhood of ε = 0, so that, by the quotient rule, the function in (5.9) is of class C1 in a neighborhood 
of ε = 0, with

d
dε

‖∇u1 + ε∇ϕ‖pLp

‖u1 + εϕ‖pLp

∣∣∣∣
ε=0

= p

∫
Ω

|∇u1|p−2 〈∇u1,∇ϕ〉 dx− p ‖∇u1‖pLp

∫
Ω

|u1|p−2 u1 ϕdx.

Owing to the minimality of u, the regularity of Φ, the chain rule, and the fact that

‖∇u1‖pLp = λ1,p({u1 > 0 }),

we hence get that

0 = d
dεΦ([uε]pp)

∣∣∣∣
ε=0

= ∂1Φ([u]pp)
d
dε

‖∇u1 + ε∇ϕ‖pLp

‖u1 + εϕ‖pLp

∣∣∣∣
ε=0

= p ∂1Φ([u]pp)

⎛⎝∫
Ω

|∇u1|p−2 〈∇u1,∇ϕ〉 dx− λ1,p({u1 > 0 })
∫
Ω

|u1|p−2 u1 ϕdx

⎞⎠
yielding the conclusion. �

We are now ready to prove Theorem 5.20.

Proof of Theorem 5.20. Without loss of generality, we may assume i = 1. We follow the same strategy of 
the proof of [7, Th. 3.3].

We deal with the case p < N . To this aim, we let M ∈ (0, ∞) and β ≥ 1, and we apply Lemma 5.21 with 
the choice ϕ = (min {u1,M })β . It is not difficult to infer that ϕ ∈ W 1,p

0 ({u1 > 0 }) as in Definition 5.1
thanks to the chain rule. Since ∂iΦ([u]pp) �= 0 by assumption, equality (5.8) in Lemma 5.21 immediately 
yields that ∫

Rd

|∇u1|p−2 〈∇u1,∇ϕ〉 dx = λ1,p({u1 > 0 })
∫
Rd

|u1|p−2 u1 ϕdx.

By definition of ϕ, we easily recognize that∫
Rd

|u1|p−2 u1 ϕdx ≤
∫
Rd

u
p+β−1
1 dx

and ∫
Rd

|∇u1|p−2 〈∇u1,∇ϕ〉 dx = β

∫
{ u1<M }

|∇u1|p u
β−1
1 dx

= β pp

(p + β − 1)p

∫ ∣∣∣∇(
min {u1,M }

p+β−1
p

)∣∣∣p dx.

Rd
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Owing to the Sobolev inequality in W 1,p(Rd), we also infer that

∫
Rd

∣∣∣∇(
min {u1,M }

p+β−1
p

)∣∣∣p dx ≥ cpd,p

⎛⎝ ∫
Rd

(
min {u1,M }

p+β−1
p

) dp
d−p dx

⎞⎠
d−p
d

,

where cd,p > 0 is the Gagliardo–Nirenberg–Sobolev embedding constant, depending on d and p only. By 
combining all the above inequalities and then passing to the limit as M → ∞, we conclude that

⎛⎝ ∫
Rd

(
u

p+β−1
p

1

) dp
d−p

dx

⎞⎠
d−p
d

≤ λ1,p({u1 > 0 })
cpd,p

(
β + p− 1

p

)p−1 ∫
Rd

(
u

p+β−1
p

1

)p

dx,

where we used that β+p−1
p

1
β ≤ 1, since β ≥ 1. Inequality (5.7) hence follows by the very same iteration 

argument used in the proof of [7, Th. 3.3]. In particular, note that the constant in (5.7) depends neither on 
Ω nor on Φ.

The borderline case p = N follows similarly, as in the second part of the proof of [7, Th. 3.3]. Here we 
only observe that, since {u1 > 0 } ⊂ Ω obviously, one can exploit the Sobolev inequality on Ω, instead of 
that on Rd. Consequently, in this case, the constant in (5.7) depends on Ω (but still not on Φ). �
Remark 5.22. As in [7, Rem. 3.4], a close inspection of the above proof of Theorem 5.20 yields that, for 
p < N , the constant Ci > 0 in (5.7) is given by

Ci =
(

d

d− p

) d(d−p)
p2

p−1
p

(
λ1,p({ui > 0 }

cpd,p

) d
p2

,

where cd,p > 0 is the Gagliardo–Nirenberg–Sobolev embedding constant. We stress that cd,p is stable in the 
limit as p → 1+ and tends to the isoperimetric constant in Rd.

Remark 5.23. Theorem 5.20 (as well as Lemma 5.21) may be achieved in more general settings, in the spirit 
of the general approach of [14] (see the examples detailed in [14, Sect. 7]). In particular, Theorem 5.20 can 
be achieved in the fractional case (and naturally in several more general non-local frameworks, once suitable 
Sobolev-type embeddings are at disposal, see [3,17]), by naturally generalizing [7, Th. 3.3] to the present 
setting.

5.4. Limit of the spectral problem

The main result of this section shows that the constant HΦ,N(Ω) can be recovered as the limit of L Φ,N
1,p (Ω)

as p → 1+, under suitable assumptions on the reference function Φ and (weak) regularity requests on the 
non-empty, bounded, open set Ω, generalizing [4, Th. 5.3].

Theorem 5.24 (Limit of the spectral problem). Let (Φ.1) and (Φ.3) be in force. Then,

lim inf
p→1+

L Φ,N
1,p (Ω) ≥ HΦ,N (Ω). (5.10)

In addition, enforcing (Φ.1+) and (Φ.2), if Per(Ω) < ∞ and H d−1(∂Ω \ ∂∗Ω) = 0, then

lim sup
+

L Φ,N
1,p (Ω) ≤ HΦ,N (Ω), (5.11)
p→1
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so that, in this case, HΦ,N (Ω) = lim
p→1+

L Φ,N
1,p (Ω).

Proof. We begin by proving (5.10). Let ε > 0 and let E be an N -set such that

ε + L Φ,N
1,p (Ω) ≥ Φ(λ1,p(E)).

Recalling the inequality of Theorem 5.7, applying it to every chamber of E, and owing to (Φ.3), we have

ε + L Φ,N
1,p (Ω) ≥ Φ

((
h(E1)
p

)p

, . . . ,

(
h(EN )

p

)p)
.

Now taking the lim inf as p → 1+, owing to the lower semicontinuity (Φ.1), to Theorem 4.5, and to 
Proposition 3.3, we get

ε + lim inf
p→1+

L Φ,N
1,p (Ω) ≥ Φ(λ1,1(E)) ≥ L Φ,N

1,1 (Ω) = HΦ,N (Ω).

The claim now follows by letting ε → 0.
We now prove (5.11) assuming (Φ.2), the stronger (Φ.1+), that Per(Ω) < ∞ and H d−1(∂Ω \ ∂∗Ω) = 0. 

Fix any 1-adjusted Φ-Cheeger N -cluster E of Ω given by Theorem 3.9 paired with Proposition 3.12(ii). By 
Theorem 3.19(iv), we can assume that each Ei is open. Consequently, we can find N -clusters 

{
Ek : k ∈ N

}
of Ω as in Corollary 3.20 such that, thanks to (Φ.1+),

Φ
(

Per(Ek)
|Ek|

)
≤ HΦ,N (Ω) + 1

k
for k ∈ N, (5.12)

with Ek
i � Ei for i = 1, . . . , N . Now, given ε > 0, we let

E
k,ε
i =

{
x ∈ RN : dist(x,Ek

i ) < ε
}

for i = 1, . . . , N and k ∈ N.

Now fix k ∈ N. Possibly taking a smaller ε > 0 depending on the chosen k, we have that Ek
i � E

k,ε
i � Ei for 

i = 1, . . . , N . Now let vk,ε ∈ W 1,p(Ω; RN ) be such that vk,εi ≡ 1 on Ek
i , vk,εi ≡ 0 on Ω \ E

k,ε
i and ∇v

k,ε
i ≡ 1/ε

on Ek,ε
i \ Ek

i , for i = 1, . . . , N . Then, by construction,

uk,ε =
(

v
k,ε
1

‖v
k,ε
1 ‖Lp

, . . . ,
v
k,ε
N

‖v
k,ε
N ‖Lp

)

is a (p, N)-function of Ω as in Definition 5.10, with

[uk,ε]pp =
(
‖∇v

k,ε
1 ‖pLp

‖v
k,ε
1 ‖pLp

, . . . ,
‖∇v

k,ε
N ‖pLp

‖v
k,ε
N ‖pLp

)
≤

(
|Ek,ε

1 \ Ek
1 |

εp |Ek
1 |

, . . . ,
|Ek,ε

N \ Ek
N |

εp |Ek
N |

)
. (5.13)

Since clearly λ1,p(E) ≤ [uk,ε]pp, thanks to (Φ.3) we can hence estimate

L Φ,N
1,p (Ω) ≤ Φ(λ1,p(E)) ≤ Φ([uk,ε]pp). (5.14)

Now, by well-known results (e.g., see [1, Cor. 1]), we have that

|Ek,ε
i \ Ek

i | = ε Per(Ek
i ) + o(ε) as ε → 0+. (5.15)
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Thus, by combining (5.13) and (5.15), we get that

[uk,ε]pp ≤ ε1−p

(
Per(Ek

1 )
|Ek

1 |
+ o(ε)

ε
, . . . ,

Per(Ek
N )

|Ek
N | + o(ε)

ε

)
as ε → 0+.

Exploiting (Φ.3) we first use the above inequality in (5.14), and then the continuity (Φ.1+), to conclude 
that

lim sup
p→1+

L Φ,N
1,p (Ω) ≤ lim sup

p→1+
Φ

(
ε1−p

(
Per(Ek

1 )
|Ek

1 |
+ o(ε)

ε
, . . . ,

Per(Ek
N )

|Ek
N | + o(ε)

ε

))

= Φ
(

Per(Ek
1 )

|Ek
1 |

+ o(ε)
ε

, . . . ,
Per(Ek

N )
|Ek

N | + o(ε)
ε

)
.

Once again exploiting (Φ.1+) and recalling (5.12), we pass to the limit as ε → 0+ to get

lim sup
p→1+

L Φ,N
1,p (Ω) ≤ Φ

(
Per(Ek)
|Ek|

)
≤ HΦ,N (Ω) + 1

k
for k ∈ N,

and now the claim follows by letting k → ∞. �
Remark 5.25. The first part of Theorem 5.24 may be achieved in more general contexts, following the line 
of [14], by relying on the extension of Theorem 5.7 in the abstract setting, see [14, Cor. 6.4].

5.5. Convergence of functional minimizers

The following result proves that minimizers of (5.5) converge to minimizers of (4.4) as p → 1+, under 
the same set of assumptions of Theorem 5.24. This is in the same spirit of [7, Th. 7.2].

Theorem 5.26. Let (Φ.1), (Φ.2), and (Φ.3) be in force. Let (pk)k∈N ⊂ (1, ∞) be such that pk → 1+ as 
k → ∞ and lim infk ΛΦ,N

1,pk
(Ω) < ∞. If uk is a (pk, Φ)-eigen-N -function of Ω for each k ∈ N, then there 

exists a (1, N)-function u of Ω such that, up to passing to a subsequence, uk → u in L1(Ω; RN ) as k → ∞
and

Φ([u]1) ≤ lim inf
k→∞

ΛΦ,N
1,pk

(Ω).

In addition, enforcing (Φ.1+), if Per(Ω) < ∞ and H d−1(∂Ω \ ∂∗Ω) = 0, then the limit u is a (1, Φ)-
eigen-N -function of Ω.

Proof. Since lim infk ΛΦ,N
1,pk

(Ω) < ∞, up to passing to a subsequence, without loss of generality we may 

assume that C = supk ΛΦ,N
1,pk

(Ω) < ∞. Since Ω ⊂ Rd is bounded, we can find R > 0 such that Ω � BR. Since 
uk = 0 on Rd \BR according to Definition 5.10, by Hölder’s inequality, (Φ.2), and (Φ.3), we can estimate

‖∇uk
i ‖L1 ≤ |BR|1−

1
pk ‖∇uk

i ‖Lpk ≤ |BR|1−
1
pk

(
Φ([uk]pk

pk
)

δ

) 1
pk

≤ |BR|1−
1
pk

(
C

δ

) 1
pk

(5.16)

for every k ∈ N and i = 1, . . . , N , where δ > 0 is as in (Φ.2). Since pk → 1+ as k → ∞, the above 
inequality yields that (uk)k∈N is uniformly bounded in BV0(Ω; RN ). By the compactness of the embedding 
BV0(Ω) ⊂ L1(Ω), we can find u such that, up to subsequences, uk

i → ui in L1(Ω) as k → ∞ for i = 1, . . . , N . 
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A plain argument proves that u is a (1, N)-function of Ω. By the lower semicontinuity of the BV seminorm 
and the first inequality in (5.16), we have

[u]1 ≤ lim inf
k→∞

[uk]1 ≤ lim inf
k→∞

|BR|1−
1
pk [uk]pk

= lim inf
k→∞

[uk]pk
= lim inf

k→∞
[uk]pk

pk
(5.17)

and so, in virtue of (Φ.3) and (Φ.1), we get that

Φ([u]1) ≤ Φ
(

lim inf
k→∞

[uk]pk
pk

)
≤ lim inf

k→∞
Φ([uk]pk

pk
) = lim inf

k→∞
ΛΦ,N

1,pk
(Ω), (5.18)

proving the first part of the statement. The second part of the statement readily follows by combining the 
second part of Theorem 5.24 with Theorems 4.16 and 5.15. �
Remark 5.27. Under the full set of assumptions of Theorem 5.26, and additionally enforcing that Φ is of 
class C1 and (Φ.3+), a simple interpolation argument allows to improve the L1 convergence of minimizers 
in Theorem 5.26 to Lq convergence for any q ∈ [1, ∞) as in [7, Th. 7.2], thanks to Proposition 4.19 and 
Theorem 5.20. Indeed, given q ∈ (1, ∞), for each i = 1, . . . , N we can estimate

‖uk
i − ui‖Lq ≤ ‖uk

i − ui‖1/q
L1

(
‖uk

i ‖L∞ + ‖ui‖L∞
)
.

Since (Φ.3+) holds true, we must have ∂iΦ(v) > 0 for any v ∈ RN
+ \ {0}. In virtue of Theorem 5.20 and 

Remark 5.22, we hence just need to observe that, owing to (Φ.2),

λ1,pk
(
{

uk
i > 0

}
) ≤

Φ
(
λ1,pk

({
uk
i > 0

}))
δ

≤
Φ([uk]pp)

δ
=

ΛΦ,N
1,pk

(Ω)
δ

≤ C

δ

for all k ∈ N, where δ > 0 is as in (Φ.2). Hence the constant appearing in (5.7) is stable as pk → 1+, and 
thus supk ‖uk

i ‖L∞ < ∞, immediately yielding the conclusion.

Remark 5.28. Theorem 5.26 may be achieved in more general settings, in the spirit of the general approach 
of [14] (see the examples detailed in [14, Sect. 7]). In particular, Theorem 5.26 can be achieved in the 
fractional case (and in several more general non-local frameworks, once suitable Sobolev-type embeddings 
are at disposal, see [3,17]), by naturally generalizing [7, Th. 7.2] to the present setting. We nevertheless 
stress that, in the non-local framework, inequality (5.16) has to be rephrased by using embeddings between 
non-local Sobolev spaces (e.g., see [7, Lem. 2.6] in the fractional case), while the argument around (5.17)
and (5.18) should be replaced with an analogous one exploiting Fatou’s Lemma (see the proof of [7, Th. 7.2]
for more details).

5.6. Convergence of geometric minimizers

The following result provides a geometric analog of Theorem 5.26, proving that any L1 limit of minimizers 
of (5.4) as p → 1+ is a minimizer of (3.1). In fact, having in mind the discussion around Proposition 3.2, we 
can prove something more, that is, any sequence of minimizers of (5.4) contains a sequence of N -clusters 
which is converging to a minimizer of (2.5) as p → 1+.

Theorem 5.29. Let (Φ.1), (Φ.2), and (Φ.3) be in force. Let (pk)k∈N ⊂ (1, ∞) be such that pk → 1+ as k → ∞
and lim infk L Φ,N

1,pk
(Ω) < ∞. If Ek is a (pk, Φ)-eigen-N -set of Ω for each k ∈ N, then, up to subsequences, 

there exist N -clusters Fk and F of Ω such that

Fk
i ⊂ Ek

i and Fk
i → Fi in L1(Ω), for each i = 1, . . . , N,
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and, moreover,

Φ(λ1,1(F)) ≤ lim inf
k→∞

L Φ,N
1,pk

(Ω).

In addition, enforcing (Φ.1+), if Per(Ω) < ∞ and H d−1(∂Ω \ ∂∗Ω) = 0, then the limit F is a (1, Φ)-
eigen-N -cluster of Ω. Moreover, under these assumptions, if Ek

i → Ei as k → ∞ in L1(Ω) for some Ei ⊂ Ω, 
then E = (E1, . . . , EN ) is a (1, Φ)-eigen-N -set of Ω.

Proof. Since we have that lim infk L Φ,N
1,pk

(Ω) < ∞, up to passing to a subsequence, we may assume that 
C = supk L Φ,N

1,pk
(Ω) < ∞ without loss of generality. Owing to Theorem 4.5, Theorem 5.7, (Φ.2), and (Φ.3), 

we can hence bound

h(Ek
i ) = λ1,1(Ek

i ) ≤ pk

(
Φ(λ1,pk

(Ek))
δ

) 1
pk

≤ pk

(
C

δ

) 1
pk

for i = 1, . . . , N. (5.19)

Being h(Ek
i ) < ∞ and Ek

i bounded, each Ek
i admits a Cheeger set Fk

i ⊂ Ek
i , see [14, Sect. 3.1], so that 

h(Fk
i ) = Per(Fk

i )|Fk
i |−1 = h(Ek

i ) for i = 1, . . . , N . Therefore Fk = (Fk
1 , . . . , F

k
N ) is an N -cluster of Ω

such that h(Fk) = Per(Fk)|Fk|−1 = h(Ek) for each k ∈ N. We now observe that, in virtue of the above 
inequality,

Per(Fk
i ) ≤ h(Ek

i ) |Fk
i | ≤ pk

(
C

δ

) 1
pk

|Ω|.

Owing to the equality h(Fk
i ) = h(Ek

i ), the inequality (5.19), and the lower bound in [24, Prop. 3.5(v)] to 
the measure of Cheeger sets, we have

|Fk
i | ≥ |B1|

(
d

pk

(
δ

C

) 1
pk

)d

,

for k ∈ N and i = 1, . . . , N . Therefore, as pk → 1+, up to passing to a subsequence, Fk
i → Fi as k → ∞ in 

L1(Ω) for each i = 1, . . . , N , for some Fi ⊂ Ω with |Fi| > 0. It is easy to see that F = (F1, . . . , FN ) is an 
N -cluster of Ω such that, owing to Theorem 4.5, the lower semicontinuity of the perimeter, and the equality 
h(Fk

i ) = h(Ek
i ),

λ1,1(F) = h(F) ≤ Per(F)
|F| ≤ lim inf

k→∞

Per(Fk)
|Fk| = lim inf

k→∞
h(Fk) = lim inf

k→∞
h(Ek).

Combining the previous inequality with Theorem 5.7 gives

λ1,1(F) ≤ lim inf
k→∞

h(Ek) ≤ lim inf
k→∞

pkλ1,pk
(Ek)

1
pk = lim inf

k→∞
λ1,pk

(Ek).

Therefore, owing to (Φ.3) and (Φ.1), we conclude that

Φ(λ1,1(F)) ≤ Φ
(

lim inf
k→∞

λ1,pk
(Ek)

)
≤ lim inf

k→∞
Φ(λ1,pk

(Ek)) ≤ lim inf
k→∞

L Φ,N
1,pk

(Ω), (5.20)

proving the first part of the statement. The second part of the statement follows by combining (5.20) with 
the second part of Theorem 5.24 and Proposition 3.3. Moreover, if E is as in the statement, then Fi ⊂ Ei

for each i = 1, . . . , N , and so λ1,1(E) ≤ λ1,1(F), yielding the minimality of E and concluding the proof. �
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Remark 5.30. Theorem 5.29 may be achieved in more general settings, in the spirit of the general approach 
of [14], as soon as suitable notions of isoperimetric inequality and Sobolev spaces are at disposal. We refer 
the reader to [14, Sects. 2.3.3 and 6.1]. We also stress that, in metric-measure spaces, one can rely on a 
plainer approach, see the discussion in [14, Sect. 7.1].

6. Stability with respect to the reference function

In this section, we study the stability of the constants HΦ,N (Ω), ΛΦ,N
1,p (Ω), L Φ,N

1,p (Ω), and of their 
corresponding minimizers with respect to the reference function Φ. Throughout this section, we let 
Φk, Φ: RN

+ → [0, ∞), with k ∈ N, be given reference functions. The following results hold for a non-empty, 
bounded, and open set Ω ⊂ Rd.

6.1. Convergence of the constants

We begin with the following simple result, dealing with the limit superior. We remark that no assumptions
at all are needed on each of the reference functions.

Lemma 6.1 (Limsup). Let {Φk : k ∈ N }, Φ be reference functions. If

lim sup
k→∞

Φk ≤ Φ, (6.1)

then the following hold:

(i) lim sup
k→∞

HΦk,N (Ω) ≤ HΦ,N (Ω);

(ii) lim sup
k→∞

ΛΦk,N
1,p (Ω) ≤ ΛΦ,N

1,p (Ω) for all p ∈ [1, ∞);

(iii) lim sup
k→∞

L Φk,N
1,p (Ω) ≤ L Φ,N

1,p (Ω) for all p ∈ [1, ∞).

Proof. We prove (i) only, the proof of (iii) being identical, and that of (ii) very similar, just relying on 
(p, N)-functions rather than on N -sets.

Given any N -cluster E of Ω, we can estimate

lim sup
k→∞

HΦk,N (Ω) ≤ lim sup
k→∞

Φk

(
Per(E)
|E|

)
≤ Φ

(
Per(E)
|E|

)
,

and the conclusion follows by passing to the infimum on the right-hand side. �
To deal with the limit inferior, we need to introduce the following definition.

Definition 6.2 (Equicoercive sequence). We say that the sequence {Φk : k ∈ N } is equicoercive if each Φk

satisfies (Φ.2) with the same δ, or, equivalently, if each Φk satisfies (Φ.2) with δk with infk δk > 0.

We can now state the following result, dealing with the limit inferior. Here and in the following, the prefix 
Γ in the (possibly, inferior or superior) limits denotes the usual notion of Gamma convergence with respect 
to the Euclidean distance in RN

+ . For an account, we refer the reader for instance to [6].

Proposition 6.3 (Liminf). Let {Φk : k ∈ N } be equicoercive and let Φ satisfy (Φ.3). If

Φ ≤ Γ– lim inf Φk, (6.2)

k→∞
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then the following hold:

(i) HΦ,N (Ω) ≤ lim inf
k→∞

HΦk,N (Ω);

(ii) ΛΦ,N
1,p (Ω) ≤ lim inf

k→∞
ΛΦk,N

1,p (Ω) for all p ∈ [1, ∞);

(iii) L Φ,N
1,p (Ω) ≤ lim inf

k→∞
L Φk,N

1,p (Ω) for all p ∈ [1, ∞).

Proof. We only prove (i) and (ii), as point (iii) follows from (ii) and both parts of the statements of 
Theorem 4.14 (case p = 1) and of Theorem 5.15 (case p > 1), also owing to the hypothesis that the limit 
reference function satisfies (Φ.3).

Proof of (i). First, let us notice that, by the equicoercivity assumption and by the boundedness of Ω, in 
virtue of Proposition 3.7, we have

lim inf
k→∞

HΦk,N (Ω) ≥ Nδd

(
|B1|
|Ω|

) 1
d

> 0.

Up to subsequences, we may thus assume that limk H
Φk,N (Ω) = C ∈ (0, ∞).

Let us fix ε > 0 and, for all k = 1, . . . , N , let Ek be an N -cluster such that

ε + HΦk,N (Ω) ≥ Φk

(
Per(Ek)
|Ek|

)
. (6.3)

Owing to the fact that {Φk : k ∈ N } is equicoercive, we easily see that

Per(Ek
i ) ≤ 2C

δ
|Ek

i | ≤
2C
δ

|Ω| for i = 1, . . . , N,

for all k ∈ N sufficiently large. Therefore, up to subsequences, Ek
i → Ei as k → ∞ in L1(Ω) for each 

i = 1, . . . , N . With the same reasoning of Proposition 3.12(i) via (6.3), we get that

|Ek
i | ≥ |B1|

(
δd

HΦk,N (Ω) + ε

)d

≥ |B1|
(
δd

2C

)d

,

thus showing that E is an N -cluster of Ω with

Per(E)
|E| ≤ lim inf

k→∞

Per(Ek)
|Ek| .

Up to extracting a further subsequence, we may assume that limk Per(Ek)|Ek|−1 = v ∈ RN
+ . Owing to the 

choice of the subsequence, the assumption (6.2), again the choice of the subsequence, and the assumption 
that Φ satisfies (Φ.3), we get that

ε + lim
k→∞

HΦk,N (Ω) ≥ lim
k→∞

Φk

(
Per(Ek)
|Ek|

)
≥ Φ(v) ≥ Φ

(
Per(E)
|E|

)
≥ HΦ,N (Ω).

Letting ε → 0, the validity of (i) follows.

Proof of (ii). The argument is the same we used to prove (i), so we only sketch it.
Fix p ∈ [1, ∞) and, up to subsequences, assume that limk ΛΦk,N

1,p (Ω) = Cp ∈ [0, ∞). Given any ε > 0, we 
can find a (p, N)-function uk of Ω such that
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ε + ΛΦk,N
1,p (Ω) ≥ Φk([uk]pp)

for each k ∈ N and such that

‖∇uk
i ‖pLp ≤ 2Cp

δ
, for i = 1, . . . , N,

for all k ∈ N sufficiently large. By compactness of the embedding W 1,p
0 (Ω) ⊂ Lp(Ω) for p > 1, or of the 

embedding BV0(Ω) ⊂ L1(Ω) for p = 1, up to subsequences, uk
i → u as k → ∞ in Lp(Ω) for i = 1, . . . , N , 

for some ui ∈ Lp(Ω). It is easy to see that u is a (p, N)-function of Ω with

[u]pp ≤ lim inf
k→∞

[uk]pp.

Again up to subsequences, we may assume that limk[uk]pp = vp ∈ RN
+ . Just as before, owing to the choice 

of the subsequence, the assumption (6.2), again the choice of the subsequence, and the assumption that Φ
satisfies (Φ.3), we get that

ε + lim
k→∞

ΛΦk,N
1,p (Ω) ≥ lim

k→∞
Φk([uk]pp) ≥ Φ(vp) ≥ Φ([u]pp) ≥ ΛΦ,N

1,p (Ω),

and (ii) follows by taking the limit as ε → 0. �
As a consequence of Lemma 6.1 and Proposition 6.3, we get the following stability result. It is easy to 

observe that the combination of (6.1) and (6.2) yields (6.4). We also point out that, assuming the reference 
functions Φk to satisfy (Φ.3), the validity of (6.4) implies that (Φ.3) holds for the limit reference function Φ.

Theorem 6.4 (Stability). Let {Φk : k ∈ N } be equicoercive. If

Φ = lim
k→∞

Φk = Γ– lim
k→∞

Φk, (6.4)

with Φ satisfying (Φ.3), then the following hold:

(i) HΦ,N (Ω) = lim
k→∞

HΦk,N (Ω);

(ii) ΛΦ,N
1,p (Ω) = lim

k→∞
ΛΦk,N

1,p (Ω) for all p ∈ [1, ∞);

(iii) L Φ,N
1,p (Ω) = lim

k→∞
L Φk,N

1,p (Ω) for all p ∈ [1, ∞).

Remark 6.5 (Application to q-norms). The previous result applies to the family

{Φq = ‖ · ‖q : q ∈ [1,∞] }

as in (2.1), allowing to interpolate the results of [10,11], corresponding to q = 1, with the ones of [4,34], 
corresponding to q = ∞.

6.2. Convergence of minimizers

We end the section with the convergence of minimizers with respect to the convergence of the reference 
functions, proving the counterparts of Theorems 5.26 and 5.29 in this situation.

The following result yields convergence of minimizers of (2.5) with respect to the convergence of the 
reference functions. The proof is almost identical to that of Proposition 6.3(i) up to minor modifications, 
and so we omit it.
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Theorem 6.6. Let the assumptions of Proposition 6.3 be in force and assume that lim infk HΦk,N (Ω) < ∞, 
and let Ek be a Φk-Cheeger N -cluster of Ω for each k ∈ N. Up to subsequences, there exists an N -cluster E
of Ω such that

Ek
i → Ei in L1(Ω), for each i = 1, . . . , N,

and

Φ
(

Per(E)
|E|

)
≤ lim inf

k→∞
HΦk,N (Ω).

Moreover, under the assumptions of Theorem 6.4, E is a Φ-Cheeger N -cluster of Ω.

The following result yields convergence of minimizers of (4.4) and (5.5) with respect to the convergence 
of reference functions. The proof is almost identical to that of Proposition 6.3(ii) up to minor modifications, 
and so we omit it.

Theorem 6.7. Let p ∈ [1, ∞), let the assumptions of Proposition 6.3 be in force and assume that 
lim infk ΛΦk,N

1,p (Ω) < ∞, and let uk be a (p, Φk)-eigen-N -function of Ω for each k ∈ N. Up to subsequences, 
there exists a (p, N)-function u of Ω such that

uk
i → ui in Lp(Ω), for i = 1, . . . , N,

and

Φ([u]pp) ≤ lim inf
k→∞

ΛΦk,N
1,p (Ω).

Moreover, under the assumptions of Theorem 6.4, u is a (p, Φ)-eigen-N -function of Ω.

Finally, similarly to Theorem 5.29, the following result proves that L1 limits of minimizers of (5.5) for a 
sequence of reference functions are minimizers of (5.5) for the limit reference function.

Theorem 6.8. Let p ∈ [1, ∞) and let the assumptions of Proposition 6.3 be in force, assume that 
lim infk L Φk,N

1,p (Ω) < ∞, and let Ek be a (p, Φk)-eigen-N -set of Ω for each k ∈ N. If Ek → E as k → ∞ in 
L1(Ω; RN ) for some N -set E of Ω, then

Φ(λ1,p(E)) ≤ lim inf
k→∞

L Φk,N
1,p (Ω).

Moreover, under the assumptions of Theorem 6.4, E is a (p, Φ)-eigen-N -set of Ω.

Proof. We detail the proof in the case p > 1 only, as the case p = 1 is essentially the same but replacing 
W 1,p

0 (Ω; RN ) with BV0(Ω; RN ).
Owing to the fact that {Φk : k ∈ N } is equicoercive, the sequence { λ1,p(Ek) : k ∈ N } is bounded in RN

+ . 
Moreover, the chambers Ek ⊂ Ω are bounded. Thus, by Theorem 5.15, we find a (p, Φk)-eigen-N -function 
uk of Ω, i.e., such that

‖∇uk
i ‖pLp = λ1,p(Ek

i ), ‖uk
i ‖Lp = 1, uk

i ≥ 0 and Fk
i =

{
uk
i > 0

}
⊂ Ek

i ,

for each k ∈ N and i = 1, . . . , N . Consequently, the sequence (uk)k∈N of (p, Φk)-eigen-N -functions of Ω
is bounded in W 1,p

0 (Ω; RN ) and, thus, up to subsequences, uk → u as k → ∞ in Lp(Ω; RN ) for some 
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(p, N)-function u of Ω such that ‖ui‖Lp = 1 for i = 1 . . . , N . By lower semicontinuity of the seminorm, we 
also infer that

[u]pp ≤ lim inf
k→∞

[uk]pp ≤ lim inf
k→∞

λ1,p(Ek).

Again up to subsequences, we may assume that limk λ1,p(Ek) = vp ∈ RN
+ . Owing to (Φ.3) and Proposi-

tion 6.3, we thus get that

Φ(λ1,p(F)) ≤ Φ([u]pp) ≤ Φ(vp) ≤ lim inf
k→∞

Φk(λ1,p(Ek)) = lim inf
k→∞

L Φk,N
1,p (Ω), (6.5)

where F = ({u1 > 0 } , . . . , {uN > 0 }). Since uk → u as k → ∞ in Lp(Ω; RN ) and |Ω| < ∞, by Cavalieri’s 
principle we infer that

{
uk
i > t

}
→ {ui > t } as k → ∞ in L1(Ω) for a.e. t ≥ 0.

To conclude, we now need to use that Ek converges to an N -set E. Since 
{

uk
i > t

}
⊂ Ek

i whenever t > 0 for 
each k ∈ N and i = 1, . . . , N by construction, and since Ek

i → Ei as k → ∞ in L1(Ω) for i = 1, . . . , N , we 
easily get that {ui > t } ⊂ E for a.e. t > 0. Consequently, we must have that Fi = {ui > 0 } ⊂ Ei for each 
i = 1, . . . , N . Thus λ1,p(E) ≤ λ1,p(F), which, paired with (6.5) and owing to (Φ.3), yields

Φ(λ1,p(E)) ≤ lim inf
k→∞

L Φk,N
1,p (Ω).

Under the assumptions of Theorem 6.4, the right hand side of the above inequality equals L Φ,N
1,p (Ω). There-

fore E is a (p, Φ)-eigen-N -set of Ω. �
Remark 6.9. If, on top of asking that the limit reference function Φ satisfies (Φ.3), one assumes that the 
whole sequence of reference functions possesses this property, then Theorem 6.6 (in virtue of the validity of 
the second part of Proposition 3.3) provides a stronger version of Theorem 6.8 in the case p = 1.

Remark 6.10. The results of Section 6 may be achieved in more general contexts following [14], as soon as 
suitable notions of isoperimetric inequality and Sobolev spaces are available. We refer the reader to [14, 
Sects. 2.3.3 and 6.1], and also to [14, Sect. 7.1] for a plainer approach in the setting of metric-measure 
spaces.
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