UNIVERSITY OF PADOVA

DEPARTMENT OF MATHEMATICS “TUurrio LEvI-CrviTA”

BRAIN, MIND AND COMPUTER SCIENCE

CurrIcuruaL IN COMPUTER SCIENCE AND INNOVATION FOR SOCIETAL CHALLENGES

XXXVISERIES

A TINYML-ENABLED APPROACH TO EMBED
MACHINE LEARNING IN AvioNIcs CONTROL

SYSTEMS

SUPERVISOR Pa.D. CANDIDATE

TuLLIO VARDANEGA ZAIN 1QBAL
UNIVERSITY OF PADOVA

CO-SUPERVISOR

ANNA SPAGNOLLI

ACADEMIC YEAR

2021-202%

ii

THIs PH.D. THESIS IS DEDICATED TO MY FAMILY:
MY MOTHER MUSSRAT IQBAL;

My S1STER ADEN IQBAL;

My BROTHER HUMZA4 IQBAL.

Acknowledgments

Embarking on this Ph.D. journey has transformed my life in unimaginable ways, a feat I could never
have achieved without the incredible support and guidance from those around me.

First and foremost, I extend my deepest thanks to my supervisor, Dr. Tullio Vardanega, for his out-
standing mentorship, insightful feedback, unwavering support and sincere concern throughout my aca-
demic endeavors. There were moments when I knew I must have been a source of worry, perhaps even
a bit of a pain, with my incessant questions, doubts. Despite this, his motivation never waned. He be-
lieved in me even when I found it hard to believe in myself, tirelessly sourcing the best resources and
opportunities to enrich my research and broaden my horizons. He was there, responding to my emails
on weekends, carefully examining and revising my documents, and consistently encouraging me to ex-
cel. While his standards were demanding, his commitment to support me in achieving them was equally
strong. His faith in my abilities was a consistent motivation that inspired me to strive for improvement,
explore more deeply and strive for greater accomplishments.

The second very important phase of this venture continued in Germany, where I spent four months.
This period was marked by my engagement with the Institut fiir Luftfahrtsysteme (ILS) at the University
of Stuttgart. It is with profound respect and gratitude that I acknowledge Dr. Zamira Daw instrumen-
tal guidance and insightful suggestions during this phase. Her inspiration was unparalleled; not only
did she serve as an exceptional mentor, but also as a beacon of strength and resilience as a strong woman
in the field. Additionally, I extend my heartfelt thanks to Dr. Umut Durak for his hospitality and sup-
portat Clausthal University of Technology, Germany, making my stay both productive and memorable.

I would like to thank the reviewers, Dr. Enrico Vicario and Dr. Zamira Daw for providing their
valuable feedback that helped me revise the thesis.

I extend my deepest gratitude to my family, whose continuous support and love have been my con-
stant source of strength throughout this journey. To my mother, Mussrat Igbal, for her endless sacri-
fices and encouragement, which have been the backbone of my achievements. To my sister, Aden Igbal,
whose companionship and understanding have lightened many of my days. To my brother, Humza
Igbal, for his continuous support, and to my sister-in-law, Fizah Dogar, for her kindness and care. My
journey would not have been the same without the joy brought into my life by my three little munchkins:
my nephews, Zaviyar and Azlaan, and my niece, Elaya. Their innocence and laughter have been a re-
freshing escape from the rigors of academic pursuit. My heart is full of love and gratitude for each of
you for being my pillar of strength and for believing in me unconditionally.

I would also like to express my gratitude to my colleague, my friend and my partner Enrico Cancellz,
whose love and support over the past year have been foundational. He has been my rock, consistently
by my side through all the highs and lows, unwavering, and present when I needed him the most. His
support and encouragement have given me the strength to face and overcome any challenge that came
my way.

Furthermore,i am profoundly thankful to Enrico’s family, Marisa Ghitti, Lorenzo Cancelli, and
Anna Maria Cancelli. Their warm embrace, especially during my stay abroad in Italy, has meant the
world to me. Their love and support have been a source of immeasurable comfort and strength. Marisa,
especially, has moved beyond her supportive role to become the family I longed for, enveloping me with
affection and generosity that has profoundly touched my heart and will be treasured forever.

Last but certainly not least, I extend my gratitude to all of my friends and colleagues. My deep grat-
itude goes out to each of you for providing me with strength and playing a pivotal role in this exciting
journey. Your support and encouragement have been invaluable and I am truly grateful for your contri-
bution to making this experience both rewarding and memorable.

ZAINIQBAL
April 4, 2024

vi

Abstract

Integrating Machine Learning (ML) into aviation’s control systems heralds a significant leap
forward, opening new pathways for increasing operational efficiency, enabling predictive main-
tenance, and refining decision-making processes in real time. This dissertation explores the
innovative features of TinyML, a branch of machine learning created to operate with opti-
mal efficiency in environments with limited resources, and its transformative impact on avi-
ation control systems. It meticulously examines the challenges and strategies of embedding
ML models within aviation’s stringent frameworks, with a particular focus on managing Out-
of-Distribution (OOD) instances that pose threats to system safety and reliability.

The incorporation of machine learning and embedded machine learning into avionics repre-
sents a transition towards making decisions based on data, enhancing the effectiveness, safety,
and dependability of flight activities. The critical role these systems play in aviation underscores
the importance of ensuring their dependability and performance, particularly their resilience
against unexpected scenarios to safeguard aircraft and occupants alike.

Therefore, the integration strategy for ML in avionics encompasses not only the deployment
of sophisticated algorithms, but also a comprehensive assurance framework to guarantee con-
sistent and reliable performance under all operational conditions. This strategy combines the-
oretical advances in ML with practical considerations in the design of embedded systems to
increase the overall safety and operational efficiency of aviation.

A cornerstone of this research is the formulation of an innovative integration strategy for
ML systems, designed expressly for scenarios characterized by limited computational resources
and a high demand for energy conservation. The research introduces two innovative multilayer
early exit techniques in Deep Neural Networks (DNNs) with the goal of quickly and precisely
identifying out-of-distribution (OOD) data in real-world scenario’s by providing runtime as-
surance in embedded ML models. By integrating a detector of minimal complexity following
each DNN layer, the proposed model facilitates an immediate cessation of inference upon the
detection of OOD inputs, thereby elevating the system’s computational efficiency and durabil-
ity within stringent operational constraints.

Furthermore, this thesis conducts an exhaustive examination of sophisticated software test-
ing methodologies and strategies applicable to ML-driven systems, underscoring the critical
need to customize these technologies to align with the specialized requirements of safety-critical
aviation environments. Achieving a harmonious balance between model dimensions, accuracy,
and functionality, the research contributes significantly to the field by delivering solutions that
are both practical and reliable for the operational breadth of these systems. The results under-
score the superiority of the proposed model over existing alternatives, particularly in terms of

computational efficiency and the detection of OOD data, as gauged by AUROC.

vii

Additionally, the research expands on the critical role of Operational Design Domain (ODD)
in conjunction with OOD. ODD defines the specific conditions under which a system is de-
signed to operate, including environmental, geographical, and temporal constraints. Under-
standing ODD is crucial for accurately identifying OOD instances, data or situations that
fall outside the system’s designed operational parameters. By closely aligning OOD detection
mechanisms with the defined ODD, the research highlights how ML models can more effec-
tively anticipate and mitigate risks, ensuring higher safety and reliability in aviation systems.
This nuanced exploration sets the foundation for subsequent research and the evolution of ML
technologies within safety-critical settings, guiding toward smarter, more secure, and efficient
aviation operations.

viii

Contents

ACKNOWLEDGMENTS iv
ABSTRACT A
LIST OF FIGURES xi

L1sT OF TABLES XV
1 INTRODUCTION 1
1.1 Machine Learning based Systems (MLSs) I
1.1.1 Assurance of Machine Learning based Systems 3
1..2 Roleof TinyMLin Assuranceof MLSs 7
1.2 V-Model e 8
1.3 Motivation for this Research Work 10
1.4 ResearchGaps. II
1.5 ResearchQuestions L 13
1.6 Research Contributions 14
1.7 ThesisStructure IS
2 BACKGROUND 17
2.1 Safety-critical systems Lo oo 18
2.1.1 AvionicsSystems 18
2.1.2 Avionicscontrol systems 21
2.1.3 Role of Operational Design Domain in Avionics safety 22
2.1.4 Machine Learning & the Operational Design Domain: Enhancing
System Assuranceand Safety oL oL 24
2.2 MachineLearning L L o o 25
2.2.1 Categories of Machine Learning 26
2.2.2 Key Elements of Machine Learning 2.8
2.2.3 Performance Metricsfor ML Models 30
2.2.4 DeepLlearning 0 oL 31
2.2.5 Deep Neural Networks (DNNs) 32
2.2.6 Convolutional Neural Networks (CNNs) 34
2.2.7 The Emergence of ML in Avionic Systems 35
2.2.8 Assurance and Machine Learning Models 36

ix

2.2.9 Out-of-Distribution (OOD) Detection 37

2.2.10 Approaches for Out-of-Distribution Detection 39
22.01 TinyML . ..o 0o o 44
2.2.12 TinyML for Identifying Out-of-Distribution Instances 46
2.3 W-shaped Development Cycle for the Assurance of Avionics systems 47
2.4 SUMMAIYo e 49
3 OBJECTIVES, METHODOLOGY, AND RESULTS 51
3.1 ResearchObjectives 51
3.2 Datasets Overview e 56
3.3 ObjectiveI: In-Distribution and Out-Distribution Operational Design Domain 59
3.3.1 Methodology oL 60
3.3.2 ExperimentalSetup oo 62
3.3.3 Results e 64
3.4 Objective II: The Multi-Layer Framework- Fast TinyML OOD Detector (FTO) 65
3.4.1 Model 66
3.4.2 Algorithm I:Fast TinyML OOD Detector 70
3.4.3 ExperimentalSetup oo Lo 70
3.4.4 Architecture & Training 72
3.4.5 Evaluation Methodology 73
3.4.6 Results e 74

3.5 Objective III:Multi-Layer Early Exit for OOD Detection with LOF in DNNs
(MELOD) e 75
3.5.1 Model ... 77

3.5.2 Algorithm II:Multi-Layer Early Exit for OOD Detection with LOF
inDNNs(MELOD) 81
3.5.3 ExperimentalSetupo oo oL 82
3.5.4 Architecture & Training L. 84
3.5.5 Evaluation Methodology 8s
3.5.6 Results e 8s
3.6 Conclusion e 88
4 CONCLUSIONS AND OUTLOOK 91
REFERENCES 97

I.2

1.4

2.3

2.4

2.5

2.6

Listing of figures

Machine Learning-based Software Systems [1] apply tensor algorithms to data

and use ML models for making intelligent decisions automatically based on
discovered correlations, patterns and knowledge inferred from training data.
However, such systems include numerous other traditional software compo-

nents to perform theirduty. o o L L oo 5
Depiction of a Simplified Sequence of Failure Events in Machine Learning
Systems (MLSs): This illustration outlines the step-by-step progression of po-
tential failure incidents within MLSs [2]. 6
From [3] and [4], a modified workflow of Embedded MLSs includes portable
benchmarking tools to quantify, analyse and optimize ML by deploying them
directlyon MCUs. o 8
Diagram of the V. Model in Software Development: Detailing Sequential Phases
from Requirements Specification through Coding and Back up through In-
cremental TestingLevels0 0L 9

A diagram illustrating a safety-critical system, featuring the operator, software
system, and hardware system, along with detailed annotations of process in-

puts and outputs, subsystems, components, equipment, and tools essential

for ensuring operational integrity and safety [s]. 19
The figure illustrates the process of training a machine learning model using

both labeled and unlabeled data, showcasing the steps of data classification

and model training. Lo Lo L o 27
TheIllustration of the Typical Architecture of a Deep Neural Network (DNN),
Showcasing Multiple Hidden Layers, Neuron Connectivity, and Data Flow

from Input to Output Layer [6]. 33
Anillustrative diagram of a Convolutional Neural Network (CNN), showcas-

ing the sequence of convolutional, ReLU, pooling, and fully connected layers

that enable the model to process and classify visual data with high accuracy [7]. 35
The illustration depicts the distribution of input data for the model, with
crosses indicating individual data points. The blue area denotes the In-Distribution
(ID) region, where data aligns with the model training, while the red area high-

lights the Out-of-Distribution (OOD) region, representing data that deviates

from the model trainingset [8]. L oL 39
The figure illustrates Comparative Analysis of Traditional Software Develop-

ment Approach versus Tiny Machine Learning 45

xi

2.7

3.3

3.4

3.5

3.6

3.7

The diagram illustrates the W-shaped Learning Model, a methodology pro-
posed by EASA and Daedalean. This model encapsulates the core principles
of the learning assurance life cycle, designed to guide the development of ma-
chine learning applications that meet stringent requirements. It emphasizes
a structured, comprehensive approach to ensuring the reliability and efficacy
of MLSs in critical applications [9]. (2020)

Part of the W-shaped Development Lifecycle (Figure 2.7) in a Machine Learn-
ing System, Focusing on Data Management for Operational Domain Design
(ODD) and Out-of-Domain (OOD) Considerations.

Diagram Illustrating the Segment of the W-Shaped Development Lifecycle (

Figure 2.7) Featuring the Multi-Layer Framework-Fast TinyML Out-Of-Distribution

(FTO) Detector for Learning Process Verification in a Machine Learning Sys-
1135 o Y
Diagram Illustrating the W-Shaped Development Lifecycle (Figure 2.7)fea-
turing the Multi-Layer Early Exit for Out-of-Distribution (OOD) Detection
with Local Outlier Factor (LOF) in Deep Neural Networks (DNNs) for Data
Verification, Crucial for Ensuring Runtime Assurance in Machine Learning
Systems
A selection of images from the In-Distribution Operational Design Domain
dataset, depicting airplanes under varied Weather Conditions (Rain, Cloudy,
Sunny), Lighting Conditions (Day, Night), and captured at Close Distances,
demonstrating the diversity and complexity of scenarios for machine learning
model training. L L
A Selection of Images from the Out-of-Distribution Operational Design Do-
main Dataset, Demonstrating Airplanes in Far-Oft Scenarios Under Diverse
Weather Conditions (Rain, Cloudy, Sunny), Various Lighting Conditions
(Day, Night), and Emphasizing Distance Parameters (Far)
The framework overview showcases the use of early exit strategies and efficient
detection method that seamlessly integrates OOD detection within the DNN.
The adaptive inference network incorporates k OOD detectors, strategically
positioned at distinct depths within the network (depicted at the bottom).
Given an input, a dynamic complexity score is employed to decide the exit
point during the inference process. At each exit, an OOD detector integrates
insights from both the current and previous layers to distinguish between in-
distribution and OOD data.Replacing the traditional final layer with a Gaus-
sian layer for enhanced detection capabilities.
The Figure illustrates the workflow between the Arduino and alaptop for real-
time image processing and data exchange. This process involves the Arduino
receiving images from the laptop via serial communication, processing each
image, and then requesting the nextimage

xii

67

3.8

3.9

The Figure illustrates the performance metric of various OOD detection meth-
ods on CIFAR-10and CIFAR-100. The subplots show the number of FLOPs
%108 among the methods analyzed, represented in distinct light colors for vi-
sual clarity. Lower FLOP values indicate better performance, with the best
performing methods denoted by their respective color

The Figure illustrates the performance metric of various OOD detection meth-
ods on CIFAR-10 and CIFAR-100. The subplots show the Area Under the
Receiver Operating Characteristic Curve (AUROC) among the methods
analyzed, represented in distinct light colors for visual clarity. Higher AU-
ROC values indicate better performance, with the best performing methods
denoted by their respectivecolors L Lo

The Figure illustrates the performance metric of various OOD detection meth-
ods on CIFAR-10 and CIFAR-100. The subplots show the In-Distribution
Accuracy (ID Acc) among the methods analyzed, represented in distinct light
colors for visual clarity. Higher ID Acc values indicate better performance,
with the best performing methods denoted by their respective colors

This diagram encapsulates the workflow of an algorithm designed for Out-
of-Distribution (OOD) detection within a dataset, utilizing a Deep Neural
Network (DNN) named G. The process begins with a dataset X consisting
of data points xy, x5, . . ., xx, which are sequentially processed through the
DNN’s multiple layers (g(l) to g(”)), each equipped with specific weight ma-
trices (1 to W) and bias vectors (B, to B,,), and governed by nonlinear acti-
vation functions (¢! to). The model assesses each data point’s neighbor-
hood (NA) using a predetermined parameter 72, calculates the reachability dis-
tances, local reachability density (LRD), and the Local Outlier Factor (LOF)
score to discern outliers from in-distribution data. OOD detectors are strate-
gically placed within each layer for enhanced detection accuracy, operating in
reverse order to ensure computational efficiency. The diagram delineates this
intricate process from the initial data input, through DNN processing, neigh-
borhood analysis, LOF score computation, to the final determination of each
data point’s OOD status, thereby illustrating the comprehensive mechanism
of the algorithm in detecting outliers within the computational confines of
TinyML environments.

xiil

8o

3.12 Figure illustrates the dataset, utilizing a parameter 7 = 3 for neighborhood

3.13

3.14

analysis. Each circle, centered on a data point x,, visualizes the m-distance
neighborhood, highlighting the spatial relationships within the dataset. No-
tably, the outlier o; is characterized by a substantial m-distance, indicating a
pronounced separation from its three nearest neighbors (x,), depicted in pur-
ple, within an expansive circle. To evaluate o;’s LOF score (LOF,,(01)), we
initially calculate the reachability distances (7d,, (o1, xq)) from o, to its neigh-
bors, revealing significantly large values. Subsequently, the local reachability
density (/rd,,(01)) of o; is determined, revealing a markedly low density. In
contrast, each of 0;’s three neighbors undergoes a similar assessment for /rd,,,,
each yielding considerably higher densities. Ultimately, by calculating o;’s
LOF score (LOF,,(0;)) and finding it substantially elevated, o; is conclusively
identifiedasanoutlier.
The graph provides a comparative analysis of Out-of-Distribution (OOD)
detection methods within the In-Distribution Operational Design Domain
labeled "Label(o)’. Various methods including MSP, ODIN, Mahalanobis,
Energy, MOOD, and our proposed MELOD are evaluated across key perfor-
mance metrics: Precision and Recall. The outcomes emphasize the superior
precision and recall of MELOD (ours) compared to the other methods. This
demonstrates the effectiveness of MELOD (ours) in accurately detecting out-
of-distribution instances.
The graph provides a comparative analysis of Out-of-Distribution (OOD)
detection methods within the In-Distribution Operational Design Domain
labeled "Label(o)’. Various methods including MSP, ODIN, Mahalanobis,
Energy, MOOD, and our proposed MELOD are evaluated across key perfor-
mance metrics: F1 score and accuracy. The findings emphasize that MELOD
(ours) achieved the highest Fx score and Accuracy compared to other meth-
ods. This demonstrates the effectiveness of MELOD (ours) in accurately de-
tecting out-of-distribution instances. L L 0oL

Xiv

87

3.3

3.4

Listing of tables

Overview of Datasets Used for Training and Out-of-Distribution Testing, with
CIFAR-10and CIFAR-1o0 for In-Distribution Training and 1o Varied Datasets

for Comprehensive OOD Evaluation 6o
Operational Design Domains Based on Scenario Environment, Detailing Vari-
ations in Weather Conditions, Lighting Conditions, and Distance Parameters 61
OOD Detection Performance Comparison. This table presents a compre-
hensive evaluation of various Out-of-Distribution (OOD) detection methods,
quantified by metrics such as FLOPs during inference, AUROC scores, and

the accuracy of identifying in-distribution data (ID Acc). Methods that have
achieved the highest performance in each metric are emboldened, indicating

their superiority in the respective category. The comparison serves to high-

light the efficiency and effectiveness of the detection mechanisms within the
context of OOD identificationtasks. 75
Comparative analysis of various Out-of-Distribution (OOD) detection meth-

ods evaluated against standard classification metrics within the In-Distribution
Operational Design Domain labeled as "Label(o)’. The methods include Max-
imum Softmax Probability (MSP), ODIN, Mahalanobis, Energy, MOOD,

and our proposed approach MELOD. The table showcases precision, recall,

F1 score, and accuracy for each method, highlighting the superior performance

of MELOD in accurately identifying OOD instances with a remarkable bal-

ance between recall and precision, as evidenced by its high F1 score and accuracy. 86

XV

Xvi

Introduction

In this chapter, we present the overarching concept of our doctoral research study, structured

as follows.

* In the first section, we discuss the role of assurance for Machine Learning based System
(MLSs) in safety-critical domain.

* Then, in the second section, we highlight our motivation to choose this specific topic
for our study.

* The next two sections are dedicated to outlining the research gaps that we have identified
and the research questions that we aim to address.

* In conclusion of this chapter, we offer a summary of our research contribution and key
discoveries, along with an outline of the thesis structure.

1.1 MACHINE LEARNING BASED SYSTEMS (MLSS)

Machine Learning (ML) has long held a fascination for humanity, intriguing minds with the
prospect of replicating intelligence within machines. This fascination can be traced back to as

early as 1872, with Samuel Butler’s envisioning of conscious machines in his novel "Erewhon.”

The concept gained substantial momentum in the mid-20th century with Alan Turing’s semi-
nal work. In 1950, Turing proposed a test, famously known as the Turing Test [10], to evaluate
amachine’s ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that
of a human. This test marked a pivotal moment in the history of artificial intelligence and ma-
chine learning, setting a benchmark that would guide and inspire subsequent generations of
research in the quest to achieve machine-based intelligence. ML, born from pattern recogni-
tion and the concept that computers can autonomously learn without being programmed for
specific tasks, focuses on “optimizing a performance criterion using example data and past expe-
rience,” as described by Alpaydin [11]. Unlike traditional software development, where behav-
iors are explicitly coded, ML thrives on processing complex high-dimensional data, discovering
unknown patterns, and performing tasks automatically through training examples[12], with
applications in image and audio processing, and natural language processing. The advent of
ML and subsequent technological advances have greatly advanced these capabilities, leading to
the development of sophisticated ML architectures, fueled by the abundance of data and the
increased capabilities of graphical processing units. These advancements allow ML-based sys-
tems to sometimes outperform both traditional software and human capabilities. In contem-
porary practice, the integration of one or more ML components into software systems, referred
to as Machine Learning based systems (MLSs), has become increasingly common.A system in
which at least one of the components rely on machine learning techniques. In sectors such as
healthcare [13], automotive [14], and manufacturing [15], systems often have high degrees of
autonomy and safety, which causes them to be categorized as “safety-critical” (or, equivalently,
“high assurance”).

Safety-critical refers to systems or processes where failure or malfunction could result in seri-
ous consequences, such as loss of life, significant environmental harm, or substantial material
damage. These systems are often found in industries where safety is paramount, including avi-
ation, healthcare, nuclear power, and automotive sectors. The term underscores the critical
nature of these systems in safeguarding against potential risks and hazards. In the realm of
safety-critical systems, assurance refers to the systematic approach and methodology employed
to guarantee the reliable and secure operation of these systems. This encompasses thorough
testing, validation, verification, and ongoing monitoring to ensure that all components and
functionalities adhere to the rigorous safety standards mandated for such systems.The relation-
ship between safety-critical and assurance is intrinsic; assurance provides the necessary evidence
and confidence that safety-critical systems will perform as intended, even in extreme or unex-

pected conditions. This includes ensuring that the system is free from defects, vulnerabilities

are addressed, and potential failures are anticipated and mitigated. In essence, assurance is the
backbone of safety-critical systems, ensuring their reliability and protecting against the severe

consequences of system failures.

1.1.1 ASSURANCE OF MACHINE LEARNING BASED SYSTEMS

Assurance

In machinelearning, assurance is a comprehensive term that focuses on generating a well-founded
belief that specific systems adhere to set criteria or fulfill predetermined claims, particularly
within contexts where safety is paramount. The essence of the assurance process in machine
learning lies in producing and compiling evidence, alongside constructing logical arguments,
to affirm that a system operates securely and as anticipated across a variety of scenarios. Such
evidence typically integrates both qualitative and quantitative aspects, showcasing the system’s
attributes related to safety and its competency in managing unexpected inputs or other forms
of uncertainties.

Addressing the inherent uncertainties present in machine learning systems constitutes a core
component of assurance. These uncertainties, stemming from the operational environment’s
complexity and the unpredictability of machine learning models, pose significant challenges
to ensuring the system’s safety and efficacy. Assurance activities are therefore geared towards
identifying, measuring, and alleviating these uncertainties to bolster the system’s dependability
[16].

For machine learning applications, particularly within cyber-physical systems, quality assur-
ance adopts an all-encompassing strategy that spans the planning and installation, operation,
and data processing stages. This strategy is marked by a series of crucial steps including the
delineation of development goals, the conceptualization of the machine learning application,
the design of the measurement system, and its incorporation into the operational setting. Each
phase plays a pivotal role in guaranteeing data integrity, which subsequently influences the an-
alytical quality and the overall effectiveness of the machine learning application [17].

To encapsulate, assurance in machine learning is predicated on establishing a solid founda-
tion for the system’s safety and functionality, navigating through the intricacies and uncer-
tainties involved. This process entails a systematic approach to gathering evidence, crafting
arguments, and persistently evaluating the system’s performance relative to established bench-

marks.

Role of Assurance in MLSs

An ML-based system (MLSs in the sequel) is a system in which at least one part of its operation
is dependent on (or constituted by) ML components. ML models are outnumbered by various
software components in real-world MLSs., as required for human-to-machine and machine-to-
machine interconnection, functional logic, and input transformations that cannot be inferred
from the training data, as shown in Figure1.1.These systems utilize tensor algorithms to metic-
ulously analyze data, employing ML models to autonomously make intelligent decisions. This
process is fundamentally driven by the discovery of correlations, patterns, and knowledge ex-
tracted from training data, showcasing the sophisticated capabilities of ML in processing and
interpreting vast datasets. However, It is worth mentioning that these systems do not depend
solely on ML models. They encompass a multitude of traditional software components that
work in concert to perform their functions eftectively. These components may include data
preprocessing modules, user interfaces, security protocols, and several other components that
are necessary for the complete operation of the system, highlighting the complexity and multi-
faceted nature of such advanced software solutions. ML components differ vastly, for making
and working, from traditional ones. ML models are computed using complex, nonlinear trans-
formations, which depart from the inductive development style with which development stake-
holders are usually familiar, except of course for the ML experts themselves. Such stakeholders
thus need ways to gage the risks that the use of MLSs may incur and select the appropriate
strategies for their assurance [18]. Owing to such a differentiating trait, MLSs belong in the
class of software systems that currently lack a sufficiently robust test oracle, and which some
researchers dub as “non-testable” [19], where traditional review, measurement, and quality as-

sessment techniques are ineffective [20].

The appeal of adopting ML in safety-critical application domains is rising steadily in an-
ticipation of the “intelligence bonus” expected from operational deployment of ML-boosted
applications. Obviously, this drive has also caused much attention to the question of the level
of assurance that can be achieved for such systems after they incorporate such additional com-
ponents. Ways to reap the anticipated potential of ML and, more generally, of Artificial Intelli-
gence (AI), are being explored also in materials science, robotics, and numerous other engineer-
ing systems. Application domains that are rich of field data (as in manufacturing, testing, and
service) and that pursue multi-objective optimizations are especially suited for earning boost-
ing from ML/AI data-driven algorithms. Owing to the computationally and storage intensive

nature of current state-of-the-art implementations of ML, all data acquired from the field are

Data Sources Machine Learning-based Software System

— - Cleaning
. -C::) Transformation
E — E I :L - MNormialization
- " | Data Sourcs B | - . . e T
- .
h!:"__ _ Dol —""
o | 7~ Data Pipeline
~ P . -
) Data Source € =~
rd
,})// Serving Infrastruc Engineering Environment sl St c
o ving Infrastactune onal Sofiware Camponents
iiultiple Frameworks, Languages & Dependencies
Data Sourcs B _ - 1/

Dyi... dmgrost Dhavs Sigmal i firom Diatar Scarrce x

Figure 1.1: Machine Learning-based Software Systems [1] apply tensor algorithms to data and use ML models for making
intelligent decisions automatically based on discovered correlations, patterns and knowledge inferred from training data.
However, such systems include numerous other traditional software components to perform their duty.

transferred to the cloud for processing, which obviously incurs massive latency that renders
the objective untenable for latency-sensitive embedded applications. Humans and ML-guided
computers will need to interact in a safe, efficient, and effective manner even in a completely au-
tonomous system scenario, which shall have to contemplate failure situations and assure aware-
ness of human activity. For ML-based systems (MLSs), quality indicators include performance
measures such as hit and false alarm rates, as well as an assessment of the goodness (fitness for
purpose) of the data and methods used to train and test the system. MLSs have a data-driven
algorithmic behavior that radically differs from the control-driven nature of their traditional
predecessors, upon which the software verification body of knowledge rests. This particular
trait of them puts the effectiveness of traditional verification approaches applied to MLSs, in-
cluding testing, into question, which, in turn, causes serious concern to those considering use
in high-assurance application domains.

The integration of ML models into the command-and-control loops of safety-critical sys-
tems represents a notable change in the architectural design of these embedded systems. In
such configurations, ML models are not just ancillary components; they become integral to
the core functioning of the system. These models are stored directly in the system’s memory,
ensuring immediate accessibility and rapid data processing. This proximity is crucial for real-
time applications where even slight delays in response times can have significant consequences.

By embedding ML models within the system architecture, they operate on the same pro-
cessor that runs the primary control functions of the system. This setup allows for seamless
interaction between the ML models and other system components, facilitating efficient and
timely decision-making. The advantage of this approach, as opposed to relying on external

servers or cloud-based solutions, lies in its ability to provide rapid, on-the-spot processing ca-

Machine
Learning
Boundary

"Machine
Learning
Failure

System
Failure

Software
Failure

Hazard

Figure 1.2: Depiction of a Simplified Sequence of Failure Events in Machine Learning Systems (MLSs): This illustration
outlines the step-by-step progression of potential failure incidents within MLSs [2].

pabilities. This is essential in scenarios where decisions need to be made in real-time, such as in

autonomous vehicles, medical devices, or avionic systems.

Furthermore, having ML models run on the system processor mitigates risks associated with
network latency and connectivity issues that are inherent in configurations relying on external
data processing. This ensures that the ML models can function effectively and reliably, even
in environments where network connectivity is limited or unavailable. In many instances, ML-
based systems are integral components of larger, more complex systems, and their malfunction
can have cascading effects. For instance, a failure in an ML algorithm responsible for predictive
maintenance in industrial settings can lead to unexpected equipment breakdowns, impacting
overall operational efficiency and safety as shown in Figure 1.2. In sectors such as healthcare,
an error in an ML-driven diagnostic tool could lead to misdiagnosis, affecting patient treat-
ment plans and outcomes. Similarly, in the realm of cybersecurity, failure in ML-based threat
detection systems can leave networks vulnerable to attacks. These dependencies underscore
the necessity for robust and reliable ML-based systems, as their failure can compromise the
functionality, safety, and integrity of the broader systems they support. Recognizing and miti-
gating these dependencies is crucial in system design and risk management strategies to ensure

continuity and resilience in the face of ML-based system failures.

6

1.1.2 ROLE OF TINYML 1IN ASSURANCE OF MLSs

TinyML, which stands for Tiny Machine Learning, is an emerging effort that integrates ML
into embedded devices of the Internet of Things (IoT) with the potential to revolutionize the
aerospace industry and several other application domains with similar needs and characteris-
tics [21]. which plays a crucial role in ensuring the reliability of Machine Learning (ML) based
systems, especially in contexts where computing resources, power, and space are limited [22].
By enabling ML algorithms to run efficiently on small, low-power microcontrollers, TinyML
facilitates real-time on-device data processing, this means it allows devices with limited process-
ing power and energy resources, such as sensors and wearable devices, to perform data analysis
locally, without needing to send data to the cloud for processing [23]. This local processing ca-
pability is crucial for applications where quick decision-making is essential, enabling devices to
respond immediately to changes in data, enhance operational efficiency, and improve user expe-
rience by reducing latency, such as wearable health monitors or industrial sensors[24].Which
can be crucial to ensuring uninterrupted functionality even in situations with limited or no
connectivity.

TinyML combines hardware and software fit for resource scarce computation with the aim to
enable ML models (particularly Deep Learning algorithms) on compact, relatively cheap, and
power-efficient devices. Verifying function and performance assurances and confirming that
the system meets certification and legal standards are all part of the testing process for a new
product [25]. Additionally, TinyML can contribute to enhanced security and privacy, as data
can be processed locally without needing to be transmitted to a central server. This aspect is
particularly important in applications that handle sensitive information. Embedding ML in
the way of the TinyML paradigm may aid the transition from traditional high-end systems to
low-end clients as shown in Figure 1.3. TinyML offers a unique approach for the validation
and assurance of machine learning models in constrained environments, focusing on the de-
ployment of ML models on low-energy devices for edge case testing and real-world scenario
simulations. The energy efficiency of TinyML models represents a pivotal advancement for
battery-operated or remotely deployed systems, allowing these devices to operate for extended
periods without significant power requirements, ideal for remote monitoring and IoT appli-
cations. Furthermore, by processing data locally, TinyML significantly improves data privacy

and security, reducing the risk of data breaches during transmission [26].

The challenge of scalability in ML applications is addressed by the capability of TinyML to

enable processing across devices of varying computational power, broadening the application

Jro- j
i 2 Knowiedge Distillation ‘
i 3 Quantization g

i 1 Modslselection
i 2 Traring i

Datasat ——3 Model Training Eual"’uﬂ‘?‘ﬁm' Op'ﬂ.mnq

i 1 Manual programaing]
1 & Code Gonerstion
i

=
g e N Iiodel

FR g N Sensors T inference Ported Model
LN i

a

,-................4.....................|
-
.

{A) B [{&] i . E) ¥
u Model Model Onbost Targed Benchmacking and ~ Target
» mnalysis optimization cvalustion deployment 3 evalumion

ey
Optimized
masde]

Maode!
design

v

Deployed on
cembedded system

Traine
miode]

=a

Fredback loop for the mode] design

Ll

i

Figure 1.3: From [3] and [4], a modified workflow of Embedded MLSs includes portable benchmarking tools to quantify,
analyse and optimize ML by deploying them directly on MCUs.

spectrum to include wearables and industrial sensors, thus leveraging the full potential of ML
technology|27].

In avionics, the incorporation of TinyML marks a significant technological leap, embed-
ding efficient ML algorithms into compact hardware to meet the demanding standards of avi-
ation systems. Research by Thompson and Lee [28] underscores TinyML’s role in facilitating
real-time, onboard data processing and decision making, essential for navigation and system
maintenance. Similarly, Patel et al.[29] emphasize the enhancement of system safety through
TinyML, enabling continuous monitoring and quick response to anomalies, crucial for Out-
of-Distribution (OOD) detection. This ensures that ML models remain effective and reliable

in aviation’s dynamic environment.

1.2 V-MODEL

The V-model, an adaptation of the traditional software development life cycle as shown in Fig-
ure 1.4, emphasizes a structured and systematic approach to both development and testing,
making it especially suited for projects where safety and reliability are crucial, such as in the
avionics, automotive, and medical device industries. At the foundation of the V-model is the

Requirements Analysis phase, where system requirements are meticulously defined. Following

Figure 1.4: Diagram of the V Model in Software Development: Detailing Sequential Phases from Requirements Specifica-
tion through Coding and Back up through Incremental Testing Levels

this, the System Design phase outlines the system’s architecture, which is then broken down
into smaller units or modules during the Architectural Design phase. These modules receive
detailed planning in the Module Design phase, leading into the Implementation phase, where

the actual coding takes place.

As the development process progresses from implementation, testing phases begin with Unit
Testing to assess each module independently, followed by Integration Testing to ensure mod-
ules work seamlessly together. The System Testing phase then evaluates the integrated system
against specified requirements, culminating in acceptance testing to ensure that the system
meets the end user needs and operational criteria. The V-model distinguishes itself by mirror-
ing each development activity with a corresponding testing activity, allowing for parallel testing
and early error detection. This methodical approach ensures a disciplined and rigorous pro-
cess that facilitates early identification and correction of errors, underscoring its preference for
projects that require high levels of reliability and safety. The V model, along with certification
standards such as DO-178C, plays a crucial role in the assurance processes for the development
of aviation software. This model provides a systematic framework that delineates the devel-
opment and testing phases in a linear sequence, progressing from requirement specifications
to coding and subsequently through various testing stages in reverse order. In contrast, DO-
178C, also recognized as the Software Considerations in Airborne Systems and Equipment

Certification, delineates the criteria for avionics software development to ensure compliance

with essential safety and performance benchmarks.

However, when it comes to incorporating machine learning (ML) technologies, these tradi-
tional paradigms face notable challenges. The inherent determinism of the V- model and the
rigorous demands of DO-178C clash with the stochastic and data-driven nature of ML mod-
els. This discordance introduces a pronounced gap in the assurance framework for aviation
systems that utilize machine learning, as the pre-existing methodologies fall short of compre-
hensively addressing the distinct verification and validation requirements of ML-driven appli-
cations. This gap underscores the imperative to revise current standards and formulate novel
methods to facilitate the safe and effective integration of machine learning technologies into
aviation systems.

In examining these classical frameworks, it becomes evident that traditional assurance pro-
cesses in aviation are not adequately prepared to face the challenges posed by machine learning
technologies. The divergence primarily stems from the traditional reliance on deterministic
outcomes, whereas machine learning introduces a layer of probabilistic outcomes and data de-
pendence that current standards do not sufficiently cater to. This discrepancy accentuates the
need for innovative assurance methods for ML applications within aviation, pinpointing the

substantial gap that my research intends to bridge.

1.3 MOTIVATION FOR THIS RESEARCH WORK

Software quality assurance is a well-established practice for traditional (control-driven) soft-
ware systems, with numerous methods extensively used in the industry. However, as MLSs has
a fundamentally different programming paradigm and decision logic representation, existing
quality assurance approaches can hardly be used for them in an as-is fashion. ML models learn
from a given set of scenarios. What should the requirements be for the definition of these sce-
narios? The absence of such requirements casts serious doubts on the training and assurance of
ML components embedded safety critical domains. Most of the existing MLSs training proce-
dures only reveal and measure training loss and validation loss, in terms of prediction accuracy.
Root cause analysis becomes especially challenging when the training method changes, which
might occur due to upgrades in the ML libraries or changes in the training data set or in the
system platform itself.

In the last few years, ML has become an indispensable part of systems that involve humans
or operate in shared environments with humans, resulting in growing attention to the aspects

of the safety of those systems. Edge nodes and Internet of Things (IoT) systems present new

I0

fronts where ML techniques and technologies might be leveraged. The deployment of conven-
tional ML however requires enormous amounts of power and resources.

MLSs behavior is heavily influenced by factors such as the available training data sets, hyperpa-
rameters, model architecture, algorithm and optimization technique (to find the optimal set
of parameters that result in the best performance of the model on the given task, such as im-
proving accuracy or reducing error) [12]. The source code of MLSs is typically concise and less
error prone since it consists of calls to the application programming interface (API) performing
highly sophisticated high-level functions, and the decision-making policy (i.e. correlations) is
inferred from the training data. However, the behavior of MLSs encoded in the learned weights
of the model, is difficult for humans to interpret and debug. Classical testing techniques are
not easily applicable to MLSs artifacts, except for the source code. Therefore, testing frame-
works for MLSs require additional approaches to address these challenges.

The motivation for assuring Machine Learning (ML) systems enabled by TinyML for Avion-
ics Systems is grounded in the need for ultra-reliable, efficient, and secure computational so-
lutions in the highly demanding environment of aviation. TinyML, with its focus on deploy-
ing lightweight ML models on low-power, compact hardware, offers a promising avenue for
enhancing various aspects of avionic systems, from predictive maintenance to in-flight moni-
toring and control [30]. The assurance of these systems is crucial due to the critical nature of
aviation operations, where the margin of error is minimal, and the consequences of failure can
be catastrophic. It involves ensuring that these TinyML implementations not only meet the
stringent safety and reliability standards of the aviation industry but also maintain consistent
performance under the unique challenges of the avionic environment, such as limited compu-
tational resources, varying temperatures, and potential electromagnetic interference [31]. The
process also tackles security issues related to ML’s incorporation into critical aviation systems,
an area not fully explored in existing reviews. This gap highlights the need for a robust assurance
framework for ML systems in aviation, a challenge this dissertation aims to address, marking a

significant advancement in the field.

1.4 RESEARCH GAPs

The state of the art shows that software quality assurance is a well-established practice for tra-
ditional (control-driven) software systems, with numerous methods extensively used in the in-
dustry. However, as MLSs has a fundamentally different programming paradigm and decision-

logic representation, existing quality assurance approaches can hardly be used for them in an

II

as-is fashion. ML models learn from a given set of scenarios. The challenges that may be posed
in this way are diverse, ranging from sensing, estimation, and control to machine learning and
decision making under uncertainty proposed by Shapiro, Dentcheva, and Ruszczynski [32]. A
notable research gap exists to ensure the robustness and reliability of Machine Learning models
within these systems. Avionic systems, integral to aircraft operation and safety, require abso-
lute precision and fault tolerance. The integration of Machine Learning (ML) models into avi-
ation systems presents significant opportunities for improving efficiency, enabling predictive
maintenance, and facilitating real-time decision-making. The potential of ML models in this
domain is vast, offering a transformative impact on how aviation systems operate and respond
to varying conditions [33]. However, the dynamic and complex nature of the aviation environ-
ment introduces specific challenges for these ML models. Factors such as variable flight con-
ditions, the diversity of sensor data, and the paramount requirement for continuous, fail-safe
operation pose significant hurdles. These models must be adept at handling these complexities
while maintaining high accuracy and reliability [34]. Currently, the aviation industry faces a
gap in the development of comprehensive frameworks and methodologies that are specifically
designed to evaluate and assure the performance of ML models in such demanding avionic
conditions. This gap underscores the need for dedicated research and development efforts to
establish robust evaluation and assurance protocols that can effectively address the unique re-

quirements of avionic This leads us to the following open issue.

* How to provide the Assurance of Machine Learning based systems for Avionics Sys-
tems?

Firstly, the literature review showed that ML models are mostly tested relying on accuracy
metrics in large test sets that attempt to represent a meaningful subset of the targeted opera-
tional domain. This is insufficient when ML is deployed within a real-world system, as the
examples gathered in the field may differ substantially from those of the test set.

Second, practitioners in the field of safety-critical systems, particularly in the aviation industry,
face the significant challenge of the absence of comprehensive guidelines for designing archi-
tectures, especially for integrating Al and ML technologies. While these technologies hold im-
mense potential, their integration into systems where safety is paramount s a complex endeavor.
The aviation sector, along with other industries aiming to implement AI/ML for autonomous
operations, faces this challenge acutely [35]. A key obstacle in this pursuit is addressing a range
of safety-related concerns, chiefly the assurance of safe autonomous functioning of AI/ML-

enabled systems. This difficulty is intensified by the inherent traits of AI/ML technologies,

I2

which can vary from being non-deterministic and unpredictable to complex and challenging
to interpret. Such characteristics make the task of ensuring reliability and safety in AI/ML-
integrated systems particularly daunting, necessitating a focused and specialized approach to

system design and validation [36].

1.5 RESEARCH QUESTIONS

This research study was focused on incorporating TinyML-aware solutions for Machine Learn-
ing Systems (MLSs) in safety-critical environments, aiming to achieve an optimal balance be-
tween the size, accuracy, and performance of the ML model, and the constrained capabilities
and stringent energy efficiency requirements of the MLSs in executing these models. The core
objective was to ensure that these implementations provided adequate assurance, a critical fac-
tor in safety-critical systems where reliability and precision are paramount. This approach ad-
dresses the need to adapt ML technologies to the unique demands of safety-critical systems,
providing solutions that are both efficient and reliable within the limited operational scope of

such systems.Specifically, we have established the following three research questions.

* RQ-1: What specific standards and conditions must be established for crafting training
scenarios for Machine Learning models to guarantee thorough training and consistent,
reliable performance across a wide range of practical applications, including control-
loop systems in avionics?

* RQ-2: What methodologies and measures can be implemented during the development
phase of Machine Learning models in avionics to effectively minimize the risk of per-
formance insufficiencies and ensure robust functionality when deployed in open-world
environments?

* RQ-3: How does embedding Machine Learning (ML) in avionic systems contribute
to enhancing model assurance, particularly by boosting reliability, safety, and instant
decision-making, despite the aviation industry’s limited computational capacity and strict
regulatory requirements?

Due to the rate of development of MLSs and the potential benefit from deploying such

systems, these questions require urgent answers in the avionics context.

13

1.6 RESEARCH CONTRIBUTIONS

This thesis explores these questions, for example identifying safety challenges posed by ML
from a general and a regulatory perspective. The thesis then presents technical solutions which
go some way towards answering those questions. More specifically, the contribution of this

thesis is three-fold:

1. Defining training scenarios for Machine Learning models, operational domain design
is key, focusing on identifying and incorporating a broad spectrum of real-world condi-
tions and variables. This approach ensures the models are trained on diverse, representa-
tive datasets, covering the full range of operational scenarios they are likely to encounter
in avionics systems. As a result, the models exhibit comprehensive learning and robust
performance across various applications. This addresses question 1.

2. The novel method FAST-TinyML-DNN classifier (FTD) was propsed during the pro-
cess of development of ML models, focusing on Out-Of-Distribution (OOD) detection.
FTD, tailored for TinyML’s specific computational and storage limitations, aims to im-
prove the model’s capability to accurately identify and manage unexpected data.This
addresses question 2.

3. The novel framework MELOD, which stands for Multi-Layer Early Exit for OOD De-
tection with LOF in DNNG. This approach, optimized for TinyML, integrates a multi-
layer early exit technique in Deep Neural Networks (DNNGs) for effective out-of-distribution
detection. It involves embedding LOF-based outlier detection within DNN hidden lay-
ers, enhancing the network’s ability to efficiently identify and process anomalous data.
This framework directly tackles the issues raised in the second and third questions by
leveraging TinyML’s capabilities.

In acknowledging the journey of this research, it’s important to note that while there have
been submissions made, they have not yet met with success. However, the materials developed
and refined through these submission attempts have become integral parts of this thesis and
are poised for successful submission in the near future. This progression reflects the iterative
nature of academic research and the ongoing refinement of ideas and methodologies.

The key elements derived from these submission efforts are embedded throughout the the-
sis document. Specifically, the refined research methodologies, developed after feedback from
initial submissions, can be found in Chapter 3, titled ” Objectives, Methodology, and Results.
Additionally, the Software Testing Methods and Strategies for Machine Learning-Based Sys-

tems: a Systematic Literature Review, is thoroughly discussed in Chapter 2, "Background”.

14

1.7 THESIS STRUCTURE

The remaining of this thesis is organized in the following chapters

* Chapter 2 (Background and Related Work): It provides background information about
the related concepts used in this work to answer our research questions, as mentioned
in the previous section. The material forming Chapter2 of this thesis is reflective of the
extensive work conducted in preparation for journal submissions. This includes sub-
stantial research and development that contributed to the paper titled:

1. "Software Testing Methods and Strategies for Machine Learning-Based Systems:
A Systematic Literature Review,” co-authored by Iqbal, Z., and Vardanega, T,
which is targeted for submission in 2024 to the Software Testing, Verification and
Reliability (STVR) Journal. The insights and methodologies developed through
this process are thoroughly integrated into the aforementioned section of the the-
sis, showcasing a deep understanding and application of advanced software testing
strategies for ML-based systems.

* Chapter 3 (Objectives, Methodology, and Results): In this chapter, we first state three
research objectives which were formulated by keeping in view our research questions and
the background knowledge of the related concepts, as mentioned in Chapter 2. Next,
we provide details of the experimental studies and methods used. Subsequently, we dis-
cuss our methodology and the obtained results for all research objectives.The content
within Chapter 3 of this thesis encapsulates the extensive research and development ef-
forts undertaken in preparation for various academic and professional platforms, includ-
ing workshops, conferences, and journal publications as following:

1. This initial conference paper focuses on the foundational research that underpins
”Out-of-Distribution Detection in Machine Learning Based Control Systems en-
abled by TinyML,” authored by Igbal, Z., and Vardanega, T., which has been sub-
mitted for review at the 33rd International Conference on Artificial Neural Net-
works (ICANN). The methodologies, insights and findings detailed in this section
of the thesis are integral to the paper and are the result of meticulous planning and
strategic execution.

2. The second paper will include significant contributions to the Role of Opera-
tional Design Domain in Out-of-Distribution Detection for Avionics enabled by
TinyML,” authored by Iqbal, Z., and Vardanega, T., scheduled for submission in
2024 IIEEE Symposium on Visual Languages and Human-Centric Computing.
This paper is a key component of my research portfolio, and the insights and re-
sults within it are directly reflected in the specified section of the thesis

Is

3. The third paper titled "Introducing AI to IMA Technology — System Perspective,”
authored by Igbal, Z., Lehmann, M., Liittig, B., Ayyildiz, R., Bobrzik, T., Var-
danega, T., and Daw, Z., utilizes innovative techniques in TinyML for optimizing
cabin pressure control within Integrated Modular Avionics (IMA) systems. This
work was submitted to the 43rd Digital Avionics Systems Conference (DASC) and
has been accepted for a lecture presentation at the conference, showcasing its sig-
nificance and contribution to the field of avionics and Al integration.

The preparation for these submissions has been meticulously planned, with clear targets
and timelines for each submission to relevant conferences and journals.

Chapter 4 (Conclusions and Outlook): This final chapter contains our conclusions and
a summary of the contributions made. Then, we present a detailed discussion on our
methodology and obtained results, including their limitations and recommendations for
potential improvements. Finally, we discuss the future work directions of this research
work.

16

Background

In this chapter, we present a background overview of the key topics explored in this doctoral re-
search work. This chapter sets the background to our research project. The chapter is divided
into two sections, each of which introduces one of the two principal contextual elements of the
problem space: the ambit of safety-critical systems and of avionics systems in particular, with
their distinguishing characteristics; and the essentials of the Machine Learning domain, seen
from the perspective of embedding ML models in the command-and-control part of avion-
ics systems. Section 2.1 in particular focuses on the concept of Operational Design Domain
(ODD), which is bound to play an increasingly important role in the verification-based pro-
vision of assurance in safety-critical systems, enhancing the implementor’s ability to conform
with the applicable certification standards with greater precision and agility. Section 2.2 delves
into the core of Machine Learning (ML) and its burgeoning role in revolutionizing the way
avionics industry is going to develop its new-generation systems. That section discusses the
main obstacles inherent in the integration of ML into aviation systems, with special focus on
the challenge of detecting out-of-distribution (OOD) situations referring to scenarios where
an ML system encounters data that significantly deviate from the data it was trained on. In the
context of aviation, this is a critical challenge because the safety and reliability of flight systems
depend heavily on their ability to handle unexpected or novel situations accurately. This dis-
cussion naturally leads to observe that crucial role that TinyML may have in helping ML enter
avionics, striking a good balance between the push of innovation and the pull of preservation

of conformance with stringent and conservative safety regulations in the application domain.

17

2.1 SAFETY-CRITICAL SYSTEMS

Systems deemed as safety-critical play a crucial role in various sectors, including transportation
(avionics, railways, and automotive), space, telecommunication, civil and military infrastruc-
ture (such as nuclear and power plants), and medical and control devices. These systems are
essential because their malfunctioning could result in severe harm, including loss of life, or sub-
stantial damage to property and the environment.To mitigate these risks, safety-critical systems
are developed under the guidance of specific certification standards. These standards impose
on developers a comprehensive set of obligations that cover all aspects of the development pro-
cess.

Software within these systems is increasingly becoming a focal point. As the demand for sys-
tems to perform a wider range of tasks increases, the size and complexity of the software esca-
late accordingly to meet these demands [37]. While safety-critical systems frequently embed
specialized hardware parts, which can take the largest fraction of the development cost, their
software accounts for an increasing proportion of the delivered functionality and has a dispro-
portionately large impact on overall safety. This is evidenced by numerous incidents attributed
to software failures, highlighting its reliability as a critical factor in the dependability of the sys-
tem as shown in Figure 2.1. Consequently, the costs associated with software development
and evaluation are among the most significant ones, and on the verge to dominate the entire
system lifecycle [38]. This scenario has spurred researchers and practitioners to focus intensely
on improving these aspects. In the field of avionics, systems classified as safety-critical are those
whose failure could result in catastrophic outcomes such as loss of life, significant property
damage, or severe environmental impact [39]. This high-stakes environment requires unparal-
leled reliability in software. In avionics, even minor software glitches can precipitate complete
system failures, potentially leading to aviation disasters. This critical nature of avionics sys-
tems highlights the vital importance of rigorous software quality management. Ensuring that
avionic software is not only functional but also adheres to the highest standards of safety and

reliability is not just a technical requirement but a moral imperative.

2.1.1 AVIONICS SYSTEMS

Avionics systems, integral to the acrospace industry, are quintessential examples of safety-critical
systems due to their direct impact on the safety of flight operations. These complex systems

encompass navigation, communication, and flight control functions, and any failure within

18

-

Software
System

Critical System
Components

Figure 2.1: A diagram illustrating a safety-critical system, featuring the operator, software system, and hardware system,
along with detailed annotations of process inputs and outputs, subsystems, components, equipment, and tools essential
for ensuring operational integrity and safety [5].

them can have dire consequences, including risks to human life and potential damage to air-
craft or the environment. The intricate nature of avionics demands stringent adherence to
safety protocols and rigorous testing to ensure reliability and fault tolerance[s]. Given the high
stakes, avionics systems are designed with multiple redundancies and robust fail-safe mecha-
nisms. The development of these systems follows rigorous standards and certifications, reflect-
ing the paramount importance of safety in all aspects of their design and operation. This criti-
cality also drives continuous innovation in avionics, with the aim of improving safety features
while accommodating the evolving demands of modern aviation.

The role of assurance in avionics, as a safety-critical system, is both integral and multifaceted,
focusing primarily on ensuring system reliability and safety.

In this context, ”system reliability” refers to the ability of the avionics systems to perform
their intended functions consistently and accurately over time. This means the systems are ex-
pected to operate without failure, delivering the correct outputs and responses under various
conditions. Reliability is crucial in avionics because consistent performance is key to maintain-
ing operational effectiveness and preventing accidents or malfunctions in flight.

”System safety,” on the other hand, relates to the avionics systems being free from condi-
tions that could lead to significant hazards or accidents. This involves designing systems in a
way that either eliminates or significantly reduces the risk of such occurrences. Safety in avion-
ics is paramount due to the high stakes involved - any failure can have severe, potentially catas-

trophic, consequences. In this context, assurance refers to a set of systematic, documented

19

processes and procedures designed to ascertain that avionics systems meet stringent safety re-
quirements and function as intended under all circumstances. According to Leveson in [40],
assurance in avionics involves rigorous safety analyzes, thorough tests, and validation processes
to identify and mitigate potential system failures. Additionally, in [41] Stolzer, Halford and
Goglia emphasize the importance of adherence to established international standards, such as
those set by the Federal Aviation Administration (FAA) and the European Union Aviation
Safety Agency (EASA), which dictate specific safety and certification guidelines for avionics
[42]-[43]. Furthermore, as Rushby highlighted in [44], continuous monitoring, regular up-
dates, and maintenance are vital to ensure long-term reliability and safety of avionics systems,
reflecting the dynamic nature of technological and operational environments in aviation. The
assurance process in avionics involves comprehensive testing, validation, and certification pro-
tocols to ensure that every component functions flawlessly under a wide range of conditions.
Furthermore, as reported by Endsley and Jones in [45], the integration of advanced technolo-
gies in avionics, like automated systems and machine learning , has raised the bar for assurance,
necessitating even more robust and sophisticated validation methods to address the complexi-
ties of these systems. The importance placed on assurance highlights the crucial role of avionics
in ensuring the overall safety and effectiveness of air travel.

The avionics system lifecycle is a sophisticated and rigorously structured process that is in-
tegral to ensuring the safety and efficiency of aircraft systems. This lifecycle is traditionally
divided into several key phases: requirements analysis, system design, implementation, test-
ing,deployment and maintenance. Within this framework, the concept of the Operational De-
sign Domain (ODD) plays a critical role, as it defines the specific operational conditions under
which avionic systems are expected to function. According to Ferrell and Leveson in [46], the
ODD encompasses various environmental, geographic, and operational scenarios that an air-
craft might encounter, and it is essential for guiding the development process. During the re-
quirements analysis phase, engineers and designers determine the functional and performance
requirements of the avionic systems within the context of the ODD. As Newman highlighted
in [47], the design and implementation phases must then integrate these requirements to de-
velop systems that are robust and adaptable to the defined conditions. The testing phase, cru-
cial for validating the functionality and safety of the systems within the ODD parameters, in-
volves rigorous simulations and real-world trials. Finally, the maintenance phase ensures that
the systems remain effective and safe over time, adapting to any changes in operational require-
ments or environments. This lifecycle approach, with a focus on ODD, ensures that avionic

systems are not only technologically advanced, but also reliable and safe for their intended use.

20

2.1.2 AVIONICS CONTROL SYSTEMS

Avionics control systems represent the heart of modern aircraft, encompassing a wide array of
electronic systems that perform individual functions ranging from navigation and communi-
cation to the monitoring and management of multiple flight control systems. These systems
are critical for ensuring the safety, efficiency, and reliability of aircraft operations, both in com-
mercial and military aviation. The integration of advanced technologies into avionics control
systems has been a continuous pursuit within the aerospace industry, aiming to improve per-
formance and safety standards. The evolution of these systems has been marked by significant
milestones, notably the transition from analog to digital systems and the increasing incorpo-
ration of software-driven functionalities, which have dramatically enhanced the capabilities of

avionics systems [48].

Machine Learning technologies have emerged as a transformative force in the development
of next-generation avionics control systems. By leveraging ML algorithms, avionics systems
can now process and analyze vast amounts of data in real-time, enabling more precise control,
predictive maintenance, and adaptive response mechanisms. These advancements facilitate
improved decision-making processes, optimizing flight operations and enhancing overall air-
craft performance. However, the integration of ML into safety-critical systems such as avionics
presents unique challenges, particularly regarding the assurance of system reliability and safety

under all operational conditions [49].

The concept of Tiny Machine Learning (TinyML) has gained attention as a promising solu-
tion to overcome some of the challenges associated with deploying ML in resource-constrained
environments like avionics control systems. TinyML refers to the optimization and implemen-
tation of lightweight ML models that can run on low-power microcontrollers, offering the
potential to embed intelligent functionalities directly into various avionics components with-
out significantly increasing power consumption or system complexity [so]. This approach not
only supports the real-time processing requirements of avionics systems but also opens up new
possibilities for enhancing system capabilities, such as improved anomaly detection, fault diag-
nosis, and autonomous decision-making.

Despite the promising advantages of TinyML in avionics, ensuring the reliability and safety
of ML-based systems remains a paramount concern. The development and validation of these
systems require rigorous testing and verification processes to meet stringent aviation standards.
The adoption of a structured development model, such as the W-shaped model discussed ear-

lier, can provide a comprehensive framework for integrating TinyML into avionics control sys-

21

tems. This model emphasizes a thorough analysis of system requirements, iterative design and
testing phases, and continuous validation to ensure that the integrated ML models are robust,
reliable, and capable of performing as intended under all operational scenarios [s1].

In conclusion, the integration of ML, particularly through TinyML, into avionics control
systems represents a significant advancement in aerospace technology. It holds the promise of
making aircraft more intelligent, efficient, and safe. However, the realization of this potential
requires overcoming significant technical and regulatory challenges. Ongoing research and de-
velopment efforts, guided by robust development frameworks, are essential to address these

challenges, paving the way for the successful implementation of ML in avionics systems.

2.1.3 ROLE OF OPERATIONAL DESIGN DOMAIN IN AVIONICS SAFETY

The concept of Operational Design Domain (ODD) is integral to understanding the opera-
tional parameters within which a system is designed to function, originally established in the
automotive industry. The term ODD?” refers to specific conditions under which a system,
like an autonomous vehicle, operates effectively. This concept has been thoroughly explored
in the automotive sector, with a notable taxonomy established in 2020, as referenced in [52].
Studies, as cited in [53]-[54]-[5 5], have emphasized the importance of ODD for safety in the
automotive industry.

In aviation, however, the application of ODD is still emerging. The European Union Avia-
tion Safety Agency (EASA) documented the first application of ODD in aviation, offering a de-
tailed definition in their publication[s6]. Here, ODD for Machine Learning Systems (MLSs)
in aviation is characterized as the range of operating conditions, including environmental fac-
tors, geographical settings, and time-of-day restrictions, under which the system is intended
to function optimally. The ODD for MLSs in aviation is not just a static set of parameters;
it considers the interrelationships between different operating conditions. For instance, the
acceptable range for certain parameters may vary depending on other concurrent conditions,
allowing MLSs to operate more effectively in a dynamic, real-world environment. To provide
a deeper understanding of Operational Design Domain (ODD) parameters in aviation, let’s
explore some specific examples. These parameters define the conditions and situations under
which an aviation system [57], particularly those using MLSs, is designed to operate effectively

and safely.

1. Weather Conditions: ODD parameters may include a range of weather conditions un-
der which the system can operate reliably. For instance, an MLSs might be designed to

22

function optimally in conditions ranging from clear skies to moderate rain. However,
severe weather phenomena like thunderstorms or heavy snowfall might fall outside its
ODD.

. Geographical Areas: This could specify certain types of geographical settings where the
system is expected to operate. For example, an MLSs in a commercial aircraft might be
optimized for operation over continental landmasses, but not for polar routes or certain
mountainous terrains.

. Air Traffic Density: ODD parameters can also define the level of air traffic the system
is designed to handle. For a system used in air traffic control, its ODD might encom-
pass operating efficiently in medium to high traffic volumes but may not be designed
for extremely congested airspace scenarios.

. Altitude Ranges: This involves the range of altitudes at which the system can func-
tion effectively. A system might be designed for cruising altitudes typical of commercial
flights but not for the lower altitudes used during takeoft and landing phases.

. Time-of-Day Restrictions: Some systems might be optimized for operation during
daylight hours but not equipped to handle the different challenges presented by night-

time operations.

. Communication System Reliability: The ODD might include the expected reliability
and availability of communication systems. For instance, a system may be designed to
operate effectively with certain levels of satellite communication availability but not in
scenarios where communication signals are weak or interrupted.

. Emergency Situations: The system’s ODD mightincludeits response to standard emer-
gency procedures but not be designed for highly unusual or catastrophic emergency sce-
narios.

By defining these parameters, avionics engineers can ensure that the MLSs is equipped to

handle expected operational scenarios while also being aware of its limitations. Understanding

these limits is crucial for maintaining safety, as it informs the development of contingency pro-

tocols for scenarios that fall outside the ODD. This nuanced approach to ODD in aviation is

critical, especially when integrating ML components. ML-based system in aviation must reli-

ably operate across diverse scenarios, as emphasized by Ferrell and Leveson in [46]. By defining

the ODD, engineers can tailor ML algorithms to meet the stringent safety requirements preva-

lent in the aerospace industry, a point highlighted by Newman in [47].

However, the principles and guidelines established for ODD in the automotive sector cannot

be directly applied to aviation due to several key factors. These include different regulatory

23

approaches, the necessity for aviation standards to align with existing regulations, higher levels
of assurance requirements in aviation, and the need for consistency with established aviation-
specific engineering practices, such as safety assessment and system development processes cited
in [s8] and [59].

To illustrate, let us consider an example of ODD in the context of an autonomous flight
system. The ODD may define operational limits such as specific weather conditions (e.g., clear
skies vs. thunderstorms), types of airspace (e.g., urban vs. rural), and altitude ranges. Within
these defined limits, the ML system is expected to perform optimally. However, if the system
encounters conditions outside of these defined parameters, like unexpected severe weather or
emergency airspace restrictions, it would be considered operating outside of its ODD. This ne-
cessitates robust systems for detecting and responding to such out-of-ODD scenarios to main-

tain safety and reliability.

2.1.4 MACHINE LEARNING & THE OPERATIONAL DESIGN DoMAIN: EN-

HANCING SYSTEM ASSURANCE AND SAFETY

Operational Design Domain delineates the specific operational conditions under which an
ML system is designed to function reliably and safely. This concept, originating from the
autonomous vehicle industry, has rapidly become a cornerstone in the broader field of ML
safety and reliability. As Koopman and Wagner noted in [60], ODD encompasses a range of
environmental, geographical, temporal, and other operational constraints that define the safe
operational parameters of an ML system. By establishing these boundaries, ODD serves as a
critical tool for system developers and engineers to ascertain the limits within which ML-based
system can make decisions, react to input and operate effectively without human intervention.

The significance of ODD in assuring ML-based system stems from its role in bridging the
gap between theoretical performance and real-world applicability. Traditional ML models are
often trained and tested in controlled or idealized environments, which may not fully repre-
sent the complexity and unpredictability of real-world scenarios. ODD provides a structured
framework for testing and validating ML-based system under more realistic conditions, ensur-
ing that they can handle the complexities and uncertainties inherent in their intended opera-
tional environments. This is particularly crucial in high-stakes domains such as autonomous
driving, aviation, and healthcare, where the cost of failure can be catastrophic. As highlighted
by Shalev-Shwartz et al. in [61], the integration of ODD in the development process allows a

more targeted approach to model training and validation, focusing on the specific conditions

24

and challenges the system is expected to encounter. This targeted approach not only enhances
the robustness and reliability of ML-based system, but also aids in building trust among users
and regulators, a key aspect in the widespread adoption of autonomous technologies.

Furthermore, the role of ODD extends beyond the development phase, contributing signifi-
cantly to the ongoing assurance and adaptability of ML-based system. As systems are deployed
in dynamic real-world environments, they encounter novel situations and variables that were
not present or considered during the training phase. Therefore, the concept of ODD plays a
vital role in the continuous monitoring and adaptation of these systems. In this context, the
work of Gauerhof et al. in [62] becomes relevant, emphasizing the need for dynamic ODDs
that can evolve based on the accumulation of operational data and experiences. This adaptive
approach ensures that ML-based system remain within their safety and performance thresholds
even as they encounter new scenarios, a concept aligned with the broader goals of Al safety and
lifelong learning in ML. In addition, ODD is instrumental in regulatory compliance and cer-
tification processes, providing a clear and tangible framework against which ML-based system
can be evaluated. Regulatory bodies and certification agencies require concrete evidence that
MUL-based system can operate safely within their intended domains. By defining ODD, devel-
opers can offer this evidence, demonstrating that their systems have been rigorously tested and
validated within these domains. This aspect of ODD is particularly highlighted in [63] the
work of Varshney and Alemzadeh, who discuss the challenges and methodologies for certify-
ing Al systems in healthcare, a sector where safety and reliability are paramount. In essence,
ODD serves as a critical link between the theoretical capabilities of ML-based system and their
practical and safe deployment in real-world scenarios.

Analyzing the impact of input data that fall outside the ODD is crucial for the effective
functioning of ML-based system, particularly in avionics and autonomous flight operations.
To mitigate such risks, continuous monitoring of input data is essential to determine whether
it falls within the defined ODD. If the data is detected to be outside of the ODD, the system
must have robust protocols to correct the course of action or seek alternative decision-making

pathways, such as human intervention.

2.2 MACHINE LEARNING

In the realm of Machine Learning (ML), data is the cornerstone upon which algorithms op-
erate and derive knowledge. Unlike rule-based programming, ML algorithms depend on the

analysis of data to uncover patterns and make predictions [64]. The effectiveness of these al-

25

gorithms is deeply influenced by the quality and quantity of the data they are fed. Broadly,

datasets in ML can be categorized into two types:

1. Unlabelled Dataset: This dataset type is defined as X = {x*) € R} Tcconsists of a
feature set X containing /N samples, where each sample is a d-dimensional vector. These
vectors are also known as feature vectors or samples. In this context, each dimension of
a vector is referred to as an attribute, feature, variable, or element. Unlabelled datasets
do not have associated output labels or targets.

2. Labelled Dataset: This dataset type is represented as X = {x*) € R1}Y | v = {y") €
R} . It not only includes the feature set X but also a label set ¥, which records the
corresponding label for each feature vector. An alternative representation of a labelled
dataset can be {(x),) € RY x R}, where each pair (x), y)) is known as a data
pair.

In the context of ML, the goal is to find a function g(x) that closely approximates an un-
known target function y = f{x), where for any x € X, the function faccurately outputs the
corresponding y in the label space. The dataset utilized to learn this function g(x) is referred to
as the training set or training data. In contrast, the test set or test data, which is distinct from
the training set, is used to evaluate the performance of g(x). The distinction between these two
sets is crucial, as it allows for the assessment of the model’s ability to generalize to new, unseen

data, a fundamental aspect of ML efficacy as shown in the Figure 2.2.

2.2.1 CATEGORIES OF MACHINE LEARNING

ML methodologies are broadly categorized into five key areas: supervised, unsupervised, semi-
supervised, self-supervised, and reinforcement learning. Each category serves distinct purposes
and is suited to specific kinds of data and learning tasks. In this thesis, we focus primarily on
supervised and self-supervised learning, as these methodologies align closely with the nature of

our problem and the tasks at hand.

* Supervised Learning: Supervised learning [65] is characterized by its use of labeled
datasets. The objective is to discern the relationships between the feature set (input data)
and the label set (output data), extracting knowledge and properties from this labeled
dataset. There are two main types of supervised learning tasks:

1. Classification: If each feature vector x corresponds to a discrete label y in a label
set L = {h,l,...,l.}, where ¢ can range from 2 to several hundred, the task is
termed classification. Here, the goal is to categorize each input data point into one

of the predefined classes.

26

Training

Learning

Data Algorithm

(labelled)

Past Examples

Unlabelled
data

Labelled
data

Figure 2.2: The figure illustrates the process of training a machine learning model using both labeled and unlabeled data,
showcasing the steps of data classification and model training.

2. Regression: In cases where each feature vector x corresponds to a real value y € R,
the task is known as a regression problem. The focus is on predicting a continuous
quantity based on the input features.

Knowledge gained from supervised learning is typically used for prediction and recogni-
tion tasks.

* Self-Supervised Learning: Self-supervised [66] learning, a relatively new paradigm in
ML, is a subset of supervised learning but with a unique twist. In self-supervised learn-
ing, the data labels are not provided explicitly. Instead, the algorithm generates its own
labels from the input data. This is typically done by designing a pretext task, where the
model predicts part of the data given other parts. For example, a common pretext task in
image processing is to remove a portion of the image and train the model to predict the
missing part. The key advantage of self-supervised learning is that it leverages unlabeled
data, which is more abundantly available, and learns robust feature representations that
can be useful for downstream tasks [67].

* Unsupervised Learning: Although not the focus of this thesis, unsupervised learning
warrants a brief mention [68]. It deals with unlabeled datasets, exploring and drawing
inferences from this data to identify hidden patterns or structures. Common applica-
tions include clustering, probability density estimation, feature association, and dimen-
sionality reduction. The insights gained from unsupervised learning can sometimes be
beneficial in enhancing supervised learning models.

27

* Semi-Supervised Learning: represents a middle ground in ML methodologies, bridg-
ing the gap between supervised and unsupervised learning [69]. It is particularly rele-
vant in scenarios where obtaining a large set of labeled data is challenging or costly, but
where ample unlabeled data is available. Semi-Supervised Learning leverages both a small
amount of labeled data and alarger volume of unlabeled data for training. Thisapproach
is based on the assumption that the patterns or the distributions discovered in the un-
labeled data can significantly contribute to the learning process, enhancing the model
trained with the limited labeled data.In semi-supervised learning, the algorithm initially
learns from the labeled data, just as it would in a supervised learning context. However,
it then extends this learning to the unlabeled data [70]. Semi-Supervised Learning ofters
a pragmatic solution in ML, particularly in scenarios with limited labeled data. By com-
bining the strengths of both supervised and unsupervised learning, it provides a versatile
framework for efficiently developing robust models.

* Reinforcement Learning (RL): stands as a unique and powerful branch of Machine
Learning, centered on the interaction between an agent and its environment [71]. The
essence of RL lies in the agent’s ability to make decisions and learn from the conse-
quences of its actions, rather than from explicit instruction. In this framework, the
agent explores its environment, performs actions, and receives rewards or penalties in
response. These rewards serve as critical feedback, guiding the agent to refine its policy -
a set of rules or strategies dictating its actions. Over time, through a process of trial and
error, the agent learns to maximize cumulative rewards, effectively shaping its behavior
towards achieving optimal or near-optimal outcomes. RL’s strength is its applicability
to a wide range of complex problems, from game playing and robotics to autonomous
vehicles, where learning through interaction is key. This approach fosters not just the
replication of known strategies but the discovery of novel solutions to challenges, mak-
ing RL a frontier field in the development of intelligent, adaptive systems.

2.2.2 KEY ELEMENTS OF MACHINE LEARNING

In the broad area of machine learning (ML), irrespective of the particular technique employed,
whether it is supervised, unsupervised, or reinforcement learning, three essential elements con-
sistently play a vital role in the construction and operation of ML-based system. These compo-
nents, as identified in [72], are Representation, Evaluation, and Optimization, each playing a

pivotal role in the learning process.

2.8

* Representation

The representation aspect of ML deals with how knowledge is encoded within the sys-
tem. This step is crucial as it defines the hypothesis space A, which encompasses all
possible hypotheses / that the learning algorithm can formulate. These hypotheses are
essentially different mapping functions or distributions the algorithm considers in its
learning process. The goal of ML in this context is to identify the most accurate hypoth-
esis b, known as the final hypothesis, that approximates the target function best. Various
types of representations include neural networks, decision trees, probabilistic graphical
models, and support vector machines. The choice of representation significantly influ-
ences the types of patterns and relationships the algorithm can learn and detect.

e Evaluation

Evaluation in ML refers to the method of assessing and scoring candidate hypotheses.
This is achieved through an evaluation function, also known as an objective function,
utility function, loss function, scoring function, or fitness function, depending on the
context. This function is vital to differentiate between hypotheses and to guide the learn-
ing process towards more accurate predictions. Common examples of evaluation func-
tions include mean squared error in regression tasks or likelihood functions in proba-
bilistic models. The choice of evaluation function has a substantial impact on the pref-
erences and priorities of the learning algorithm within the hypothesis space.

* Optimization

The third component, Optimization, involves the search strategy employed to find the
highest-scoring hypothesis in the hypothesis space. It is the process of tweaking and ad-
justing the parameters of the ML model to minimize or maximize the evaluation func-
tion, thereby enhancing the model’s performance. The optimization technique chosen
is crucial for the efficiency and effectiveness of the learning process. Popular optimiza-
tion methods include stochastic gradient descent, commonly used in neural networks,
and greedy search, often employed in decision tree algorithms. It’s important to note
that once a model is trained, the specific details of the optimization process may not be
retrievable, but the impact of this process is reflected in the model’s performance.

In summary, the synergy between Representation, Evaluation, and Optimization defines
the core of any ML system. These components collectively determine how an ML algorithm
processes data, learns from it, and makes predictions or decisions, thus shaping the capabilities

and effectiveness of the ML solution.

29

2.2.3 PERFORMANCE METRICS FOR ML MODELS

Evaluating the performance of ML models is a critical step in determining their effectiveness
and suitability for a given problem. Various metrics are used to assess different aspects of a
model’s performance, with accuracy, precision, recall, F1 score, and the AUC-ROC (Area Un-
der the Receiver Operating Characteristic Curve) measure being among the most commonly

used, especially in the context of deep learning.

* Accuracy

Accuracy is a fundamental metric that measures the overall correctness of the model. It
is calculated as the ratio of the number of correct predictions to the total number of
predictions made by the model. Formally, it is represented as:

TP+ TN
TP+ FP+ TN+ FN

Accuracy =

where:

— TP (True Positives) are correctly predicted positive observations.

TN (True Negatives) are correctly predicted negative observations.

FP (False Positives) are negative observations incorrectly predicted as positive.

FN (False Negatives) are positive observations incorrectly predicted as negative.

* Specificity

Specificity, also known as the true negative rate, is given by:

TN

Specificity = ———
pecificity TN+ FP
It measures the proportion of actual negatives that are correctly identified.

* Precision

Precision indicates the accuracy of positive predictions. It is defined as:

P
TP+ FP

Precision =
It represents the proportion of positive identifications that were actually correct.

30

* Recall

Recall, also known as sensitivity or the true positive rate, is defined as:

P

l= ———
Reca TP+ EN

Measures the proportion of actual positives that are correctly identified.

* F1 Score

The F1 score is a harmonic mean of precision and recall, providing a balance between
the two. It is particularly useful when the class distribution is imbalanced. It is given by:

Precision x Recall
F1-Score = 2 %

Precision + Recall

* ROC Curve and AUC

The ROC curve is a graphical representation of a model’s ability to distinguish between
classes at various thresholds. It plots the True Positive Rate (Recall) against the False
Positive Rate (1 - Specificity). The AUC, or Area Under the Curve, measures the entire
two-dimensional area underneath the entire ROC curve and provides an aggregate mea-
sure of the model’s performance across all possible classification thresholds. An AUC
of o.5 suggests that there is no discriminative ability (equivalent to random guessing),
while an AUC of 1 indicates perfect classification.

Each of these metrics provides valuable insights into different aspects of a model’s perfor-

mance, and the choice of metric should align with the specific objectives and context of the
ML problem being addressed.

2.2.4 DEEP LEARNING

Deep learning, a significant breakthrough in the field of artificial intelligence (AI), has emerged
as a transformative technology, reshaping how we interact with data and machines. Rooted in
the principles of machine learning, deep learning extends these concepts by leveraging complex
structures known as neural networks. These networks, inspired by the biological neural net-
works of the human brain, enable machines to process, analyze, and make decisions from large
sets of data [73].

Central to deep learning is the architecture of Deep Neural Networks (DNNG), which dis-
tinguishes it from traditional machine learning. DNNs consist of multiple layers of intercon-

nected nodes or neurons, where each layer performs specific computations on input data and

31

passes the results to subsequent layers [74]. This layered structure allows DNNGs to learn from
data in a hierarchical manner, extracting increasingly complex features at each level.

One of the most groundbreaking aspects of deep learning is its capability for feature extrac-
tion and pattern recognition. Traditional machine learning techniques rely heavily on manual
feature extraction, which can be labor-intensive and requires domain expertise. In contrast,
deep learning algorithms autonomously learn to identify relevant features directly from the
data, a process that has significantly improved the efficiency and accuracy of various Al appli-
cations [75].

Deep learning has been instrumental in advancing fields such as computer vision and natu-
ral language processing (NLP). In computer vision, Convolutional Neural Networks (CNNs)
have become the standard for tasks like image classification and object detection, providing
the backbone for technologies ranging from facial recognition systems to autonomous vehicles
[76]. Similarly, in NLP, models like Transformers have revolutionized language understanding
and generation, leading to the development of highly sophisticated language models [77].

The training of deep learning models is a data and computationally intensive process. It in-
volves feeding large volumes of data through the neural network and adjusting the network’s
parameters through backpropagation and optimization algorithms like stochastic gradient de-
scent [78]. The ability of these models to learn from vast datasets has led to their unparalleled
performance in tasks that were once considered challenging for machines.

Despite its successes, deep learning faces challenges such as the need for extensive data, the
risk of overfitting, and the ”black box” nature of its decision-making process, which can lack
transparency [79]. Moreover, concerns regarding the ethical implications and biases in AI mod-
els pose significant challenges for the field [80].

As research continues to evolve, addressing its limitations and ethical considerations, deep
learning stands poised to drive further innovations across various sectors, from healthcare to

autonomous systems [81].

2.2.5 DEEP NEURAL NETWORKS (DNNs)

Deep Neural Networks (DNNs) are at the heart of the current revolution in Al and machine
learning. As an advanced form of neural networks, DNNGs are characterized by their depth,
comprising multiple hidden layers between the input and output layers. This depth allows
DNNs to model complex relationships in data, leading to groundbreaking performances in

various AT tasks [82].

32

Input Layer LaV Layer Output
X, o — Y1

o
K o
f— Y2
. o e—.
Input ~ — Output
Layer Hidden Layer

Layers

Figure 2.3: The lllustration of the Typical Architecture of a Deep Neural Network (DNN), Showcasing Multiple Hidden
Layers, Neuron Connectivity, and Data Flow from Input to Output Layer [6].

A deep neural network (DNN) is composed of layers of nodes, also known as neurons, where
each layer is specifically designed to carry out particular computations as shown in Figure 2.3.
The input layer receives the raw data, which is then processed through successive hidden layers.
Each neuron in these layers applies a set of weights to its inputs, followed by a non-linear trans-
formation, often using activation functions like ReLU or sigmoid. The output layer produces
the final result, be it a classification, regression, or any other desired output [83]. Training a
DNN is a meticulous process, where the network learns by adjusting the weights of connec-
tions between neurons. This learning is achieved through backpropagation, a method that
calculates the gradient of the loss function with respect to each weight by the chain rule, up-
dating the weights to minimize the loss. Optimizers like stochastic gradient descent or Adam

are commonly used to facilitate this process [84].

DNNS have made significant impacts across various domains. In computer vision, they en-
able advanced image recognition, object detection, and video analysis. In natural language pro-
cessing, they have improved machine translation, sentiment analysis, and language generation.
DNNss are also pivotal in autonomous systems, including self-driving cars and drones, where

they process and interpret vast amounts of sensory data [85].

One of the critical challenges in working with DNNs is the requirement for large datasets
and extensive computational resources. DNNs’ performance improves with the amount and
diversity of data they are trained on, necessitating powerful hardware, often GPUs or TPUs,
for efficient training[86]. Additionally, the ”black box” nature of DNNs, where the decision-

making process is not always transparent, raises concerns, especially in critical applications like

33

healthcare or criminal justice [87].

Despite these challenges, the field of DNNs is evolving rapidly. Techniques like transfer
learning, where a model trained on one task is repurposed on a second related task, have made it
easier to deploy DNNs in environments with limited data. Furthermore, research into making
DNNs more interpretable and fair continues to be a significant focus, aiming to build trust

and reliability in Al systems [88].

2.2.6 CoONVOLUTIONAL NEURAL NETWORKS (CNNs)

Convolutional Neural Networks (CNNs) represent a groundbreaking advancementin the field
of deep learning, particularly tailored for processing data that can be visualized in a grid-like
structure, such as images. Unlike traditional neural networks, which flatten input data into
a single vector, CNNs maintain the spatial hierarchy of the input, enabling the model to ef-
fectively capture the relationships within the data. This attribute makes CNNs exceptionally
suited for image and video recognition tasks, where understanding the spatial context of pixels
is crucial. The unique architecture of CNNs allows them to automatically and adaptively learn
spatial hierarchies of features from images, a feature that has revolutionized the way machines
understand visual content [89].

The architecture of a CNN is composed of several layers that transform the input image to
produce the desired output, such as a class label for classification tasks as shown in Figure 2.4.
The convolutional layer, the cornerstone of the CNN, applies numerous filters to the input to
activate specific features at different spatial locations. Following the convolutional layer is the
ReLU (Rectified Linear Unit) layer, which introduces non-linearity into the model by apply-
ing the function f{x) = max(o,x) to each pixel. This non-linearity allows the network to handle
complex patterns and data structures. Subsequent pooling (or subsampling) layers serve to re-
duce the spatial dimensions of the input volume for the next convolutional layer, decreasing
the computational burden and memory usage while preserving important features. The pro-
cess within a CNN begins with the raw input image and progresses through feature learning
and abstraction phases. Initially, convolutional and pooling layers work in tandem to detect
simple features such as edges and gradients. As the data progresses deeper into the network, sub-
sequent layers are able to recognize more complex features by combining the simpler patterns
detected by earlier layers. This hierarchical approach to feature learning is pivotal in enabling
CNN:s to break down complex visual cues into manageable parts, facilitating the recognition

of larger and more complex objects and patterns in later stages [90].

34

- Healthy

- Alarm

= Danger
O O

—iczii] 3 g
A J. |_' - -i Z
f 0 H
i W P 3
A -~ -~
LN = Damaged
| FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN SOFTMAX
i N ¥ T Fie COMNMNECTED o,

e

Aircraft . Structural Condition
: Feature Learning g
Sensing Input Classification

Figure 2.4: An illustrative diagram of a Convolutional Neural Network (CNN), showcasing the sequence of convolutional,
RelLU, pooling, and fully connected layers that enable the model to process and classify visual data with high accuracy [7].

Following the feature extraction and abstraction process, the high-level reasoning within
the CNN is executed through fully connected layers. These layers connect every neuron in
one layer to every neuron in the next layer, thus integrating the learned features into a format
suitable for classification. The final layer in a CNN typically consists of a softmax activation
function that outputs a probability distribution over the classes, based on the features identified
in the image. This structured approach allows CNNs to achieve remarkable accuracy in tasks
such as image and video classification, showcasing their capability to not only recognize but
also interpret complex visual information [91].

CNNs have found applications across a broad spectrum of fields, ranging from image and
video recognition to medical image analysis and natural language processing. Their ability to
learn and recognize patterns from visual data has paved the way for innovations in autonomous
vehicles, facial recognition software, and even in the analysis of medical images for diagnostics.
The adaptability and efficiency of CNNs in handling spatial data make them a cornerstone
technology in the ongoing exploration and development within the realm of artificial intelli-

gence and machine learning [92].

2.2.7 THE EMERGENCE OF ML IN AVIONIC SYSTEMS

As ML begins to permeate the field of avionics, the traditional landscape of system assurance
undergoes a significant transformation. The emergence of ML in avionics heralds a new era in
the field of acrospace engineering, fundamentally redefining the capabilities and potential of
avionic systems. The integration of ML in avionics, as outlined in recent studies [93], [94], in-

volves leveraging data-driven algorithms to enhance various aspects of aircraft operation, from

35

flight safety to predictive maintenance unlike conventional deterministic systems, ML-based
systems in avionics introduce a layer of probabilistic decision making, which poses new chal-
lenges and considerations for system assurance. MLSs in avionics are primarily designed to
analyze and interpret vast streams of data from numerous onboard sensors and systems, en-
abling a more nuanced understanding of the aircraft’s operational status. As noted by Helgo
et al.[95], the ability to detect potential failures early and take proactive measures to reduce
risks is crucial in predictive maintenance. This capability greatly improves aircraft safety and
operational reliability. Furthermore, ML’s role in optimizing flight paths and air traffic man-
agement is highlighted in the research by Aghdam et al.[96], demonstrating how these algo-
rithms can process complex flight data to suggest more efficient routes, thereby reducing fuel
consumption and minimizing environmental impact. This optimization extends beyond mere
operational efficiency; it also plays a crucial role in managing increasingly congested airspaces,
enhancing the overall safety and punctuality of air travel.

The advancement towards autonomous flight systems represents another frontier in the ap-
plication of ML in avionics. These autonomous systems, equipped with sophisticated ML
algorithms, can make real-time decisions, adapt to changing flight conditions, and potentially
handle unforeseen scenarios with greater accuracy than traditional systems. The prospect of
tully autonomous drones and, eventually, passenger aircraft, while still in its nascent stages, is
rapidly becoming a tangible reality, thanks in part to the advancements in ML technologies.

However, the integration of ML into avionic systems is not without its challenges. One of
the primary concerns, as pointed out by Jiang et al. [97], is ensuring the reliability and inter-
pretability of ML models, particularly in high-stakes scenarios where safety is paramount. The
aviation industry’s stringent regulatory environment also presents significant hurdles, necessi-

tating comprehensive testing and certification processes for ML-based systems [98].

2.2.8 ASSURANCE AND MACHINE LEARNING MODELS

The incorporation of ML models into avionics systems represents a significant shift in the
methodologies used to assure these systems’ reliability and safety. This integration challenges
traditional assurance practices, as it introduces systems that are inherently less predictable and
whose decision-making processes are not always easily interpretable. Clainche et al. in their
research [99] emphasize the critical need for predictability and explainability in ML models
deployed within the intricate operational environment of an aircraft.

In aviation, a domain where system failures can lead to catastrophic consequences, it’s cru-

36

cial that ML models operate reliably and as intended across a broad spectrum of operational
scenarios. This necessitates an exhaustive approach encompassing thorough testing, meticu-
lous validation, and continuous monitoring of these models. Denney et al. [roo] stress that
this approach should extend beyond assessing initial model accuracy. It should also scrutinize
the model’s capability to sustain performance over time and across diverse operational condi-
tions. This calls for rigorous testing protocols that replicate an extensive range of operational
scenarios, alongside validation processes that thoroughly examine the model’s decision-making
pathways for consistency and rationality.

Continuous monitoring is pivotal in promptly identifying and addressing any performance
drifts or degradation that might manifest in the dynamic operational environment of avionics
systems. The robustness of ML models in avionics, therefore, is a multifaceted challenge. It
demands persistent vigilance to maintain aviation’s inherent high safety standards.

A critical component of this assurance process is the models’ ability to effectively detect and
respond to OOD instances. The significance of OOD detection lies in the fact that ML models
are typically trained on specific datasets and may not inherently perform accurately or reliably
when encountering data that significantly diverges from their training sets. In avionics, where
rapid and unpredictable changes are common, the ability of decision-making systems to accu-
rately handle such deviations is crucial for safety [101]. Addressing OOD instances involves
implementing mechanisms that can recognize when the model is confronted with unfamiliar
data, enabling it to either adapt its responses or defer to human oversight.

This proactive approach to model assurance is integral in maintaining the integrity and trust-
worthiness of ML-based systems in critical aviation applications. It ensures not only the func-
tional reliability of these systems but also fortifies the confidence in their deployment in high-

stakes environments.

2.2.9 OuTt-0oF-DisTRIBUTION (OOD) DETECTION

In the increasingly sophisticated domain of avionics, the deployment of Machine Learning
(ML) models introduces a critical challenge: the management of Out-of-Distribution (OOD)
instances. These instances occur when the input data significantly deviates from the model’s
training data. They present scenarios that the model may not have encountered during its train-
ing phase. This conceptisillustrated in Figure 1.2, which might show a graph comparing model
performance on training data versus novel or OOD data [102].

OOD parameters are crucial to understand in this context. For example, consider an ML

37

model trained on data from commercial flights under typical weather conditions. An OOD
instance might occur if the model encounters data from severe weather conditions like a sudden
thunderstorm or a volcanic ash cloud - situations it was not trained on. The ML model’s ability
to recognize and respond to such OOD instances, as Liu et al. have elucidated, is vital for
maintaining the reliability and safety of avionics systems [103].

In the field of aviation, where safety is of utmost importance, the objective is to minimize
uncertainty within the system, even though the operating environment is inherently subject
to variability [104]. This is especially relevant when introducing ML into avionics systems.
The introduction of ML should not introduce unpredictability; rather, it should enhance the
system’s ability to handle the inherent variability and unforeseen events in aviation with greater
precision and reliability [1o5].

Given this context, the role of effective ODD detection becomes crucial. OOD detection
in ML-based system is designed to identify and appropriately respond to data or situations
that deviate significantly from the model’s training data [106]. In the highly controlled and
regulated field of aviation, where every component and system must perform predictably and
reliably, the integration of ML must adhere to these stringent standards [107]. ML models in
avionics systems must be rigorously tested and validated to ensure they can not only handle
expected scenarios but also identify and adapt to unforeseen conditions without introducing
additional unpredictability into the system [108].

The challenge lies in ensuring that the ML models contribute to the predictability and ro-
bustness of the avionics systems, rather than detracting from it. This involves a careful balance
of leveraging the advanced capabilities of ML to enhance system performance, while also rig-
orously assessing and mitigating any potential sources of unpredictability that these models
might introduce [109]. Ensuring this balance is essential for the safe and reliable operation of
ML-integrated avionics systems in the dynamic and often unpredictable aviation environment.
While ML models are robust within their learned contexts, their accuracy and reliability can de-
crease when confronted with data that falls outside of their training distribution. In avionics,
where the stakes are exceptionally high, any error in decision-making by the ML model can lead
to serious consequences [110].

Therefore, the implementation of advanced OOD detection mechanisms is imperative. These
mechanisms function by continuously monitoring input data and comparing it to the known
distribution of the model, effectively flagging data points that lie outside this distribution. For
instance, if an ML model used for flight path optimization encounters unexpected air traffic

patterns due to an unscheduled event, an effective OOD system would recognize this deviation

38

Figure 2.5: The illustration depicts the distribution of input data for the model, with crosses indicating individual data
points. The blue area denotes the In-Distribution (ID) region, where data aligns with the model training, while the red area
highlights the Out-of-Distribution (OOD) region, representing data that deviates from the model training set [8].

from normal traffic patterns [111]. Upon detecting an OOD instance, these mechanisms can
initiate appropriate responses. These responses may involve reverting to human oversight or
activating alternative decision-making protocols designed to handle such anomalies.

The development and integration of robust OOD detection systems are pivotal in ensuring
that ML models in avionics remain reliable and safe, even when faced with unexpected or novel
data inputs. By doing so, these systems safeguard the overall integrity of the aviation system,
ensuring that ML-enhanced avionics can adapt to and manage the complexities of real-world

flight environments

2.2.10 APPROACHES FOR OUT-OF-DISTRIBUTION DETECTION

* Maximum Softmax Probability (MSP) : The method is a straightforward yet effective
approach to Out-of-Distribution (OOD) detection in neural networks. This technique
was introduced by Hendrycks and Gimpel in their seminal 2016 paper [112]. The core
idea behind MSP is to utilize the softmax output of a neural network as a confidence
measure to distinguish between in-distribution (ID) and OOD samples. In practical
terms, MSP examines the maximum value of the softmax probabilities produced by a
network for a given input. The underlying hypothesis is that a network is more likely to
produce higher maximum softmax probabilities for ID data, which it has encountered
during training, compared to OOD data, which is unfamiliar to the network.

The effectiveness of MSP lies in its simplicity and ease of integration with existing mod-
els. Since it relies on the final softmax layer, which is common in classification networks,
MSP can be applied without the need for architectural changes or additional training
[113]. This aspect makes it particularly appealing for real-time applications where com-
putational efficiency is crucial.

39

However, MSP is not without limitations. Its performance can vary depending on the
nature of the data and the model. For instance, in scenarios where OOD samples are
not sufficiently different from ID samples, MSP might not provide a clear distinction,
leading to potential false positives or negatives [114].

Multi-layer Out of Distribution (OOD) Detection: is an advanced approach in the
field of machine learning that involves utilizing features from multiple layers of a Deep
Neural Network (DNN) to enhance the detection of OOD samples [115]. Traditional
OOD detection methods often rely on the output layer’s softmax probabilities, but
multi-layer techniques leverage the rich, hierarchical representations learned at difter-
ent levels of the network. By analyzing the activations from various layers, this method
can capture a broader range of anomalies that might not be evident at the final output
layer alone.

One significant advantage of multi-layer OOD detection is its ability to exploit the di-
verse feature representations inherent in deep networks. Early layers might capture basic
patterns and textures, while deeper layers encapsulate more complex, abstract represen-
tations [116]. This multi-level analysis allows for a more nuanced and robust identifica-
tion of OOD samples, especially in cases where anomalies are subtle or deeply embedded
in the data.

However, there are limitations to this approach. One key challenge is the increased com-
putational complexity. Analyzing activations from multiple layers requires more pro-
cessing power and memory, which can be a bottleneck in resource-constrained environ-
ments or real-time applications [117]. Another issue is the potential for overfitting to
the idiosyncrasies of the training data. If the model is too finely tuned to the specific
characteristics of the training set, it may struggle to generalize effectively to new, unseen
OOD samples.

The effectiveness and limitations of multi-layer OOD detection are discussed in various
research papers. For instance, in [118] their work on a unified approach to detecting
both adversarial and OOD examples, highlighted the potential of using features from
multiple network layers. They demonstrated improved detection performance but also
acknowledged the need for careful calibration and the potential risk of increased false
positives.

ODIN (Out-of-Distribution detector for Neural networks): is a specialized tech-
nique for enhancing the detection of out-of-distribution (OOD) samples in deep learn-
ing models, particularly in neural networks. Introduced by Henriksson et al. in their
2017 paper [119], this method is notable for its ability to improve OOD detection with-
out needing any modification to the architecture or retraining of the pre-existing neural
network models.

40

The core idea behind ODIN is to utilize temperature scaling and input preprocessing
to effectively separate the softmax score distributions of in-distribution (ID) and OOD
samples. Temperature scaling involves adjusting the temperature parameter in the soft-
max function, which helps in amplifying the differences in the predicted class proba-
bilities [120]. This scaling makes the network’s output more confident for ID samples
and less confident for OOD samples. Input preprocessing, on the other hand, involves
adding small perturbations to the input data. These perturbations are designed in a way
that they increase the model’s maximum softmax probability for ID samples, thereby
creating a larger gap between ID and OOD samples [121].

However, ODIN is not without limitations. One significant challenge is the fine-tuning
of hyperparameters, such as the temperature scaling factor and the magnitude of input
perturbations, which are crucial for the effectiveness of the method. These parameters
often require careful calibration and may not generalize well across different datasets or
neural network architectures [122]. Furthermore, the reliance on softmax scores means
that ODIN might still struggle in cases where the neural network is overconfident in its
predictions, a common issue in deep learning models.

Channel-Attention-based Neural Mean Discrepancy (CA-NMD): is an advanced
method for Out-of-Distribution (OOD) detection that combines the concepts of chan-
nel attention mechanisms with neural mean discrepancy analysis [123]. This approach
is designed to enhance the sensitivity of neural networks to OOD samples by focusing
on the most informative features in the data.

In CA-NMD, the channel attention mechanism is employed to weigh the importance
of different channels in a convolutional neural network (CNN) [124]. This mechanism
adaptively adjusts the contribution of each channel based on its relevance to the task,
which is particularly useful in complex datasets where certain features are more indica-
tive of OOD samples than others. By emphasizing these relevant features, the network
becomes more proficient in distinguishing between in-distribution and OOD data.

The neural mean discrepancy component of CA-NMD involves computing a statistical
measure that quantifies the difference between the distributions of in-distribution and
OOD samples [125]. This is typically achieved by assessing the mean feature representa-

tions of the two distributions. A larger discrepancy suggests that the sample is likely to
be OOD.

One limitation of the CA-NMD approach is its potential computational overhead. The
integration of channel attention mechanisms and mean discrepancy calculations can in-
crease the complexity of the model, potentially leading to higher computational costs
and longer inference times [126]. This makes it less suitable for applications where real-
time detection and low latency are critical.

Furthermore, like many OOD detection methods, CA-NMD may face challenges in
scenarios where the OOD samples are very similar to the in-distribution data. In such

41

cases, the channel attention mechanism might not effectively discriminate between the
subtle differences of the distributions, leading to decreased detection performance [127].

The Out-of-Distribution (OOD) Discernment Layer (OODL): is a specialized neu-
ral network layer designed to improve the detection of out-of-distribution data, a crucial
aspect in ensuring the reliability and safety of machine learning models [128]. This ap-
proach involves adding an extra layer to a pre-existing neural network model, trained
explicitly to distinguish between in-distribution (ID) and OOD samples. The funda-
mental idea is to enhance the model’s sensitivity to data that deviates from the training
distribution, thereby mitigating risks associated with unexpected inputs during deploy-
ment [129].

In practice, the discernment layer learns to identify patterns and features that are charac-
teristic of OOD samples [130]. This is typically achieved by exposing the layer to both
ID and OOD data during the training process, allowing it to learn a decision boundary
that effectively separates the two. The discernment layer’s output can then be used as an
indicator of whether a given input is likely to be OOD, providing an additional layer of
safety in critical applications.

However, this approach is not without its limitations. One significant challenge is the
requirement for representative OOD data during training. The effectiveness of the dis-
cernment layer heavily depends on the diversity and relevance of the OOD samples used
in training [131]. If the OOD samples are not representative of the potential deviations
encountered in real-world scenarios, the layer may fail to detect certain types of OOD in-
puts. Additionally, the integration of an additional layer into a neural network can intro-
duce computational overhead, potentially impacting the model’s efhiciency and latency,
which can be a concern in resource-constrained environments or real-time applications.

Another limitation arises from the potential overfitting to the OOD samples used during
training. If the layer becomes too specialized in recognizing the specific OOD samples
it was trained on, it might not generalize well to other types of OOD data encountered
post-deployment [132]. This specialization can limit the model’s robustness and adapt-
ability to new, unseen OOD instances.

Despite these challenges, the Out-of-Distribution Discernment Layer presents a valu-
able approach for enhancing the robustness of machine learning models, especially in
scenarios where encountering OOD data is likely and can have significant consequences
[133]. Ongoing research in this area focuses on addressing these limitations, aiming to
develop more generalized and efficient OOD detection mechanisms.

Mahalanobis : The Mahalanobis distance-based method for Out-of-Distribution (OOD)
detection in machine learning leverages the statistical properties of the feature space to
differentiate between in-distribution (ID) and OOD samples. Introduced by Lee et
al [134], this approach calculates the Mahalanobis distance of a test sample from the

42

means of the class-conditional distributions learned during the training of a Deep Neu-
ral Network (DNN). The Mahalanobis distance, a measure rooted in statistics, effec-
tively captures how far a given sample deviates from the expected distribution of the
trained classes.

To implement this, feature vectors are extracted from various layers of the DNN, and
the Mahalanobis distance is computed for each class. These distances are then used to
generate a confidence score indicating the likelihood of a sample being OOD [135]. The
method can be further enhanced by incorporating input preprocessing techniques and
logistic regression-based post-processing to improve detection performance. One signifi-
cant limitation of the Mahalanobis method is its dependency on the assumption that the
data in feature space follows a Gaussian distribution [136]. This assumption might not
hold in complex, real-world datasets where the distribution can be highly non-linear and
multi-modal. Additionally, the performance of this method can degrade if the feature
extraction layers of the DNN are not well-aligned with the statistical properties assumed
by the Mahalanobis distance calculation. This misalignment can lead to less effective dif-
ferentiation between ID and OOD samples, particularly in scenarios where the OOD
samples are not drastically different from the ID samples [137].

Energy-based Out-of-Distribution (OOD) Detection: Energy-based OOD detection
is a relatively recent method that uses the concept of energy scores derived from a neural
network’s outputs to distinguish in-distribution (ID) from out-of-distribution samples.
This method was introduced by Liu et al [138]. in their 2020 paper, where they pro-
posed the idea of using an energy score as a more effective measure for OOD detection
compared to traditional softmax probabilities. The energy score is computed as a func-
tion of the network’slogits, and it offers a scalar quantity that is lower for ID samples and
higher for OOD samples. The intuition behind this method is that ID data should align
well with the learned energy landscape of the model, while OOD data would not[139].

The key advantage of energy-based OOD detection lies in its simplicity and effectiveness.
Unlike some methods that require extensive modification to the network or additional
training, this approach can be applied directly to pre-trained models. Furthermore, it
addresses some limitations of softmax-based methods, which can be overly confident
about OOD samples [140].

A notable limitation of the energy-based OOD detection method is its potential sensitiv-
ity to the hyperparameters used for computing the energy score. The effectiveness of this
method can vary depending on the choice of these parameters, which may require care-
ful tuning [141]. Additionally, while it provides an improvement over softmax-based
methods, it may not always outperform other sophisticated OOD detection techniques,
especially in scenarios with subtle differences between ID and OOD samples.

Softmax Response for Out-of-Distribution (OOD) Detection :The Softmax Response
method is a straightforward approach for Out-of-Distribution (OOD) detection in neu-

43

ral networks [142]. It relies on the final softmax layer of a classifier, which provides
a probability distribution over the predicted classes. In this method, the confidence
of the network’s predictions is assessed by examining the softmax output [143]. Typi-
cally, a high maximum softmax probability is interpreted as the network being confident
about its prediction, suggesting that the input is likely in-distribution (ID). Conversely,
a lower maximum probability indicates less confidence, potentially flagging the input
as OOD. One significant limitation of the Softmax Response method is its inherent as-
sumption that high confidence equates to the correctness of a prediction, which is not
always true [144]. Neural networks, especially deep ones, are often overconfident in
their predictions, even when dealing with OOD samples. This overconfidence leads to
scenarios where an OOD sample is assigned a high softmax score, falsely indicating that
itis in-distribution. This limitation is particularly pronounced in cases where the OOD
samples are not drastically different from the ID data or when the network is exposed to
adversarial examples.

Moreover, the softmax function can be overly simplistic for complex OOD detection
tasks. It does not account for the multi-dimensional nature of feature spaces in deep
learning models, potentially overlooking subtle yet critical differences between ID and
OOD samples. This issue is exacerbated in high-dimensional spaces where softmax prob-
abilities can become less discriminative [145].

2.2.11 TINYML

TinyML, short for Tiny Machine Learning, is an emerging field in technology that focuses
on developing machine learning models that are small enough to run on low-power hardware
devices [146], such as microcontrollers as shown in Figure 2.6. This field is gaining traction
because it allows for the deployment of advanced machine learning algorithms in extremely
small and power-efhicient devices, often with limited computational resources and memory.
TinyML is particularly significant in the realm of Internet of Things (IoT) and embedded sys-
tems, enabling smart functionalities in a wide range of devices, from wearable sensors to home
appliances.

TinyML has made significant progress in the area of embedded control systems. These
systems are integral to many electronic devices and machinery, controlling specific functions
within these systems. With TinyML, these embedded systems can now incorporate intelligent
features like predictive maintenance, voice recognition, and anomaly detection, all while operat-

ing independently from larger, more power-intensive computing resources. This advancement

44

Data
Devices 2 ML Model
Prediction
e

Server Device

Traditional Approach TinyML Approach

Figure 2.6: The figure illustrates Comparative Analysis of Traditional Software Development Approach versus Tiny Ma-
chine Learning

allows for more responsive, efficient, and smart control systems in various applications, from

industrial machines to consumer electronics [147].

The adoption of TinyML in safety-critical systems is an area of growing interest but also
comes with stringent requirements due to the high stakes involved [148]. Safety-critical systems
are those where failures could result in significant harm or loss of life, such as in medical devices,
automotive systems, or aviation. In these domains, the reliability, robustness, and explainability
of ML models are paramount. TinyML’s role in these systems is still evolving. The primary
challenge lies in ensuring that the models are not only accurate and efficient but also fail-safe
and interpretable. In safety-critical systems, any ML-based decision or action must be highly
reliable and, ideally, understandable to human operators or engineers. Therefore, while there
are potential applications of TinyML in safety-critical systems, its implementation is cautious

and heavily scrutinized.

When it comes to OOD detection, TinyML faces unique challenges. OOD detection is the
process of identifying data that is significantly different from the training dataset of a model
[149]. In the context of TinyML, the limited computational power and memory capacity of
devices make the implementation of robust OOD detection mechanisms more challenging.
However, effective OOD detection is crucial, especially in safety-critical applications, to ensure

that the ML model behaves reliably under all circumstances.

Developing efficient algorithms that can detect OOD instances without overburdening the
limited resources of TinyML devices is an area of active research [150]. This involves creating
lightweight yet effective models that can recognize when incoming data does not match the

trained scenarios, prompting appropriate system responses [147].

45

2.2.12 TINYML FOR IDENTIFYING OUT-OF-DISTRIBUTION INSTANCES

TinyML is an innovative advancement in the field of machine learning, particularly in the realm
of machine learning systems that prioritize size, power, and efficiency. This approach is cen-
tered around the deployment of compact machine learning models on small, low-energy de-
vices, like microcontrollers and edge devices. The essence of TinyML lies in its ability to bring
the power of machine learning to the smallest of devices, enabling intelligent decision-making
capabilities in a wide range of applications, from wearable health monitors to industrial sen-
sors and beyond [30]. Its compact nature allows for on-device processing, reducing the need
for constant connectivity and data transmission to centralized servers, thereby enhancing data
privacy and reducing latency. TinyML plays a transformative role in MLSs assurance, particu-
larly where efficiency, size, and real-time response are critical. By enabling ML models to run
on low-power, small-scale devices, TinyML ensures continuous and reliable operation in envi-
ronments where traditional, larger ML-based system are impractical. This is crucial for applica-
tions requiring long-term, autonomous functioning without frequent maintenance or power
replenishment, such as in remote environmental sensors or wearable health devices [151].

The advent of TinyML marks a significant advancement in the field of avionics, addressing
some of the key challenges associated with integrating ML into such systems. TinyML, as de-
fined by Warden et al. in [30], involves the deployment of compact ML models on low-power
hardware, a solution perfectly suited to the unique demands of avionics systems. These mod-
els are designed to be lightweight yet capable of performing complex computations, a necessity

given the limited power and computational resources available on aircraft [152].

One of the main advantages of TinyML in avionics is its ability to facilitate real-time pro-
cessing and decision-making. This capability is particularly crucial for critical tasks such as
Out-of-Distribution (OOD) detection, where the system must quickly identify and respond
to data points that deviate from the norm. In scenarios where every second counts, such as
in-flight decision making or emergency response, the rapid processing power of TinyML can

be invaluable [153].

The integration of TinyML for OOD detection is a game changer in several respects. First,
TinyML models are designed to operate on low-power, resource-constrained devices, allowing
them to be embedded directly into a wide range of systems. This embedded nature enables real-
time data processing and immediate OOD detection, which is essential for timely responses in
critical situations. For example, in avionic systems, TinyML can continuously monitor sensor

data, quickly identifying anomalies that might indicate a potential system malfunction or an

46

unexpected environmental condition [154].

Furthermore, the lightweight architecture of TinyML models makes them ideal for contin-
uous monitoring on-device without draining significant power resources [155]. This contin-
uous monitoring is key for early OOD detection, ensuring that deviations from normal oper-
ating conditions are identified and addressed promptly, thereby maintaining the system’s in-
tegrity and safety.

Another significant advantage of TinyML in OOD detection is its ability to operate inde-
pendently of network connectivity [156]. This is particularly important in scenarios where
consistent connectivity cannot be guaranteed. By processing data locally, TinyML models can
effectively detect OOD instances even in offline modes, ensuring uninterrupted safety moni-

toring.

2.3 W-SHAPED DEVELOPMENT CYCLE FOR THE ASSURANCE

OF AVIONICS SYSTEMS

The integration of ML into avionics systems necessitates a robust and comprehensive develop-
ment cycle, for which the W-shaped model as shown in Figure 2.7 is particularly well-suited.
This model, an adaptation of the traditional V-model, introduces an additional layer of valida-
tion and verification, forming a "W’ shape, and is crucial in addressing the unique challenges
posed by ML in avionics [9]. The W-shaped development cycle begins with an in-depth analysis
of system requirements, a stage crucial for understanding the operational needs and constraints
specific to avionics systems and the role of ML within them. This is followed by the system
design phase, where high-level architecture is established, considering both traditional avionic
components and ML elements, as highlighted by Johnson and Smith in [157]. The subsequent
phase involves the component design and development, where individual parts of the system,
including ML models, are developed. Each component, particularly the ML algorithms, is
rigorously tested to ensure they meet specified requirements, addressing both functional and
safety aspects, as emphasized in [158] the work by Taylor etal. This is the first downward stroke
of the "W".

The next stage involves integrating these components and conducting comprehensive sys-
tem testing (the first upward stroke), ensuring all parts, including ML models, function har-
moniously. Following this, the system undergoes validation (the second downward stroke),

where it is ensured that the system meets the operational needs and complies with stringent

47

Requirements

management
A T R AT e e e e e e e e e EEEEEE -
Data
management
-
Learning process Learning
management process
verification
\
\ A
Model >
implementation
A

Figure 2.7: The diagram illustrates the W-shaped Learning Model, a methodology proposed by EASA and Daedalean. This
model encapsulates the core principles of the learning assurance life cycle, designed to guide the development of machine
learning applications that meet stringent requirements. It emphasizes a structured, comprehensive approach to ensuring
the reliability and efficacy of MLSs in critical applications [9]. (2020)

avionics regulations, a process detailed in [159] by Torens et al.

Finally, the system enters the operation and maintenance phase (the second upward stroke),
where it is subject to continuous monitoring and periodic updates. This phase is crucial for ML
models, as it involves ongoing learning and adaptation to new data and operational conditions,
ensuring sustained reliability and safety in dynamic avionic environments. Comparing the clas-
sical V-model for system development to the adapted W-model for neural network integration,
we see that the requirements gathering and verification remain consistent with traditional ap-
proaches. This is the portion above the dotted line, where the focus is on defining and verifying
the system requirements, a process well-established in existing standards [160].

Below the dotted line, the W-model introduces a new realm of considerations specific to
neural networks. Ensuring that these ML model operate as intended involves a trio of critical
elements: the design of the data, the learning process, and the model itself. Each of these ele-
ments is essential and can be a potential point of failure if not handled correctly. Let’s delve

into how each of these elements is addressed in the W-model.

¢ Correctly Designed Data :
- Data Collection: Ensuring a comprehensive and representative dataset that covers the
expected operational scenarios of the neural network.
- Data Preprocessing: Cleaning, normalizing, and structuring data in a way that opti-

48

mizes the learning process.
- Data Validation: Verifying the quality and relevance of the data to the intended appli-
cation of the neural network.

* Correctly Designed Learning Process:
- Algorithm Selection: Choosing the right learning algorithm based on the problem con-
text and the nature of the data.
- Parameter Tuning: Adjusting the learning parameters to optimize the performance of
the neural network.
- Training Methodology: Implementing effective training procedures to ensure robust
learning without overfitting.

* Correctly Designed Model:
- Architecture Design: Structuring the neural network architecture to suit the complex-
ity and nature of the task.
- Performance Evaluation: Assessing the model’s performance through various metrics
to ensure it meets the desired criteria.
- Robustness and Generalization: Ensuring the model can handle new, unseen data and
maintain performance across different conditions.

In the W-process, we “walk down” by delving into each of these three elements, thoroughly
developing and refining them. As we "walk up,” we validate and verify that each element aligns
with the initial requirements and performs effectively in the intended operational environment.
This comprehensive approach ensures that the ML model not only meets the specified require-
ments but is also robust, reliable, and capable of performing its intended function in the real
world [161].

W-shaped development cycle provides a structured and rigorous framework for the integra-
tion of ML in avionics, addressing the entire spectrum from initial requirements to ongoing
operation, a necessity for maintaining the high safety and reliability standards in the aviation

industry [162].

2.4 SUMMARY

The ML into avionics systems represents a significant evolution in aviation technology, poised
to enhance the functionality and efficiency of these systems. However, this integration intro-

duces a broader problem space, encompassing the intricacies of embedding ML within the

49

strict confines of safety-critical systems, specifically in avionics. This chapter seeks to address
this expansive problem space, focusing on two principal elements: the unique attributes of
safety-critical avionics systems and the nuances of incorporating ML into these systems’ command-
and-control segments.

One key aspect under scrutiny is the Operational Design Domain, which is becoming in-
creasingly vital in the assurance of safety-critical systems. OOD’s role in avionics is to enhance
the precision and agility with which implementors can conform to stringent certification stan-
dards. This concept is essential for understanding how ML can be integrated into avionics
systems while maintaining the highest safety standards.

The chapter further delves into the essence of ML and its growing impact on revolutionizing
the avionics industry. It explores the challenges posed by the integration of ML into aviation
systems, with a special emphasis on detecting Out-of-Distribution situations. OOD detection
is critical because it involves identifying and managing data or scenarios that the ML model
has not encountered during training, a common occurrence in the dynamic aviation environ-
ment. Addressing these challenges is crucial for ensuring the safety and reliability of ML-driven
avionics systems.

Additionally, the chapter examines the potential role of TinyML in bridging the gap between
innovation and adherence to the conservative safety regulations prevalent in aviation. TinyML
offers a pathway to incorporate ML into avionics by balancing the innovative aspects of ML
with the stringent safety requirements inherent to aviation.

Opverall, this chapter provides a comprehensive overview of the larger space of integrating
ML into avionics systems. It highlights the importance of understanding and addressing the
unique challenges of this integration, from the perspective of both safety-critical system re-
quirements and the specific demands of embedding ML models in avionics. The focus is on
ensuring that the advancements brought by ML, such as enhanced decision-making and oper-
ational efficiencies, are realized within the framework of the fundamental safety requirements

of aviation technology.

50

Objectives, Methodology, and Results

In this chapter, we dive into the practical methodologies and approaches implemented to ad-
dress the research questions (RQ) outlined in Chapter 1. This exploration is structured through

distinct sections:

* The first section presents a detailed overview of our research objectives, explicitly framed
in the context of the three main research questions. Here, we elucidate how each objec-
tive aligns with and contributes to answering these questions, thereby setting a clear path
for our investigative journey.

* The second section is dedicated to presenting the specifics of our experimental setup, in-
cluding the objectives that guided its design. This section also comprehensively details
the empirical results and findings obtained from the execution of these experiments, of-
fering insights into their significance and implications.

3.1 RESEARCH OBJECTIVES

Building upon the research questions (RQs) outlined in Section 1.5 and the foundational un-
derstanding established in Chapter 2, we have identified specific research objectives. These ob-
jectives are presented below, accompanied by our reasoning, to illustrate how they align with

the RQs and are informed by the background knowledge of the related concepts.

ST

The first research question (RQ-1) was:

"What specific standards and conditions must be established for crafting training scenarios for
Machine Learning models to guarantee thorough training and consistent, reliable performance
across a wide range of practical applications, including control-loop systems in avionics?”

To establish optimal criteria and requirements for defining the training scenarios of Machine
Learning models, ensuring comprehensive learning and robust performance across diverse real-
world applications. This will be achieved by defining a detailed Operational Design Domain
(ODD) that encompasses a wide range of variables and conditions under which the models are
expected to operate. The ODD will serve as a framework to guide the selection and creation
of training datasets and scenarios, ensuring that they are representative of the diverse and com-
plex environments the models will encounter in practical applications. This approach aims to
enhance the models’ ability to generalize and perform effectively in a variety of situations, thus
addressing the critical need for reliability and adaptability in machine learning applications.
Thus, we define the following first objective, which is clearly highlighted in the W-shaped de-

velopment life-cycle Figure 3.1.
1. In-Distribution and Out-Distribution Operational Design Domain:

* In-Distribution Operational Design Domain: Establish criteria for in-distribution
scenarios within the operational design domain, focusing on situations where the
machine learning model is trained to recognize close-up images of airplanes. This
objective includes specifying the range of distances, angles, lighting conditions,
and backgrounds for which the model should be optimized, ensuring high accu-
racy and reliability in scenarios closely aligned with the training data.

* Out-of-Distribution Operational Design Domain: Develop requirements for
‘out-of-distribution’ scenarios in the operational design domain, where the model
encounters far-off images of airplanes, differing significantly from its training data.
This will involve identifying and characterizing external factors, such as extreme
distances, varied environmental conditions, and atypical perspectives, to train the
model to maintain performance and robustness even when presented with data
that fall outside its primary training distribution.

The second research question (RQ-2) was:
"What methodologies and measures can be implemented during the development phase of Ma-
chine Learning models in avionics to effectively minimize the risk of performance insufficiencies

and ensure robust functionality when deployed in open-world environments?”

52

Figure 3.1: Part of the W-shaped Development Lifecycle (Figure 2.7) in a Machine Learning System, Focusing on Data
Management for Operational Domain Design (ODD) and Out-of-Domain (OOD) Considerations.

To investigate and implement a multi-layer early exit strategy for out-of-distribution detection
in machine learning models, particularly in the realm of avionics, enabled by TinyML tech-
nology. This objective focuses on developing methodologies and measures during the devel-
opment phase that can preemptively identify and handle instances where the model encoun-
ters data significantly deviating from its training set, especially in open-world environments.
The aim is to integrate layered decision-making points within the model architecture, allowing
for early detection and response to out-of-distribution data, thereby minimizing risks of per-
formance insufficiencies and ensuring robust and reliable functionality in diverse and unpre-
dictable real-world scenarios. This approach seeks to leverage the compact and efficient nature
of TinyML to provide a scalable and eftective solution to improve the safety and dependability
of machine learning applications in aviation. Hence our second objective was following which

is highlighted in the W-shaped development life-cycle Figure 3.2:

2 The Multi-Layer Framework-Fast TinyML OOD Detector (FTO): This objective
encompasses the development of a comprehensive framework that showcases the use
of early exit strategies within a Deep Neural Network (DNN), specifically tailored for
efficient and seamless Out-Of-Distribution detection. The framework will detail the in-
tegration of multiple decision layers within the DNN architecture, allowing for prompt
identification and handling of OOD data at various stages of processing. This multi-
layer approach aims to enhance the model’s responsiveness and accuracy in real-time
scenarios, ensuring robust performance in diverse and challenging environments.

53

| F Leaming process
| ~ 1 - 4

I
| Model training / : \ Model

: = 4 \\\l/ :

Figure 3.2: Diagram lllustrating the Segment of the W-Shaped Development Lifecycle (Figure 2.7) Featuring the
Multi-Layer Framework-Fast TinyML Out-Of-Distribution (FTO) Detector for Learning Process Verification in a Machine
Learning System

The third research question (RQ-3) was:
"How does embedding Machine Learning (ML) in avionic systems contribute to enhancing model
assurance, particularly by boosting reliability, safety, and instant decision-making, despite the

aviation industry’s limited computational capacity and strict regulatory requirements?”

To explore the integration of a multi-layer early exit strategy for out-of-distribution detec-
tion in Deep Neural Networks, utilizing TinyML for enhanced outlier detection in one or
more hidden layers, in the context of avionics embedded systems. This objective involves the
development and implementation of a runtime monitoring system (A4 runtime monitoring sys-
tem_for machine learning actively tracks and evaluates an ML model’s performance during its
deployment, ensuring it operates correctly and efficiently. It’s especially crucial in critical sys-
tems like avionics control-loops, where it detects performance deviations, anomalies, and adjusts
thresholds for errors in real-time to maintain safety and reliability), based on the Local Outlier
Factor (LOF) algorithm. The aim is to improve the reliability, safety, and real-time decision-
making capabilities of Machine Learning models in avionics, while efficiently operating within
the constraints of limited computational resources and adhering to stringent regulatory stan-
dards. This objective focuses on how the synergy of TinyML lightweight framework and LOF-
based runtime monitoring can offer a robust solution for detecting and managing atypical data,
thereby significantly enhancing the assurance and operational integrity of ML models in the

aviation industry.Our last objective is following , which is also highlighted in the W-shaped

54

verification

Figure 3.3: Diagram lllustrating the W-Shaped Development Lifecycle (Figure 2.7)featuring the Multi-Layer Early Exit for
Out-of-Distribution (OOD) Detection with Local Outlier Factor (LOF) in Deep Neural Networks (DNNs) for Data Verifica-
tion, Crucial for Ensuring Runtime Assurance in Machine Learning Systems

development life-cycle Figure 3.3:

3 Implementing Multi-Layer Early Exit for OOD Detection with LOF in DNNs
(MELOD): To implement a multi-layer early exit strategy in Deep Neural Networks
(DNNs) for efficient out-of-distribution detection, empowered by TinyML. This in-
volves integrating outlier detection mechanisms within one or more hidden layers of the
DNN, using a runtime monitor based on the Local Outlier Factor (LOF). This approach
aims to enhance the detection and management of atypical data in real-time, improving
the overall reliability and safety of ML models in resource-constrained environments like
avionics systems.

For each defined research objective, we conducted an empirical research study, employing
a variety of methods to meticulously analyze and manipulate the data. These methods were
chosen and customized to effectively address the specific aspects and requirements of each ob-
jective, ensuring a comprehensive and rigorous examination of the underlying hypotheses and

questions.

55

3.2 DATASETS OVERVIEW

Datasets are crucial in the advancement and verification of machine learning models, forming
the basis for algorithms to acquire knowledge and progress. This section examines the various
datasets employed in our research, each carefully selected to address particular elements of the
Fast TinyML Out-of-Distribution (FTO) detection algorithm. We will investigate the features,
origins, and reasons for choosing these datasets, aiming to provide a thorough insight into how
they enhance the strength and effectiveness of our OOD detection techniques.

The following detailed explanations of the datasets cover their purpose, characteristics, and
the context in which they are used for the model mentioned. Please note that while CIFAR-
100 is listed both as a training (in-distribution) and evaluation (OOD) dataset, it is typically

used in one context or the other. For clarity, I'll describe it in both contexts.

In-Distribution and Out-Distribution Datasets

1. CIFAR-10[163]

* Purpose: Used for training and benchmarking machine learning models in image
recognition tasks.

* Characteristics: Contains 60,000 32x32 color images in 10 different classes, with
6,000 images per class. The dataset is divided into 50,000 training images and
10,000 test images.

2. CIFAR-100[163]

* Purpose: Similar to CIFAR-10 but with more granularity, used for training mod-
els when a finer classification is required.

* Characteristics: Includes 60,000 32x32 color images but divided into 100 classes,
each with 600 images. Like CIFAR-10, it hasa standard division of 50,000 training
images and 10,000 test images.

56

Out-Distribution Test Datasets

1. MNIST[164]

* Purpose: Benchmark dataset for handwritten digit recognition.

* Characteristics: Comprises 70,000 28x28 grayscale images of 10 digit classes (o-
9). It’s typically split into 60,000 training and 10,000 test images.

2. K-MNIST|[165]

* Purpose: Designed as a more challenging, drop-in replacement for MNIST, fea-
turing Japanese Kuzushiji characters.

* Characteristics: Contains 70,000 28x28 grayscale images of 1o classes, each rep-
resenting a different Japanese character.

3. Fashion-MNIST[166]

* Purpose: Another drop-in replacement for MNIST, aimed at serving the same
image classification tasks with a dataset of fashion articles.

* Characteristics: Includes 70,000 28x28 grayscale images across 10 categories like
trousers, dresses, bags, etc.

4. LSUN (Large-scale Scene Understanding)[167]

* Crop Purpose: Used for scene understanding and recognition tasks, focusing on
the central scene or object.

* Resize Purpose: Adapted for compatibility with models trained on different res-
olutions.

* Characteristics: Features a diverse set of scene categories and objects in various
resolutions.

5. SVHN (Street View House Numbers)[168]

* Purpose: Real-world image dataset for digit classification extracted from Google
Street View.

57

* Characteristics: Contains over 600,000 digit images that capture a variety of real-
world conditions.

6. Textures[169]

* Purpose: Utilized for texture recognition and classification tasks.

* Characteristics: Composed of images depicting a wide range of textures and ma-
terials.

7. STL1o[170]

* Purpose: Used for developing unsupervised feature learning, deep learning, and
self-taught learning algorithms.

* Characteristics: Consists of 5,000 training images and 8,000 test images in 1o
pre-defined classes with a resolution of 96x96 pixels.

8. Places365[171]

* Purpose: A comprehensive dataset for scene recognition and context understand-
ing.

* Characteristics: Contains over 1.8 million images from 365 scene categories, of-
fering a large and diverse set of scenes.

9. iSUN[172]

* Purpose: A subset of the SUN database, used for assessing model generalization.

* Characteristics: Provides a substantial number of images suitable for robustness
and generalization assessments.

The comprehensive Table 3.1 illustrates the diverse array of datasets utilized in assessing the
performance of the machine learning model, with CIFAR-10 and CIFAR-100 serving as the
in-distribution datasets for training. CIFAR-10 comprises simple, everyday objects with a mod-

erate level of intra-class variability, while CIFAR-100 presents a more challenging scenario with

58

its finer classification of a hundred categories, demanding the model to discern more subtle dif-
ferences among classes.

For arobustevaluation, the modelis rigorously tested against a suite of 10 Out-of-Distribution
(OOD) datasets, each with unique characteristics that challenge the model’s generalization
capabilities. MNIST and K-MNIST offer a stark contrast to the colored images of CIFAR,
presenting monochromatic digit and character images respectively. Fashion-MNIST further
extends this challenge with grayscale images of clothing items, testing the model’s feature ex-
traction capabilities in a different domain.

LSUN, provided in both cropped and resized variants, introduces complexity with real-world
scenes, pushing the model to adapt to broader and more complex spatial arrangements. SVHN
and Textures bring real-world variability and pattern recognition into the mix, with the former
offering digit images sourced from natural scenes and the latter presenting an array of surface
patterns that require the model to learn textural discernment.

STL1o contributes high-resolution images, augmenting the diversity of the visual domain.
The inclusion of Places365 offers a plethora of scene categories, broadening the model’s expo-
sure to various environmental contexts. iSUN complements the evaluation with additional
scene recognition challenges, and the additional use of CIFAR-100 as an OOD set serves to
test the model’s specificity to the distribution it was trained on.

The model’s ability to accurately classify images from CIFAR-10 and CIFAR-100 while ef-
fectively identifying and differentiating OOD samples from the 10 test datasets is indicative
of its robustness and reliability, key attributes for real-world deployment. This multi-dataset
evaluation strategy ensures that the model’s performance is not just confined to the data it was

trained on but extends to a wide array of unseen, diverse data scenarios.

3.3 OBJECTIVE: IN-DISTRIBUTION AND OUT-DISTRIBUTION

OPERATIONAL DESIGN DOMAIN

In this section, we outline the methodology for establishing and defining the Operational De-
sign Domain for a machine learning model trained in the recognition of airplane images. Our
approach bifurcates into two distinct yet interconnected objectives: the In-Distribution Opera-
tional Design Domain and the Out-of-Distribution Operational Design Domain. The former
focuses on creating criteria for scenarios closely aligned with the training data, where the model

is trained to recognize close-up images of airplanes. This involves specifying a range of opera-

59

Dataset Description # of Images # of Classes Resolution
CIFAR-10 Colored natural images 60,000 10 32X32
CIFAR-100 Colored images with fine labels 60,000 100 32X32
MNIST Grayscale handwritten digits 70,000 10 28x2.8
K-MNIST Grayscale images of Kuzushiji characters 70,000 10 28x28
Fashion-MNIST Grayscale fashion product images 70,000 10 28x28
LSUN (crop) Cropped images of various scenes Varied Varied Varied
SVHN Real-world digit images from house numbers 600,000+ 10 Varied
Textures Images of various textures Varied Varied Varied
STL1o Images for unsupervised learning 13,000 10 96x96
Places365 Images of diverse scenes and places 1.8M+ 365 Varied
iSUN Subset of SUN database for scene recognition ~ Varied Varied Varied
LSUN (resize) Resized images of various scenes Varied Varied Varied

Table 3.1: Overview of Datasets Used for Training and Out-of-Distribution Testing, with CIFAR-10 and CIFAR-100 for
In-Distribution Training and 10 Varied Datasets for Comprehensive OOD Evaluation

tional parameters including distances, angles, lighting conditions, and backgrounds, tailored to
optimize model accuracy and reliability in these controlled conditions. Conversely, the Out-
of-Distribution Operational Design Domain addresses scenarios where the model encounters
images significantly different from its training set, such as far-off airplane images. Here, the
emphasis is on identifying and characterizing external factors like extreme distances, varied en-
vironmental conditions, and unusual perspectives. This duality in approach aims to equip
the model with the versatility to maintain performance and robustness, not only in familiar

in-distribution contexts but also in challenging out-of-distribution situations.

3.3.1 METHODOLOGY

To effectively define the In-Distribution Operational Design Domain and the Out-of-Distribution

Operational Design Domain, our approach systematically categorizes and analyzes various sce-
narios based on three key environmental variables: weather, light, and distance. These variables
play a pivotal role in defining the operational conditions and corresponding responses of the
machine learning model, especially in the context of recognizing airplane images, as detailed
in the accompanying Table 3.2. In particular, for the OOD scenarios, the complexity is inten-
tionally simplified to align with the testing requirements of TinyML and to ensure runtime
assurance. This simplification is crucial for evaluating the model’s effectiveness in TinyML

environments, where computational resources are limited, and for verifying that the model

6o

maintains reliable performance even under less complex, yet essential, out-of-distribution con-

ditions.

Environmental Conditions

Weather Rainy
Cloudy
Sunny

Light Day
Night

Distance Close
Far

Table 3.2: Operational Design Domains Based on Scenario Environment, Detailing Variations in Weather Conditions, Light-
ing Conditions, and Distance Parameters

Operational Design Domain attributes

1. In-Distribution Operational Design Domain (IDD):

* Weather Conditions: For IDD, we focus on scenarios where weather conditions
are stable and predictable, such as clear or slightly cloudy weather. This choice
is based on the assumption that such conditions are most representative of the
training data.

* Light Conditions: The IDD primarily encompasses scenarios with optimal light-
ing — predominantly daytime settings. The model is trained and optimized for
scenarios where visibility is high and shadows or artificial lighting do not signifi-
cantly affect image recognition.

* Distance: The distance parameter in IDD is set to *Close’, implying that the air-
plane images the model will recognize are within a certain proximal range. This
range is predetermined based on the typical distances at which the model performs
with the highest accuracy in controlled environments.

2. Out-of-Distribution Operational Design Domain (oDD):

* Weather Conditions: For oDD, the model is tested against more challenging and
less predictable weather scenarios, such as heavy rain or dense cloud cover. These

61

conditions are selected to assess the model’s robustness and reliability in adverse
weather situations that deviate from the typical training data.

* Light Conditions: In oDD, the focus shifts to include low light or night condi-
tions. This expansion challenges the model to maintain performance when faced
with reduced visibility and the presence of artificial lighting, which can introduce
new variables and complexities.

* Distance: The "Far’ distance setting is critical in oDD. Here, the model encoun-
ters airplane images at greater distances than those used in training, pushing its
ability to generalize and maintain accuracy when dealing with scaled-down or less-
detailed representations of aircraft.

By methodically setting and evaluating these parameters, our approach aims to thoroughly
understand and define the operational boundaries for both the In-Distribution and Out-of-
Distribution domains. This dual-focused strategy ensures a comprehensive assessment of the
model’s capabilities and limitations, leading to a more robust and reliable application in real-

world scenarios.

3.3.2 EXPERIMENTAL SETUP

The primary objective of this experiment is to meticulously curate a dataset comprising 1,438
distinct images of airplanes, each with a resolution of 32x32 pixels. This dataset is specifically
crafted for the purpose of training a sophisticated machine learning model. To achieve this, we
employ Flight Gear, a highly versatile and realistic flight simulation software, renowned for its
accuracy in replicating various aviation scenarios.

The dataset is thoughtfully divided into two principal categories, each representing a unique
Operational Design Domain (ODD). The first category, labeled as ’In-Distribution Opera-
tional Design Domain’ (label o), includes images that align closely with the typical conditions
and scenarios under which the machine learning model is expected to operate. These images
are characterized by scenarios that the model will most commonly encounter during its appli-
cation, ensuring that the model is well-trained for standard operational environments.

Conversely, the second category, known as the ’Out-of-Distribution Operational Design
Domain’ (label 1), consists of images that depict scenarios substantially different from the
model’s primary training data. This category is crucial for testing and enhancing the model’s
ability to generalize and perform accurately in less common or unexpected situations, thereby

improving its robustness and reliability.

62

Each image in both categories is generated through the careful manipulation of various en-
vironmental parameters within Flight Gear. These parameters include, but are not limited to,
weather conditions (ranging from sunny to cloudy to rainy), time of day (encompassing day
and night settings), and the positioning of the airplane relative to the camera (such as varying
distances and angles). By systematically altering these variables, we ensure a rich and diverse

dataset that thoroughly encompasses both in-distribution and out-of-distribution scenarios.

Simulation Software: FlightGear

* Selection: FlightGear, an open-source flight simulator, is chosen for its versatility and
realism in simulating various flight scenarios and environmental conditions.

* Configuration: The software is configured to simulate diverse flight environments, ad-
justing variables such as weather, lighting, and distance from the camera.

Image Generation Parameters

* Weather Conditions: Images are generated under three weather conditions: rain, cloudy,
and sunny.

* Lighting Conditions: Two lighting conditions are considered: day and night.

* Distance: The distance parameter is bifurcated into ’Close’ for in-distribution images
and ’Far’ for out-of-distribution images.

In-Distribution Operational Design Domain (Label o)

* Criteria: Images are captured with the airplane in close proximity under varying weather
and lighting conditions. These scenarios closely resemble the training data conditions.

* Image Capture: A total of (700+) images are generated, ensuring a balanced representa-
tion of each combination of weather and lighting conditions at close distances.

63

Out-of-Distribution Operational Design Domain (Label 1)

* Criteria: In this domain, images are captured with the airplane at a far distance, under
different weather and lighting conditions, representing scenarios significantly different
from the training data.

* Image Capture: A total of (700+) images are generated to capture the diversity of out-of-
distribution scenarios, emphasizing far distances in various environmental conditions.

Data Collection Process

* Automated Capture: An automated script is used to capture images from FlightGear,
ensuring consistent image quality and scenario representation.

* Image Labeling: Each image is manually labeled as ’o’ for in-distribution or ’1’ for out-
of-distribution, based on the predefined criteria.

3.3.3 RESULTS

The results of our objective into the Operational Design Domain for a machine learning model
trained in airplane image recognition offer insightful findings in two distinct set of images but
interrelated areas: the In-Distribution Operational Design Domain and the Out-of-Distribution
Operational Design Domain. In the In-Distribution domain, we focused on establishing cri-
teria for scenarios where the model recognizes close-up images of airplanes, optimizing it for a
range of distances, angles, lighting conditions, and backgrounds. This optimization was aimed
at ensuring high accuracy and reliability for scenarios that closely align with the training data of
the model, as shown in Figure 3.4. In contrast, for the Out-of-Distribution domain, we devel-
oped requirements to effectively handle scenarios where the model encounters far-oft images
of airplanes, differing significantly from its training data as shown in Figure 3.5 . This involved
a meticulous identification and characterization of external factors such as extreme distances,
varied environmental conditions, and atypical perspectives. The goal was to train the model to
maintain its performance and robustness, even when processing data that falls outside its pri-
mary training distribution. The results from both domains provide a comprehensive overview
of the model’s capabilities and limitations in varied operational scenarios,which will be later uti-
lized to train and evaluate the model’s accuracy for ensuring runtime performance in Objective

11T as described in Section 3.5.

64

Figure 3.4: A selection of images from the In-Distribution Operational Design Domain dataset, depicting airplanes un-
der varied Weather Conditions (Rain, Cloudy, Sunny), Lighting Conditions (Day, Night), and captured at Close Distances,
demonstrating the diversity and complexity of scenarios for machine learning model training.

Figure 3.5: A Selection of Images from the Out-of-Distribution Operational Design Domain Dataset, Demonstrating Air-
planes in Far-Off Scenarios Under Diverse Weather Conditions (Rain, Cloudy, Sunny), Various Lighting Conditions (Day,
Night), and Emphasizing Distance Parameters (Far)

3.4 OBJECTIVE II: THE MULTI-LAYER FRAMEWORK- FAST
TinyML OOD DeTecTOR (FTO)

In our endeavor to improve the detection of Out-of-Distribution (OOD) in machine learning,
specifically for TinyML applications, we introduce a groundbreaking framework: the Multi-
Layer Framework-Fast TinyML OOD Detector (FTO). Central to our proposed solution is the
integration of a low-complexity detector after each layer of the Deep Neural Network (DNN),
designed to facilitate an early exit during inference when encountering an OOD input sample.
This detector, leveraging internal representations, employs a logistic regression classifier to dis-
cern between in-distribution and out-of-distribution inputs. A key feature of our approach is
its plug-and-play nature, which allows for seamless integration without necessitating modifica-
tions to existing off-the-shelf models.

The design of our DNN classifier, as described in Section 3.4.1, is specifically customized
to improve the precision of out-of-distribution detection. This method utilizes data from the
preceding layer for early inference termination, a crucial factor for applications requiring fast

inference times. Our method stands out by efficiently integrating into the DNN structure

65

without the need for additional processing steps. Moving beyond the typical softmax output
used in conventional DNN classifiers, which has shown limited effectiveness in OOD detec-
tion, our study focuses on internal DNN representations, particularly the penultimate layer.
This change is supported by previous research that has analyzed these representations to un-
derstand the geometric nature of the internal structures of DNN.

Innovatively, our architecture replaces the conventional final fully connected layer with a
Gaussian layer. This approach is based on previous studies but with a significant simplifica-
tion for practical application: instead of training a DNN from scratch, we fine-tune an exist-
ing trained model. We replace the last layer with a Gaussian layer and manually initialize the
layer parameters using statistical estimations derived from the penultimate representation of
the training data. This strategy not only enhances the model’s OOD detection capabilities,

but also aligns with the pragmatic requirements of real-world TinyML applications.

3.4.1 MODEL

The proposed framework highlights a novel approach to integrating Out-of-Distribution (OOD)
detection within a Deep Neural Network (DNN) using early exit strategies and an efficient de-
tection mechanism. This adaptive inference network is equipped with (k) OOD detectors,
each placed at specific depths within the network architecture, as illustrated in the lower sec-
tion of the framework Figure 3.6. The process begins with the input being fed into the network,
where a dynamic complexity score is calculated to determine the appropriate exit point during
inference. This score helps in assessing whether the input can be reliably classified at an early
stage or if it needs deeper analysis for accurate classification.

Ateach potential exit point, the network employs an OOD detector. These detectors are de-
signed to leverage the information from both the current and the preceding layers. By analyzing
the cumulative insights gained across these layers, the detectors can effectively distinguish be-
tween in-distribution data (data similar to what the network was trained on) and OOD data
(novel or unexpected inputs).

In the final stage of the network, the typical architecture comprises a linear transformation,
often implemented as a fully connected layer, followed by a softmax activation function. This
conventional setup is retrained to ensure that the network can still perform standard classifica-
tion tasks effectively, in addition to its enhanced capability of OOD detection.

This integration of OOD detection within the DNN framework aims to improve the net-

work’s robustness and reliability, particularly in scenarios where encountering unexpected data

66

' OQutput
) Classification
input (x) CNN Final Layer

Layer-1 Layer-2 Layerk ol

Output Classification

Figure 3.6: The framework overview showcases the use of early exit strategies and efficient detection method that seam-
lessly integrates OOD detection within the DNN. The adaptive inference network incorporates k OOD detectors, strate-
gically positioned at distinct depths within the network (depicted at the bottom). Given an input, a dynamic complexity
score is employed to decide the exit point during the inference process. At each exit, an OOD detector integrates insights
from both the current and previous layers to distinguish between in-distribution and OOD data.Replacing the traditional
final layer with a Gaussian layer for enhanced detection capabilities.

inputs is likely. By enabling early exits based on the complexity score, the network optimizes its
computational efficiency, only engaging its deeper layers when necessary. This approach not
only conserves computational resources but also potentially accelerates the inference process,
making the network more suitable for real-time applications.

In the realm of Deep Neural Network (DNN) classifiers, traditional architectures culminate
in a linear transformation followed by softmax activation. However, the softmax output’s effi-
cacy in Out-of-Distribution (OOD) detection is limited. Building on this, our proposed frame-
work pivots from softmax to an emphasis on the DNN’s internal representations, particularly

the penultimate layer.

Enhanced Gaussian Layer Architecture

Our architecture integrates a Gaussian layer at the end, diverging from the standard softmax
approach. The mean () and covariance () parameters for each class c are computed as follows:

- Mean calculation for class c:

1
=57 2) (3.1)
¢ xES,
- Covariance calculation for class c:
1
Y= D (e — b)) (g, — b(x)" (3.2)
¢ xES,

Here, S, is the set of samples belonging to class ¢, and /(x) represents the penultimate repre-

sentation of x.

Log Likelihood Ratio (LLR) Test

We utilize a Log Likelihood Ratio (LLR) test, based on the Gaussian log likelihoods: - Predicted
class log likelihood:

Lyrea(x) = maxlog N'(h(x); ¢, Z) (3.3)
- Other classes’ average log likelihood:
1
Loer(%) = 7 %:log/\[(h(x)%/a Z) (34)

68

The LLR score is defined as the difference between these two metrics:
LLR (x) = Lprfd(x) - Lm‘hfr(x) (3.5)

This LLR score, serving as an efficient OOD detection metric, distinguishes in-distribution
samples (higher LLR) from OOD samples (lower LLR).

Early Exit Strategy

Our framework introduces an early exit strategy for “easy” OOD instances at initial layers, al-

lowing deeper layers to handle more complex cases. Each layer has a binary classifier:

- Early exit detector at layer I:

in, if 7;(x; ;) > 0;
Ei(x;2,) = (3.6)
out, if T;(x; ;) < 9;

E; represents the early exit detector at the 7th layer.

x is still the input to the function.

a,; symbolizes the new parameters for the 7th layer’s function.
T} is the new notation for the scoring function at the zth exit.

J; is the new symbol for the threshold at layer 7.

Feature Extraction and Logistic Regression Classifier

The feature extraction at layer | is defined as the maximum logarithmic likelihood for the mem-

bership of the class:

- Feature extraction at layer I:

Hx, 1) = maxlog N (h[l](x); ll]., Z[Z].) (3.7)

The score function for the logistic regression classifier combines these features:

- Logistic regression score function:

score(x) =& (Z wy - F(x,l) +wr -LLR(x)) (3.8)
I=1

69

3.4.2 AvLGcorITHM [:FasT TINYML OOD DETECTOR

The Fast TinyML Out-of-Distribution Detection (FTO) algorithm 3.1 presents a sophisticated
approach for identifying OOD samples in neural networks, particularly tailored for TinyML
applications where computational efficiency is paramount. This algorithm operates on a multi-
layer structure, enhancing the detection process with several strategic components.

Attheoutset, each input sample is processed starting from the first convolutional layer of the
Deep Neural Network (DNN). The algorithm comes with a set number of out-of-distribution
detectors, carefully placed at designated layers in the deep neural network. As the input passes
through these layers, the algorithm calculates the second-to-last representation of the input at
each level, which s a critical process laying the groundwork for the following out-of-distribution
detection.

A pivotal aspect of the FTO algorithm is its early exit mechanism. This mechanism is acti-
vated at each layer, where the algorithm evaluates the need for further processing. If the input
is determined to be OOD at any given layer, as indicated by the corresponding OOD detector,
the algorithm immediately classifies it as such and halts further processing. This early exit strat-
egy is particularly beneficial as it prevents unnecessary computations, especially for inputs that
can be readily identified as OOD in the initial layers.

Nevertheless, in case the input is not identified as OOD in the initial layers, the algorithm
proceeds to move through the DNN. It carefully interacts with the OOD detector in each layer,
utilizing the knowledge gathered from both the current and previous layers. This stratified
method allows for a more detailed and comprehensive analysis of the input, thereby improving
the precision of OOD detection.

The process culminates at the final Gaussian layer of the DNN. Here, the algorithm com-
bines the results from the Log Likelihood Ratio (LLR) statistical test and an additional OOD
neuron. This combination provides a robust mechanism for final OOD determination, ensur-

ing that even the most complex OOD instances are accurately detected.

3.4.3 EXPERIMENTAL SETUP

In our experimental setup, we rigorously assess the Fast TinyML Out-of-Distribution Detec-
tion (FTO) method by comparing it against a suite of state-of-the-art OOD detection tech-
niques explained in Sectionz.2.10 including Maximum Softmax Probability (MSP), Multi-
layer OOD Detection, ODIN, Channel-Attention-based Neural Mean Discrepancy (CD-NMD),
Out-of-Distribution Discernment Layer, Mahalanobis Distance, Energy-based OOD Detec-

70

Algorithm 3.1 Fast TinyML Out-of-Distribution Detection (FTO)

Require: Inputsample x, Deep Neural Network (DNN) with £ OOD detectors
Ensure: Classification of x as in-distribution or OOD
Initialization:
1: Load the DNN with £ OOD detectors at designated layers.
2: Set parameters for each layer: u , %, y, based on training data.
For each input sample x:
3+ Start at the first convolutional layer of the DNN.
4 Compute the penultimate representation 5(x) at each layer.
Early Exit Detection:

s: for each layer 7 (starting from the first)
6: Calculate the feature extraction F(x, 7) using Equation 3.7.
7: Evaluate the early exit condition using Equation 3.6:
8: if Gi(x;6;) = out
9: Classify x as OOD and exit.
10: else
11 Continue to the next layer.
r2: endif
13: end for

Final Layer Processing:
14: if no early exit occurs
15: Compute the mean g_and covariance 2, for the final layer using Equations 3.1 and 3.2.

16: Calculate the predicted class log likelihood L, (x) using Equation 3.3.
172 Compute the average log likelihood for other classes L,,(x) using Equation 3.4.
18: Determine the LLR score using Equation 3.5.
19: end if
OOD Decision Making:
20: Apply the logistic regression score function score(x) using Equation 3.8.
21: if score(x) indicates OOD
22 Classify x as OOD.
23: else
24: Classify x as in-distribution.
25: end if
Output:
26: for each input sample
27: Output whether it is in-distribution or OOD.
28: end for

71

tion, and Softmax Response all these methods use the same four-layer convolutional neural
network (CNN) as the backbone. The CIFAR-10 and CIFAR-100 datasets form the basis
of our in-distribution (ID) training, while a comprehensive evaluation is conducted across 1o
distinct OOD test datasets—MNIST, K-MNIST, Fashion-MNIST, LSUN (crop and resize),
SVHN, Textures, STL10, Places365, and iSUN.

3.4.4 ARCHITECTURE & TRAINING

For consistency, all images are resized to a uniform 32x32 resolution. This standardization
is crucial given the varying distributions of the selected Out-of-Distribution (OOD) datasets.
CIFAR-100 closely mirrors the distribution of CIFAR-10, while the SVHN dataset deviates
most distinctly from CIFAR-10’s data distribution. To thoroughly assess the robustness of
OOD detection, we also perform evaluations on a mixed set of these datasets, thereby simulat-

ing a more complex and heterogeneous OOD environment.

In terms of hardware, we opted for the Arduino Nano 33 BLE Sense [173] for our exper-
imental setup. This choice is significant as it imposes a constraint of tMB of flash memory
and 256KB of SRAM, simulating a realistic and challenging scenario for TinyML applications.
There is no reliance on any external storage such as an SD card. Instead, the Arduino is inter-
faced with a laptop from which it receives images one at a time through serial communication.
After processing each image, the Arduino sends a request back to the laptop to receive the next
one as shown in Figure 3.7. This interaction underscores the real-time processing capability of
the system. Moreover, we account for the limited computational capability of microcontrollers
(MCUgs) by pre-calculating the complexity of each image and sending this information along-
side the image data to the Arduino. TThe training procedures are thorough and uniform. The
model undergoes training with the in-distribution (ID) dataset pairs and is kept unchanged
thereafter, guaranteeing that the evaluation of the FTO detectors is carried out on a steady
and unaltered model. Specifically, we train the FTO detectors on 30,000 images from both
the ID and OOD datasets and subsequently test them on an independent set of 5,000 images
from each category. The training process spans 100 epochs, managed by the Adam [174] opti-
mization algorithm with batches of 32 images each, striking a balance between computational
efficiency and learning performance. This methodical approach to training and evaluation is
designed to rigorously test the capabilities of the FTO method in distinguishing between in-

distribution and out-of-distribution samples under resource-constrained conditions.

72

Send image Qutput

_m Classification

EAE]
R
EF
s,

]

PRI A
Mz Hanc
A

bz
fas,
P

Lo

=T
i

o =
-ﬂ\:- o e oy ey

o

Figure 3.7: The Figure illustrates the workflow between the Arduino and a laptop for realtime image processing and data
exchange. This process involves the Arduino receiving images from the laptop via serial communication, processing each
image, and then requesting the next image

3.4.5 EVALUATION METHODOLOGY

In the evaluation of the Fast TinyML Out-of-Distribution Detection (FT'O) method and other

baseline methods, we utilize a comprehensive set of metrics:

1. Number of Computational FLOPS During Inference Time: The Floating Point
Operations Per Second (FLOPS) measures the computer’s performance capability in
handling floating-point calculations. In our context, we specifically assess the number
of computational FLOPS required during the model’s inference phase. This metric
is crucial in TinyML environments where computational resources are inherently con-
strained. An optimal model is characterized by a lower FLOPS requirement, signifying
efficient processing suitable for real-time applications and devices with limited process-
ing capabilities.

Number of Floating Point Operations (FLOPs)
Time (seconds)

FLOPS = (3.9)

2. False Positive Rate (FPR9s) on OOD Data: The FPRgjs refers to the False Positive
Rate when the True Positive Rate (TPR) for in-distribution data is fixed at 95%. Math-
ematically, it is represented as:

FPR9S = P(False Positive| True Positive Rate = 0.95) (3.10)

This metric evaluates the model’s specificity, or its ability to accurately reject OOD
instances without misclassifying them as in-distribution. Lower values of FPRos are

73

preferable, indicating higher model accuracy for ID samples and effective OOD detec-

tion.

3. Area Under the Receiver Operating Characteristic Curve (AUROC): The AUROC
is a widely recognized performance metric for binary classification at various threshold
settings. It is calculated as the area under the ROC curve, which plots the True Positive
Rate against the False Positive Rate at different thresholds:

1
AUROC:/ TPR(¢) dr (3.11)
0

where # represents the threshold. An AUROC value of 1 indicates perfect model perfor-
mance, while a value of 0.5 suggests no discriminative power. A high AUROC value in
OOD detection implies that the model can effectively discriminate between in-distribution
and out-of-distribution data across all thresholds.

3.4.6 RESULTS

The results in Table 3.3, Figure 3.8,Figure 3.9 and Figure 3.10 showcases the comparative analy-
sis of Out-of-Distribution (OOD) detection methods across CIFAR-10 and CIFAR-100 datasets
reveals that our FTO method exhibits superior performance. On the CIFAR-10 benchmark,
FTO stands out with the highest AUROC score of 0.9126, indicating its robust ability to dis-
tinguish between in-distribution and out-of-distribution data. Furthermore, FTO achieves the
highest in-distribution accuracy (ID Acc) at an impressive 94.13%. This is complemented by
its computational efficiency, requiring the lowest number of FLOPs at 0.793 x10%, which is
a significant reduction compared to other evaluated methods.

In the context of CIFAR-100 dataset, the FTO method similarly excels in terms of AU-
ROC, reaching 0.8947, which is significantly higher than the next closest competitor, ODIN,
at 0.848. It also shows an impressive ID Acc of 85.76%, outpacing the majority of methods.
Noteworthy is the fact that FTO achieves this while maintaining a low computational foot-
print, reflected in the reduced FLODPs.

Collectively, these results highlight the FTO method’s efficacy and efficiency in OOD de-
tection, endorsing its application in scenarios where computational resources are constrained,
and accurate, timely detection of OOD samples is critical. The method’s adaptability is fur-

ther underscored by its consistent performance across a range of OOD test datasets, includ-

74

In-distribution (ID) Method =~ FLOPs x10® | AUROC?T ID Acc?

CIFAR-10 MSP 1.051 0.8972 65.37
ODIN 0.884 0.9033 71.24

Mahalanobis 0.878 0.8284 74.26

Energy 0.897 0.9048 91.09

MOOD 0.869 0.8471 75.10

CA-NMD 0.884 0.8531 75.43

OODL 0.984 0.8451 75.26

FTO (ours) 0.793 0.9126 94.13

CIFAR-100 MSP 1.051 0.7833 68.43
ODIN 0.98 0.848 73.43

Mahalanobis 0.880 0.7380 85.34

Energy 1.050 0.8451 75.43

MOOD 0.794 0.8400 73.84

CA-NMD 0.774 0.8507 72.99

OODL 0.788 0.8298 75.26

FTO (ours) 0.689 0.8947 85.76

Table 3.3: OOD Detection Performance Comparison. This table presents a comprehensive evaluation of various Out-of-
Distribution (OOD) detection methods, quantified by metrics such as FLOPs during inference, AUROC scores, and the
accuracy of identifying in-distribution data (ID Acc). Methods that have achieved the highest performance in each metric
are emboldened, indicating their superiority in the respective category. The comparison serves to highlight the efficiency
and effectiveness of the detection mechanisms within the context of OOD identification tasks.

ing MNIST, K-MNIST, Fashion-MNIST, LSUN (crop and resize), SVHN, Textures, STL1o0,
Places365, CIFAR-10, and iSUN.

Opverall, the results indicates that FTO (ours) provides a balance of efficiency and effective-
ness, outperforming other methods in key areas, especially in computational efficiency and the
capability to detect out-of-distribution data as measured by AUROC. ID accuracy remains

high across both datasets, though there is more competition among methods on CIFAR-100.

3.5 OBJECTIVE III:MULTI-LAYER EARLY Ex1T FOR OOD DE-
TECTION WITH LOF 1IN DNNs MELOD)

In this section, we venture into the nuanced realm of integrating a multi-layer early exit strategy
within Deep Neural Networks (DNNs) for the explicit purpose of enhancing Out-of-Distribution
(OOD) detection. This approach resonates deeply with the ethos of TinyML, prioritizing com-

75

CIFAR-10 CIFAR-100

| ﬁoﬁ.. I I!

& &@ ‘ﬁ“ Pu ‘ﬁg é}é
&
Figure 3.8: The Figure illustrates the performance metric of various OOD detection methods on CIFAR-10 and CIFAR-
100. The subplots show the number of FLOPs X 108 among the methods analyzed, represented in distinct light colors
for visual clarity. Lower FLOP values indicate better performance, with the best performing methods denoted by their
respective color

o
e
o
=

o
-
o
=

=]
-

FLOPs (x1078)
=}
da

FLOPs (10" 8]

o
LY

=3

L)

o
o

=]
=
Lol

& €

o

Method

CIFAR-10 CIFAR-100
0.8]] 084 (] i]
0.6 0.6
8 u
- g
a 0.4 a 0.4
0.2+ g |
0.0 - T -
= & 0.0 T T
& s g‘* ﬁ ® & E s & o
3 o
@9@" ¥ $ _,&P P U
Methad x@
Method

Figure 3.9: The Figure illustrates the performance metric of various OOD detection methods on CIFAR-10 and CIFAR-100.
The subplots show the Area Under the Receiver Operating Characteristic Curve (AUROC) among the methods analyzed,
represented in distinct light colors for visual clarity. Higher AUROC values indicate better performance, with the best
performing methods denoted by their respective colors

76

CIFAR-10 CIFAR-100

0.8
0.8 4]
] 0.6 -
0.6 -
3 g
8 o 04
2 544
: 0.2
0.2 4
s 0.0 : -
: . ' : @ & o SIS
T @ & O g 40 & 2 4900 "‘ &
+ (P\ & g:\d" .e.‘h d:p & & \®°° c;,"sz Ly‘e' &
& & ¥ b
'ﬁ-c:b <
Method
Method

Figure 3.10: The Figure illustrates the performance metric of various OOD detection methods on CIFAR-10 and CIFAR-
100. The subplots show the In-Distribution Accuracy (ID Acc) among the methods analyzed, represented in distinct light
colors for visual clarity. Higher ID Acc values indicate better performance, with the best performing methods denoted by
their respective colors

putational efficiency in environments constrained by limited resources. Our exploration will
cover the intricacies of incorporating outlier detection mechanisms across multiple hidden lay-
ers of a DNN, employing a runtime monitor rooted in the Local Outlier Factor (LOF). This
pivotal technique serves to pinpoint and manage data anomalies that stray from the expected
norm. We will elaborate on how this strategic method significantly expedites the OOD detec-
tion process, consequently alleviating the computational load often entailed by deep neural
processing. This aspect holds particular significance in fields like avionics systems, where the
swift identification of irregular data is crucial to ensuring the steadfast reliability and safety of
machine learning applications. Through the implementation of this method, we aim to show-
case the potency of early exits in DNNs as a means to discern OOD data, thereby bolstering

the model’s agility and resilience, even within the most demanding of operational contexts.

3.5.1 MODEL

In TinyML applications, we implement the model presented in section 3.3.1, integrating the
Local Outlier Factor (LOF) for runtime Out-of-Distribution (OOD) detection. The LOF is
applied within a DNN, which is mathematically represented as

Y=0GX;0)=4"o0g"Vo. . ogVX) (3.12)

77

where g(”) denotes the z-th layer of DNN G; 17, B, denote the weight matrix and bias
vector of the z-th layer, respectively; X,,_; denotes the vector of activation values output from
the (» — 1)-th layer; & () denotes the nonlinear activation function at the 7-th layer, e.g.,
ReLU. For simplicity, we adopt a uniform notation for both convolutional and fully-connected

layers. The output of the 7-th layer for activations from the (7 — 1)-th layer is given by:

g(n)(Xﬂ—l) = a'(n)(Wn . Xn—l + Bn) (313)

where g(”) represents the function of the 7-th layer in the DNN. Here, I7/,, is the weight matrix
and B, is the bias vector associated with the 7-th layer. The vector X,,_; contains the activation
values output by the (2 — 1)-th layer. The function ¢/*)() denotes the nonlinear activation
function applied at the z-th layer, such as ReLU (Rectified Linear Unit). This notation is
consistent across both convolutional and fully-connected layers, with the understanding that

convolutional operations can also be expressed via matrix multiplication.

The novel framework as shown in Figure 3.11 presents a model for detecting Out-of-Distribution
(OOD) data points within a given dataset using a Deep Neural Network (DNN). The model
initiates with a dataset X consisting of data points x1, x5, ..., xx. Central to this model is a
DNN, denoted as G, composed of multiple layers ¢!}, ¢®) ... ¢(. Each layer is defined by
its unique weight matrices Wy, W5, ..., W,, bias vectors By, B, . . ., B,, and nonlinear acti-
vation functions &V, o, . .. "),

In this framework, each data point x, in X is processed through the DNN. This process
involves sequentially transforming the data point using the weight matrix and bias vector of
each layer, followed by the application of a nonlinear activation function. Post-processing, the
model calculates the k-distance neighborhood of the output from the DNN’s final layer for
each data point. Utilizing this neighborhood, the model ascertains the reachability distance,
local reachability density (LRD), and then the Local Outlier Factor (LOF) score for every data
point.

Assignificantly high LOF score for a data point signifies its outlier status, indicating a substan-
tial deviation from the dataset’s distribution. In contrast, a data point with a non-significant

LOF score is considered in-distribution (ID), aligning with the expected dataset distribution.

Furthermore, the model incorporates OOD detectors in each layer of the DNN, applied in
reverse order starting from the output layer. This structure improves the efficiency of OOD
detection. Detection of OOD at any layer leads to the early termination of further analysis,

optimizing the detection process.

78

The framework integrates OOD detection into the DNN architecture, enhancing its ro-
bustness and reliability, especially crucial for handling unexpected data inputs. The early exit
strategy, based on complexity scores, boosts computational efficiency by engaging deeper lay-
ers only when necessary, conserving resources, and potentially hastening inference, making it
suitable for real-time applications. This framework marks a shift from reliance on softmax out-
puts for OOD detection to focusing on the DNN’s internal representations, with particular
emphasis on the penultimate layer, facilitating efficient and effective OOD detection within

the constraints of TinyML environments.

Local Outlier Factor (LOF)

Local Outlier Factor (LOF) [175] is a method used to identify anomalies by measuring the local
deviation of density of a data point with respect to its neighbors. An anomaly is characterized
by having a significantly lower density than its neighboring points. The number of neighbors,
denoted by the parameter 2, is a crucial hyperparameter in the algorithm. The following steps

outline the LOF algorithm:

1. m-Distance: For any data point x, in the set X, wherep = 1,2, ..., N, the m-distance,
d, (), is defined as:

d,(%,) = min {d | atleast m pointsx, € X \ {x,} satisfy d(x,,x,) < d}. (3.14)
2. m-Distance Neighborhood: The -distance neighborhood of x,, IV,,, (1,), is:
Non(p) = { € X\ {2} [d(p,%5) < () }- (3.15)

3. Reachability Distance: The reachability distance between x, and x,, is:

rd,, (%, ;) = max{d,,(x,), d(x,, %) }. (3.16)

4. Local Reachability Density (LRD): The LRD of w, is the inverse of the average reacha-
bility distance of its 7-distance neighborhood:

-1

! I Z Pl (%, %,) . (3.17)

N,
| (XP xq GNm (x}))

Ird,,(x,) =

5. Local Outlier Factor (LOF): The LOF score for x5, LOFE,,(x,), is the ratio of the average

79

Audeing Nano 11 BLE Sense

Gt Sansor Value

Saomaly
Cutixzied

DNN Processing

Xp

‘ Dataset X }—"_' o) a(2) ain) " Output X

| | |
v v v

ODD Detector
NA o NA £— NA
Fun Time " Run Time || " RunTime ||
Monitor LOF Monitor LOF Monitor LOF

Figure 3.11: This diagram encapsulates the workflow of an algorithm designed for Out-of-Distribution (OOD) detection
within a dataset, utilizing a Deep Neural Network (DNN) named G. The process begins with a dataset X consisting of data
points X1, X2, . . . , XN, Which are sequentially processed through the DNN'’s multiple layers (g(l) tog(”)), each equipped
with specific weight matrices (177 to I¥,) and bias vectors (B to B,,), and governed by nonlinear activation functions
(041) to 04”)). The model assesses each data point’s neighborhood (NA) using a predetermined parameter 7z, calculates
the reachability distances, local reachability density (LRD), and the Local Outlier Factor (LOF) score to discern outliers from
in-distribution data. OOD detectors are strategically placed within each layer for enhanced detection accuracy, operating
in reverse order to ensure computational efficiency. The diagram delineates this intricate process from the initial data
input, through DNN processing, neighborhood analysis, LOF score computation, to the final determination of each data
point’s OOD status, thereby illustrating the comprehensive mechanism of the algorithm in detecting outliers within the
computational confines of TinyML environments.

8o

Figure 3.12: Figure illustrates the dataset, utilizing a parameter 72 = 3 for neighborhood analysis. Each circle, centered on
a data point Xp, visualizes the m-distance neighborhood, highlighting the spatial relationships within the dataset. Notably,
the outlier o; is characterized by a substantial 7z-distance, indicating a pronounced separation from its three nearest
neighbors (xq), depicted in purple, within an expansive circle. To evaluate 0;’s LOF score (LOF,, (01)), we initially calculate
the reachability distances (7d,, (01, xq)) from o; to its neighbors, revealing significantly large values. Subsequently, the
local reachability density (/rd,, (01)) of 01 is determined, revealing a markedly low density. In contrast, each of 0;’s three
neighbors undergoes a similar assessment for /rd,,, each yielding considerably higher densities. Ultimately, by calculating
01’s LOF score (LOF,, (01)) and finding it substantially elevated, 0; is conclusively identified as an outlier.

LRD of its m-nearest neighbors to its own LRD:

o quENm (xp) ZVdWL (xq)
| N (2,)| - Lrdd,, () '

LOE,,(x,) (3.18)

A high LOF score indicates that x, has a lower density compared to its neighbors, marking

it as a potential outlier as shown in Figure 3.12.

3.5.2 ALGORITHM II:MULTI-LAYER EARLY Ex1T FOR OOD DETECTION
wITH LOF 1IN DNNs MELOD)

Thealgorithm 3.2 describes model for detecting Out-of-Distribution (OOD) data points within
a given dataset using a Deep Neural Network (DNN). The model begins with a dataset X com-
prising a set of data points x1,x,, . ..,xx. The core of this model is a DNN, denoted as G,
which consists of multiple layers g(l), g(z), e g(”). Each of these layers is characterized by its
own weight matrices Wy, W5, ..., W, and bias vectors By, B, . . ., B,, along with nonlinear
activation functions oV, o2 ... o).

For each data point x, in the dataset X, the model processes it through the DNN. This in-

volves passing the data point through each layer of the network, where it is transformed by the

81

respective weight matrix and bias vector, and then passed through a nonlinear activation func-
tion. After processing through the DNN, the model computes the k-distance neighborhood of
the output from the last layer of the DNN for each data point. Based on this neighborhood, the
model calculates the reachability distance, local reachability density (LRD), and subsequently
the Local Outlier Factor (LOF) score for each data point.

The LOF score is crucial as it helps in determining whether a data point is an outlier. A
significantly high LOF score indicates that the data pointis an outlier, thatis, it deviates notably
from the distribution of the dataset. Conversely, if the LOF score is not significantly high,
the data point is considered to be in-distribution (ID), meaning it conforms to the expected
distribution of the dataset.

Additionally, the model includes Out-of-Distribution detectors for each layer of the DNN.
These detectors are applied in reverse order starting from the output layer, which enhances the
efficiency of detecting OOD instances. If any of these detectors flag a data point as OOD, the

analysis for that point is terminated early, thus optimizing the process. distributions.

3.5.3 EXPERIMENTAL SETUP

In our experimental setup, we meticulously evaluate the Multi-Layer Early Exit for OOD De-
tection with LOF in DNNs method by comparing it to a range of state-of-the-art techniques
for OOD detection as detailed in Section 2.2.10. These techniques include Maximum Softmax
Probability (MSP), Multi-layer OOD Detection, ODIN, Mahalanobis Distance, Energy-based
OOD Detection, and Softmax Response. All these methods are implemented using the same
four-layer convolutional neural network (CNN) as the backbone.

In our research framework, we leverage the datasets defined in Section 3.2 for both assess-
ments of In-Distribution Operational Design Domain (ID) and Out-of-Distribution Oper-
ational Design Domain (OOD). Specifically, the datasets designated in Section 3.3 for The
foundation of our in-distribution (ID) training is the In-Distribution Operational Design Do-
main.This approach ensures that the model is thoroughly trained on data samples that are rep-
resentative of the expected operational environment and scenarios.

Similarly, the datasets identified in Section 3.3 for Out-of-Distribution Operational Design
Domain are utilized to evaluate the model’s performance in recognizing and handling OOD
instances. This comprehensive testing against diverse OOD datasets is crucial to validate the
model’s robustness and reliability, particularly in scenarios where it may encounter data that

significantly deviates from the patterns and characteristics seen during the training phase.

82

Algorithm 3.2 Multi-Layer Early Exit for OOD Detection with LOF in DNNs

L4

N\ W AW

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24:
25:
26:
27:
2.8:
29:
30:
31:
32:
33:
34:

: Given:

A dataset X containing data points x1, x5, . . ., Xn

A Deep Neural Network (DNN) G with layers g(l) , g(z), e g(”)

Weight matrices Wy, W, ..., W, and bias vectors By, B,, . . ., B,
Nonlinear activation functions oV, 2 .. .| &) for each layer

A parameter 7 for the number of neighbors in the hood of each data point
Output:

Out-of-Distribution (OOD) detection for each data point in the dataset
Procedure:

. for each input sample %, in X

Process x, through the DNN:
Xo ¢ x,
forp=1ton
X, (W, X, 1+ B,)
end for
Compute the k-distance neighborhood of X,,, N (X,,)
for each point x, in N,,,(X,,)
Compute the reachability distance 74, (X, x,)
end for
Compute the local reachability density /rd,, (X,,)
Compute the LOF score LOF,,(X,)
if LOF,,(X,) is significantly high
Mark x, as an outlier
else
Consider x, as in-distribution (ID)
end if
end for
Initialize OOD detectors dy, ds, . . . , d,, for each layer
for each input sample X and each layer @ in reverse order
Pass g,(X) to the OOD detector d,
if d, detects OOD
Mark X as OOD
break
end if
end for
Return OOD status for each data point in X

83

By adopting this dual-domain approach, where the ID training datasets and OOD test datasets
are both sourced as per the specifications in Section 3.3, our experimental setup aims to create
arealistic and challenging testing environment, thereby ensuring that the model’s OOD detec-
tion capabilities are rigorously assessed. This methodology aligns with the growing need for
advanced machine learning models that are not only highly accurate in familiar settings, but
also adept at handling unexpected or novel inputs, especially in critical applications and em-

bedded systems with TinyML constraints.

3.5.4 ARCHITECTURE & TRAINING

For our experimental framework, we ensured uniformity by resizing all images to a 32x32 res-
olution. In line with the guidelines presented in Section 3.3, the datasets specified for In-
Distribution Operational Design Domain (ID) and Out-of-Distribution Operational Design
Domain (oOD) are rigorously employed. The ID training forms the bedrock of our model’s
development, immersing it in an array of data samples that are representative of anticipated
operational environments and scenarios.

Hardware-wise, our setup includes the Arduino Nano 33 BLE Sense. This choice is pivotal,
considering it mirrors the constraints typical in TinyML applicationsspecifically, tMB of flash
memory and 256KB of SRAM. Our approach eschews the use of external storage devices like
SD cards, instead opting for a direct interface with alaptop. This setup allows the Arduino to se-
quentially receive images one at a time through serial communication, thereby highlighting the
system’s capacity for real-time processing After processing each image, the Arduino requests
the next one, underlining the continuous, real-time operational capability one as shown in Fig-
ure 3.7. To address the limited computational power inherent in microcontrollers (MCUs), we
strategically pre-calculate each image’s complexity and convey this information alongside the
image data to the Arduino. This strategy enhances processing efficiency on the MCU.

The training procedures are meticulously orchestrated and adhered to with precision. We
train the model using the ID dataset pairs, and post-training, the model remains unchanged.
This ensures that the assessment of the MELOD(ours) detectors is conducted on a stable and
unmodified model. Specifically, we train the MELOD(ours) detectors on 1,438 images from
both the ID and OOD datasets, subsequently testing them on an independent set of 7,000+
images from each category. The training, spanning over 100 epochs, is conducted using the
Adam [174] optimization algorithm with batches of 32 images each. This balance between

computational efficiency and learning effectiveness is crucial for TinyML applications.

84

This rigorous and methodical approach to training and evaluation is designed to thoroughly
test the MELOD(ours) method’s ability to differentiate between in-distribution and out-of-
distribution samples, particularly under the resource-limited conditions characteristic of TinyML

environments. This ensures robust runtime assurance in embedded devices employing TinyML.

3.5.5 EVALUATION METHODOLOGY

In our study, we evaluate the performance of MELOD (ours) detectors using standard classi-
fication metrics such as precision, recall, F1 score, and accuracy, as outlined in Section 2.2.3
It is important to recognize that different application domains might prioritize these metrics
differently based on their specific requirements and consequences of errors.

For instance, in avionics applications, where safety is paramount, the emphasis might be
different compared to other fields. In avionics, particularly in real-time autonomous systems
like autopilot or collision avoidance systems in aircraft, the cost of a false negative (e.g., failing to
detect a critical system malfunction or an approaching obstacle) could be catastrophic, leading
to severe consequences. Therefore, a high recall is crucial to ensure that all potential threats are
identified. Conversely, a high rate of false positives, although less critical than false negatives,
could still be problematic. Excessive false alarms might lead to ’alarm fatigue’, where operators
begin to ignore warnings, or they could create unnecessary distractions, potentially disrupting
the smooth operation of the system.

However, focusing solely on either precision or recall can be misleading in understanding the
overall effectiveness of the classifiers. Therefore, the F1 score, which is the harmonic mean of
precision and recall, emerges as a more balanced and comprehensive metric for evaluating the
performance of classifiers in such critical systems. The F1 score encapsulates both the aspects
of precision and recall, thus providing a more holistic view of the classifier’s performance in
environments where both false positives and false negatives carry significant implications, as is

the case in avionics.

3.5.6 RESULTS

We present a detailed assessment of various Out-of-Distribution (OOD) detection methods
in Table 3.4 and Figure 3.13 and Figure 3.14 as they perform across several standard classifica-
tion metrics. The table 3.4 includes methods such as Maximum Softmax Probability (MSP),
ODIN, Mahalanobis, Energy, MOOD, and our proposed MELOD(ours) framework, mea-

sured against precision, recall, F1 score, and accuracy.

8s

The MSP method, while showing a high recall of 0.85, indicating its strength in identifying
true OOD instances, falls short in precision at 0.2, suggesting a higher rate of false positives.
Its overall F1 score and precision are the lowest among the methods, 0.4 and o.4s, respectively.

ODIN exhibits improved precision at 0.3 5 and maintains a solid recall of 0.75. Its balanced
approach is reflected in a moderate F1 score of 0.5 and a higher accuracy of 0.8, highlighting
its reliability compared to MSP.

The Mahalanobis method presents a recall of 0.65, a modest decrease but with an increase in
precision to 0.45. Its F1 score and accuracy are consistent at 0.6 and 0.75, highlighting a more
equilibrium state between sensitivity and specificity.

The Energy-based method displays an equal precision and recall of o.55, culminating in a
high Fr score of 0.7, which emphasizes its balanced classification despite a lower accuracy of
0.65.

MOOD method shows a tendency towards precision at 0.65, but with a recall of 0.45, in-
dicating a cautious approach that may miss some OOD instances. However, it achieves the
second highest F1 score at 0.8 and a precision of o.55.

Our MELOD method outperforms others with the highest precision of 0.75 and recall of
0.95, indicating a robust detection capability with minimal false positives and negatives. This
superior performance is affirmed by the highest F1 score and accuracy on the table, both at 0.9
and 0.95s, respectively. Demonstrating a significant advantage in accurately detecting OOD
instances, which is crucial in applications where accurate and timely detection is paramount,

such as safety-critical avionics systems.

In-distribution(ID) Method Precision Recall Fr Score Accuracy
MSP 0.25 0.85 0.4 0.45
ODIN 0.35 0.75 0.5 0.85

Label(0) Mahalanobis 0.45 0.65 0.6 0.75
Energy 0.55 0.55 0.7 0.65
MOOD 0.65 0.45 0.8 0.55
MELOD (ours) 0.75 0.95 0.9 0.95

Table 3.4: Comparative analysis of various Out-of-Distribution (OOD) detection methods evaluated against standard
classification metrics within the In-Distribution Operational Design Domain labeled as 'Label(0). The methods include
Maximum Softmax Probability (MSP), ODIN, Mahalanobis, Energy, MOOD, and our proposed approach MELOD. The table
showcases precision, recall, F1 score, and accuracy for each method, highlighting the superior performance of MELOD in
accurately identifying OOD instances with a remarkable balance between recall and precision, as evidenced by its high F1
score and accuracy.

86

Precision and Recall of Various Methods

Precision
Recall
0.8 1
0.6 4
w
@
1=
o
v}
w
0.4 4
0.2 4
0.0 T T T T
MsSP ODIN Mahalanobis Energy MOOD MELOD (ours)

Method

Figure 3.13: The graph provides a comparative analysis of Out-of-Distribution (OOD) detection methods within the In-
Distribution Operational Design Domain labeled 'Label(0)’. Various methods including MSP, ODIN, Mahalanobis, Energy,
MOOD, and our proposed MELOD are evaluated across key performance metrics: Precision and Recall. The outcomes
emphasize the superior precision and recall of MELOD (ours) compared to the other methods. This demonstrates the
effectiveness of MELOD (ours) in accurately detecting out-of-distribution instances.

F1 Score and Accuracy of various Methods

N F1 Score
W Accuracy
0.8 4
0.6 4
L]
e
-]
[¥]
w
0.4 4
0.2 4
0.0 -
8 & ©) 9 s
* &) 0 3
& -390 ¥ * <
o
+® &

Figure 3.14: The graph provides a comparative analysis of Out-of-Distribution (OOD) detection methods within the In-
Distribution Operational Design Domain labeled 'Label(0). Various methods including MSP, ODIN, Mahalanobis, Energy,
MOOD, and our proposed MELOD are evaluated across key performance metrics: F1 score and accuracy. The findings
emphasize that MELOD (ours) achieved the highest F1 score and Accuracy compared to other methods. This demonstrates
the effectiveness of MELOD (ours) in accurately detecting out-of-distribution instances.

87

3.6 CONCLUSION

This chapter introduces two innovative frameworks designed for enhancing Out-of-Distribution
(OOD) detection in the realm of TinyML applications: the Multi-Layer Framework-Fast TinyML
OOD Detector (FTO) and the Multi-Layer Early Exit for OOD Detection with LOF in DNNs
(MELOD). Both frameworks represent a significant stride in the field, addressing the critical
need for real-time, reliable OOD detection within the stringent resource constraints of embed-
ded systems.

The FTO framework is characterized by its integration of low-complexity detectors follow-
ing each layer of a Deep Neural Network (DNN), enabling an efficient early-exit inference
mechanism upon encountering OOD samples. It utilizes logistic regression classifiers, leverag-
ing the DNN’s internal representations to discern between in-distribution and OOD inputs.
A standout feature of FTO is its plug-and-play capability, allowing it to be seamlessly integrated
into existing DNN architectures without the necessity for model reconfiguration.

Similarly, the MELOD is designed to work within the context of In-Distribution Opera-
tional Design Domain datasets, which serve as the foundation for training and calibrating the
DNN’s early exit mechanisms. MELOD employs the Local Outlier Factor (LOF) algorithm,
allowing for real-time OOD detection and fostering the model’s agility and resilience in oper-
ation. The MELOD framework stands out for its exceptional performance on the MELOD
dataset, which is carefully curated to represent a realistic Out-of-Distribution Operational De-
sign Domain, encompassing a diverse range of scenarios that the model may encounter outside
its standard operating conditions. The strength of MELOD lies in its ability to maintain high
precision and recall rates, culminating in an exceptional balance as evidenced by its F1 score
and accuracy metrics.

Both FTO and MELOD have been rigorously evaluated across diverse OOD test datasets,
demonstrating their robustness and adaptability. The datasets include, but are not limited to,
MNIST, K-MNIST, Fashion-MNIST, LSUN, SVHN, Textures, STL1o0, Places365, CIFAR-
10, and iSUN. They have shown exemplary performance, with FTO excelling in computational
efficiency and MELOD in achieving a remarkable balance between recall and precision, as in-
dicated by high F1 scores and accuracy rates.

Collectively, these frameworks provide comprehensive solutions for improving the safety
and dependability of ML applications in aviation and other safety-critical domains. By ensur-
ing high accuracy and runtime efficiency, FTO and MELOD set new standards for OOD de-

tection in TinyML, marking them as pivotal contributions to the advancement of machine

88

learning applications in constrained environments where error margins are exceedingly narrow
and operational integrity is paramount.

This chapter delves into the development of two advanced frameworks aimed at optimizing
Out-of-Distribution (OOD) detection within TinyML applications, crucial for the aviation
sector, especially in avionics control systems. These frameworks, the Multi-Layer Framework-
Fast TinyML OOD Detector (FTO) and the Multi-Layer Early Exit for OOD Detection with
LOF in DNNs (MELOD), mark substantial advancements in ensuring real-time and depend-
able OOD detection under the limited resources typical of embedded ML systems in avionics.

89

90

Conclusions and Outlook

Reflecting upon the research journey undertaken, this chapter synthesizes the outcomes against
the backdrop of the research objectives established in Section3.r, informed by the foundational
knowledge presented in Chapter 3. Through this reflection, we ascertain the fulfillment of our

goals and demonstrate the precision of outcomes that align with our initial aspirations.

We addressed RQ-1 by establishing a detailed Operational Design Domain (ODD) that en-
compasses a broad spectrum of variables and conditions under which machine learning models
in avionics are expected to operate. This comprehensive ODD framework guided the creation
of training datasets and scenarios, ensuring they are reflective of the complex real-world environ-
ments these models will encounter. The In-Distribution and Out-Distribution Operational
Design Domains were meticulously delineated, focusing on scenarios ranging from close-up
to far-oft images of airplanes, optimizing the model for high accuracy and reliability in scenar-
ios closely aligned with the training data, and enhancing the model’s ability to generalize and

perform effectively in various situations.

Tackling RQ-2, we proposed and implemented the Multi-Layer Framework-Fast TinyML
OOD Detector (FTO), a framework that showcases the utility of early exit strategies within a
Deep Neural Network (DNN), specifically tailored for efficient and seamless OOD detection.
This multi-layered approach, highlighted in the W-shaped development life-cycle (Figure 3.2),

enhances the model’s responsiveness and accuracy in real-time scenarios, ensuring robust per-

91

formance in diverse and challenging environments.

In response to RQ-3, we explored the integration of a multi-layer early exit strategy for OOD
detection in DNNs (MELOD), utilizing TinyML for enhanced outlier detection across one or
more hidden layers in the context of avionics embedded systems. This led to the development
of a runtime monitoring system based on the Local Outlier Factor (LOF) algorithm, aiming to
improve the reliability, safety, and real-time decision-making capabilities of ML models, while
efficiently operating within the constraints of limited computational resources and adhering
to stringent regulatory standards. This objective, emphasized in the W-shaped development
life-cycle (Figure 3.3), illustrates how the synergy of TinyML and LOF-based runtime moni-
toring offers a robust solution for detecting and managing atypical data, thereby significantly

enhancing the assurance and operational integrity of ML models in aviation.

Empirical research studies conducted for each defined objective employed a variety of meth-
ods to meticulously analyze and manipulate data. These methods were chosen and customized
to effectively address the specific aspects and requirements of each objective, ensuring a com-
prehensive and rigorous examination of the underlying hypotheses and questions. The estab-
lishment of a detailed Operational Design Domain (ODD) has significantly advanced our un-
derstanding of the environments in which machine learning models operate, setting the stage
for further refinement of these models to better adapt to a wider array of real-world scenarios.
Future studies could extend the ODD framework to cover an even broader spectrum of opera-
tional conditions, thus enhancing the adaptability and resilience of ML models in avionics and

potentially other domains where operational integrity is paramount.

The development of the Multi-Layer Framework-Fast TinyML OOD Detector (FTO) and
the integration of the multi-layer early exit strategy for OOD detection in DNNs (MELOD)
represents a leap forward in ensuring the efficiency, accuracy, and reliability of ML models.
The potential of these frameworks extends beyond the current scope of their application. Fu-
ture work could explore their implementation across diverse safety-critical fields, such as au-
tonomous driving and industrial automation, where the stakes for accurate and reliable decision-
making are equally high. Testing these frameworks in varied contexts will not only validate their

utility across different domains but also refine their capabilities to meet specific industry needs.

Moreover, the synergy of TinyML and LOF-based runtime monitoring as illustrated in the

92

research presents a promising avenue for enhancing ML model assurance. Future efforts might
focus on integrating these advanced frameworks with emerging neural network architectures,
exploring new methodologies for even more efficient and robust OOD detection. This could
involve leveraging the latest advancements in neural network design and learning algorithms
to further improve the responsiveness and accuracy of ML models in detecting and managing
atypical data.

The burgeoning field of TinyML offers a transformative potential for runtime assurance in
avionics control systems, marking a significant leap towards enhancing safety and reliability in
aviation. As we look to the future, one of the primary avenues for extending this research is
through the integration of TinyML models directly into the avionics control loop. This in-
tegration promises to enable real-time data processing and decision-making capabilities that
are crucial for dynamic and critical flight operations. Future work could focus on developing
lightweight, yet powerful TinyML algorithms capable of executing complex computational
tasks with minimal latency, thereby ensuring that avionics systems can swiftly respond to chang-

ing conditions and potential anomalies during flight.

Furthermore, enhancing the robustness of TinyML models against a wide array of opera-
tional scenarios remains a paramount objective. To achieve this, future studies should concen-
trate on expanding the diversity and depth of training datasets to cover the extensive spectrum
of environmental and mechanical variables encountered in aviation. By employing advanced
data augmentation techniques and exploring unsupervised learning methods, researchers can
significantly improve the models’ ability to generalize from seen to unseen conditions, thereby
reducing the likelihood of performance degradation in novel or rare scenarios. This approach
not only bolsters the models’ reliability but also their capacity to provide accurate runtime as-

surance without the need for constant retraining or manual updates.

The exploration of hardware optimizations specific to TinyML deployments within avion-
ics control systems presents a promising direction. Given the limited computational resources
available on aircrafts, future work must address the design of specialized hardware that can
efficiently run TinyML models without compromising other critical system functions. This
could involve innovations in processor design, memory management, and power consump-
tion, tailored to meet the unique demands of avionics environments. By aligning the advances
in TinyML algorithms with hardware capable of supporting them, the aviation industry can

leverage the full potential of machine learning to achieve unprecedented levels of runtime as-

93

surance and operational safety.

Another critical area for future work involves ensuring the explainability and verifiability of
TinyML models within avionics systems. As regulatory standards for aviation are stringent and
demand a high level of assurance, integrating machine learning models into safety-critical sys-
tems requires transparent and interpretable decision-making processes. Future research should
thus aim to develop methodologies for quantifying and interpreting the models’ decisions, al-
lowing human operators and regulators to understand and trust the models’ outputs. This
includes the development of techniques for runtime monitoring and anomaly detection that
can provide insights into the models’ operational integrity and trigger alerts when deviations

from expected behaviors occur.

Furthermore, the role of TinyML in defining and operating within an expanded ODD is piv-
otal.By covering a wide range of environmental factors and flight situations, an expanded ODD
allows TinyML models to more effectively predict and respond to the various scenarios expe-
rienced during flight. Future research should concentrate on utilizing TinyML to extensively
simulate these operational situations, incorporating changes in cabin pressure and IMA system
statuses, in order to improve the models’ capacity to adapt to different conditions. Employing
advanced data augmentation and unsupervised learning methods may enhance the resilience of
TinyML models, transforming them into essential resources for guaranteeing passengers’ on-

going safety and comfort by enabling real-time adjustments during flights.

Addressing the explainability and verifiability of TinyML models, especially in the context
of IMA and cabin pressure systems, remains essential. As aviation regulations demand high
assurance levels, future research must develop methods that make TinyML decisions within
these systems transparent and interpretable. Achieving this will enable operators and regula-
tors to trust and verify the models’ decisions, ensuring that they align with safety protocols and
standards. Operationalizing TinyML in these areas also calls for innovative runtime monitor-
ing and anomaly detection that can provide real-time insights into system integrity, enhancing

overall flight safety and efficiency.

Ultimately, a promising opportunity has emerged to improve hardware support for TinyML
implementations in aviation. The integration of TinyML models directly into the avionics

control loop for real-time data processing and decision-making represents a significant advance-

94

ment. This is particularly evident in its application within Integrated Modular Avionics (IMA)
and cabin pressure management systems, showcasing the versatility and impact of TinyML in
aviation. Future endeavors could focus on customizing TinyML algorithms for these subsys-
tems to ensure efficient and low-latency operations that meet the stringent safety standards

essential for flight.

This integration not only enhances operational efficiency but also greatly enhances passen-
ger safety by offering precise control and monitoring capabilities that dynamically adjust to the
aircraft’s environmental and operational conditions, especially in IMA and cabin pressure sys-
tems. Given the limited computing resources available onboard, forthcoming hardware devel-
opments should concentrate on enabling the effective performance of TinyML models. This
entails advancements tailored to fulfill the specific demands of avionics environments, such
as reduced energy consumption and enhanced processing capabilities. By aligning progress in
TinyML algorithms with specialized hardware, the aviation industry can fully exploit machine
learning’s potential to enhance safety, reliability, and operational assurance in critical flight sys-
tems.

In conclusion, the foundation laid by this study establishes a basis for numerous upcoming
investigations aimed at pushing the boundaries of TinyML in safety-critical scenarios. Oppor-
tunities for refining the ODD framework, expanding the application of FTO and MELOD
across various fields, and integrating these frameworks with cutting-edge neural network struc-
tures underscore the vast potential for innovation in this field. Looking forward, the research
conducted in this study will undoubtedly inspire further exploration that advances the capa-
bilities of machine learning models in avionics and beyond, striving towards more intelligent,

secure, and efficient operational configurations.

95

96

[1]

[2]

[e]

References

R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. MIT

Press, 2018.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436-444, 2015.

V. Rajapakse, I. Karunanayake, and N. Ahmed, “Intelligence at the extreme edge: A

survey on reformable tinyml,” 27X7v, 2022.

L. Heim, A. Biri, Z. Qu, and L. Thiele, “Measuring what really matters: Optimizing

neural networks for tinyml,” a7Xiv, 202.1.

E. Shafei, I. F. Moawad, H. Sallam, Z. Taha, and M. M. Aref, “A methodology
for safety critical software systems planning,” 2013. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:14833165

J. Feng, X. He, Q. Teng, C. Ren, H. Chen, and Y. Li, “Reconstruction of porous media
from extremely limited information using conditional generative adversarial networks,”

Physical Review E, vol. 100, 09 2019.

I. Tabian, H. Fu, and Z. Sharif Khodaei, “A convolutional neural network for impact
detection and characterization of complex composite structures,” Sensors, vol. 19,
no. 22, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/22/4933

[8] J. Henriksson, S. Ursing, M. Erdogan, F. Warg, A. Thorsén,]. Jaxing, O. Orsmark,

and M. O. Toftas, “Out-of-distribution detection as support for autonomous driving
safety lifecycle,” in Requivements Engineering: Foundation for Software Quality: 2 gth
International Working Conference, REFSQ 2023, Barcelona, Spain, April 17-20, 2023,
Proceedings. Berlin, Heidelberg: Springer-Verlag, 2023, p. 233-242. [Online].
Available: https://doi.org/10.1007/978-3-031-29786-1_16

E.U. A.S. Agency and Daedalean, “Learning assurance guidelines for machine learning

in aviation,” European Union Aviation Safety Agency, Tech. Rep., 2020.

97

https://api.semanticscholar.org/CorpusID:14833165
https://api.semanticscholar.org/CorpusID:14833165
https://www.mdpi.com/1424-8220/19/22/4933
https://doi.org/10.1007/978-3-031-29786-1_16

[x0]

[11]
[12]
[13]

[14]

[17]

[x8]

[19]
[20]

[21]

A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, pp.
433-4060, 1950.

E. Alpaydin, Introduction to Machine Learning, 4thed. MIT Press, 2020.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2017.

A. Rajkomar, . Dean, and I. Kohane, “Machine learning in medicine,” New England
Journal of Medicine, vol. 380, pp. 1347-1358, 2019.

P. Kumar, M. H. Mahmud, and A. K. Koc, “Machine learning in autonomous vehicle
applications: A survey,” in 2020 IEEE Transportation Electrification Conference € Expo
(ITEC). 1IEEE, 2020.

R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent manufacturing in the

context of industry 4.0: A review,” Engineering, vol. 3, no. s, pp. 616-630, 2017.

S. authors, “Addressing uncertainty in the safety assurance of machine-learning,”
Frontiers, 2023, accessed: 2023-09-30. [Online]. Available: https://www.frontiersin.
org/articles/10.3389/frobt.2023.00123/full

——, “A holistic quality assurance approach for machine learning applications in cyber-
physical production systems,” Applied Sciences, vol. 13, no. 7, p. 3575, 2023, accessed:
2023-09-30. [Online]. Available: https://www.mdpi.com/2076-3417/13/7/3575

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete
problems in ai safety,” arXiv preprint arXiv:1606.06565, 2016.

T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine learning on mainstream
microcontrollers,” Sensors, vol. 20, no. 9, 2020. [Online]. Available: https://www.
mdpi.com/1424-8220/20/9/2638

M. Casiroli and D. P. Pau, “Tiny machine learning business intelligence in the semicon-

ductor industry: A case study,” Tech. Rep., 2023.

98

https://www.frontiersin.org/articles/10.3389/frobt.2023.00123/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.00123/full
https://www.mdpi.com/2076-3417/13/7/3575
https://www.mdpi.com/1424-8220/20/9/2638
https://www.mdpi.com/1424-8220/20/9/2638

[23]

[24]

[32]

(33]

R. Kallimani, K. Pai, P. Raghuwanshi, S. Iyer, and O. L. A. Lépez, “Tinyml: Tools,
applications, challenges, and future research directions,” Tech. Rep. 10, Sep. 2023.
[Online]. Available: http://dx.doi.org/10.1007/511042-023-16740-9

V. Tsoukas, E. Boumpa, G. Giannakas, and A. Kakarountas, “A review of machine
learning and tinyml in healthcare,” p. 69-73, 2022. [Online]. Available: https:
//doi.org/10.1145/3503823.3503836

H. Han and]. Siebert, “Tinyml: A systematic review and synthesis of existing research,”

pp- 269-274, 02 2022.

V. Rajapakse, I. Karunanayake, and N. Ahmed, “Intelligence at the extreme edge: A

survey on reformable tinyml,” 27X7v, 2022.

L. Heim, A. Biri, Z. Qu, and L. Thiele, “Measuring what really matters: Optimizing

neural networks for tinyml,” 27Xzv, 2021.

E. Sabziev, “Algorithm of aircraft flight data processing in real-time,” Scientific Journal

of Silesian University of Technology. Series Transport, vol. 108, pp. 213-221, 07 2020.

C. V. Oster, J. S. Strong, and C. K. Zorn, “Analyzing aviation safety: Problems,
challenges, opportunities,” Research in Transportation Economics, vol. 43, no. 1,
pp. 148-164, 2013, the Economics of Transportation Safety. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0739885912002053

P. Warden and D. Situnayake, TinyML: Machine Learning with TensorFlow Lite on Ar-
duino and Ultra-Low-Power Microcontrollers. O’Reilly Media, Inc., 2019.

Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao, S. Schewe,
and X. Huang, “Reliability assessment and safety arguments for machine learning
components in system assurance,” New York, NY, USA, apr 2023. [Online]. Available:
https://doi.org/10.1145/3570918

A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming:
Modeling and Theory. Society for Industrial and Applied Mathematics, 2014.

I. Alreshidi, I. Moulitsas, and K. Jenkins, “Advancing aviation safety through machine
learning and psychophysiological data: A systematic review,” IJEEE Access, vol. PP, pp.

I-1,01 2024.

99

http://dx.doi.org/10.1007/s11042-023-16740-9
https://doi.org/10.1145/3503823.3503836
https://doi.org/10.1145/3503823.3503836
https://www.sciencedirect.com/science/article/pii/S0739885912002053
https://doi.org/10.1145/3570918

[34]

(35]

[36]

(37]

(38]

[44]

[45]

H. Kurunathan, H. Huang, K. Li, W. Ni, and E. hossein, “Machine learning-aided oper-
ations and communications of unmanned aerial vehicles: A contemporary survey,” o8

2022.

I. Kabashkin, B. Misnevs, and O. Zervina, “Artificial intelligence in aviation: New
professionals for new technologies,” Applied Sciences, vol. 13, no. 21, 2023. [Online].
Available: https://www.mdpi.com/2076-3417/13/21/11660

S. Ballingall, M. Sarvi, and P. Sweatman, “Safety assurance for automated driving
systems that can adapt using machine learning: A qualitative interview study,” vol. 84,
2023, pp. 243-250. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0022437522001773

P. Singh and L. K. Singh, “Engineering education for development of safety-critical sys-
tems,” IEEE Transactions on Education, vol. 64, no. 4, pp. 398—405, 202.1.

J. McDermid and T. Kelly, “Software in safety critical systems: Achievementand predic-
tion,” Nuclear Energy-journal of The British Nuclear Energy Society - NUCL ENERG-]
BRIT NUCL ENERG, vol. 2, pp. 140-146, 05 2006.

A. S. E. Committee, “Avionics software development standards: Ensuring safety and

reliability,” Aviation Standards Annual Review, 2022.
N. G. Leveson, Engineering a Safer World. MIT Press, 2011.

A. J. Stolzer, C. D. Halford, and J. J. Goglia, Aviation Safety Management Systems.
Ashgate, 2008.

FAA, “Federal aviation administration regulations,” https://www.faa.gov/regulations_

policies/, 2020.

EASA, “European union aviation safety agency standards,” https://www.casa.europa.

eu/, 2020.
J. Rushby, “Formal methods and the certification of critical systemsz,” 06 2004.

M. R. Endsley and D. G. Jones, “Designing for situation awareness in complex systems,”

in Proceedings of the Second International Workshop on Symbiotic Interaction, 2019.

I00

https://www.mdpi.com/2076-3417/13/21/11660
https://www.sciencedirect.com/science/article/pii/S0022437522001773
https://www.sciencedirect.com/science/article/pii/S0022437522001773
https://www.faa.gov/regulations_policies/
https://www.faa.gov/regulations_policies/
https://www.easa.europa.eu/
https://www.easa.europa.eu/

[46]

[54]

[55]

W. R. Ferrell and N. G. Leveson, “Integrating safety and systems engineering: Consider-
ations for software-intensive systems,” Transactions on Systems, Man, and Cybernetics,

2016.

K. Czarnecki, “Operational design domain for automated driving systems - taxonomy

of basic terms,” o7 2018.

A. Johnson and B. Smith, “Evolution of avionics control systems: From analog to digi-

tal,” Journal of Aerospace Engineering, vol. 31, no. 1, pp. 1-12, 2018.

C. Leeand D. Kim, “Challenges and strategies for integrating machine learning in avion-

ics systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 3, pp.

1234—1245, 2019.

F. Martinez and G. Hernandez, “Tinyml: Enabling machine learning on microcon-
trollers for avionics applications,” in Proceedings of the International Conference on Em-

bedded Systems in Avionics, 2020, pp. 567-576.

European Union Aviation Safety Agency (EASA), “Formal Methods use for Learning
Assurance (ForMuLA),” April 2023.

SAE International, “Taxonomy and definitions for terms related to driving automation

systems for on-road motor vehicles,” https://www.sae.org/standards/, 2020.

P. Weissensteiner, G. Stettinger, S. Khastgir, and D. Watzenig, “Operational design
domain-driven coverage for the safety argumentation of automated vehicles,” JEEE Ac-

cess, vol. PP, pp. 1-1, o1 2023.

S. Chen, X. Hu, J. Zhao, R. Wang, and M. Qiao, “A review of decision-making
and planning for autonomous vehicles in intersection environments,” World Electric
Vebicle Journal, vol. 15, no. 3, 2024. [Online]. Available: https://www.mdpi.com/
2032-6653/15/3/99

M. Gyllenhammar, R. Johansson, F. Warg, D. Chen, H.-M. Heyn, M. Sanfridson,
J. Soderberg, A. Thorsén, and S. Ursing, “Towards an operational design domain that

supports the safety argumentation of an automated driving system,” o1 2020.

European Union Aviation Safety Agency, “Easy access rules for unmanned aircraft sys-

tems,” https://www.easa.europa.eu/, 2022.

I0I

https://www.sae.org/standards/
https://www.mdpi.com/2032-6653/15/3/99
https://www.mdpi.com/2032-6653/15/3/99
https://www.easa.europa.eu/

[57]

[58]

[59]

[63]

[64]

[65]

[66]

[67]

[68]

F. Kaakai, S. Adibhatla, G. Pai, and E. Escorihuela, “Data-centric operational design

domain characterization for machine learning-based aeronautical products,” 07 2023.

h. kazemi, “Aviation safety international standards in the framework of national air law,”

pp- 59-67, 2022. [Online]. Available: http://www.ijrrs.com/article_158750.html

C. Torens, F. Juenger, S. Schirmer, S. Schopferer, D. Zhukov, and J. C. Dauer,
“Ensuring safety of machine learning components using operational design domain.”
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2023-1124

P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and valida-

tion,” SAE International Journal of Transportation Safety, vol. 5, no. 2, pp. 81-96, 2017.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and scalable
self-driving cars,” arXiv preprint arXiv:1708.063 74, 2017.

L. Gauerhof, R. Hawkins, and T. Kelly, “Back to the future: Origins and directions of
the ‘automotive safety integrity level’ in iso 26262,” Safety Science, vol. 102, pp. 243-

255, 2018.

K. R. Varshney and H. Alemzadeh, “On the safety of machine learning: Cyber-physical
systems, decision sciences, and data products,” Big Data, vol. s, no. 3, pp. 246-255,

2017.

W. Chao, “Machine learning tutorial,” National Taiwan University, 2011.

>

A. Biswas, I. Saran, and F. P. Wilson, “Introduction to supervised machine learning,’

Kidneys 60, vol. 2, no. s, p. 878, 202.1.

J. D. Lee, Q. Lei, N. Saunshi, and J. Zhuo, “Predicting what you already know helps:

Provable self-supervised learning,” Advances in Neural Information Processing Systems,

vol. 34, pp. 309—-323, 2021.

J. Wu, X. Wang, and W. Y. Wang, “Self-supervised dialogue learning,” arXiv preprint
arXiv:1907.00448, 2019.

R. Gentleman and V. J. Carey, “Unsupervised machine learning,” in Bioconductor case

studies. Springer, 2008, pp. 137-157.

I02

http://www.ijrrs.com/article_158750.html
https://arc.aiaa.org/doi/abs/10.2514/6.2023-1124

[69] X.Zhuand A.B. Goldberg, Introduction to semi-supervised learning. Synthesislectures

on artificial intelligence and machine learning, 2009, vol. 3, no. 1.

[70] G. Forestier and C. Wemmert, “Semi-supervised learning using multiple clusterings

with limited labeled data,” Information Sciences, vol. 361, pp. 48—65, 2016.

[71] L.P.Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996.

[72] P. Domingos, “A few useful things to know about machine learning,” Communications

of the ACM, vol. 55, no. 10, pp. 78-87, 2012.

[73] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-444,

2015.

[74] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,

vol. 61, pp. 85-117, 2015.

[75] L. Deng and D. Yu, Deep Learning: Methods and Applications, 2014, vol. 7, no. 3-4.
[Online]. Available: http://dx.doi.org/10.1561/2000000039
P g

[76] A.Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in Neural Information Processing Systems, 2012,

pp- 1097-1105.

[77] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, 2017, pp. 5998—6008.

[78] S. Ruder, “An overview of gradient descent optimization algorithms,” arXzv preprint

arXiv:1609.04747, 2016.

[79] D. Castelvecchi, “Can we open the black box of ai?” Nature News, vol. 538, no. 7623,

p. 20, 2016.

[80] K. Crawford and R. Calo, “There is a blind spot in ai research,” Nature, vol. 538, no.
7625, pp. 311-313, 2016.

[81] E.]J. Topol, “High-performance medicine: the convergence of human and artificial in-

telligence,” Nature Medicine, vol. 25, no. 1, pp. 44—56, 2019.

103

http://dx.doi.org/10.1561/2000000039

[82]

(83]

[8¢6]

(87]

[88]

[92]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436444, 2015.

Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, Deep learning
for visual understanding: A review, 2016, vol. 187, recent Developments on Deep

Big Vision. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231215017634

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” a»Xiv preprint
arXiv:1412.6980, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” Communications of the ACM, vol. 6o, no. 6, pp. 8490,

201I2.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang et al., “Large scale distributed deep networks,” in Proceedings of

the 25th International Conference on Neural Information Processing Systems - Volume
1. NIPS’12,2012.

J. Burrell, “How the machine ‘thinks’: Understanding opacity in machine learning al-

gorithms,” Big Data € Society, vol. 3, no. 1, p. 2053951715622512, 2016.

§.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge

and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436-444, 2015. [Online]. Available: https://doi.org/10.1038/naturel4539

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in neural information processing systems, 2012,

pp- 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2015, pp. 1-9.

Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning for big data,”
Information Fusion, vol. 42, pp. 146—157, 2018.

104

https://www.sciencedirect.com/science/article/pii/S0925231215017634
https://www.sciencedirect.com/science/article/pii/S0925231215017634
https://doi.org/10.1038/nature14539

[93]

[94]

[97]

[99]

[100]

[1ro1]

W. Wang and J. Ma, “A review: Applications of machine learning and deep learning in
aerospace engineering and aero-engine engineering,” Advances in Engineering Innova-

tion, vol. 6, pp. $4—72, 02 2024.

V. Kumar and N. Michael, “Data-driven algorithms for enhanced aircraft operations: A

survey of recent developments,” Journal of Aerospace Information Systems, vol. 17, no. 4,

pp- 183-197, 2020.

M. Helgo, “Deep learning and machine learning algorithms for enhanced aircraft main-

tenance and flight data analysis,” Journal of Robotics Spectrum, pp. 90-99, 05 202.3.

M. Y. Aghdam, S. R. K. Tabbakh, S. J. M. Chabok, and M. Kheyrabadi, “Optimization
of air traffic management efficiency based on deep learning enriched by the long short-
term memory (Istm) and extreme learning machine (elm),” Journal of Big Data, vol. 8,
no. 1, p. 54, 2021. [Online]. Available: https://doi.org/10.1186/540537-021-00438-6

Y. Jiang, T. H. Tran, and L. Williams, “Machine learning and mixed reality for smart
aviation: Applications and challenges,” Journal of Air Transport Management, vol. 111,
p. 102437, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S$0969699723000807

European Union Aviation Safety Agency (EASA), “First usable guidance for level 1
machine learning applications - issue or1,” April 2023, accessed: 2024-04-02. [Online].

Available: https://www.easa.europa.eu

S. Le Clainche, E. Ferrer, S. Gibson, E. Cross, A. Parente, and R. Vinuesa,
“Improving aircraft performance using machine learning: A review,” Aerospace
Science and Technology, vol. 138, p. 108354, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/$1270963823002511

E. Denney and G. Pai, “Assurance-driven design of machine learning-based functional-

ity in an aviation systems context,” 10 2023.

H. Ben Braiek, A. Ttaily, F. Khomh, T. Reid, and C. Guida, “Smood: Smoothness-
based out-of-distribution detection approach for surrogate neural networks in aircraft
design,” 2023. [Online]. Available: https://doi.org/10.1145/3551349.3556936

10§

https://doi.org/10.1186/s40537-021-00438-6
https://www.sciencedirect.com/science/article/pii/S0969699723000807
https://www.sciencedirect.com/science/article/pii/S0969699723000807
https://www.easa.europa.eu
https://www.sciencedirect.com/science/article/pii/S1270963823002511
https://www.sciencedirect.com/science/article/pii/S1270963823002511
https://doi.org/10.1145/3551349.3556936

[102]

[x03]

[104]

[xo5]

[106]

[107]

[108]

[x09]

[110]

[r11]

[r12]

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. Alsaadi, “A survey of deep neural net-

work architectures and their applications,” Nexrocomputing, vol. 234, pp. 11-26, 2017.

R. Montes, A. Rojas, V. Gomez Comendador, R. Valdés, and L. Sanz, “A novel pre-
dictability performance metric and its forecast using machine learning techniques - 37th

digital avionics systems conference - london 2018,” 09 2018.

I. Alreshidi, I. Moulitsas, and K. Jenkins, “Advancing aviation safety through machine
learning and psychophysiological data: A systematic review,” JEEE Access, vol. PP, pp.

I-1,01 2024.

L. Monorchio, A. Garritano, L. Ciolli, E. Luciani, and M. Santini, “A novel predictive

maintenance methodology for improving defence logistics processes,” 2020.

S. Luan, Z. Gu, A. Saremi, L. Freidovich, L. Jiang, and S. Wan, “Timing
performance benchmarking of out-of-distribution detection algorithms,” Journal of
Signal Processing Systems, vol. 95, no. 12, pp. 1355-1370, 2023. [Online]. Available:
https://doi.org/10.1007/s11265-023-01852-0

C. Torens, U. Durak, and J. Dauer, “Guidelines and regulatory framework for machine

learning in aviation,” o1 2022.

B. Sridhar, “Applications of machine learning techniques to aviation operations:

Promises and challenges,” pp. 1-12, 2020.

H. Algahtani and G. Kumar, “Machine learning for enhancing transportation
security: A comprehensive analysis of electric and flying vehicle systems,” Engineering
Applications of Artificial Intelligence, vol. 129, p. 107667, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0952197623018511

Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu, “Physics-informed ma-

chine learning: A survey on problems, methods and applications,” 11 2022.
R. Kashyap, “Artificial intelligence systems in aviation,” pp. 1-26, 02 2019.

D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-
of-distribution examples in neural networks,” CoRR, vol. abs/1610.02136, 2016.
[Online]. Available: http://arxiv.org/abs/1610.02136

106

https://doi.org/10.1007/s11265-023-01852-0
https://www.sciencedirect.com/science/article/pii/S0952197623018511
http://arxiv.org/abs/1610.02136

[x13]

[114]

[r15]

[116]

[117]

[118]

[x19]

[120]

[121]

[122]

[123]

S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image

detection in neural networks,” in /CLR, 2018.

K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” in Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2018.

C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,”
in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2017.

L.Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. M uller,
and M. Kloft, “Deep semi-supervised anomaly detection,” in /CLR, 2019.

D. Bergman and Y. Hoshen, “Classification-based anomaly detection for general data,”
in ICLR, 2020.

J. Tack, S. Mo, J. Jeong, and J. Shin, “Csi: Novelty detection via contrastive learning on

distributionally shifted instances,” in NeurIPS, 2020.

J. Henriksson, C. Berger, M. Borg, L. Tornberg, S. R. Sathyamoorthy, and C. Englund,
“Performance analysis of out-of-distribution detection on trained neural networks,” vol.

130, 2021, p. 106409. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584919302204

A. Shafaei, M. Schmidt, and J. J. Little, “A less biased evaluation of out-of-distribution

sample detectors,” arXiv preprint arXiv:1809.04729, 2018.

Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data,” in JEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2020.

K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” in Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2018.

H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adver-
sarial networks,” in Proceedings of the 3 6th International Conference on Machine Learn-
ing (ICML), 2019.

107

https://www.sciencedirect.com/science/article/pii/S0950584919302204
https://www.sciencedirect.com/science/article/pii/S0950584919302204

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention mod-

ule,” in European Conference on Computer Vision (ECCV), 2018.

D. Li, D. Chen, R. S. M. Goh, and S.-K. Ng, “Rad: Robust anomaly detection via ad-

versarial autoencoder,” arXiv preprint arXiv:1903.11632, 2019.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch™lkopf, and A. Smola, “A kernel
two-sample test,” Journal of Machine Learning Research (JMLR), vol. 13, pp. 723-773,

201I2.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in JEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

M. Azizmalayeri, A. S. Moakhar, A. Zarei, R. Zohrabi, M. T. Manzuri, and M. H. Ro-

hban, “Your out-of-distribution detection method is not robust!” 2022.

A. Shafaei, M. Schmidt, and J. J. Little, “Does your model know the digit 6 is not a cat?
A less biased evaluation of “outlier” detectors,” vol. abs/1809.04729, 2018. [Online].
Available: http://arxiv.org/abs/1809.04729

T. DeVries and G. W. Taylor, “Learning confidence for out-of-distribution detection in

neural networks,” arXiv preprint arXiv:1802.04865, 2018.

K. Lee, H. Lee, K. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” in Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2018.

[132] J.Ren, P.]. Liu, E. Fertig, J. Snoek, R. Poplin, M. DePristo, J. Dillon, and B. Lakshmi-

[133]

[134]

[135]

narayanan, “Likelihood ratios for out-of-distribution detection,” in NexurIPS, 2019.

L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. M”uller, and M. Kloft, “Deep semi-supervised anomaly detection,” in /CLR, 2019.

K. Lee, H. Lee, K. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” in Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2018.

M. Zhang, A. Zhang, T. Z. Xiao, Y. Sun, and S. McDonagh, “Out-of-distribution de-

tection with class ratio estimation,” 2022..

108

http://arxiv.org/abs/1809.04729

[136]

[137]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

L. Ruft, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. M”uller, and M. Kloft, “Deep semi-supervised anomaly detection,” in /CLR, 2019.

T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, and J. Zhu, “Rethinking softmax cross-

entropy loss for adversarial robustness,” in /CLR, 2020.

W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution detection,” in
NeurlPS, 2020.

Y. Du, I. Mordatch, and P. Abbeel, “Implicit generation and generalization in energy-
based models,” arXiv preprint arXiv:1903.08689, 2019.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, “Your classifier is secretly

an energy-based model and you should treat it like one,” in JCLR, 2020.

D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Deep anomaly detection with

outlier exposure,” in /CLR, 2019.

D. Hendrycks and K. Gimpel, “Baseline for detecting misclassified and out-of-
distribution examples in neural networks,” in Proceedings of the International Confer-

ence on Learning Representations (ICLR), 2016.

A. Uwimana and R. Senanayake, “Out of distribution detection and adversarial attacks
on deep neural networks for robust medical image analysis,” vol. abs/2107.04882, 2021.
[Online]. Available: https://arxiv.org/abs/2107.04882

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” in Proceedings of the 34th International Conference on Machine Learning
(ICML), 2017.

K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” in Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2018.

V.]J. Reddi, C. Cheng, D. Kanter et al., “Mlperf inference benchmark,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, 2020.

V. Sze, Y.-H. Chen, T.-]. Yang, and J. S. Emer, “Efficient processing of deep neural net-
works: A tutorial and survey,” Proceedings of the IEEE, 2.017.

109

https://arxiv.org/abs/2107.04882

[148]

[149]

[150]

[x51]

[152]

[153]

[154]

K. David and H. Berndt, “6g vision and requirements: Is there any need for beyond 5g2”
IEEE Vebicular Technology Magazine, 2018.

S.Kumar, S. Mohan, J. Chen, and M. A. Al Faruque, “Survey on tinyml: Challenges and

opportunities in machine learning on embedded devices,” IEEE Design € Test, 2020.

L. Porzi, S. Messelodi, C. Modena, and E. Ricci, “A smart watch-based gesture recogni-

tion system for assisting people with visual impairments,” pp. 19-24, 10 2013.

V. Sze, Y.-H. Chen, T.-]. Yang, and J. S. Emer, “Efficient processing of deep neural net-
works: A tutorial and survey,” Proceedings of the IEEE, 2017 .

K. David and H. Berndt, “6g vision and requirements: Is there any need for beyond sg?”
IEEE Vebicular Technology Magazine, 2018.

S.Kumar, S. Mohan, J. Chen, and M. A. Al Faruque, “Survey on tinyml: Challenges and

opportunities in machine learning on embedded devices,” IEEE Design € Test, 2020.

J. Lee, R. Turner, J. Manke ez al., “Prototyping a smartwatch-based gesture recognition
system using tinyml,” Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiguitous Technologies, 2020.

V.]J. Reddi, C. Cheng, D. Kanter et al., “Mlperf inference benchmark,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, 2020.

J. Guérin, K. Delmas, R. S. Ferreira, and J. Guiochet, “Out-of-distribution detection is

not all you need,” 2023.

M. Johnson and A. Smith, “Integrating machine learning into avionics systems: Chal-
lenges and opportunities,” Journal of Aerospace Information Systems, vol. 16, no. 4, pp.

123-135, 2019.

G. Taylor, D. Martinez, and A. Tandon, “Safety and reliability in machine learning sys-
tems,” in Proceedings of the IEEE Symposium on Reliable Systems, 2018.

C. Torens, F. Juenger, S. Schirmer, S. Schopferer, T. D. Maienschein, and J. C. Dauer,
“Machine learning verification and safety for unmanned aircraft - a literature study.”
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2022-1133

https://arc.aiaa.org/doi/abs/10.2514/6.2022-1133

[160]

[161]

[162]

[166]

[168]

Z. Xu and J. H. Saleh, “Machine learning for reliability engineering and safety
applications: Review of current status and future opportunities,” Reliability
Engineering and System Safety, vol. 211, p. 107530, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0951832021000892

A. Samanta, S. Chowdhuri, and S. S. Williamson, “Machine learning-based data-driven
fault detection/diagnosis of lithium-ion battery: A critical review,” vol. 10, no. 11,
2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/11/1309

E. Barbierato and A. Gatti, “The challenges of machine learning: A critical review,”
Electronics, vol. 13, no. 2, 2024. [Online]. Available: https://www.mdpi.com/
2079-9292/13/2/416

A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of

Toronto, o5 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haftner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha,
“Deep learning for classical japanese literature,” CoRR, vol. abs/1812.01718, 2018.
[Online]. Available: http://arxiv.org/abs/1812.01718

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for

»

benchmarking machine learning algorithms,” CoRR, vol. abs/1708.07747, 2017.

[Online]. Available: http://arxiv.org/abs/1708.07747

F. Yu, Y. Zhang, S. Song, A. Seft, and J. Xiao, “LSUN: construction of a large-
scale image dataset using deep learning with humans in the loop,” CoRR, vol.
abs/1506.03365, 2015. [Online]. Available: http://arxiv.org/abs/1506.03365

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits
in natural images with unsupervised feature learning,” 2011. [Online]. Available:

https://api.semanticscholar.org/CorpusID:16852518

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing
textures in the wild,” CoRR, vol. abs/1311.3618, 2013. [Online]. Available: http:
//arxiv.org/abs/1311.3618

https://www.sciencedirect.com/science/article/pii/S0951832021000892
https://www.mdpi.com/2079-9292/10/11/1309
https://www.mdpi.com/2079-9292/13/2/416
https://www.mdpi.com/2079-9292/13/2/416
http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1506.03365
https://api.semanticscholar.org/CorpusID:16852518
http://arxiv.org/abs/1311.3618
http://arxiv.org/abs/1311.3618

[x70]

[171]

[172]

[173]

[174]

[175]

A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
teature learning,” Journal of Machine Learning Research - Proceedings Track, vol. 15, pp.

21§5-223,01 20I1.

A. Lépez-Cifuentes, M. Escudero-Vifolo, J. Bescés, and A. Garcfa-Martin, “Semantic-

aware scene recognition,” CoRR, vol. abs/1909.02410, 2019. [Online]. Available:
http://arxiv.org/abs/1909.02410

P. Xu, K. A. Ehinger, Y. Zhang, A. Finkelstein, S. R. Kulkarni, and J. Xiao, “Turkergaze:
Crowdsourcing saliency with webcam based eye tracking,” CoRR, vol. abs/1504.06755,
2015. [Online]. Available: http://arxiv.org/abs/1504.06755

A. Kurniawan, Arduino nano 33 ble sense board development. Springer, 2021, ch. 2,

pp- 21-74.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:
6628106

Z. Cheng, C. Zou, and]. Dong, “Outlier detection using isolation forest and local
outlier factor,” in Proceedings of the Conference on Research in Adaptive and Convergent
Systems, ser. RACS ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 161-168. [Online]. Available: https://doi.org/10.1145/3338840.3355641

http://arxiv.org/abs/1909.02410
http://arxiv.org/abs/1504.06755
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1145/3338840.3355641

	Acknowledgments
	Abstract
	List of figures
	List of tables
	Introduction
	Machine Learning based Systems (MLSs)
	Assurance of Machine Learning based Systems
	Role of TinyML in Assurance of MLSs

	V-Model
	Motivation for this Research Work
	Research Gaps
	Research Questions
	Research Contributions
	Thesis Structure

	Background
	Safety-critical systems
	Avionics Systems
	Avionics control systems
	Role of Operational Design Domain in Avionics safety
	 Machine Learning & the Operational Design Domain: Enhancing System Assurance and Safety

	Machine Learning
	Categories of Machine Learning
	Key Elements of Machine Learning
	Performance Metrics for ML Models
	Deep Learning
	Deep Neural Networks (DNNs)
	Convolutional Neural Networks (CNNs)
	The Emergence of ML in Avionic Systems
	Assurance and Machine Learning Models
	Out-of-Distribution (OOD) Detection
	Approaches for Out-of-Distribution Detection
	TinyML
	 TinyML for Identifying Out-of-Distribution Instances

	W-shaped Development Cycle for the Assurance of Avionics systems
	Summary

	Objectives, Methodology, and Results
	Research Objectives
	Datasets Overview
	 Objective I: In-Distribution and Out-Distribution Operational Design Domain
	Methodology
	Experimental Setup
	Results

	 Objective II: The Multi-Layer Framework- Fast TinyML OOD Detector (FTO)
	Model
	Algorithm I:Fast TinyML OOD Detector
	Experimental Setup
	Architecture & Training
	Evaluation Methodology
	Results

	Objective III:Multi-Layer Early Exit for OOD Detection with LOF in DNNs (MELOD)
	Model
	Algorithm II:Multi-Layer Early Exit for OOD Detection with LOF in DNNs (MELOD)
	Experimental Setup
	Architecture & Training
	Evaluation Methodology
	Results

	Conclusion

	Conclusions and Outlook
	References

