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Introduction

Since I started working on my doctoral thesis, I have been fortunate enough to

witness numerous milestones in scientific computing[1–3].

None of these results is inherently something we did not already know how to

do, yet they have not left us any less surprised. The foundation of these discoveries

lies in the recent understanding among the scientific community that to overcome

certain barriers related to solving some problems, we need to adopt integrated

techniques: hardware (the tool with which we solve the problem), algorithms

(how we solve the problem), and software (how we apply the solving strategy) are

closely interconnected. Although this approach is very reasonable, it can require

significant time and effort. We are witnessing the culmination of these efforts in

the field of artificial intelligence, where the initial algorithmic work dates back to

the 1970s and 1980s, and today, with the development of specialized processors,

these algorithms can be applied with extraordinary success[4].

This thesis is inspired by this approach. Indeed, it is unfair to ask machines

designed for a particular purpose to serve as universal solving tools, even if limited

to a specific application like that of this thesis: solving the Schrödinger equation

for a system of electrons in a molecule. In the three central chapters of this thesis,

three algorithms are proposed to solve specific issues in this domain. Each of these

proposals is made with a particular quantum device in mind. Generally speaking,

we refer as quantum device to any quantum system which is controllable in order

to accomplish a given task. In Chapter 1 we expand this simple definition giving

an introduction to quantum computers, their basic usage and applications to the

1
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simulation of molecular systems.

Moving onto Chapter 2, we discuss a proposal to use an optimal control pro-

cedure to find the temporal evolution capable of preparing the ground state of a

molecule. This method is very similar to the more general variational approach

proposed in the VQE[5], but it is primarily intended to be implemented on an ana-

log quantum simulator of a molecule. These types of devices, still in a preliminary

developmental stage[6], cannot solve any problem directly but can solely simulate

a molecule through engineered quantum systems. The reason this is the chosen

platform for this method is that, having a tool specifically designed to simulate the

evolution of a particular Hamiltonian, it is reasonable to think that this task can

be accomplished much faster than implementing the same routine on a universal

quantum computer.

Another principle underlying my thesis work concerns the complexity of chem-

istry. While our goal is to develop algorithms that match the pace of hardware

advancements, allowing for efficient solutions, there is also a growing interest in

capturing more intricate phenomena. In other words, we aim not only to achieve

efficiency higher than standard hardware and algorithms but also to address and

match the complexity level they offer.

This perspective differs from much of the existing literature, which primar-

ily emphasizes the efficiency of calculations representing single-point energies at

chemical accuracy. In the subsequent sections of this thesis, I present algorithms

designed to move beyond traditional approaches, aiming to catch up the intricacies

of chemical complexity.

Thus, in the third chapter, I propose a strategy to unify a generic variational ap-

proach with polarizable continuum models[7] to extend the simulation of molecules

from the gaseous phase to the condensed phase. In this chapter, we go through the

first example of a quantum simulation of a molecule in a solution. This contribu-

tion is mainly geared towards Noisy Intermediate Scale Quantum (NISQ) devices,

which are prototypes of digital quantum computers where noise still poses an ob-

stacle that cannot be corrected (but can be mitigated) in information processing
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and reading.

Finally, in the fourth chapter, with the perspective of integrating different pro-

gramming algorithms and paradigms, I propose an extension of Quantum Phase

Estimation (QPE) that is integrable into software supporting automatic differen-

tiation. The latter is a technique developed in the field of machine learning to

efficiently compute arbitrary-order derivatives of complex functions, such as those

represented in deep neural networks. In the chemical realm, the application of

these methodologies has facilitated the calculation of spectroscopic observables

and the development of geometry optimization procedures for different electronic

structure methods[8]. As of today, QPE is the algorithm of choice for calculat-

ing energies of molecular Hamiltonians when a fault-tolerant quantum computer

will be available. In this chapter, it is developed an algorithm designed for quan-

tum architectures that are elaborated and expanded with qubit numbers orders of

magnitude higher than those currently available.

Efficient quantum backpropagation techniques have not yet been developed,

so scaling this algorithm using available quantum circuit differentiation methods

is unfavorable. Nevertheless, I demonstrate the development of a pipeline for

molecular geometry optimization and pinpoint the obstacles that are yet to be

solved to efficiently scale up automatically differentiable interference methods[9].

Finally, in the last chapter I summarize the results presented and highlight

possible avenues of these works.
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Chapter 1

Methods

The purpose of this section is to establish the main tools and set up the definition

for quantities and terms used throughout the rest of this thesis. To this end we will

discuss the main concepts of quantum computation starting from the definition of

a quantum gate to end up with the building blocks of quantum simulation.

1.1 Introduction to quantum computation

The initial proposals for a paradigm shift in computation, going beyond classical

computer science, trace back to the seminal works of Feynman and Deutsch[1,

2]. They argued for leveraging quantum mechanics as a basis for a novel com-

puting approach, suggesting substantial speedups in simulating quantum systems.

Over the following decades, various algorithms demonstrating exponential speed

enhancements compared to classical solutions have emerged[3, 4]. Currently, a

fervent pursuit of achieving a quantum advantage is underway[5–7], aiming to re-

alize a quantum computer capable of tackling computations deemed intractable

for our most powerful classical supercomputers. At the same time, it is interesting

to notice that as these first experiments were accomplished, a plethora of works

have been published pushing the boundaries of classical simulation of quantum

systems[8–11].

5
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As most of the work on quantum computing requires the manipulation (i.e.

programming) of the information at a deep level of the hardware, we start with an

example of classical computation to demonstrate how quantum computation is a

logical extension of the classical one and how the two differ for the physical regime

at which we manipulate information.

In classical computers the fundamental unit of information is the bit which can

assume two logical values, namely, {0, 1}. The physical implementation of this

entity can be very different (as we will see, heading to the quantum realm, such a

variety of choices will be mantained) but for sake of clarity we will consider only

the classical circuit model of computation.

In the circuit model of computation the information, i.e. bit values, is stored

as electrical voltage at the input/output of a circuit. In these kind of architectures

circuits that perform standard logical operations are called gates. Classical gates

implement all the fundamental constructions of logic, as an example, the if -else

clause or the logical operations and/or. As long as all the fundamental arithmetical

operations can be decomposed in terms of logical operations, classical circuits, i.e.,

gates, can be used as the foundation for classical computers. As an example, the

numerical addition (modulo 2) of two bits is performed setting up a circuit where

the eXclusive OR (XOR) gate and the AND gate are applied to the input qubits

to output, respectively, a bit S (representing the sum) and a bit C (representing

the carry-over).

The last example makes a clear connection between the bit as unit of infor-

mation and its physical implementation; for this reason from now on we will not

make any distinction between them.

Moving from the classical model to the quantum analogue we still preserve

a circuit-like paradigm of computation (even though other possibilities are avail-

able[12–14]) although the nature of the unit of information has fundamentally

changed. The main idea in quantum computing is to store the information in a

quantum bit (from now on simply, the qubit); logical states are no more encoded

in classical {0, 1} states corresponding to electrical voltages but in {|0⟩ , |1⟩} states
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Figure 1.1: Example of quantum circuit diagram. Reproduced from [15].

of a two-level system. Like any quantum system, a qubit can be found in a coherent

superposition of such states:

|ϕ⟩ = a0|0⟩+ a1|1⟩ (1.1)

Where the coefficients {a0 , a1} satisfy the normalization condition
∑

i |ai|2 = 1.

Such a basis to describe a two level system is commonly known in the field of

quantum computation as computational basis.

All the differences between the qubit and the bit affect and determine distinc-

tions between classical and quantum computation. As already mentioned, logical

operations are performed through the action of classical gates; analogously we de-

fine a quantum gate as the operation performed by the computer at the qubit(s)

level. Due to the nature of the qubit a quantum gate is formally described as an

external perturbation which steers the system according to a particular task. Such

a description encompasses the so called circuit model of quantum computation. As

much as there are specific rules to read a classical circuit recognizing symbols for

resistances, capacitors and other circuit elements, there are specific conventions

to represent a quantum circuit. We refer to Fig. 1.1 to explain the basic rules to

interpret these depictions.

The set of qubits on which we perform logical operations is called quantum

register. In the figure above different labels of the input qubits stand to highlight

the difference between the role of the different qubits in a given algorithm. This

implies that in the same quantum device we can distinguish different sets of qubits
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(different quantum registers) having different roles. It is important to notice that,

even though it is not the case of the circuit above, by convention the initial state

of the quantum register is |00...0⟩, i.e. the tensor product of each qubit in the

state |0⟩. In Fig. 1.1 we can see that any operation (i.e., any gate) performed on a

qubit (or a set of qubits) is depicted as a box; in Fig. 1.2 we report a summary of

the most important quantum gates and quantum circuital elements. The label in

the box specifies the kind of action that will be performed.

Figure 1.2: Summary of the most important quantum gates and circuital elements.
Adapted from [15].

As we already know, in most cases quantum mechanical operator do not com-

mute, for this reason is compulsory, in order to have a clear representation of the

quantum dynamics underlying a given algorithm, to specify the order of applica-

tion of each gate. This is accomplished by means of quantum wires.

Each wire is not to be meant as a physical component but nothing more than

the arrow of time (from left to right) defining the order of application for each gate
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in a quantum circuit diagram. We may notice that the order given in the circuit

diagram representation for the application of the gates is chronological, the direct

transposition of a quantum circuit in terms of equations means that the first gate

from the left in the circuit diagram is the rightmost matrix acting on the vector

representing the quantum register.

Returning to Fig. 1.1, the box depicting a meter inside stands for the operation

of measurement of the single qubit state. This operation results in a collapse

of the wavefunction to a classical value (i.e. to a bit) represented as a double

wire. As we will see in more detail afterwards, the black dots, or more generally,

lines connecting gates and dots that are on different wires specify conditional

operations. As shown above conditioned quantum operations can be performed

also upon classical clauses.

1.1.1 On the physical implementation of a quantum com-

puter

Even though it will not be a primary focus in this thesis, one of the main challenges

in the field of quantum computing, perhaps the most significant, is the physical

implementation of a quantum computer. Numerous efforts have been dedicated

to finding the optimal physical implementation of a qubit, leading to a variety of

options [16–21].

The requirements behind the physical implementation of a qubit have been

formalized with the so called DiVincenzo criteria[22]:

1. Well defined structure of the energy spectrum having two distinguishable

levels and any possible interference with other states characterized.

2. Coherent manipulation of the system allowing to prepare and measure the

initial state.

3. Feasible way to build efficient quantum gates.

4. Decoherence time much longer than executional time of the gates.
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5. Being able to perform the readout of the final state.

In particular the fourth statement is related to one of the major issues in quan-

tum computation that still has to be properly addressed: quantum noise. Ideally

speaking, the qubits in the computer are perfectly isolated from the environment

and interacting only with each other. Such a feature is necessary to mantain the

evolution of the system (our quantum program running) coherent (without loss of

information). Indeed is widely known that interaction between a quantum system

and the environment leads to loss of coherence[23] which is ultimately related to

the amount of information stored. Even though we will not consider this aspect

deeply in our numerical simulations, as we will see, it will directly affect the quality

of the results and the strategy behind quantum programming.

1.2 Getting started with quantum programming

In this section we develop our toolkit for quantum computing; we start with the

most basic operations to end up with the implementation of conditional statements

and with the main schemes proposed in literature to decompose multiqubits gate.

1.2.1 Single qubit operations

As already pointed out in our introduction a qubit can be represented as a two

level system with state vector |ϕ⟩ = a0|0⟩ + a1|1⟩. According to the standard

textbooks notation the states of the computational basis have the following repre-

sentation[15]:

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(1.2)

In order to have a better understanding of the meaning of a single qubit oper-

ation we recall the Bloch picture of a two level system. The main idea is to give a

geometrical representation of any possible state in a 2-dimensional Hilbert space.
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Such an isomorphism is established considering the normalization condition of the

wavefunction that allows to write:

|χ⟩ = cos( θ
2
)|0⟩+ eiϕsin( θ

2
)|1⟩ = a0|0⟩+ a1|1⟩

(
a0

a1

)
⇐⇒

(
cos( θ

2
)

eiϕsin( θ
2
)

) (1.3)

In this manner we have set up a direct correspondence between the Hilbert

space and a 3-dimensional unitary sphere:

φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|χ⟩

Figure 1.3: Bloch sphere representation of a qubit.

Thus all the operations on |χ⟩ can be represented either as rotations in the

2-dimensional Hilbert space or as rotations of the Bloch vector on the surface of

the sphere. It is important to point out from the beginning that one of the main

issues in quantum programming is to decompose the evolution we have in mind for

our computer in terms of operations we can easily perform on one or two qubits

at the time. The set of operations on which we decompose our "code" forms what

is called the gate library.

For single qubit operations the Bloch sphere representation allows to derive an

easy and general technique to decompose any single qubit operation. As far as we

have a correspondence between rotations of a 3D vector and unitary evolutions we

can exploit the formalism of the cartesian tensors[24] to obtain a general expression

for a single qubit operation. This strategy relies on the use of the Pauli matrices,
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Eq. (2.4), and of the rotation operators, Eq. (2.5):

σz =

(
1 0

0 −1

)
σy

(
0 −i
i 0

)
σx =

(
0 1

1 0

)
(1.4)

We can notice the difference in the notation between Eq. 1.4 and Fig. 1.2 for what

concerns the labeling of Pauli matrices; as they are ubiquitous in the field of

quantum computing and both these notations are often exploited we will use them

with no distinction.

Rz = e−
iθσz
2 = cos( θ

2
)1− isin( θ

2
)σz =

(
e− iθ

2
0

0 e
iθ
2

)

Ry = e−
iθσy
2 = cos( θ

2
)1− isin( θ

2
)σy =

(
cos( θ

2
) −sin( θ

2
)

sin( θ
2
) cos( θ

2
)

)

Rx = e−
iθσx
2 = cos( θ

2
)1− isin( θ

2
)σx =

(
cos( θ

2
) −isin( θ

2
)

−isin( θ
2
) cos( θ

2
)

) (1.5)

Since it is known from angular momentum theory that any rotation of a point

in a fixed frame of reference in a 3D space can be expressed as the composition of

three rotations on different axis we obtain an expression for a general unitary U

in terms of rotation operators:

U = Rz(γ)Ry(β)Rz(α) =

(
e−i(γ+α)/2cos(β

2
) −e−i(γ−α)/2sin(β

2
)

ei(γ−α)/2sin(β
2
) ei(γ+α)/2cos(β

2
)

)
(1.6)

Where α, β and γ are commonly referred to as Euler angles[24].

1.2.2 Multiple qubits operations

Single qubit operations are fundamental to understand the most basic operations

in quantum computation; nevertheless being able to manage more than one qubit
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at the time is mandatory to have a device powerful at least as a classical computer.

From a theoretical point of view it has been demonstrated (Solovay-Kitaev the-

orem[25]) that a universal gate library (a gate library with sufficient elements to

synthetize any kind of operation) requires at least one two-qubits operation, usu-

ally the gate library is completed adding the Controlled-NOT gate (CNOT)[26].

Before introducing all the elements to make clear this sentence we shall give a

closer look at the tensor product formalism upon which the picture of a composite

quantum system such as a quantum register is based.

The Hilbert space in which the quantum register wavefunction is defined is

given by the tensor product of the Hilbert spaces of each qubit:

H =
n⊗
i=1

C2 = C2n

As previously anticipated the basis vectors for this space are commonly chosen

as the direct product between the basis vectors of each qubit in its Hilbert subspace,

{|k⟩} with k = 0,..., N := 2N -1. A useful convention is to order the product states

such that the values of the direct product of the basis vectors of each qubit forms

the binary representation of k. In other words, for instance, the state |100⟩ is

labeled as |4⟩. Furthermore such a representation, in analogy with the classical

version, is commonly known as bitstring states representation[27].

Now let us consider a quantum register with m qubits, a one qubit gate U

operating on the n-th qubit is then given as the following tensor product:

U = 1⊗ ...⊗ 1︸ ︷︷ ︸
n−1 times

⊗U⊗1...⊗ 1︸ ︷︷ ︸
m−n times

(1.7)

Analogously, concerning a quantum register with m qubits, a general multiqubit

gate V operating on the subspace spanned by j qubits, for instance {n, n+1, ..., n+

j}, is defined as:

V = 1⊗ ...⊗ 1︸ ︷︷ ︸
n−1 times

⊗ V︸︷︷︸
j−qubits operator

⊗ 1...⊗ 1︸ ︷︷ ︸
m−(n+j) times

(1.8)
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The property of the universal gate library stated before can be rephrased as

the fact that a general multiqubit gate can be decomposed as the tensor product

of gates acting at most on a subspace spanned by two qubits. For this reason we

introduce the most useful two qubits gate: CNOT. Its importance is due to the

fact that all the conditional statements, very common and useful also in canonical

programming (whose counterpart is given by the XOR gate mentioned at the

beginning of the chapter), have a similar form and arise from this gate.

Its representation in the computational basis is:

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ≡ • (1.9)

Where the identity defines the circuit element convention for the symbol of the

CNOT gate.

This operation involves two different kinds of qubits: the control qubit and

the target qubit. More generally any controlled gate is specified by two sets of

qubits: control and target. In the circuit representation black dots determine the

control qubits while the actual operation is depicted as a labeled box on the target

qubits. In the computational basis the action of the CNOT is given by the following

relation: UCNOT |c, t⟩ = 1|c⟩ ⊗ UCNOT |t⟩ = |c, t ⊕ c⟩, where t ⊕ c stands for the

modulo-2 sum. In practice, if the control qubit is in the state |1⟩ the target qubit

is flipped, otherwise is left unchanged. For sake of completeness we also report,

in the following picture, the truth table (i.e., the table that provides all possible

outputs for all possible inputs which can be directly derived by multiplying the

computational basis vector corresponding to each input to the UCNOT matrix in

Eq. 1.9) of this gate (Table 1.1).

At this stage we have seen that the action of the CNOT gate enables to perform

a logical operation exactly identical to the classical XOR gate. Moreover the

quantum analogoue of the XOR has also an additional feature that is creating
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Table 1.1: Truth table of the CNOT gate.

Input Output
Control Target Control Target
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |0⟩

entanglement between different qubits. We can show this characteristic considering

its action when applied to a target qubit in the state |ψ⟩ = 1√
(2)

(|0⟩ + |1⟩) that,

incidentally, can be prepared by applying the Hadamard gate to the state |0⟩, with

a control qubit in the state |0⟩:

UCNOT |ϕ⟩ = UCNOT |ψ⟩|0⟩ =
1√
2


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1

0

1

0

 =
1√
2


1

0

0

1

 =
1√
2
(|00⟩+|11⟩)

(1.10)

In this last equation we have shown that, starting from a state that can be written

as the direct product of two states, the action of the CNOT gate results in a state

that can not be separated anymore in a direct product of different states, i.e. is

entangled.

It is important to notice that the CNOT gate is only a particular case of the

more general controlled operation , c-U, which representation is a 4x4 diagonal

block matrix:

Ucontrolled =

(
1 0

0 U

)
≡ •

U

(1.11)

The notion of controlled gate can be extended further considering that would

be useful implementing operators that have either more than one control qubit or
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more than one target qubit. In the most general case we could have, as previously

mentioned, a set of control qubits and a set of target qubits. All this scenarios

can be covered introducing the concept of quantum multiplexor due to Shende et.

al[27].

The main idea behind the introduction of the quantum multiplexor is finding

a tool which enables to directly transpose the if-then-else construction into the

quantum realm. In this perspective determining if the predicate is whether true or

not means that the clause to be performed depends on the state(s) of the control

qubit(s). Thus if our control qubit is in a superposition of |0⟩ and |1⟩ we will have

as outcome of our operation a linear combination of if and else clauses. To see

that also the CNOT gate lies within the definition of a quantum multiplexor we

transpose its truth table in a pseudocode:

if qubit(0) is |0>:

U_cnot == (1 0)

(0 1)

else:

U_cnot == (0 1)

(1 0)

In the quantum multiplexor perspective the control qubits are often referred as

select qubits due to the fact that, while the bitstring state formed by their tensor

product remains preserved by the action of the gate, it selects the actual behavior

of the gate acting on the subspace spanned by the remaining qubits.

To give an example we consider the representation of a multiplexor with a single

select qubit acting on a quantum register of k target qubits. The whole Hilbert

space will be 2k+1-dimensional and, with the select qubit being the leftmost in the

bistring state representation, the matrix representation of this gate will be a 2x2

diagonal block matrix with each block being 2k-dimensional:

Umultiplexor =

(
U0 0

0 U1

)
(1.12)
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More generally, a quantum multiplexor with s select qubits and k-s target

qubit, in this representation, is a diagonal block matrix with 2s blocks of size 2k−s

x 2k−s. The circuit diagram representation of these kind of gates is a series of

multicontrolled gates. Control qubits are set up such that they form a particular

bitstring state while the gate to be performed is the one selected by the state of

the control qubits. For instance, if we consider a 4x4 block diagonal matrix (2

select qubits and one target qubit) we have:

UMP =


U00 0 0 0

0 U01 0 0

0 0 U10 0

0 0 0 U11

 (1.13)

as a matrix represented in the computational basis and

UMP = • • X • • X

• X • X • X • X

U11 U10 U01 U00

(1.14)

as a quantum circuit.

We notice that the X gate allows to use the usual black dot symbol, conven-

tionally standing for a conditional clause set to true in the case of a control qubit

in the state |1⟩, also when the if statement is fulfilled for the control qubit in the

state |0⟩. Another way to understand this behaviour is looking at the Tab. 1.1

inverting the state of the control qubit in each entry.

As mentioned earlier, the basic elements for programming are defined by the

gate library. Once this is established (according to the specifications of the avail-

able hardware), circuits such as Eq. 1.14 (or more complicated ones corresponding

to dense matrices!) must, in turn, be decomposed.

Various techniques have been developed to accomplish this task; however, it

is important to emphasize that, in general, the compilation of a quantum cir-
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cuit—down to the instructions in terms of the computer’s physical Hamiltonian—is

a very active area of research in itself[28]. This is because it represents one of the

ways to reduce the runtime of a program. In particular, optimal control tech-

niques[29], reinforcement learning[30], and sophisticated mathematical decompo-

sition techniques[31, 32] have been adopted to address the problem of optimal

compilation.

In the following chapters our analysis will not consider the efficiency of the

compilation routine given that rigorous statements shall require also a particular

architecture in mind.

1.3 Simulating molecular systems with quantum

computers

After presenting the main tools needed to understand the language of a quantum

computer we are now interested in finding all the ingredients necessary to use this

model of computation to simulate physical systems of interest to chemistry. Thus

the aim of this section is going through a general workflow to model chemistry

using quantum computers. We start giving an account on a well-known mapping

between second quantization formalism (a standard tool in quantum chemistry)

and the algebra of Pauli matrices, that, as we have already seen, is the natural

language of quantum computers. Afterwards we are going to look in detail how

the general set up of a quantum chemistry calculation is transformed once it has to

be set up on a quantum computer. First, we focus on how to upload a molecular

wavefunction on a quantum computer and how to compute time evolution; finally,

we will also discuss the measurement step needed to extract the final output.

1.3.1 The electronic structure problem

As stated in the introduction, the main goal of this thesis is to present the design

of algorithms devoted to the solution of the Schroedinger equation which reads,
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for a sistem of N electrons and M nuclei in the Born-Oppenheimer approximation,

as:

Ĥmol|Ψ⟩ = (−1

2

N∑
i

∇2
i −

M∑
a

N∑
i

Zaei
ria

+
N∑
i>j

e2

rij
)|Ψ⟩ = E|Ψ⟩ (1.15)

Where, as per the rest of this thesis, we have used atomic units to express all the

terms in the Hamiltonian.

Since we will be working in second quantisation throughout the rest of this

thesis, we also report the molecular Hamiltonian according to this formalism, which

is the starting point for our translation of the electronic problem onto a quantum

computer.

Ĥmol =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

gpqrsa
†
pa

†
rasaq (1.16)

Where hpq are the one-electron integrals containing the kinetic energy and the

electron-nuclei repulsion terms and gpqrs are the two-electron repulsion integrals.

In the next section we establish the tools needed to (i) upload a molecular

wavefunction on a quantum computer and (ii) translate the molecular Hamiltonian

into a qubit observable.

1.3.2 Encoding the molecular wavefunction

The standard description of molecular systems in quantum chemistry is based

on Slater determinants that are N-electrons wavefunctions built as the antisym-

metrized product of one-electron wavefunctions:

|Θ⟩ = |ϕ1ϕ2 . . . ϕN | =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) . . . ϕN(x1)

ϕ1(x2) ϕ2(x2) . . . ϕN(x2)
...

... . . . ...

ϕ1(xN) ϕ2(xN) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣
(1.17)
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Here ϕi represents the single particle basis function corresponding to the i-th spin

orbital.

To identify a link with the formalism of quantum gates this formulation of a

Slater determinant, based on the language of first quantization, is not as easy to

handle as that of the second quantization where a Slater determinant is written

as:

|Θ⟩ =
N∏
j=1

a†j|vac⟩ = |f0f1 . . . fN⟩ (1.18)

Here a†j is the fermionic creation operator[33] and the state |vac⟩ is a shorthand for

|vacuum⟩ being the standard notation in the number occupation representation

for the empty state. fi is the occupation number of the i-th spin-orbital which can

take the values {0, 1}.

Generally speaking a mappingM between the fermionic and qubit algebras is

a rule to establish a connection betwenn the Occupation Number (ON) vectors in

the Fock space to the bitstring states of the quantum computer:

M : |f0f1 . . . fN⟩ → |q0q1 . . . qN⟩ (1.19)

In this thesis our implementation always leverages the Jordan-Wigner map-

ping MJW which implies fi = qi, i.e. the occupation number of a given spin

orbital is locally encoded into the qubit state. This choice, combined with the

fermionic commutation relations and the qubit commutation relations determines

the following equations for the operator algebras:

aj = −
j−1∏
k=1

σkzσ
−
j a†j = −σ+

j

j−1∏
k=1

σkz (1.20)

As we can see the antisymmetric nature of the fermionic wavefunction defines,

in this mapping, that the (very efficient) locality of the occupation storage is

acquired at the expense of inefficient parity storage on O(N) qubits (due to the

string of σzs). Generally speaking, the maximum number of qubits on which each
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Pauli string produced act is called Pauli weight (which we will see affects also the

computational budget of measuring expectation values) and it is, along with the

number of qubits needed for the mapping, an important metric for judging the

performance of the mapping. Concerning the MJW both the number of qubits

and Pauli weight scale as O(N).

In this thesis we did not focus on the aspect of finding the optimal map-

ping w.r.t. the given algorithm proposed even though it can significantly impact

the overall runtime if properly chosen. Nonetheless it is important to keep in

mind that other choices are possible, as example, while keeping a linear scaling of

qubits’ requirement with the spin-orbitals, mapping based on classical data struc-

ture transformations such as Fenwick trees[34, 35] or ternary trees[36] can achieve

Pauli-weights of, respectively, O(log2n) and O(log32n). Moreover, very recently,

strategies to build architecture-aware mappings[37] have been developed further

increasing the specificity of this choice when looking for an optimal implementa-

tion.

Setting the input: preparation of the initial state.

In almost all cases of interest for quantum chemical simulations, we deal with states

of N fermions that can be written as linear combination of K Slater determinants

|νi⟩:

|ψ⟩ =
K∑
i=1

bi|νi⟩ (1.21)

Thus, once we have chosen a mapping (i.e. correspondence between ON vectors

and bitstring states), we could be interested in understanding how to prepare a

given wavefunction on the quantum computer.

To accomplish this task several options are available; as a first example we could

start from the amplitudes’ vector b and employ a general embedding scheme like

the ones presented in [27] as implemented in the Qiskit package[38].

Other strategies are possible if we look at the problem from a more physical
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standpoint: for example one could use adiabatic state preparation if interested in

preparing the ground state of the Hamiltonian[39, 40]. Of course this strategy may

not be computationally feasible depending on the Hamiltonian at hand but could

be also used in conjunction to other strategies as proposed in Ref.[41] or explored

in Chapter 2 to achieve efficient scalings.

Along this line, optimal control approaches in which we are interested in max-

iming the fidelity of a parametrically prepared quantum state with the state of

interest are possible choices[42–44].

Finally also strategies based on uploading wavefunctions obtained with other

electronic structure theory methods have been proposed[45]. Particularly, when

considering Density Matrix Renormalization Group (DMRG) calculations[46] with

Matrix Product States (MPS) ansatze an efficient upload is possible[47, 48].

1.3.3 Processing the information

Having described how the electronic structure problem can be mapped onto a

quantum computer and outlined the main structures of quantum programming,

we are now capable of performing transformations on the molecular wave function

in a quantum computer. In this section, our primary focus is on the quantum

dynamics problem, which serves as a subroutine in Chapters 2 and 4.

Quantum dynamics

The efficiency (in the sense of polynomial runtime scaling O(poly(N)) with sys-

tem size) of a quantum computer in simulating the dynamics of a molecule was

demonstrated in the work of Ref. [49]. This work lays the ground for the theoret-

ical motivation of possible quantum advantage in using quantum devices for the

electronic structure calculations.

The time evolution operator acts on the wavefunction resulting in a translation

along the time axis. We can have three different cases:
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• Evolution under a time independent Hamiltonian:

U(t, 0) = e−iĤt (1.22)

• Evolution under a time dependent Hamiltonian commuting at different in-

stants:

U(t, 0) = e−i
∫ t
0 Ĥ(t′)dt′ (1.23)

• Evolution under a time dependent Hamiltonian non commuting at different

instants:

U(t, 0) = e
−i

∫ t
0 Ĥ(t′)dt′

+ (1.24)

Where the plus subscript stands for the Dyson, time ordered, operator[50].

Independently on the kind of Hamiltonian defining the dynamics the time evolution

operator always satisfies the following relationships:

U(t, t) = 1

U(−t, 0) = U †(t, 0) = U(0, t)

U(t2, t1) = U(t2, t1)U(t1, t0) with t2 > t1 > t0

(1.25)

Theoretically speaking if we knew the analytic representation of the time propa-

gator at any time we should just use the most suitable decomposition technique

over the available gate library and run the computation. Unfortunately, in most

cases[51], since the time evolution is an exponential operator a closed analytic form

is not available. For this reason several techniques to compute quantum dynamics

have been developed so far[52–56].

As an example, we discuss briefly the Trotter-Suzuki approximation[57]. In

this approach we consider the evolution of a system whose Hamiltonian Ĥ can

be written as a sum of "k-locals" Hamiltonians, Ĥ =
∑

i ĥi, meaning that each

term in the sum is acting, at most, on k different particles (qubits). We notice

that this is always the case for a molecular system in which we consider only
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the interaction between couple of particles (electrons or nuclei) mediated by the

Coulombic interaction.

For these kind of Hamiltonians the time evolution, considering for instance the

time independent case (similar asymptotic cost can be achieved for time-dependent

Hamiltonians[58]), can be approximated at the first order as:

U(t, 0) = e−i
∑

j ĥjt =
(∏

j

e−iĥj
t
N

)N
+O(t2/N) (1.26)

It is important to stress that the approximation of the last equation is due to

the fact that the usual composition properties for exponentials is not valid for

operators which do not commute. To this extent, not only the truncation order

but also the ordering of the different terms in the Trotter expansion can affect the

accuracy of the propagation[59].

More generally, considering for example a decomposition of Ĥ = Â + B̂ it is

possible to show[56] that the error for a simulation up to time t divided into r

steps is given by:

||e−i
t
r
B̂e−i

t
r
Â − e−it(Â+B̂)|| ≤ t2

2r
||[Â, B̂]|| (1.27)

To conclude, it is important to highlight that these techniques can be made

more efficient when a problem-aware analysis is carried out. The importance of this

further step is shown, for example, in Babbush et al.[60] where the authors have

very recently demonstrated that exact quantum dynamics on quantum computer

can scale more efficiently than classical mean-field quantum dynamics. Clearly

these asymptotic estimates are useful for motivating the work in the field of quan-

tum algorithms but still necessitate benchmarks on hardware capable of providing

tight numerical scalings and benchmarks.
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1.3.4 Measuring the result

The last step of a quantum algorithm is the evaluation of the result and transfer

of the information into classical bits.

Tipically, standard experimental setups only allow to perform measurements

on the computational basis which means performing a measurement on the z-axis

for each qubit:

⟨σzj ⟩ = Tr{σzjρj} = P|0⟩ − P|1⟩

P|0⟩ + P|1⟩ = 1
(1.28)

Where ρj is the reduced density matrix of the j-th qubit and P|0,1⟩ is the population

of the state |0⟩ or |1⟩ of the j-th qubit. This construction can be easily generalized

to more complicated operators by appending to the quantum circuit of interest

gates that rotate the computational basis into the diagonal basis of the operator

Ôj.

Hence, considering for instance the general task of measuring the expectation

value of the operator Ô (now acting on N qubits) for a molecular wavefunction,

we can have:

⟨Ô⟩ =
∑
k

mk⟨P̂k⟩ (1.29)

Where Pk are pauli strings obtained using one of the strategies presented in Sec. 4.2

on the operator Ô and mk matrix elements depending on (i) the mapping strategy

and (ii) the particular operator at hand.

As Eq. 1.28 shows these kind of measurements require statistical sampling that

scale, for an ϵ-good estimate, as O(ϵ−2). This quadratic scaling is thought to

hamper the scalability of variational quantum algorithms[61] for this reason many

methods have been developed to minimize the computational cost of this step.

Particularly, both strategies aimed to reduce the number of independent measured

Pauli strings[62–64] and strategies to reduce the impact of error propagation due

to the 1-norm of the operator ||Ô||1 =
∑

k |mk|[65] have been considered. It is
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important to highlight that this stage, even though one could think as independent

from the previous steps described in this chapter, can be strongly influeced from

the particular mapping (i.e. from the Pauli weight), problem and representation

of the problem at hand.

Other proposals have recently been put forward to reconstruct expectation

values from random (or informed[66]) sampling of the Pauli string space. Such

an approach goes under the name of classical shadowing[67, 68]. These methods,

which seem quite promising, have been used in Chapter 2 to estimate the runtime

scaling of our variational analog simulation.

To conclude this section we want to highlight a last option to measure expec-

tation values which scaling is still O(ϵ−2) but is at the basis of almost all the

algorithms considered promising in a fault-tolerant setting whose final scaling (as

the one considered in Chapter 4) is O(ϵ−1). In this option we do not measure

directly the quantum register where the information resides but, instead, we in-

troduce an ancillary register (or simply just a qubit) which we let interfere with

the register of interest to get information with fewer measurements.

This protocol is known as Hadamard test (or scattering circuit as per the

nomenclature of the work in which it is introduced[69]).

Re{⟨ψ|U |ψ⟩} = H • H

/⊗
n

P U

(1.30)

Where we used a slash to specify that a single wire encompasses a qubit register

of n qubits. Notice that the gate P prepares the state |ψ⟩ = P̂ |0⟩⊗n .

Im{⟨ψ|U |ψ⟩} = H • S H

/⊗
n

P U

(1.31)

Where S =

(
1 0

0 i

)
is the phase gate.

Looking at Eqs. 1.30-1.31 we can understand how the burden of preparing mul-
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tiple times the same state to sample expectation values of all the Pauli string of an

operator Ô is replaced with the additional cost of an ancillary qubit and increased

depth due to the controlled operation.
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Chapter 2

Optimal control allows ground state

preparation

Background and personal contribution

The work presented in the following chapter represents the starting point of my

Ph.D. project. My experience with quantum computing began by developing an

optimal control procedure executed on a quantum processor, with the goal of

maximizing population transfer between molecular states[1].

Building on this initial achievement, additional efforts were required to adapt

this approach to the realm of electronic structure. At the outset of the project,

determining the type of perturbation (with the constraint of maintaining a physical

interpretation conducive to easy application on an analogue simulator) and the

appropriate parameterization for this perturbation were not clear.

From a technical standpoint, I grappled with the challenge of devising an effi-

cient implementation that would enable the exploration of the simulation protocol

by varying the number of optimization iterations and, as much as possible, in-

creasing the size of the studied system.

This chapter is presented in the form of an article. Following the introduction,

where I delineate the protocol in relation to the literature on variational algorithms,

the results demonstrate the capability to find the ground state of molecular systems

32
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in times shorter than estimated with theoretical bounds for quantum speed limit.

I developed the algorithm (along with exploring different parameterizations

and control shapes) and its software implementation with the help of Dr. Rosa

(post-doc in the group of Prof. Corni) to produce the numerical results. Finally,

I drafted the article in its original version.
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Abstract

We show that optimal control of the electron dynamics is able to prepare molecu-

lar ground states, within chemical accuracy, with evolution times approaching the

bounds imposed by quantum mechanics. We propose a specific parameterization of

the molecular evolution only in terms of interaction already present in the molec-

ular Hamiltonian. Thus, the proposed method solely utilizes quantum simulation

routines, retaining their favourable scalings. Due to the intimate relationships

between variational quantum algorithms and optimal control we compare, when

possible, our results with state-of-the-art methods in literature. We found that the

number of parameters needed to reach chemical accuracy and algorithmic scaling

are in line with compact adaptive strategies to build variational ansatze. The al-

gorithm, which is also suitable for quantum simulators, is implemented emulating

a digital quantum processor (up to 16 qubits) and tested on different molecules

and geometries spanning different degrees of electron correlation.

2.1 Introduction

At the heart of the second quantum revolution are two main characters: those

working to counteract the harmful effects of quantum noise and those seeking the

most efficient strategies to gain practical advantage from new quantum devices

as soon as possible. Both face this challenge because properly harnessing physics

at the nanoscale would enable the leap forward envisaged by the use of quantum

computers[2–4]. First evidences of a quantum advantage[5–7], albeit with some

caveat [8], are now coming to light.

Within this framework, the precise manipulation of quantum matter is cen-

tral to the emergence of new ideas leveraging non-classical properties. Coherent

control, before being the basis of quantum information processing techniques [9,

10], has been proven a pivotal tool for the exploration of exotic states of matter

enabling the preparation of ultracold atoms [11, 12] or the investigation of ul-

trafast electron dynamics [13, 14]. Accomplishing these tasks means to push the
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boundaries of engineering into the realm of quantum physics, which has led to

the rapid development, both in terms of techniques [15, 16] and applications [17],

of Quantum Optimal Control Theory (QOCT) [18]. In this context the physical

knowledge of the system and the ability of simulating its evolution in presence

of an external control are exploited to enhance a desired response by specifically

tailoring a tunable perturbation.

Here we propose an optimal control approach to find the ground state of a

molecular Hamiltonian: the real time evolution in presence of an external pertur-

bation is handled by a quantum device, while the optimisation of the perturbation

is carried out on a classical hardware to minimize the energy of the system. In

this manner the computational burden of the simulation is addressed by the quan-

tum device for which the solution of this task is expected to be one of the first

applications with a significant advantage over classical hardwares [19, 20]. The

implementation of this routine does not require the universality of the quantum

platform and is applicable to both an analog simulator and digital quantum com-

puters. Our work will be focused on the problem of determining the ground state

energy of a molecular system and the implementation that we will show directly

relates to digital quantum simulators whose technology, to date, is more mature

than the one of analog quantum simulators for chemistry [21, 22]. Nevertheless,

given the potential of this latter alternative methodology, we will comment the

possible development of our algorithm on an analog platform.

Similar optimal protocols have already been applied to the case of laser cooling

in a fully classical implementation [23]. Differently from the standard laser cooling

procedure (which is mostly related to the vibrational and rotational degrees of

freedom [24, 25]), here we do not drive the evolution towards states that are prone

to relax towards the target state but, instead, point directly to the target state

minimizing the energy of a closed quantum system. For this reason we will refer

to the proposed method as quantum simulated cooling since the ultimate goal of

the algorithm is to find the optimal perturbation that realizes a trajectory (among

those that can be realised by the adopted time-dependent Hamiltonian) driving
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the system from an initial guess state (higher in energy) to its ground state.

The algorithm we are proposing is based on the idea of solving an optimal

control problem using a quantum system as a co-processor; is therefore inscribed in

a research line where other problems have been addressed similarly. In particular,

Li et al. have considered a state preparation problem on a NMR quantum processor

[26]; Judson and Rabitz [27] focused on the issue of optimal population transfer

in ultrafast spectroscopy exploiting a closed-loop feedback control strategy. They

proposed to shape the impinging light pulse on the basis of the molecular response

until the evolution reaches optimally the desired state. Recently this idea has been

extended, using a quantum computer, to those cases for which it is not possible to

build such an experimental apparatus [1].

In addition to these works, the relation between optimal control and variational

hybrid algorithms is deep and has been discussed in Ref. [28]. Among the plethora

of ansatze proposed in literature to solve quantum chemistry problems, the works

of Wecker et al. [29] and Choquette et al. [30] are closely related to this work. The

former has proposed, as ansatz for the Variational Quantum Eigensolver (VQE),

a parametrized quantum circuit of the same structure of the system Hamiltonian

allowing to restrict the variational search within a symmetry-preserving subspace.

This eases the optimization that is challenging when occuring in the entire qubits

register Hilbert space. The work of Ref. [30] moves from this point to include

an additional term in the variational circuit accounting for temporary drifts in

subspaces where the symmetries of the system are not conserved. Even though

the variational circuit is not meant to realize a real time evolution of the system, the

additional term that is included is thought as an external control highlighting, once

again, the close link between optimal control and variational hybrid algorithms.

Finally, we also mention the work of Meitei et al.[31] that, very recently, has

explored the possibility of rephrasing a VQE approach to optimize not a unitary

generated by a parametrized quantum circuit (i.e., the typical approach) but rather

to shape the state preparation unitary applying an optimal control protocol di-

rectly on the hardware Hamiltonian. Following up this work, many efforts[32] have
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been done to reduce the duration of the pulses during the control solution either

including the pulse length into the variational optimization[33] or allowing leakages

of the computer wavefunction outside the standard computational space[34]. This

work aims to contribute to these research lines considering an analog quantum

simulator specifically devised for the molecular Hamiltonian.

This paper is organized as follows: in Sec. 2.2 we present the general structure

of the method, in particular, the main steps that must be followed when apply-

ing this procedure to any system are identified. In this regard, in section Sec.

2.2.1 we describe our choice for the energy optimization task on the classical hard-

ware. Section 2.3 presents applications to molecular systems describing in detail

the control problem and the parameterization of the control operators (Sec.2.3).

Results and technical details about the implementation are provided in Sec. 4.5.

We first show how the optimal control procedure is able to find the fundamental

state while maintaining chemical accuracy. Then we focus on the effects that the

length of the dynamics can have on optimization. We find that the dynamics has

an optimal length in terms of convergence and result found, we compare these

times of the dynamics to quantum speed limit estimates (i.e. minimum times to

accomplish evolution according to quantum mechanics) for processes driven by

time-dependent Hamiltonians, and, as reported in Ref.[35], we find that theoret-

ical bounds for time-dependent processes provide quite loose estimates compared

to numerical results. Moreover, we study the convergence of the problem by keep-

ing the evolution duration fixed and increasing the number of control parameters.

Finally, section 2.4.3 is devoted to a semi-empirical estimate of the computational

cost of this method obtained applying this method to hydrogen chains of different

lengths. To conclude, we summarize the results obtained and discuss potential

future extensions of this work.
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2.2 Quantum simulated cooling

In this work we assume that a reference wavefunction |Ψ0⟩, approximating the tar-

get ground state |ΨGS⟩ of the problem Hamiltonian Ĥ, can be computed efficiently

with a preliminar classical computation (e.g. such as the solution of a mean field

effective Hamiltonian). We propose the use of a quantum processor to simulate

the dynamics of the system Hamiltonian in presence of a time-dependent external

control V̂ (t). If the unitarity of the dynamics is preserved, V̂ (t) can be adapted

differently depending on the problem at hand, with the purpose of finding the

ground state of the system. The perturbation can either represent a real physical

process (such as the presence of an external field coupled to some system’s degree

of freedom) or a process without experimental counterpart, not affecting the vi-

ability of the proposed computational method. Once the evolution is computed,

the quantum processor is used to evaluate the Hamiltonian expectation value for

the system at the final time t = T , then the perturbation is iteratively shaped by

a classical optimizer which aims to minimize the energy of the system (see Fig.

2.1).

More formally, the quantum computer provides the evolution of the system due

to a parametrized Hamiltonian Ĥa(t):

Ĥa(t) = Ĥ + V̂a(t) (2.1)

Where a is the set of control parameters shaping the external perturbation.

In order to compute the evolution, the simulated Hamiltonian is mapped onto

a N-qubits quantum register:

ĤQC
a (t) =

∑
j

γa
j (t)P̂j (2.2)

Here j is an index running on different Pauli strings P̂j ∈ {σx, σy, σz, I}⊗N that

are operators acting non trivially on k different qubits (in order to ensure the

simulation routine efficiency [19]). The coefficients γa
j (t) include both the system



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION39

|guess⟩

|GS⟩

Û QC
a (0, T )

HQC

a

⟨H⟩

Figure 2.1: Schematic diagram for the hybrid algorithm. The evolution of the sys-
tem wavefunction is performed on a quantum simulator, the Hamiltonian expection
value ⟨H⟩ is measured feeding a classical optimization routine which outputs a new
set of control parameters a. The control parameters shape the evolution specified
by the time evolution operator ÛQC

a (0, T ) which starts from an higher energy ini-
tial guess state, |guess⟩, and drives the evolution towards the exact ground state
of the system, |GS⟩. The loop ends when the energy is below a user-specified
threshold.
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Hamiltonian and time dependent perturbation matrix elements, whose explicit

form (as for the Pauli strings) depends on the adopted mapping.

Notably, we have not made any observation regarding the quantum simulation

paradigm to adopt, as the application of this methodology is not limited to univer-

sal quantum computers but can be applied with any suitable quantum simulator.

In the following we will make explicit reference to the implementation on a digital

quantum computer, bearing in mind that other routes are available which may be

more or less convenient depending on the system under consideration.

Several methods have been developed to implement the evolution of a time

dependent Hamiltonian [36–38] here we compute the approximate time evolution

operator Û(0, T ), discretizing the time axis with K slots of width ∆t = T
K

. Within

each time slot we consider the Hamiltonian as time independent. The accuracy of

this procedure depends on the precision with which the Hamiltonian is simulated

within each time slot, the time step used and the complexity of the perturbation

[39].

So far we have presented the general framework of the method and discussed

the role played by the quantum device. In the following section we discuss the

complementary step of the procedure: the classical update of the control parame-

ters.

2.2.1 Classical optimization of the energy functional

In the framework of variational hybrid algorithms the choice of the classical opti-

mization routine is a crucial step [40] not only on its own but also with respect to

the quantum resource requirements. Indeed, as a first approximation we can esti-

mate the cost of running the optimal control problem to find the ground state as

C = O(KMG
ϵ2

), where K is the number of iterations needed to achieve convergence

of the result, M is the number of circuits one needs to execute to do one step of

the optimization and G is the gate count of each circuit. The term ϵ−2 comes from

the finite-shot sampling noise. We will discuss the computational scaling of the

control protocol proposed in this work in Sec.2.4.3, here we want to discuss only
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the possible choices of the optimizer that impact primarily the quantity K.

For our purposes the cost function that we want to minimize is given by:

J [a] = ⟨Ψa(T )|Ĥ|Ψa(T )⟩ (2.3)

Where |Ψa(T )⟩ is the wavefunction of our system of interest at time T after the

application of the parameterized evolution Ûa(0, T ).

If we consider current quantum processors, it is reasonable to prefer gradient-

free optimizers as the calculation of functional gradients numerically or exactly[41–

43] would imply adding further noise sources. On the other hand, trying to ensure

scalability of the algorithm requires that the optimization task to be accomplished

into a reasonable number of iterations to avoid the circuit number executions

to grow too rapidly. To this extent the most natural option would be using a

gradient-based optimization. Indeed, it is known that the convergence rate for

many optimization problems is higher for these latter kind of algorithms than

for gradient-free optimizers[44]. As described in Sec.2.4 here we adopted the L-

BFGS[45] optimizer.

Before concluding this section it is important to remark that the close relation-

ship between optimal control, variational algorithms and supervised learning may

lead to improvements of our implementation that in turn can reduce the overall

scaling. Particularly, very recently natural gradient based methods[46, 47] have

been developed in the context of VQAs showing promising results in terms conver-

gence rate and avoidance of barren plateaux. Further, other strategies implement-

ing reinforcement learning techniques have shown great improvements w.r.t. gra-

dient based methods that could possibly lead to further speedups to the proposed

algorithm[48–50]. We will seek to explore these aspects in future contributions.

2.3 Molecular ground state energies

In this section we provide a detailed description of the algorithm sketched above

applied to the case of molecular systems. Therefore, analogue to the previous
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section, we identify with the problem hamiltonian H the molecular hamiltonian

Hmol:

Ĥmol =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

gpqrsa
†
pa

†
rasaq (2.4)

Where hpq are the one-electron integrals containing the kinetic energy and the

electron-nuclei repulsion terms and gpqrs are the two-electron repulsion integrals.

To compose the parametrized Hamiltonian Ĥa(t) we have to specify a form for

the perturbation operator and a proper parametrization to implement the opti-

mization routine. As already mentioned in Sec. 2.2 different options are viable,

here we considered a time-dependent modification of the Hamiltonian expressed

in terms of five ingredients: (i) an effective electron mass me(t), (ii) effective

nuclear charges Z̃i(t), (iii) screened electron-electron interactions ϵ̃(t), (iv) a time-

dependent effective scalar mean field term b0(t) and, finally, (v) an overall scalar

prefactor a0(t). These lead to the following expression for V̂a(t):

V̂a(t) = a0(t)
[∑
p,q

h̃a
pq(t)a

†
paq +

1

2

∑
p,q,r,s

g̃a
pqrs(t)a

†
pa

†
rasaq

]
(2.5)

where h̃a
pq(t) and g̃a

pqrs(t) are given by:

h̃a
pq(t) =


1

2me(t)

∫
ϕ∗
p(x)∇2ϕq(x)dx−

∫
ϕ∗
p(x)

∑
i
Z̃i(t)
ri
ϕq(x)dx p ̸= q

(b0(t) +
1

2me(t)
)
∫
ϕ∗
p(x)∇2ϕq(x)dx− b0(t)

∑
i(Zi +

Z̃i(t)
b0(t)

)
∫
ϕ∗
p(x)

1
ri
ϕq(x)dx p = q

(2.6)

and

g̃a
pqrs(t) =


( 1
ϵ̃(t)

+ b0(t))gpqrs p = r, q = s

( 1
ϵ̃(t)
− b0(t))gpqrs p = s, q = r

1
ϵ̃(t)
gpqrs else

(2.7)

The choice of this parameterization is guided by three factors: (i) linking the
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perturbation explicitly to physical quantities that are accessible in the presence

of an analog simulator; (ii) minimizing the number of parameters to be optimized

to reduce the computational cost of optimization; and (iii) ensuring the necessary

expressivity for the perturbation to effectively generate dynamics that lead to the

target state. Particularly, the last principle motivated the choice of a differen-

tial treatment for each atom in the molecule: in fact, it may allow a more subtle

discrimination between spatial orbitals (that already experience different nuclear

charge due to a0 and b0 factors) enhancing effects due to the distinct atoms elec-

tronegativity. The extent to which this feature impacts the optimization of the

wavefunction is an intriguing question in itself, as it may provide additional phys-

ical insight into the solution of the control problem. We aim to delve deeper into

investigating this particular feature in a follow-up study.

Concerning the trainability of the proposed parameterization, it is important

to mention the problem of barren plateaus which is of specific relevance to hybrid

variational algorithms [51, 52]. It has been shown that the landscape parameters’

shape is strongly affected by the exponentially big dimension of the quantum

processor’s Hilbert space. More precisely, as we consider larger systems (i.e. a

greater number of qubits), the average value of the gradient objective function

tends to zero and more and more states embody this typical value. Thus, if we do

not leverage the physical intuition coming from the model Hamiltonian of interest

(e.g. exploit symmetry constraint), the control parameters landscape becomes flat

over a larger portion of the Hilbert space that we explore during our optimization

procedure. We will discuss this aspect in more detail in Sec. 2.4.2.

Parametrization of the control Hamiltonian

Now we turn our attention to the parametrization of the external control. Within

the context of quantum optimal control various shapes for the control fields have

been proposed ranging from superposition of Gaussian pulses [44] and Fourier-

based parametrizations (such as the CRAB and DCRAB methods [53, 54]) to a

point-wise definition of the temporal profile as in the case of the GRAPE algorithm
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[55]. In this work, we have opted to represent the control functions using the latter

option. Previous studies that applied similar parameterizations to optimal gate

synthesis have demonstrated that this approach is not always preferable compared

to the analytic parameterization[56]. Indeed, analytic controls may allow a faster

computation of the gradients and have been shown to be less prone to introducing

unwanted high-frequency components leading to leakage errors. However, when

transitioning to experimental setups where discretization of control pulses becomes

inevitable, these disadvantages fall short[49]. Since we wanted to focus on the

development of an algorithm as more oriented to analog simulators as possible we

focused on this approach.

With these choice of the parameterization we get an explicit scaling of the

number of parameters w.r.t. the time steps of the evolution and system size which

is O(MT ). Where M is the number of nuclei and T is the number of controlled

steps of the discretized evolution. In Sec.2.4.3 we will provide semi-empirical

estimates of the scaling w.r.t. the number of spin-orbitals showing results on

hydrogen chains of different length.

It is worth noticing that the energy expectation value measured at the end of

the perturbation, as mentioned in Sec. 2.2, is related to the system Hamiltonian

Ĥmol. Hence, no boundary conditions on the perturbation that impose the driving

Hamiltonian to coincide with the system Hamiltonian at the end of the evolution

are needed. Finally, in contrast with usual optimal control protocols applied to

laboratory experiments, unless it is useful for the optimization, the control pa-

rameters are allowed to take arbitrary values without maximum (or minimum)

thresholds or penalty.

2.4 Results

Computational details

In this section we provide the computational details for the implementation of all

our numerical results shown in Sec. 2.4.1-2.4.3. All the calculations were performed
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with a Python code using a locally modified version of the PennyLane library[57]

to construct a representation of all the operators in the computational basis. The

evolution and the optimization of the wavefunction were carried out using JAX[58]

and the JaxOpt[59] library in order to exploit automatic differentiation and fast

evaluation of the quantum dynamics with just-in-time compilation of the code. To

ease the computational burden of exactly simulating the quantum dynamics into

the qubit space we adopted symmetry reduction of the operator representation

to taper-off redundant qubits as shown in Ref.[60] and implemented in [57]. The

code is available open-source at [61]. Regarding the specifics of the optimization

we used the L-BFGS algorithm as implemented in JaxOpt with default settings.

All the calculations were performed either with a maximum number of iterations

(Niter) or an energy error of 1 mHa as termination condition.

Initialize Evolve Measure

|0⟩ X

e−iĤa(tk)

P
os

t-
ro

ta
ti

on

|0⟩

|0⟩ X

|0⟩ ︸ ︷︷ ︸
RepeatK times

Figure 2.2: Example circuit needed for the implementation on a digital quantum
processor. Quantum computer’s initial state is given by all the qubits being in the
state |0⟩; as an example we reported the initialization circuit for the H2 molecule
in the minimal basis. The second step provides the evolution of the molecular
wavefunction, due to the time-dependent external control the exponentiation of
the Hamiltonian is repeated for K different steps of the propagation. Here we
mantained the circuit as more general as possible (i) to resemble the numerical
exponentiation that we used in the computational protocol and (ii) to highlight
that one can choose the more suitable simulation routine at hand. Finally the
circuit is repeated several times to evaluate the hamiltonian expectation value.

The initial state for all our simulations is the Hartree-Fock wavefunction us-

ing the STO-3G basis set in all cases. The initial guess parameters were drawn
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from a uniform distribution between 0 and 1. The parameters a0 and b0 were

initialized according to a linear schedule (see AppendixA) as is done by adiabatic

state preparation protocols of varying lengths (depending on the time step of the

simulation), ranging from 0.2 to 7.5 atomic units (a.u.).

In Fig. 2.2 we report the general structure of the quantum circuits adopted

in all the calculations. The qubits are initialized in the |0⟩ state, the mapping

between the qubits and the molecular spin-orbitals is accomplished according to

the Jordan-Wigner method [62] (e.g. each occupied spin-orbital is represented

by a qubit in the state |1⟩). As previously mentioned in Sec. 2.2, the digital

quantum simulation is performed numerically exponentiating the time-dependent

hamiltonian at each time step in the computational basis spanned by the qubit

register. The time step used varies between ∆t = 0.00125 a.u. and ∆t = 0.05

a.u. for all the simulation reported in this work. The stability of the numerical

integration is assessed on the basis of previous works[1].

2.4.1 Molecular ground state energies

In this section we report numerical examples of the control protocol applied to

three different molecular systems: the H4 molecule with atoms arranged in a

square lattice, H6 in a linear configuration and lithium hydride (LiH).

The selection of these systems was made to specifically assess the algorithm’s

performance on systems that, despite their small size, are well-established bench-

marks for quantum chemistry methods. Notably, hydrogen chains, although ex-

perimentally unstable[63], have been extensively characterized being the simplest

systems revealing strong electronic correlation phenomena. We opted for two dis-

tances, r=1 Å and r=2 Å, since the former is both in proximity of the observed

metal-to-insulator phase transition point expressed in longer analogues of the same

series[64] and results from other quantum variational methods are available for

comparison. The geometry associated with r=2 Å, which is farther from the

equilibrium bond distance, allows us to put our method to the test in a regime

approaching dissociation. On the other hand, the H4 molecule in squared configu-
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ration is another prototypical system used to study multireference effects. At this

geometry HOMO and LUMO orbitals become degenerate giving a diradical char-

acter to the electronic system [65]. Farther from equilibrium, the second geometry

we have considered, on top of these effects we add a fourfold bond dissociation

process that requires multiply excited configurations to be described. Finally, we

have also considered lithium hydride as to test our parameterization (explicitly

involving nuclear charges) with an heteroatomic system.

In Fig.2.3 we show the result of the control problem solution for the systems

described above. These calculations demonstrate that the control problem can be

effectively resolved, achieving error energies below 1 mHa (< 0.67 kcal/mol), even

in regimes characterized by strong correlation. From a dynamical perspective, this

implies our capability to identify a pathway leading from the HF state to the exact

ground state, even when these states are significantly separated within the Hilbert

space. However, it is worth noting that commencing the optimization process

from a state further away in the Hilbert space tends to prolong the optimization,

despite the protocol’s capacity to reach a chemically accurate state. In this regard,

in Section 2.4.3, we have examined the convergence rate’s scaling with respect to

the system size to assess the computational scalability of this approach.

Before discussing these aspects we focus on the effect of varying the duration

of the controlled dynamics.

2.4.2 Ground state preparation at the quantum speed limit

Quantum speed limits define the minimum time needed for a quantum system to

transition between states. In quantum technologies, they have been extensively

studied[66] as being able to engineer transformations achieving this boundaries

directly impacts the efficiency and capabilities of quantum devices.

Several theoretical bounds have been developed to quantify this times for dif-

ferent kind of processes[67–69]; here, following Ref. [35] we estimated the quantum
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Figure 2.3: Optimal control for molecular ground state preparation. a-c) Energy
(blue dashed-dotted line) vs. iterations for squared H4 at r = 1.2, Å; linear H6

chain at r = 1 Å and LiH at r = 1.6 Å. d-f) Energy (brown dashed-dotted line)
vs. iterations for squared H4 at r = 2.4 Å; linear H6 chain at r = 2 Å and LiH at r
= 3.2 Å. Error (dashed-dotted line) w.r.t. FCI Energy vs. iterations. Same color
code as in panels above; green dashed lines represent either the FCI energy value
or a threshold for chemical accuracy posed at 1mHa. Dashed lines are guides to
the eyes.
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speed limit TQSL (see Tab. 2.1) for the optimally controlled trajectory as:

TQSL ≤
π

2

T∫ T
0

√
⟨ψ(t)|[Ĥ(t)− E(t)]2|ψ(t)⟩dt

(2.8)

Where E(t) = ⟨ψ(t)|H|ψ(t)⟩.
This quantity estimates the quantum speed limit as the mean energy spread

along the computed trajectory and represent an extension of the Battcharayya

bound[70] to time-dependent hamiltonians. Please notice that TQSL depends on

the control parameters a as |ψ(t)⟩ = Ua(0, t)|ψ(0)⟩.
As reported in Ref. [35], a rigorous definition of a quantum speed limit for

time-dependent processes is elusive and discrepancies with numerical experiments

reflect this aspect. The authors find for the problem of optimal population transfer

along a spin chain that Eq. 2.8 overestimates (on average) by a factor of 3 the

numerical results. These discrepancies have been shown with even tighter bounds

as reported in Ref. [71] for the case of a time-optimal SWAP gate. Here we found

that the numerical estimate is sensibly lower than the theoretical one in all cases

with edge cases such as H4 (r = 1.2 Å) where Eq. 2.8 overestimates the numerical

result by two order of magnitudes.

We can compare these findings with other similar works in literature. Particu-

larly, the work of Matsuura et al.[72] proposes the coupling of an optimal control

of the annealing schedule and a VQE with a UCCSD ansatz to improve molecular

ground state preparation which they dub VanQver. We find similar times for the

optimized evolution as they report. Particularly, for the rectangular H4 molecule

(notice that here we qualitatively compare the results as we have instead a per-

fectly squared geometry) they find TV anQver = 0.088 a.u., for the LiH molecule

TV anQver = 0.14 a.u.. For comparison their reported times for Annealing State

Preparation (ASP) are respectively TASP = 9.5 a.u. and TASP = 11.5 a.u. for LiH

and rectangular H4 both close to the equilibrium bond length (i.e. to compare

with the first and third column of Tab. 2.1).

We can also compare the number of parameters needed by our optimal con-
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Table 2.1: Estimated time according to the Bhattacharyya bounds[35, 70] (Eq.
2.8) on time-dependent quantum evolutions (TQSL), time required by the optimally
controlled evolution to reach the ground state (TOC) and number of parameters
optimized in each trajectory (# θQSL) for the molecules considered in this study.
Time is expressed in atomic units.

LiH @ 1.6 Å H4 @ 1.2 Å H6 @ 1 Å LiH @ 3.2 Å H4 @ 2.4 Å H6 @ 2 Å
TQSL 7.91 2.39 6.27 10.84 7.43 39.11
TOC 0.25 0.01 0.5 0.75 0.5 0.75
#θQSL 30 32 50 90 80 150

trol procedure with the number of parameters generated by the UCCSD ansatz

and compact adaptive strategies[73, 74]. Particularly, as discussed in [75] for the

LiH molecule, spin-adapted UCCSD requires 64 parameters in comparison adap-

tive ansatze built with a fermionic operator pool require around 10 parameters

to reach chemical accuracy. In the same work the authors report, concerning the

H6 molecule, that the UCCSD circuit requires almost 70 parameters without be-

ing able to reach chemically accurate results as the bond distance increases (at

about distances greater than 1.3 Å) while the adaptive procedure requires at most

the same number of parameters reaching chemical accuracy even in the dissoci-

ation limit. As we can see, the optimal control procedure requires a similar set

of parameters as the adaptive approach when considering bond lengths close to

the equilibrium geometry. However, in cases involving more stretched bonds, it

becomes evident that the adaptive procedure shows greater efficiency.

In addition to estimating the quantum speed limit through equation 2.8, we

analyzed the relationship between optimal control procedures for the systems pre-

sented in the previous section and the duration of the dynamics (see Fig. 2.4).

What is observed is a dual behavior: concerning dynamics shorter than a cer-

tain length (which we identify as the actual quantum speed limit), the optimal

control procedure is unable to achieve chemical accuracy within 500 iterations.

Furthermore, the optimizer amplifies the perturbation strength by increasing the

average energy injected into the system, which we tried to estimate with the quan-

tity ⟨ ||H(t)||
||Hmol||

⟩ (see Fig.2.4-2.5). As we can see, consistently with the time-energy
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uncertainty relationship, the average energy injected into the system decreases as

the evolution length increases.

Figure 2.4: Ground state preparation at the quantum speed limit for the H6

molecule. a, c) Optimal control for various duration of the dynamics. Blues
refer to H6 at r=1 Å, reds refer to H6 at r=2 Å. b,d) Mean driving Hamiltonian
norm vs. duration length for the same systems and color codes.

On the other hand, the optimized dynamics with a duration exceeding the
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quantum speed limit converges more slowly to the optimal result. This effect is

consistent with other findings in literature, where has been shown that quantum

dynamics in presence of an external perturbation tends to converge towards uni-

tary q-designs (i.e. unitaries that can uniformly cover the Hilbert space) as time

increases[76]. This justifies a slower convergence since these types of unitaries are

highly expressive and, as previously shown, are much more prone to encountering

barren plateaus during optimization[51, 77]. Interestingly, as reported in Fig.2.4c,

an initial plateaux in the optimization is present both for very short dynamics and

for the ones beyond our estimate TQSL. Even though they look similar the former

may arise from a lack of controllability (i.e. too few control parameters available),

while the latter are a direct manifestation of the barren plateaux. Having identi-

fied this sweet spot in terms of the length of the dynamics suggests that, to avoid

encountering optimization problems with larger systems, it might be beneficial to

progressively optimize the dynamics starting from shorter evolutions and initializ-

ing the control parameters to achieve idle evolution. We plan to assess the effect

of the initialization and adaptive optimization of the dynamics in a future work.

We refer the reader to appendixB where similar results are shown for the LiH

molecule.

Finally, to get an additional insight of this multiple interplay among control-

lability and time-energy uncertainty relationships, we report in Fig.2.5 for the H4

molecule the solution of the control problem varying (i) the length of the dynamics

(Fig.2.5a-b) and (ii) the number of controllable steps keeping the duration fixed

at T=0.01 a.u. (Fig.2.5c-d). Again, we can notice that the amount of energy that

the perturbation inputs into the system decreases as the evolution length increases

as already shown in Fig.2.4. Nevertheless we can notice that moving from T=0.01

to T=0.05 a.u. there is an abrupt decrease as compared to all the values reported

both in Fig.2.4 and Fig.2.5. This motivated us to study the effect of increasing

the number of controllable steps at this shorter duration length of the dynamics.

As we can see in Fig.2.5c increasing the number of controllable steps immediately

leads the control problem to find a state within chemical accuracy. Moreover, the
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mean energy input into the system decreases of almost two order of magnitudes

reaching values more in line with the trends observed fort the other systems. From

this calculation arises a picture where the quantity ⟨ ||H(t)||
||Hmol||

⟩ allows to diagnose pos-

sible controllability issues in the definition of the optimization problem. Indeed, its

unexpected increase indicates that the optimizer is striving to reach the optimal

solution, still attainable within the given time frame. In doing so, it injects more

energy into the system but lacks the flexibility to effectively address the control

problem. By relaxing this constraint and adding more controllable steps, both the

excess injected energy and convergence issues vanish.

2.4.3 Computational cost analysis

In this section we provide an empirical estimate of the algorithmic scaling of the

proposed method. Particularly, as mentioned in Sec.2.2.1 we can approximate the

cost (or runtime of the algorithm) as C = O(KMG
ϵ2

). We recall that K is the

number of iterations needed to achieve 1 mHa of error, M is the number of circuits

per iteration and G is the gate count of the circuit.

In Fig. 2.6, we provide an estimate of C as a function of the spin-orbitals N

studying the hydrogen chain series from H2 to H8 at r = 1Å. As we can see

Fig.2.6a reports an almost linear scaling of the number of iterations as a function

of the spin-orbitals and Fig.2.6b a quadratic scaling concerning the number of

control parameters. In order to estimate the overall number of circuits executed

during the optimization we considered the relation:

#Circuits ≈ O(#Iterations x #params x m) (2.9)

Where m is the number of independent measurements needed to compute the 2-

RDM of the molecular Hamiltonian according to the shadow procedure developed

in Ref.[78]:

m = O(4η
2

ϵ2
) (2.10)
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Figure 2.5: Effect of controllability on the time-energy uncertainty relationship. a)
Optimal control for the H4 molecule at r=1.2 Å for different quantum dynamics’
lengths (darker blue shorter length). b) Mean driving Hamiltonian norm vs. du-
ration length. c, d) Control problem at fixed duration length (T=0.01 a.u.) with
finer time stepping (more controllable dynamics).
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Where η is the number of electrons in the system.

It is important to notice that the estimate of m could be further improved

adopting system-dependent methods to reduce the overall number of measurements

based on Pauli strings partitioning[79, 80] in combination with matrix completion

techniques[81].

Plugging Eq. 2.10 into Eq. 2.9 we got an overall scaling of #Circuits ≈ O(N4).

Finally, the total runtime reads:

C = O(GN
4

ϵ2
) (2.11)

In the last equation we decided to keep the runtime of the quantum simulation

routine unexpressed as the designated platform for the execution of this algorithm

is an analog simulator for the molecular Hamiltonian. Currently, only prototypes

of this simulator have been developed[21, 22]. Nevertheless, if we were to consider

implementing the algorithm on digital quantum computers, it would be reasonable

(actually conservative) to assume a linear increase in computational overhead as

the number of spin orbitals grows[82, 83].

To conclude this section we would like to comment on our findings. First

of all, we are aware that the results of Fig. 2.6 give rise to a crude estimate for

at least two reasons: (i) the modest range of the active space explored and (ii)

an additional uncertainty due to the random guess initialization. Moreover, in

Sec. 2.4.1 we showed that depending on the degree of correlation the number of

iterations needed may vary; to this extent, expanding this benchmark to other

systems will surely increase its reliability.

Nevertheless, these results already represent a good starting point to under-

stand if this method is worth further refinements. Given that very promising meth-

ods, such as adaptive strategies[75], have O(N8) scaling if implemented naively

and can achieve O(N5) scaling only if clever strategies for evaluating gradients are

adopted[84], we think that the method proposed in this paper can be of interest

regardless of the future development of an analog simulator. To this extent incre-

mental optimization strategies, i.e. optimizing the evolution step-by-step, could
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provide significant speedups and provide tighter bounds on the overall scaling. We

plan to explore these aspects in a future work.

Figure 2.6: Empirical scaling of the optimal control algorithm. a) Number of
iterations needed to reach chemical accuracy as a function of the number of spin-
orbitals (N). b) Number of control parameters as a function of the number of spin-
orbitals. c) Number of circuits evaluated during the all control problem solution.
Power-law fitting function: y = aN b.

2.5 Conclusions

We have proposed an optimal control approach utilizing a quantum device to steer

the evolution of a quantum system towards its ground state. Demonstrating its

application, we have computed ground state energies for molecular systems up

to 16 spin-orbitals (qubits). Our results indicate the potential to discover path-

ways reaching states within the chemical accuracy energy threshold more rapidly

than the adiabatic path, edging closer to the quantum speed limit. Moreover,

this study underscores the intertwined nature of controllability (defined as the

minimum number of controls needed to achieve desired precision), duration of the

dynamics and convergence of the optimization protocol.

Additionally, we have offered an empirical estimate of the computational cost

conducting various calculations on hydrogen chains of different lengths. Our find-

ings reveal that the overall algorithm runtime execution scales as O(N5), aligning

with results from adaptive ansatze. Future avenues of this work aim to mitigate
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the computational scaling by refining the procedure via a step-by-step adaptive

optimization of the quantum dynamics.

To conclude, we highlight how this method could serve to speed up phase

estimation-like algorithms. Particularly the optimally controlled dynamics could

impact the quantum phase estimation procedure in two ways: (i) on one hand as

initial state preparation routine; on the other hand (ii), we can imagine of replacing

the evolution of the circuit within the QPE to directly sample a correlation function

(from a simple initial state such as HF) corresponding to an initial state that

includes contributions from multiple electronic configurations. We plan to explore

this latter aspect in future works to understand whether this option could bring

fault-tolerant algorithms’ implementation one step closer.

Appendix A: a simpler example on H2

The aim of this section is to provide a simpler example of the general protocol, for

the case of the hydrogen molecule H2, focusing on the comparison of the results

with a quantum simulated annealing protocol for different values of annealing time

T . We show that the optimal solution of our procedure represents a shortcut to

adiabaticity[85, 86], i.e. an alternative fast route that allows to obtain the same

final state given by a slow, adiabatic evolution.

As to test the optimal control framework in different settings we modified both

the choice of the perturbation and the optimization routine (here we used differ-

ential evolution as implemented in Scipy[87]). Particularly, concerning the control

operators here we only needed a time-dependent modulation of the electron-nuclei

interaction. Thus, the perturbation operator Va(t) reads:

V̂a(t) =
∑
p,q

h̃a
pq(t)a

†
paq (2.12)

with h̃a
pq(t) given by:
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h̃a
pq(t) = fa(t)

∫
ϕ∗
p(x)

∑
i

Zi
ri
ϕq(x)dx (2.13)

with fa defined locally in time such that each different value of the function at

different time steps of the propagation is a unique control parameter.

The theoretical foundation of quantum simulated annealing is the adiabatic

theorem [88]. It states that the evolution of a quantum state, being in the ground

state of an initial Hamiltonian Ĥ0, will occur transitionless (i.e. adiabatically,

without excitations) under a time dependent Hamiltonian Ĥ(t) if the variation

rate of the Hamiltonian is small enough. As a consequence, a slow evolution

under a perturbation that modifies the Hamiltonian until it becomes the one of

interest allows to compute its ground state. Here we chose the initial state to be

the solution of a classical Hartree-Fock calculation: the initial Hamiltonian is the

Hartree-Fock Hamiltonian ĤHF . The adiabatic evolution is meant to reach the

exact ground state for the complete molecular Hamiltonian Ĥmol, therefore the

overall evolution takes place under the Hamiltonian:

Ĥ(t) = A(t)ĤHF +B(t)Ĥmol (2.14)

The functions A(t) and B(t) define the annealing schedule, i.e. the switching

factors between the two Hamiltonians. They must be defined such that Ĥ(0) =

ĤHF and Ĥ(T ) = Ĥmol.

The choice of the annealing schedule influences the perfomance of the quantum

algorithm[89–91]. In particular, different strategies have been adopted such as

optimal control protocols devised to shorten the annealing time or to shape the

annealing schedule profile enhancing the success probability [92, 93]. Bearing this

in mind, here we have considered a linear schedule (Eq. 2.15) as it is still used as

typical benchmark in the field [94].
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a) b)

c) d)

Figure 2.7: Comparison between quantum simulated cooling and quantum simu-
lated annealing results for the H2 molecule at equilibrium geometry. a) Expecta-
tion value of the driving Hamiltonian (Eq. 2.14) as a function of the dimensionless
instantaneous time, τ = t

T
. Results are reported for different values of annealing

time T : T = 2.5 a.u. (blue dots), T = 5 a.u. (orange crosses), T = 10 a.u. (green
stars) and T = 25 a.u. (red downward triangles). b) Electronic energies after
quantum simulated annealing (dashed-dotted blue line) and quantum simulated
cooling (scatter plot) as a function of the evolution time. Scatter plot symbols
refer to the same T values of panel a; orange dashed line is the reference FCI en-
ergy. c) Linear schedules for the quantum simulated annealing. d) Absolute energy
difference from FCI for the quantum simulated cooling (scattered) and quantum
simulated annealing (dashed-dotted blue line). The red solid line poses a threshold
for chemical accuracy at 0.0016 Ha (i.e., 1 kcal/mol).
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A(t) = 1− t

T

B(t) =
t

T

(2.15)

In Fig. 2.7 we show the results of our comparison between quantum simulated

cooling and quantum simulated annealing, for this analysis we focused on the H2

molecule at the equilibrium distance. We considered four increasing evolution

times ranging from 2.5 a.u. to 25 a.u.. In the first panel (Fig. 2.7a), the driving

Hamiltonian expectation value is plotted as a function of the instantaneous time,

τ = t
T
. As expected, increasing the annealing time the energy at the final instant

decreases as the evolution occurs without transitions to any excited electronic con-

figuration. Moving to panel 2.7b we compare the results of the adiabatic evolution

(dashed-dotted blue line) with the exact Full CI energy (dashed orange line) and

the energy outcome of the quantum simulated cooling (scatter plot symbols differ

according to the evolution length). We observe that the non-adiabatic evolution

provided by the quantum simulated cooling is always performing better than the

quantum simulated annealing protocol. The only exception is for the last point

at 25 a.u., which, as better highlighted in Fig. 2.7d, equals the result obtained

with the Hamiltonian of Eq. 2.14. To explain this behavior we point out that the

differential evolution is a non-deterministic algorithm, as such small fluctuations

on the final results are expected between different runs.

Appendix B: additional calculations on the LiH molecule

Here we report additional results on the LiH molecule (see Fig.2.8) concerning the

analysis on the dynamics’ duration length as discussed in Sec.2.4.2. These results

confirm the considerations drawn in the main text: short evolution lengths imply

higher energy injection from the perturbation which results in higher values of

⟨ ||H(t)||
||Hmol||

⟩. Concerning the convergence behavior of the control problem w.r.t. the
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Figure 2.8: Ground state preparation at the quantum speed limit for the LiH
molecule. a, c) Optimal control for various duration of the dynamics. Blues refer
to LiH at r=1.6 Å, reds refer to LiH at r=3.2 Å. b,d) Mean driving Hamiltonian
norm vs. duration length for the same systems and color codes.

length of the evolution at the equilibrium geometry (Fig.2.8a) we can clearly see

the same pattern previously discussed, i.e. that very short (or very long) evolutions

can hamper the optimization to reach a chemically accurate result. On the other

hand, this trend is not so evident looking at Fig.2.8c (r = 3.2 Å). The dynamics’
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length and convergence patterns appear less interdependent in this system. Further

studies collecting statistics on various randomly initialized optimizations could

resolve this inconsistency.

References

(1) Castaldo, D.; Rosa, M.; Corni, S. Physical Review A 2021, 103, 022613.

(2) Deutsch, I. H. PRX Quantum 2020, 1, 020101.

(3) Feynman, R. P. Int. J. Theor. Phys 1999, 21.

(4) Deutsch, D. P. Roy. Soc. A-Math. Phy. 1985, 400, 97–117.

(5) Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Barends, R.;

Biswas, R.; Boixo, S.; Brandao, F. G.; Buell, D. A., et al. Nature 2019, 574,

505–510.

(6) Zhong, H.-S.; Wang, H.; Deng, Y.-H.; Chen, M.-C.; Peng, L.-C.; Luo, Y.-H.;

Qin, J.; Wu, D.; Ding, X.; Hu, Y., et al. Science 2020, 370, 1460–1463.

(7) Madsen, L. S.; Laudenbach, F.; Askarani, M. F.; Rortais, F.; Vincent, T.;

Bulmer, J. F.; Miatto, F. M.; Neuhaus, L.; Helt, L. G.; Collins, M. J., et al.

Nature 2022, 606, 75–81.

(8) Zhou, Y.; Stoudenmire, E. M.; Waintal, X. Physical Review X 2020, 10,

041038.

(9) Werninghaus, M.; Egger, D. J.; Roy, F.; Machnes, S.; Wilhelm, F. K.; Filipp,

S. npj Quantum Information 2021, 7, 1–6.

(10) Montangero, S.; Calarco, T.; Fazio, R. Physical Review Letters 2007, 99,

170501.

(11) Sklarz, S. E.; Tannor, D. J. Physical Review A 2002, 66, 053619.

(12) Koch, C. P.; Palao, J. P.; Kosloff, R.; Masnou-Seeuws, F. Physical Review

A 2004, 70, 013402.



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION63

(13) Klamroth, T. The Journal of Chemical Physics 2006, 124, 144310.

(14) Rosa, M.; Gil, G.; Corni, S.; Cammi, R. The Journal of Chemical Physics

2019, 151, 194109.

(15) Doria, P.; Calarco, T.; Montangero, S. Physical Review Letters 2011, 106,

190501.

(16) Zhu, W.; Botina, J.; Rabitz, H. The Journal of Chemical Physics 1998, 108,

1953–1963.

(17) Brif, C.; Chakrabarti, R.; Rabitz, H. New J. Phys. 2010, 12, 075008.

(18) Werschnik, J.; Gross, E. Journal of Physics B: Atomic, Molecular and Op-

tical Physics 2007, 40, R175.

(19) Lloyd, S. Science 1996, 273, 1073–1078.

(20) Georgescu, I. M.; Ashhab, S.; Nori, F. Reviews of Modern Physics 2014,

86, 153.

(21) Argüello-Luengo, J.; González-Tudela, A.; Shi, T.; Zoller, P.; Cirac, J. I.

Nature 2019, 574, 215–218.

(22) Argüello-Luengo, J.; González-Tudela, A.; Shi, T.; Zoller, P.; Cirac, J. I.

Physical Review Research 2020, 2, 042013.

(23) Rahmani, A.; Kitagawa, T.; Demler, E.; Chamon, C. Physical Review A

2013, 87, 043607.

(24) Bartana, A.; Kosloff, R.; Tannor, D. J. Chemical Physics 2001, 267, 195–

207.

(25) Bartana, A.; Kosloff, R.; Tannor, D. J. The Journal of Chemical Physics

1997, 106, 1435–1448.

(26) Li, J.; Yang, X.; Peng, X.; Sun, C.-P. Physical review letters 2017, 118,

150503.

(27) Judson, R. S.; Rabitz, H. Physical Review Letters 1992, 68, 1500.



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION64

(28) Magann, A. B.; Arenz, C.; Grace, M. D.; Ho, T.-S.; Kosut, R. L.; McClean,

J. R.; Rabitz, H. A.; Sarovar, M. PRX Quantum 2021, 2, 010101.

(29) Wecker, D.; Hastings, M. B.; Troyer, M. Physical Review A 2015, 92, 042303.

(30) Choquette, A.; Di Paolo, A.; Barkoutsos, P. K.; Sénéchal, D.; Tavernelli, I.;

Blais, A. Physical Review Research 2021, 3, 023092.

(31) Meitei, O. R.; Gard, B. T.; Barron, G. S.; Pappas, D. P.; Economou, S. E.;

Barnes, E.; Mayhall, N. J. arXiv preprint arXiv:2008.04302 2020.

(32) Meirom, D.; Frankel, S. H. arXiv preprint arXiv:2212.12911 2022.

(33) Egger, D. J.; Capecci, C.; Pokharel, B.; Barkoutsos, P. K.; Fischer, L. E.;

Guidoni, L.; Tavernelli, I. Physical Review Research 2023, 5, 033159.

(34) Asthana, A.; Liu, C.; Meitei, O. R.; Economou, S. E.; Barnes, E.; Mayhall,

N. J. arXiv preprint arXiv:2203.06818 2022.

(35) Caneva, T.; Murphy, M.; Calarco, T.; Fazio, R.; Montangero, S.; Giovan-

netti, V.; Santoro, G. E. Physical Review Letters 2009, 103, 240501.

(36) Wiebe, N.; Berry, D.; Høyer, P.; Sanders, B. C. Journal of Physics A: Math-

ematical and Theoretical 2010, 43, 065203.

(37) Berry, D. W.; Childs, A. M.; Cleve, R.; Kothari, R.; Somma, R. D. Physical

Review Letters 2015, 114, 090502.

(38) Low, G. H.; Chuang, I. L. Physical Review Letters 2017, 118, 010501.

(39) Wiebe, N.; Berry, D. W.; Høyer, P.; Sanders, B. C. Journal of Physics A:

Mathematical and Theoretical 2011, 44, 445308.

(40) McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Reviews

of Modern Physics 2020, 92, 015003.

(41) Schuld, M.; Bergholm, V.; Gogolin, C.; Izaac, J.; Killoran, N. Physical Re-

view A 2019, 99, 032331.

(42) Mari, A.; Bromley, T. R.; Killoran, N. Physical Review A 2021, 103, 012405.



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION65

(43) Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Physical Review A 2018,

98, 032309.

(44) Machnes, S.; Assémat, E.; Tannor, D.; Wilhelm, F. K. Physical Review Let-

ters 2018, 120, 150401.

(45) Wright, S. J., Numerical optimization, 2006.

(46) Stokes, J.; Izaac, J.; Killoran, N.; Carleo, G. Quantum 2020, 4, 269.

(47) Fitzek, D.; Jonsson, R. S.; Dobrautz, W.; Schäfer, C. arXiv preprint arXiv:2304.13882

2023.

(48) Dalgaard, M.; Motzoi, F.; Sørensen, J. J.; Sherson, J. npj Quantum Infor-

mation 2020, 6, 1–9.

(49) Niu, M. Y.; Boixo, S.; Smelyanskiy, V. N.; Neven, H. npj Quantum Infor-

mation 2019, 5, 33.

(50) Wright, E.; de Sousa, R. arXiv preprint arXiv:2305.01169 2023.

(51) McClean, J. R.; Boixo, S.; Smelyanskiy, V. N.; Babbush, R.; Neven, H.

Nature Communications 2018, 9, 1–6.

(52) Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P. J. Nature Communi-

cations 2021, 12, 1–12.

(53) Caneva, T.; Calarco, T.; Montangero, S. Physical Review A 2011, 84, 022326.

(54) Rach, N.; Müller, M. M.; Calarco, T.; Montangero, S. Physical Review A

2015, 92, 062343.

(55) Khaneja, N.; Reiss, T.; Kehlet, C.; Schulte-Herbrüggen, T.; Glaser, S. J.

Journal of Magnetic Resonance 2005, 172, 296–305.

(56) Willsch, D.; Nocon, M.; Jin, F.; De Raedt, H.; Michielsen, K. Physical Review

A 2017, 96, 062302.

(57) Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.;

Alam, M. S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A., et al. arXiv

preprint arXiv:1811.04968 2018.



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION66

(58) Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.; Maclaurin,

D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; Zhang,

Q. JAX: composable transformations of Python+NumPy programs, ver-

sion 0.3.13, 2018.

(59) Blondel, M.; Berthet, Q.; Cuturi, M.; Frostig, R.; Hoyer, S.; Llinares-López,

F.; Pedregosa, F.; Vert, J.-P. arXiv preprint arXiv:2105.15183 2021.

(60) Setia, K.; Chen, R.; Rice, J. E.; Mezzacapo, A.; Pistoia, M.; Whitfield, J. D.

Journal of Chemical Theory and Computation 2020, 16, 6091–6097.

(61) https://github.com/davidecast/oc_quantum_simulation Accessed by date:

02/01/2023.

(62) Jordan, P.; Wigner, E. P. Z. Phys. 1928, 47, 631–651.

(63) Stella, L.; Attaccalite, C.; Sorella, S.; Rubio, A. Physical Review B 2011,

84, 245117.

(64) Motta, M.; Genovese, C.; Ma, F.; Cui, Z.-H.; Sawaya, R.; Chan, G. K.-L.;

Chepiga, N.; Helms, P.; Jiménez-Hoyos, C.; Millis, A. J., et al. Physical

Review X 2020, 10, 031058.

(65) Sand, A. M.; Mazziotti, D. A. Computational and Theoretical Chemistry

2013, 1003, 44–49.

(66) Deffner, S.; Campbell, S. Journal of Physics A: Mathematical and Theoret-

ical 2017, 50, 453001.

(67) Margolus, N.; Levitin, L. B. Physica D: Nonlinear Phenomena 1998, 120,

188–195.

(68) Chau, H. Physical Review A 2010, 81, 062133.

(69) Ness, G.; Alberti, A.; Sagi, Y. Physical Review Letters 2022, 129, 140403.

(70) Bhattacharyya, K. Journal of Physics A: Mathematical and General 1983,

16, 2993.



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION67

(71) Lee, J.; Arenz, C.; Rabitz, H.; Russell, B. New Journal of Physics 2018, 20,

063002.

(72) Matsuura, S.; Yamazaki, T.; Senicourt, V.; Huntington, L.; Zaribafiyan, A.

New Journal of Physics 2020, 22, 053023.

(73) Tang, H. L.; Shkolnikov, V.; Barron, G. S.; Grimsley, H. R.; Mayhall, N. J.;

Barnes, E.; Economou, S. E. PRX Quantum 2021, 2, 020310.

(74) Shkolnikov, V. O.; Mayhall, N. J.; Economou, S. E.; Barnes, E. Quantum

2023, 7, 1040.

(75) Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. Nature Com-

munications 2019, 10, 3007.

(76) Banchi, L.; Burgarth, D.; Kastoryano, M. J. Physical Review X 2017, 7,

041015.

(77) Holmes, Z.; Sharma, K.; Cerezo, M.; Coles, P. J. PRX Quantum 2022, 3,

010313.

(78) Babbush, R.; Huggins, W. J.; Berry, D. W.; Ung, S. F.; Zhao, A.; Reichman,

D. R.; Neven, H.; Baczewski, A. D.; Lee, J. Nat. Comm. 2023.

(79) Martínez-Martínez, L. A.; Yen, T.-C.; Izmaylov, A. F. Quantum 2023, 7,

1086.

(80) Choi, S.; Loaiza, I.; Izmaylov, A. F. Quantum 2023, 7, 889.

(81) Peng, L.; Zhang, X.; Chan, G. K. arXiv preprint arXiv:2306.05640 2023.

(82) Low, G. H.; Su, Y.; Tong, Y.; Tran, M. C. PRX Quantum 2023, 4, 020323.

(83) Babbush, R.; Berry, D. W.; McClean, J. R.; Neven, H. npj Quantum Infor-

mation 2019, 5, 92.

(84) Anastasiou, P. G.; Mayhall, N. J.; Barnes, E.; Economou, S. E. arXiv preprint

arXiv:2306.03227 2023.

(85) Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-

Garaot, S.; Muga, J. G. Reviews of Modern Physics 2019, 91, 045001.



CHAPTER 2. OPTIMAL CONTROL ALLOWS GROUND STATE PREPARATION68

(86) Martinis, J. M.; Geller, M. R. Physical Review A 2014, 90, 022307.

(87) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.;

Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J., et al.

Nature Methods 2020, 17, 261–272.

(88) Albash, T.; Lidar, D. A. Reviews of Modern Physics 2018, 90, 015002.

(89) Roland, J.; Cerf, N. J. Physical Review A 2002, 65, 042308.

(90) Albash, T.; Lidar, D. A. Physical Review A 2015, 91, 062320.

(91) Chen, H.; Lidar, D. A. Physical Review Applied 2020, 14, 014100.

(92) Brady, L. T.; Baldwin, C. L.; Bapat, A.; Kharkov, Y.; Gorshkov, A. V.

Physical Review Letters 2021, 126, 070505.

(93) Chen, Y.-Q.; Chen, Y.; Lee, C.-K.; Zhang, S.; Hsieh, C.-Y. arXiv preprint

arXiv:2004.02836 2020.

(94) Callison, A.; Festenstein, M.; Chen, J.; Nita, L.; Kendon, V.; Chancellor, N.

PRX Quantum 2021, 2, 010338.



Chapter 3

Quantum simulation of molecules in

solution

Background and personal contribution

As stated in the Introduction, the ambition of this Ph.D. thesis is to contribute

not only to the development of methods for calculating the energies of molecular

states but also to the development of quantum computing protocols capable of

handling the complexity of molecular systems.

In the following chapter, already published as a journal article in Journal of

Chemical Theory and Computation[1], we developed a methodology to include in

the Variational Quantum Eigensolver the possibility of describing an environment

surrounding the molecule implicitly with a polarizable dielectric.

In this paper, we demonstrate not only the extension of quantum computing

methods from gas-phase to condensed-phase molecules but also that the variational

nature of the VQE allows the inherently non-linear problem to be solved without

additional costs in terms of circuits to be performed.

I developed the algorithm and the code to obtain the numerical results. This

has been accomplished developing an interface betweenPennyLane (circuit execu-

tion), Psi4 (solving the electronic structure), and PCMSolver (solving the BEM

problem). The adaptive circuits were built by Dr. Alain Delgado (Xanadu), and

69
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Dr. Soran Jahangiri (Xanadu) assisted me in developing the PennyLane part. I

wrote the initial draft of this paper.
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Abstract

Quantum chemical calculations on quantum computers have been focused mostly

on simulating molecules in gas-phase. Molecules in liquid solution are however

most relevant for Chemistry. Continuum solvation models represent a good com-

promise between computational affordability and accuracy in describing solvation

effects within a quantum chemical description of solute molecules. In this work we

extend the Variational Quantum Eigensolver to simulate solvated systems using the

Polarizable Continuum Model. To account for the state dependent solute-solvent

interaction we generalize the Variational Quantum Eigensolver algorithm to treat

non-linear molecular Hamiltonians. We show that including solvation effects does

not impact the algorithmic efficiency. Numerical results of noiseless simulations

for molecular systems with up to twelve spin-orbitals (qubits) are presented. Fur-

thermore, calculations performed on a simulated noisy quantum hardware (IBM Q

Mumbai) yield computed solvation free energies in fair agreement with the classical

calculations.

3.1 Introduction

Nowadays, multiscale modelling is a workhorse of computational chemistry and

physics [2–5]. Its recent development has been fueled by the constant quest to

understand and harness more complex phenomena which necessarily call for the

inclusion of details arising from the composite nature of the studied systems [3].

Such a demand for greater detail in the simulation of experiments is accompanied

by an increase of the computational resources required. In particular, the need

for more accurate molecular simulations using wave function based methods has

motivated significant research efforts at the intersection of quantum chemistry and

quantum computing. [6–9].

In this work, we aim to contribute to both fields by reporting the first example

of a hybrid quantum-classical algorithm (i.e., with the meaning given in the quan-

tum computing literature to hybrid[10], a protocol whose implementation relies
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both on classical and quantum computation) in which the quantum simulation of

a molecular system takes also into account the presence of a solvating environ-

ment. The importance of these effects is glaring given their ubiquity in Nature

at all levels: plants, animals and microorganisms base their existence on molecu-

lar mechanisms in which the presence of a solvent is essential [11–15]. It is also

needless to remark the importance of accounting for solvation effects in almost all

branches of Chemistry[16–19].

Concerning the strategies adopted so far to include solute-solvent interactions

we can distinguish two broad classes pertaining to an explicit or implicit treatment

of the solvent in the system description. The former is typically represented by

Molecular Dynamics simulations or Monte Carlo simulations in which average

properties are obtained from sampling the phase space of the system where the

solvent degrees of freedom are explicitly accounted for [20, 21]. This option, due

to the high number of molecules needed, is limited to a classical description of

the solvent (possibly coupled to a quantum chemical description of the solute in

a QM/MM approach[22, 23]) or to a quantum description for a relatively small

systems and limited statistical sampling [24, 25]. In the long term, one may expect

that the development of quantum computers will be sufficiently advanced to allow

explicit, full-fledged quantum simulations of solutions. However, to date, this

possibility is still far from being realised, and extending implicit solvation models

to quantum computing approaches is a suitable option to address solvation effects.

In particular, implicit methods of solvation are the most commonly adopted

providing a methodology to describe the surrounding solvent as a continuum

medium [26]. Within this framework, the Polarizable Continuum Model (PCM)[27]

represents de facto the standard approach due to its flexibility and accuracy. In

particular, the Integral Equation Formalism version of the PCM (IEF-PCM) allows

to describe with very little modifications to the working equations the presence

of both an isotropic or anisotropic polarizable medium as well as ionic solutions

[28–30]. Beyond the environment complexity available, this theoretical framework

has been developed in many directions giving the possibility to describe the so-
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lute at different levels of theory[31–34], picturing the overall process with the use

of the open quantum system formalism [35] and also accounting for the presence

of nanometallic structures [36] and optimal control procedures [37]. Finally, we

also mention a recent development which exploits the emerging tool of machine

learning to improve the estimates of solvation free-energy obtained from PCM[38].

In this contribution we leverage the standard formulation of the IEF-PCM to

include solvation effects in the flagship algorithm of quantum simulation for Noisy

Intermediate Scale Quantum (NISQ) devices: the Variational Quantum Eigen-

solver (VQE) [39–41]. The choice of this method has been dictated by the recent

literature that has showed its successful applications on near-term quantum pro-

cessors to simulate molecules, condensed matter physics and other phenomena

of physico-chemical interest[42–46]. In particular, we exploit a specific flavor of

VQE[47] where the trial wavefunction is built exploiting an adaptive concept[48].

In the following, we will refer to the new algorithm as PCM-VQE.

This work is organized as follows: first we review the basics of PCMs with

particular attention to the IEF-PCM formulation, subsequently we discuss the

changes incorporated into the VQE to include solvent effects. In the Results

sections we report various numerical tests on three different molecules, namely

H2O, BeH2 and H+
3 in dimethyl sulfoxide (DMSO) as a test bed for the algorithm

implementation. Further, we assess the estimate of the solvation free energy with

a noisy quantum simulation adopting a noise model based on the IBM Q Mumbai

quantum processor. We conclude discussing our results and future perspectives of

this work.

3.2 Theory

3.2.1 The Polarizable Continuum Model

The purpose of this section is to recall the PCM concepts and quantities that

enter the modifications we have made to the VQE algorithm. For comprehensive
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summaries we refer to Refs. [27, 49].

The physical picture encompassed by PCMs is of a solute embedded in a molec-

ular shaped cavity interacting with the solvent, located outside, which is described

as a structureless polarizable dielectric. In this approach, the charge density of the

solute molecule polarizes the external environment which generates an electric field

(the reaction field) that acts back on the solute. Such reaction field is obtained as

the field produced by a set of polarization charges, the so called apparent surface

charges (ASC), spread on the cavity boundary, whose values depend, in turn, on

the solute molecular electrostatic potential.

To organize the discussion, we first present how such ASC can be calculated

within IEF-PCM. Then, we describe how the solute-solvent interaction is ac-

counted for in the quantum mechanical description of the molecule.

The electrostatic problem

We start by solving an electrostatic problem in which we look for the electrostatic

potential φ(r) generated by the molecular (nuclear and electronic) charge density

ρ(r) embedded in a polarizable surrounding solvent characterized by the dielectric

constant ϵ. This is accomplished solving the appropriate Poisson’s equation [50]:

∇ · [ϵ(r)∇φ(r)] = −4πρ(r) (3.1)

where ϵ(r) is defined as:

ϵ(r) =

1 inside the cavity

ϵ outside the cavity
(3.2)

Equation 3.2 implies the use of a set of additional boundary conditions to solve

the Poisson equation ensuring the continuity of the potential and the electric field

at the interface of the cavity [51].

In the framework of IEF-PCM[28, 30] the electrostatic problem is recasted in

an integral equation that directly provides the ASC density:



CHAPTER 3. QUANTUM SIMULATION OF MOLECULES IN SOLUTION75

(ϵ+ 1

ϵ− 1
Î − 1

2π
D̂
)
Ŝσ(s) = −

(
Î − 1

2π
D̂
)
Φ(s) . (3.3)

Here Φ(s) is the Molecular Electrostatic Potential (MEP) at the surface Γ of the

cavity, s is a point on the cavity surface, Î is the identity operator, D̂ and Ŝ

are the components of the Calderòn projector[30] that are related, respectively,

to the normal component w.r.t. Γ of the field generated by σ(s) and the related

electrostatic potential at the surface. Their explicit expression depends only on

the cavity shape and the dielectric properties of the solvent.[30]

The numerical solution of Eq. 3.3 involves a discretization of the cavity surface

into Ntess tesserae and a corresponding discrete representation of the operators D̂,

Ŝ and of the ASC density. The formal details of the cavity discretization procedure

is described in Refs.[52, 53]. Here, we will focus on reporting the working equations

of the IEF-PCM method after this step is completed.

The discretization of σ(s) results in the introduction of a set of charges q

positioned at the centre of each tessera:

σ(r) =
Ntess∑
i=1

qi
ai
δ(r− si) , (3.4)

where ai and qi are, respectively, the area and the point charge located at the ith

tessera, δ(r − si) is a Dirac delta function peaked on the tessera representative

point si.

Once the discretization procedure has been accomplished we obtain an expres-

sion for the polarization charges on all the tesserae, which model the response of

the solvent to the presence of the solute:

q = −
(
2π
ϵ+ 1

ϵ− 1
S−DAS

)−1

(2π1−DA)V = QPCMV (3.5)

The equation above is the discretized version of Eq. 3.3, which gives explicitly q

as a function of V, which is the vector collecting all the values of the MEP Φ(si)

on the tesserae representative points si (Vi = Φ(si)).



CHAPTER 3. QUANTUM SIMULATION OF MOLECULES IN SOLUTION76

The quantities in bold indicate vectors and matrices that represent the quan-

tities and operators in Eq. 3.3. Particularly, q and V are column vectors of

dimension Ntess, and A is a diagonal matrix collecting the areas of all the sur-

face elements. QPCM is implicitly defined in Eq. 3.5, and it is called the solvent

response matrix.

So far, we have seen how to obtain both formally (Eq. 3.3) and practically

(Eq. 3.5) an expression for calculating the polarization of the solvent (polarization

charges, q) due to the presence of the solute (MEP, V). Let us now see how this

impacts the quantum-mechanical description of the molecular system.

The quantum mechanical problem

The standard approach for including solvation effects in the quantum description

of the molecule is to define a new quantity with respect to which optimize the

quantum state of the molecule, such a quantity is known as free energy in solution

G:

G[|Ψ⟩] = ⟨Ψ|Ĥ0 +
1

2
V̂σ|Ψ⟩ (3.6)

As we can see G is a functional of the electronic state only, since we are implic-

itly adopting the Born-Oppenheimer approximation. In the previous equation, Ĥ0

is the electronic Hamiltonian of the molecule in gas phase and V̂σ is the opera-

tor accounting for the Coulomb interaction between the ASCs σ(s) representing

the solvent polarization generated by the molecule’s charge density ρ(s) and the

electrons of the molecule.

If we apply the variational principle to the free energy functional G[|Ψ⟩] (Eq.

3.6), under the constraint of a normalized wavefunction, it is possible to derive a

non-linear Schrödinger equation with an effective Hamiltonian Ĥeff that includes

the solute-solvent interaction[54]:

Ĥeff
|Ψ⟩|Ψ⟩ = [Ĥ0 + V̂σ(|Ψ⟩)]|Ψ⟩ = E|Ψ⟩ , (3.7)
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where we have highlighted the non-linearity of the equation by explicitly reporting

the dependence of the interaction operator on the electronic wavefunction.

For the sake of our purposes, is convenient to define the interaction operator

in second quantization. This allows us to get a deeper insight into the meaning

of this operator and also to illustrate better how to calculate the solvation free

energy within the VQE algorithm.

Therefore, by separating the contributions of electrons and nuclei, in second

quantization we can write V̂σ as:

V̂σ = WNN + vTN · ⟨Ψ|Q̂|Ψ⟩+
∑
p,q

[
1

2
(jpq + ypq) + xpq]Êpq . (3.8)

Here WNN is the interaction between nuclei and their polarization charges; the

indices p, q run over the basis of molecular orbitals, jpq is the interaction term

between the electrostatic potential produced by the electronic charge distribution

−χp(r)∗χq(r), evaluated at each tessera, with the ASC generated by the nuclear

charge distribution:

jpq = vTpq · qN (vpq)i = −⟨χp|
1

|r− si|
|χq⟩ , (3.9)

Similarly, ypq represents the interaction between the nuclear potential and the

ASC generated by the elementary electronic charge distribution −χp(r)∗χq(r),
called qpq

ypq = vTN · qpq (vN)i =
∑
m

Zm
|Rm − si|

(qpq)i =
∑
j

QPCM
ij (vpq)j , (3.10)

where vN is the nuclear potential and Zm, Rm are the nuclear charge and position

of the mth nucleus.

Finally, we have the interaction term between the electrons and the ASC gen-

erated by themselves:



CHAPTER 3. QUANTUM SIMULATION OF MOLECULES IN SOLUTION78

xpq = vTpq · ⟨Ψ|Q̂|Ψ⟩ , (3.11)

where we have introduced the apparent charge operator Q̂, also appearing in Eq.

3.8, given by:

Q̂ =
∑
pq

qpqÊpq . (3.12)

The operator V̂σ reported in Eq. 3.8 is a one-body operator since it represents

the interaction between a charge distribution (the ASC) and the electrons of the

molecule, formally analogous to the interaction term between nuclei and electrons

in the standard molecular Hamiltonian. Since it is a spin-free operator, we have

written it directly in terms of singlet excitation operators Êpq:

Êpq = a†pαaqα + a†pβaqβ (3.13)

To conclude this section we summarize the standard procedure to find the

solution of the coupled equations for the solvent (Eq. 3.5) and the solute (Eq. 3.7)

response.

The idea is to find the minimum of the G functional with a self-consistent pro-

cedure. For a given initial approximation of the many-electron wave function of the

molecule, the electrostatic potential V is calculated on each tessera. Subsequently,

the polarization charges are obtained using (Eq. 3.5). In turn, such charges enter

directly the definition of the effective Hamiltonian (see Eq. 3.8) that allows us to

compute the an improved wavefunction and the corresponding G, (Eq. 3.6). Then,

one iterates these steps to converge the value of the free energy.

In the next section we will describe the PCM-VQE algorithm. At the heart of

this new hybrid quantum-classical algorithm there is the idea of translating the just

mentioned self-consistent procedure to a procedure where the minimization of the

free energy functional and the solution of the electrostatic problem are performed

classically while the quantum computer is used to generate the trial wavefunction
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and evaluate the expectation values needed to calculate the corresponding solvation

free energy.

3.3 PCM-VQE

Here we describe the extension of the VQE algorithm to include the solvation

effects using the PCM model described in the previous section.

We start considering the standard workflow of the VQE. We use a quantum

computer to prepare a trial state of the N-electrons molecular wave function and

to measure the expectation value of the corresponding Hamiltonian. Subsequently,

the prepared state is variationally optimized to find the ground state energy. A

classical optimizer is used to adjust the variational parameters θ̄ that define the

quantum circuit preparing the many-electron wave function.

In order to account for solvation effects within the VQE algorithm, we gen-

eralize the objective function to be the free energy in solution as defined in Eq.

3.6:

G[θ̄] = ⟨Ĥ0⟩θ̄ +
1

2
⟨V̂σ(θ̄)⟩θ̄ (3.14)

Where we recall Ĥ0 is the molecular Hamiltonian of the molecule in vacuo and

Vσ is the solute-solvent interaction operator defined in Eq. 3.8. By taking the

expectation values of these observables in the prepared state |Ψ(θ̄)⟩ we re-write

the cost function as,

G[θ̄] =
∑
p,q

hpqdpq(θ̄)+
1

2

∑
p,q,r,s

gpqrsDpqrs(θ̄)+
1

2

∑
p,q

[(jpq+ypq)+xpq(θ̄)]dpq(θ̄)+
1

2
WNN

(3.15)

Here p, q, r, s are indices running over the orbitals (note we are considering a spin

free Hamiltonian, proper for the usual condition when no magnetic fields or spin-

orbit coupling is considered), dpq(θ̄) and Dpqrs(θ̄) are the one- and two-electrons
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orbital Reduced Density Matrices (1-, 2-RDMs) defined as follows[55]:

dpq(θ̄) = ⟨Epq⟩θ̄
Dpqrs(θ̄) = ⟨EpqErs − δrqEps⟩θ̄ .

(3.16)

The possibility of retrieving dpq(θ̄) andDpqrs(θ̄) as expectation values is guaranteed

by the inherent variational procedure of the method, which is also the case for

the UCCSD ansatz [56]. This is non-trivial in general, and for non variational

approaches the expression should be replaced by strategies such as the introduction

of an auxiliary variational Lagrangian. In those cases, the use of Eq. 3.16 would

represent just an approximation[55] to the proper density matrices.

From what we have seen in the previous section it is easy to see that the

solvation free energy contribution to the total free energy depends both implicitly

and explicitly on the circuit parameters. The implicit dependency stems from the

definition of the new interaction operator, the explicit dependency is a result of

the relaxation of the wavefunction in presence of the reacting field. Concerning

the dependence of the interaction operator matrix elements on the variational

parameters, it is instructive to get a better intuition on the modified procedure of

the PCM-VQE to make explicit the presence of the variational parameters in Eq.

3.11:

xpq = vTpq · ⟨Ψ|Q̂|Ψ⟩
PCM-VQE−−−−−−→ xpq(θ̄) = vTpq · ⟨Ψ(θ̄)|Q̂|Ψ(θ̄)⟩ (3.17)

This last feature gives rise to an hybrid algorithm in which the classical optimiza-

tion routine is tasked with the optimization of a cost functional with a dependence

on the parameters that is different to that of standard VQEs: as a consequence of

the non-linearity here we jointly optimize the quantum state and the observable

w.r.t. which we compute the expectation value.Whether this feature has an im-

pact on the convergence properties of the algorithm is a topic that deserves further

study in terms of the theory of hybrid variational algorithms per se. In this paper,
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we will address this problem numerically only for a few examples.

Another important point to comment is that with the definition of this new

cost functional we are including solvent effects in our description without any

additional cost of quantum computational resources (see the SI Sec. "Algorithmic

complexity: PCM overhead" for a more in-depth analysis of the computational

cost) as the same quantities needed to measure the Hamiltonian expectation value

in gas-phase are needed to update the interaction operator matrix elements (as

shown in Eq. 3.5 and Eq. 3.11 they only depend on the 1-RDM) and to compute

the solute-solvent contribution to the free energy (Eq. 3.14).

Finally, we notice that once the density matrices are extracted from the QC,

the solution of the electrostatic problem using Eq. 3.5 is straightforward as the

solvent response matrix QPCM remains unchanged through all the calculation.

The PCM-VQE algorithm consists of five steps, as it is sketched in Fig. 3.1:

1. The molecular wavefunction is encoded into the state of the quantum com-

puter. Several mappings have been developed in the literature, see Ref.[57]

for an extended review on the topic.

2. Transform the quantum computer initial state according to a unitary opera-

tion (often referred as the VQE ansatz) U(θ̄) which depends parametrically

on the set parameters θ̄.

3. Evaluate the one- and two-electron orbital RDMs using the trial state pre-

pared by the quantum computer.

4. Update the polarization charges using Eq. 3.5 and the matrix elements jpq,

ypq and xpq(θ̄) accordingly.

5. Evaluate the free energy functional G[θ̄] and compute, if needed, its gradient

with respect to the circuit parameters.

Finally, steps 2-5 are repeated until the value of the molecule’s free energy in

solution is converged.
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Build cavity and set initial guess

Apply unitary U(θ̄)

Evaluate 1,2-RDM

Gas-phase contribution ⟨H⟩θ̄ Solvent contribution 1
2
⟨Vσ(θ̄)⟩θ̄

Free energy in solution G[θ̄]
Free energy gradient ∇θ̄G

Final state and exact solvent response

If: converged

U
pd

at
e
θ̄

Figure 3.1: Schematic representation of the PCM-VQE algorithm. Black boxes
represent operations that involve uniquely classical computation, orange boxes
refer to operations that are performed by the quantum computer. Computing
the solvent response (green box) is an hybrid computing operation as the classical
solver of the IEF-PCM equation is fed by the quantum processor with the 1-RDM.
The PCM-VQE loop is iterated until a convergence criterion is satisfied providing
the final state of the solute molecule and the corresponding reaction field of the
solvent.

For the sake of clarity, here we stress that the non-linearity of the effective

Hamiltonian in Eq. 3.7 prevents the inclusion of the solvation effects in the VQE

by simply substituting the molecular integrals computed in gas-phase with the

molecular integrals computed in solution.

Indeed, the result obtained in this fashion would only provide the optimal

variational parameters which enable to prepare the ground state of a molecule in
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vacuo whose MOs result from a HF calculation in solution. Such a wavefunction

would differ (providing inaccurate results) both from the solution given by the

IEF-PCM model coupled to a standard method of quantum chemistry and from

the PCM-VQE. A scheme of the algorithm highlighting the interplay of classical

and quantum libraries is given as Fig. S3.1; the code is available on GitHub[58].

This concludes the description of the PCM-VQE algorithm and the Theory

section. In the following we will discuss the technical details of the implementation

and the results obtained both with a noiseless simulation and in presence of a

simulated quantum noise.

3.3.1 Computational details

The PCM-VQE algorithm has been implemented in a Python code[58] realizing

the interface between the Psi4[59] quantum chemistry package and the PennyLane

quantum library[60]. Psi4 was used to compute the molecular integrals, build

the solute cavity and solve the electrostatic problem (through its interface with

PCMSolver[61]), and PennyLane functionalities were used to implement the quan-

tum algorithm. That is, defining the quantum circuit preparing the molecular

trial state, computing the expectation value of the many-body observables and

optimizing the quantum circuit parameters.

We have performed numerical simulations to compute the free energy in solu-

tion of the trihydrogen cation (H+
3 ), beryllium hydride (BeH2) and water (H2O)

molecules at their equilibrium geometry, shown in Fig. 3.2, computed in gas-phase

using the STO-3G basis set. Two examples using a larger basis set (6-31G) are

provided in the Supporting Information. Here we remark that the use of STO-3G

as basis set should be avoided when the goal of the numerical simulation is to

quantitavely predict a property and/or compare the result with an experimental

measure. This was not the case for the present study where the purpose of the

numerical experiments is to showcase the newly developed algorithm on a set of

different molecules. The choice of a minimum basis set is therefore motivated

to avoid overflowing the computational resources required by the used quantum
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computer simulators as previously done in other works[40, 62, 63]. The molecular

cavities are built in PCMSolver according to the GePol algorithm [53] using the

atomic radii reported in Ref. [64]. The choice of the investigated systems has

been made to span a set of molecules with different dipole moment, charge state

(quantities that are deeply involved when solvation effects are taken into account)

and spatial symmetry, so as to test the implementation and algorithmic robustness

over different situations. The classical reference calculations have been performed

with the Psi4 code at the CCSD/IEF-PCM level of theory[31] using the same

solute cavities.

(a) (b)

(c)

Figure 3.2: Structures of studied systems: (a) trihydrogen cation, (b) beryllium
hydride and (c) water. The small green dots are the representative points of each
tessera, where ASCs are located, and are spread on the molecularly shaped cavity
boundary. Please note that different cavity sizes are not to scale. These figures
have been produced with the software Chimera[65].

The variational quantum circuits to prepare the trial states |Ψ(θ̄)⟩ of the sim-

ulated molecules are built following the methodology reported by the authors in
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Table 3.1: Variational parameters and maximum number of iterations for the
PCM-VQE calculations showed in Fig.3.4.

H+
3 BeH2 H2O

Variational parameters 2 18 30
Max. iterations 12 15 12

Ref. [66]. For the sake of completeness, we outline here the main steps for building

the quantum circuit. First, the N -qubit register encoding the molecular spin-

orbitals is initialized to the Hartree-Fock (HF) state of the molecule. That is, the

first Ne qubits, with Ne being the number of electrons, are set in the state |1⟩
and the other N − Ne qubits in the state |0⟩. Thus, to prepare a many-electron

state beyond the meanfield approximation, we apply particle-conserving single-

and double-excitation gates on the initial state (see Fig. 3.3 and SI for the circuits

used in this work). These excitation operations are implemented in PennyLane

as Givens rotations which act on the subspace of two and four qubits [47]. As a

result, the final state is a superposition of the HF state and other states encoding

multiply-excited configurations [66]. In Tab.4.2 we report the number of varia-

tional parameters (i.e., number of Givens rotations) for the systems studied in this

work and the corresponding number of maximum iterations needed to achieve the

results shown in Fig.3.4 .

Furthermore, we have used the adaptive method proposed in Ref. [66] to select

the excitation operations that are important to compute the ground state of the

solvated molecules. In addition, to check the reliability of the method to different

implementations of VQE, we also explored a more system-agnostic ansatz, the uni-

tary coupled-cluster ansatz truncated at the level of single and double excitations

(UCCSD) [39] (see SI).

On the other hand, evaluating the cost function defined in Eq. (3.15) for given

set of the variational parameters θ̄ requires to compute the one- and two-electron

orbital reduce density matrices dpq(θ̄) and Dpqrs(θ̄), respectively. To that aim, we

use the Jordan-Wigner transformation [67] to map the fermionic operator Êpq into

the Pauli basis, and compute their expectation values in the trial state prepared by
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the quantum circuit. Thus, we proceed to minimize the cost function to obtain the

free energy of the solvated molecules. The optimization of the circuit parameters

in the absence of noise was performed using an adaptive gradient descent algorithm

while a gradient-free optimizer [68] was used in the case of noisy simulations.

In addition, we investigated the capability of the present PCM-VQE imple-

mentation to estimate solvent effects in a system in the presence of a high degree

of static correlation such as the double dissociation bonding profile of water. For

the latter calculations we have used the same variational ansatz exploited for the

single point calculations at the equilibrium geometry.

The results concerning the implementation on a simulated noisy quantum hard-

ware are obtained by using a noise model for the IBM Q Mumbai quantum proces-

sor as implemented in the Qiskit library[69]. It includes one- and two-qubits gate

error probabilities, pulse duration for the basis gates, readout errors and thermal

relaxation effects tuned upon the experimental parameters. Each circuit has been

repeated 8192 times to build relevant statistics, we set the number of shots per

circuit to match the maximum number allowed on the actual quantum device. In

the SI (Sec. "Measurement budget allocation and statistical errors") we provide

a theoretical discussion on the error due to a finite sampling of the expectation

value. Here we summarize from a practical point of view. The error bars reported

in the results’ section have been obtained assuming the standard deviation on the

expectation value of each Pauli string equal to 1, which is an upper bound for this

quantity. Subsequently the error on each Pauli string is obtained dividing by the

square root of the number of shots executed (8192 in our case), since their expec-

tation value is obtained by independent measures. The final error bars on (free)

energies are then given by standard error propagation applied to the Hamiltonian

mapped on the Pauli strings.
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3.4 Results

3.4.1 Numerical simulations in noise free conditions

Single point calculations

Fig. 3.4 shows the values of the free energy in solution G[θ̄] as a function of the

iterations for the molecules depicted in Fig. 3.2. All the results of this section are

reported following the same color code in the plots. The solid blue line corresponds

to the free energy evaluated with the PCM-VQE algorithm, the orange dashed line

refers to the free energy evaluated classically at the PCM-CCSD level of theory,

and the green dashed line gives the free energy value computed classically with

the PCM-HF method. The left panel (Fig. 3.4a) refers to the trihydrogen cation;

a two electron system whose wavefunction in the STO-3G basis can be encoded

by using six qubits.

This circuit is able to prepare the parameterized state |Ψ(θ1, θ2)⟩ defined as:

|Ψ(θ1, θ2)⟩ = cos(θ1)cos(θ2)|HF⟩−cos(θ1)sin(θ2)a†5a
†
4a1a0|HF⟩−sin(θ1)a†3a

†
2a1a0|HF⟩ .

(3.18)

Particularly, the last expression shows the efficiency of the adaptive procedure

which enables to generate a variational ansatz that spans selectively the subspace

corresponding to the set of Slater determinants that contribute to the FCI wave-

function without allowing to reach states having components along different elec-

tronic configurations.

As a first comment, we can notice how the quantum simulation algorithm is

able to recover all the correlation energy and solvent effects contribution w.r.t.

the value given by the CCSD reference which is exact in this case. Moreover, we

can see that the optimization convergence is reached within only ten iterations.

This is due to the optimization settings that comprise an educated guess encoding

the |HF⟩ state. Furthermore, we have adopted a variational ansatz that prepares

the FCI ground-state for this molecule. Such a strategy allows to further reduce

the cost of including solvation effects: in the PCM-VQE theory section we have
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Figure 3.3: Quantum circuit used for the PCM-VQE simulations on the H+
3

molecule. As mentioned in the main text, the circuits used are composed by a
set of initial state preparation gates (here the X gates acting on the first two
qubits) and by particle-conserving unitary operators here implemented as Givens
rotations (whence the label G). Figure obtained using the quantum circuit drawer
function as implemented in PennyLane[60].

seen that no other additional costs are present concerning the quantum part of

the algorithm. Here we point out that only a few more iterations are needed to

account for effects of the solvent. In this regard, we highlight that constructing the

variational ansatz with an adaptive procedure on the wavefunction in gas-phase is

an approximation that applies best if the electronic structure of the solute is not

severely modified by the inclusion of the solvent. When this occurs, it may happen

that contributions from a few excited configurations, not relevant in the electronic

structure in vacuo, are lost. In such cases, the resulting wavefunction remains a

good guess for the effective Hamiltonian in solution, and the adaptive procedure

may be restarted with such Hamiltonian to include the relevant excitations. In the

SI we show additional results for a different system (HeH+) in which a more system
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agnostic ansatz is considered (UCCSD) with both STO-3G and 6-31G basis sets

to further assess the performance of the modified algorithm. Moreover, we include

an additional calculation with an adaptive circuit for the H+
3 molecule using the

6-31G basis set (SI Sec. "H+
3 calculations with PCM-VQE/6-31G").

(a) (b) (c)

Figure 3.4: PCM-VQE results. Ground state free energies in dimethyl sulfoxide
(DMSO) for the (a) Trihydrogen ion H+

3 , (b) Beryllium hydride BeH2 and (c) Water
H2O. The solid blue line represents the free energy in solution obtained with the
PCM-VQE as a function of the iterations using a STO-3G basis set. As a reference
we show the free energy obtained with an HF-PCM calculation (green dashed line)
and with a CCSD-PCM calculation (orange dashed line) using the same basis set.
The red dashed line shows the reference value obtained running a FCI calculation
in vacuo and adding to the total energy contribution the polarization energy.

Figs. 3.4b-3.4c plot the numerical results for the BeH2 and the H2O molecules.

For these larger systems the core electrons localized in the s-type orbitals of the

beryllium and the oxygen atoms are excluded from the active space. That means

that we have four and eight active electrons in the BeH2 and the H2O molecules,

respectively, whose wavefunctions are represented using twelve qubits. We chose

to keep the core electrons frozen for practical purposes as their optimization does

not impact effectively neither the electronic structure nor the description of the

solute-solvent interaction.
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Table 3.2: Free energies in solution for the studied systems (Fig. 3.2). Comparison
between FCI/CCSD/VQE (gas-phase) and between IEF-FCI/IEF-CCSD/PCM-
VQE (DMSO). Molecular geometries for the calculations as well as values obtained
for the VQE in gas phase with the adaptive ansatz have been taken from Ref. [66].
Energy values are reported in Hartree.

Gas-phase Solvent
FCI CCSD VQE FCI-PCMa CCSD-PCM PCM-VQE

GH+
3

-1.2744 -1.2744 -1.2744 -1.4230 -1.4231 -1.4231
GBeH2 -15.5952 -15.5945 -15.5945 -15.6147 -15.6115 -15.6144
GH2O -75.0233 -75.0231 -75.0230 -75.0287 -75.0273 -75.0279
(a) The results reported under the label FCI-PCM are obtained by adding to the FCI
energy in gas phase the polarization energy computed with the 1-RDM of the corre-
sponding wavefunction.

As we can see looking at the figures all the consideration made above in the

case of H+
3 still hold. This implies that, at least for the simple systems that we

can tackle with current NISQ devices, the procedure involving first the simulation

in absence of the solvent to detect the more relevant excited configurations retains

its effectiveness as the size of the system increases. In addition, we can note that

in this case, where more electrons are involved, the PCM-VQE algorithm predicts

lower energy states as compared with the classical simulations at the level IEF-

CCSD. This is not surprising as the variational ansatz spans a larger space than

CCSD. Further, this is in accordance with the comparison, in vacuo, between the

FCI and CCSD wavefunctions, Tab. 3.2a.

We observe from Tab. 3.2a that the variational ansatz is able to recover, in gas-

phase, almost all the correlation energy in all cases with maximum differences of ≈
0.4 kcal/mol (i.e., within chemical accuracy). Further, moving to the calculations

in DMSO, with the PCM-VQE we are able to improve the results of the IEF-

CCSD wavefunctions up to 1.9 kcal/mol as in the case of BeH2. For the sake of

completeness we reported in Tab. 3.3 the solvation free energies for the simulated

molecules in DMSO. We recall that the solvation free energy is computed by taking

the difference of the free energy in solution and the energy of the solute in vacuo:
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Table 3.3: Solvation free energies for the studied systems (Fig. 3.2). Comparison
between IEF-CCSD and PCM-VQE in DMSO. Energy values are reported in eV.

H+
3 BeH2 H2O

∆GPCM-VQE -4.046 -0.539 -0.133
∆GIEF-CCSD -4.046 -0.460 -0.114

∆Gsol = G[θ̄sol]− ⟨Ψ(θ̄vac)|H|Ψ(θ̄vac)⟩ (3.19)

While in the next section we will look at this quantity evaluated in presence of

quantum noise, here we focus on the accuracy obtained with the noiseless calcu-

lations. In all cases we are able to recover quantitatively the description obtained

with a IEF-CCSD calculation with the larger deviation observed for the BeH2

molecule.

In the SI (Tab. S1) we have also reported analogous results obtained for the

same molecules in water.

Solvation effects along the water molecule double bond dissociation pro-

file

In this section we apply the PCM-VQE to estimate solvation effects along the

water molecule double bond dissociation profile. Such a system has been largely

investigated in the context of electronic structure theory [70][71][72] and very re-

cently it has been considered in Ref.[73] to benchmark the effects of adding an

orbital optimization procedure to the VQE method.

The reason behind the interest in this problem is that such a system, due

to its symmetry, exhibits strong static correlation effects due to two equivalent

electronic configurations arising in the bond dissociation limit. In particular, as

thoroughly discussed by Olsen et al.[74], around the equilibrium geometry the HF

determinant contribution to the FCI wavefunction largely outclasses all the other

electronic configurations. On the other hand, as the bond length increases, its

contribution becomes smaller and smaller until it vanishes at the dissociation limit.
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Simultaneously, the occupation of the orbital pair (3a1, 1b2), almost completely

populated in the HF determinant, loses occupation to the orbital pair (4a1, 2b2)

until they are equally populated in the dissociation limit. Here we show that,

despite the inherent problem complexity, we are able to obtain a fair estimate of

the solvation effects even using a variational network tailored specifically on the

electronic structure of the equilibrium geometry.

(a) (b)

Figure 3.5: Solvation effects for the water molecule (in water) along the double
bond dissociation profile. (a) Upol, polarization energy; (b) ∆G, solvation free
energy. As a reference we report the results obtained at the FCI (orange solid
line), CCSD (green dashed line) and HF (purple dashed line). Red triangles are
obtained with the PCM-VQE algorithm where the number of optimization steps
has been increased (up to 500) with the bond distance. For more details see SI.
All calculations were performed using a STO-3G basis set.

In Fig. 3.5a we show the results for the polarization energy, defined as Upol =
1
2
⟨Vσ⟩, computed as a function of the bond distance. This quantity accounts for the

interaction between the solute charge density in gas phase and the corresponding

polarization charges. Due to the lack of relaxation of the electronic degrees of

freedom in presence of the solvent it may deviate from the solvation free energy

defined in Eq. 3.19.

As a first comment, we can notice that the double bond dissociation profile
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for the polarization energy curve predicts the greatest energetical stabilization

due to the hydration process around ≈ 0.6Å which, interestingly, differs from the

equilibrium distance rOH = 0.96Å . For short bond lengths the PCM-VQE (red

triangles) predicts values of polarization energy slightly closer to the FCI result

(solid orange line) than the CCSD (green dashed line). On the other hand, as the

bond length increases, we observe larger deviations from the FCI result. In spite

of this, we obtain better estimates w.r.t. the HF level of theory, with a maximum

variation from the CCSD estimate < 1 kcal/mol. It is important to emphasise that

this degree of agreement is not readily apparent from the results shown in the SI

regarding the absolute energy values obtained with the different methods.

Now we consider the results for the hydration free energy reported in Fig.

3.5b. Here the observed qualitative behavior is reversed: the PCM-VQE predicts

a slightly favourable energy contribution to the hydration process compared to

CCSD for almost all bond length values considered. As noted previously, for

short bond lengths, the discrepancies among the values obtained with the different

methods are small; moving to the region where the strong static correlation arises

larger deviations between the different approximations become more apparent with

the PCM-VQE outcomes producing values in between the ones of CCSD and HF.

Finally, we want to discuss the slightly noisy trend observed in both graphs for

the polarisation energy and the solvation energy estimated with the (PCM-)VQE.

This could result from an interplay of different effects. First of all we highlight that

the overall quality of these results could be easily further improved adopting a dif-

ferent ansatz such as those used in Ref. [73]. Here we did not focus on the technical

refinement of the implementation as was beyond the scope of the present work.

Further, as shown in more detail in the SI and mentioned in the computational

details, the optimisation procedure does not take place with the same number of

iterations for each bond length. This choice has been dictated by the fact that,

to preserve consistency with the computational procedure, in all cases the initial

state for the VQE optimization was considered to be the |HF⟩ state which is an

increasingly worse ansatz as electronic correlation increases and thus requires a
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greater number of iterations before achieving convergence. Although the conver-

gence rate of the optimisation procedure does not seem to be particularly affected

by the presence of solvent effects in the cost functional (see SI), this may have

influenced the estimation of much smaller numerical values, such as those of ∆G,
compared to the absolute energies (or free energies). This last point is particularly

relevant for rOH values greater than 2 Å in which the overall convergence rate is

lower for both the case in vacuum and in solution w.r.t. shorter bond lengths.

In this section we have analyzed the results obtained with a PCM-VQE pro-

cedure on a noiseless quantum processor. This allows to prove the efficacy of the

method but does not give us an idea of its viability on the NISQ devices that are

currently available. In the following section we will look at the results obtained

simulating a noisy quantum device to understand if the effects of a microscopic

environment on a small molecule can be reliably caught by an actual NISQ device.

3.4.2 Effect of quantum noise on solvation free energy

The aim of this section is to understand if we are able to reliably compute with

present quantum processors an estimate of the solvation free energy for a molecular

system. We will focus on the six qubit system H+
3 whose charged state determines a

strong stabilization of the system due to the solvation process. Here it is important

to notice, as explicitly expressed in Eq. 3.19 that the definition of the solvation free

energy involves two different sets of variational circuit parameters corresponding

to the optimal result found with a standard VQE and to the optimal result after

the PCM-VQE procedure.

In Fig. 3.6a we report the free energy in solution (solid orange line) and the

gas-phase energy (solid blue line) computed by running the PCM-VQE and VQE

problem on a classical quantum emulator with a noise model built to mimic the

IBM Q Mumbai quantum computer. The variational ansatz adopted is the same

used for the calculations in noise free conditions reported in the previous section.

In this case we initialized the variational parameters to random values.

As we can see the presence of quantum noise affects the coherent state of the
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processor and hampers the classical optimization procedure; the result is that the

in vacuo energy and free energy estimates are significantly higher w.r.t. the the-

oretical values reported with dashed lines in the same plot, and both continue to

fluctuate with the iteration number. This is in agreement with what has been

reported in other works[75, 76]. It represents the current limitations of this tech-

nology and calls for the pressing need of error mitigation strategies. Here we notice

that the deviation (quantum vs. theoretical benchmark) on the estimated energy

in vacuo and on the free energy in solution is very similar, ∆ ≈ 0.275Ha. This is

reasonable since both the quantities to be measured (1,2-RDMs) and the gas-phase

vs. solvated wavefunctions are very similar.

Indeed, as shown in Fig. 3.6b, even without any error mitigation procedure,

we were able to give a reasonable estimate of the solvation free energy (∆Gsol[θ̄] =
−3.564 ± 0.163 eV vs. ∆Gsol = −4.054 eV) reported with the solid blue line as a

function of the optimization steps. This value has been obtained performing two

independent runs of the VQE algorithm in vacuo and in solution and taking the

energy difference. Further, to mitigate the effect of stochastic fluctuations, the

value reported results from an average over the last 50 points of the iteration plot

(see inset of Fig. 3.6) and the error is estimated as ±σ (standard deviation of the

last 50 points).

We have also analyzed the behavior of the polarization energy. As we have

seen in the previous section, in general it is different from ∆Gsol since it lacks

the contribution of the wavefunction change from gas-phase to solution. However

for the present system these two quantities are very similar w.r.t. the classical

benchmark calculations. This is also evident in Fig. 3.6b where both reference

lines are completely overlapped.

We have also investigated the impact of quantum noise on the computed polar-

ization energy. The goal of this analysis is to understand if estimating the solvation

free energy approximating it with Upol gives better results on a NISQ device. In

this case we obtained a value of Upol = −4.054± 0.217 eV that matches the quan-

tity obtained with a noise free calculation. Error bars are obtained according to
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the procedure explained in the SI and computational details’ section.

(a) (b)

Figure 3.6: PCM-VQE simulation of the H+
3 molecule in DMSO with a noise

model built upon the IBM Q Mumbai quantum processor. (a) Energy obtained
with a VQE simulation in presence of the simulated quantum noise (solid blue
line); Free energy in solution calculated with the PCM-VQE in presence of the
simulated quantum noise (solid orange line). As a reference we show the energy
obtained with a classical calculation at the CCSD level of theory (in vacuo - red
dashed line, DMSO - green dashed line). (b) Solvation free energy for the H+

3

molecule in DMSO with a noise model built upon the IBM Q Mumbai quantum
processor (solid blue line). As a reference we have reported the solvation free
energy (orange dashed line) and polarization energy (green dashed line) computed
with a CCSD calculation, these latter are superimposed and not distinguishable.
The estimated value reported in the main text is obtained taking the average over
the last 50 points of the iteration plot (see inset) ±σ (standard deviation of the
last 50 points).

We can read these results in light of multiple effects. First of all, as evidenced

in the theory section, solvent effects are reproduced optimizing a perturbation

operator whose contribution is captured by measuring only the 1-RDM. As such,

the number of Pauli strings to measure is dramatically reduced. To better discuss

this point we have reported the exact 1-RDM and the estimated 1-RDMs with

the calculation in vacuum and in solution (see Fig. 3.7). Furthermore, we have
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computed the trace distance, D(ρ, ρexp) =
1

2Ne
||ρ− ρexp||1 where Ne is the number

of electrons, between the theoretical and experimental 1-RDMs obtaining the same

value of D = 0.075. Note that the trace distance ranges from 0 to 1 where the

former value stands for two identical RDMs and 1 is obtained for two matrices

spanning two orthogonal supports. The same value is obtained comparing noisy

vs. noiseless PCM-VQE calculations. As we can see a quantitative agreement

between the density matrices is apparent. To get the same values for the trace

distance is not surprising, since the procedure to extract the 1-RDM is the same

(in terms of measurement needed) both for the PCM-VQE and VQE algorithm.

This is also shown by the reference values of the polarization energy and of the

solvation free energy.

On the other hand, moving to the estimated solvent effects, the outcome is

soundly improved when only the polarization energy is considered. Such a result

could be rationalized considering that when taking the difference between two

values coming from two independent runs the errors due to the sampling of the

2-RDMs (that require a much larger number of Pauli strings to be measured) and

the errors for each computed 1-RDM accumulate by propagating. Instead, when

the solvation free energy is approximated with the polarization energy the errors

arising from the sampling of the 2-RDM are not present. In addition we also avoid

the combination of the errors coming from the subtraction of the two quantities.

Since the latter are not correlated we do not expect cumulative effects but simply

a propagation of more errors on the calculated quantity that contribute to worsen

the accuracy of the estimated solvation free energy. We point the reader to the

SI for a more thorough analysis. We emphasise that all these results come from

a combination of smaller numerical values of the matrix elements and a smaller

number of Pauli words to be measured.

Finally, it is important to stress that the accuracy w.r.t. the exact value could

be further reduced applying the protocol shown in Ref.[77] (both for ∆Gsol and

Upol) that means post-selecting the measured values upon a total occupation num-

ber criterion and applying the McWeeny purification[78]. Here, since a technical
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a)

d)

b)

c)

1.96 0.00 0.00
0.00 1.85 ∗ 10−2 0.00
0.00 0.00 1.85 ∗ 10−2

  1.67 2.13 ∗ 10−3 −3.19 ∗ 10−3

−2.01 ∗ 10−3 1.98 ∗ 10−1 −2.60 ∗ 10−3

1.01 ∗ 10−2 −4.73 ∗ 10−4 1.35 ∗ 10−1


1.96 0.00 0.00
0.00 1.85 ∗ 10−2 0.00
0.00 0.00 1.85 ∗ 10−2

  1.67 4.60 ∗ 10−3 1.42 ∗ 10−3

−1.53 ∗ 10−3 1.96 ∗ 10−1 5.48 ∗ 10−3

−1.22 ∗ 10−2 7.26 ∗ 10−3 1.36 ∗ 10−1


Figure 3.7: H+

3 noisy simulation of the PCM-VQE algorithm. (a) Comparison be-
tween exact orbital 1-RDM, (b) orbital 1-RDM computed with a noisy simulation
of the PCM-VQE algorithm and used to compute the solvation free energy, (c)
orbital 1-RDM computed with a noise-less simulation of the PCM-VQE algorithm
and (d) orbital 1-RDM computed with a noisy simulation of the VQE in gas-phase
and used to compute the polarization energy.

optimization of the implementation goes beyond the purposes of this study, we only

applied a normalization factor to the matrix elements of the 1-RDM to obtain the

correct number of electrons when taking the trace.

In conclusion, although the use of variational quantum algorithms for the sim-

ulation of chemical systems of interest is still hampered by the present NISQ

computer accuracy, these results suggest that the technical gap to be overcome

to accurately evaluate solvation effects may be lower than that to obtain accurate

values of the total electronic energy.

3.5 Discussion

In this work we have proposed a direct method, without the need of additional

quantum resources, to extend the Variational Quantum Eigensolver algorithm to

simulate solvated systems. The analysis of the numerical results obtained from

quantum simulations of simple molecules suggests that computing the solvation

free energy is a computational task that can be reasonably tackled with current

quantum computers.

The inclusion of solvation effects through the IEF-PCM allows to describe a
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plethora of microscopic environments thus extending the computational reach of

current quantum computers even more than what we have showed in this work.

Indeed, here we focused on the simple (yet most common) situation of an homo-

geneous isotropic solvent but the inclusion of more complex environments such as

metal nanoparticles or liquid-liquid phase separations is straightforward and does

not require any modification of the proposed quantum algorithm.

Future investigations that can benefit from the present work regard the inte-

gration of the proposed algorithm into more elaborated computational pipelines.

The first step in this direction is the application of the method presented here to

quantum algorithms that perform molecular geometry optimization being another

feature strongly affected by the presence of the solvent. Other examples are the

problems of calculating optical responses and excited state properties in solution

that give rise to a variety of photochemical and photophysical phenomena other-

wise unexplorable. In this regard, we mention the very recent contribution of Lee

et al.[79] where the authors couple classical molecular dynamics and variational

quantum simulation[80] to compute the optical response of a multi-chromophoric

excitonic system.

Along with the exploration of more exotic systems with NISQ devices, this

work opens up to a more theoretical question related to the theory of variational

hybrid algorithms: how does the variational landscape topology change when a

non-linear Hamiltonian is considered? The importance of this question has been

remarked very recently by the work of Bittel and Kliesch[81] where the authors

show (not considering observables analogue to the non-linear effective Hamiltonian

used in this work) that the classical task of training a variational quantum circuit

is NP-Hard. Moreover, the authors find that the complexity class of the classical

optimization is not inherited by the complexity of finding the ground state of a

local Hamiltonian, which is known to be QMA-Hard[82], but it is an intrinsic

feature of the underlying optimization landscape. Given the importance of the

question for the possible developments and applications of this type of algorithms,

it would be surely worth to show if their finding applies also to classes of cost
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functionals, such as the free energy in solution considered in this work, where the

variational parameters shape not only the quantum computer state but also the

measured observable.

In conclusion, to the extent that large-scale simulation of reactivity is among

the long-term goals of the computational chemistry community, and that this

cannot ignore the insights provided by including environmental effects, this work

paves the way for quantum simulation of molecular systems in the next generation

quantum processors. We believe that the development of quantum multiscale

methods must be part of the second quantum revolution agenda if we want to go

beyond the current computational capabilities.

Supporting Information

Pseudocode for the PCM-VQE implementation

Here we show a pseudocode scheme which summarizes the implementation of the

PCM-VQE algorithm as it is implemented in our code[58]. Particularly this realizes

a dynamical interface between Psi4/PCMSolver/PennyLane.

Our implementation allows to build the Observable and Hamiltonian objects

of PennyLane with the data encoded in the Psi4 object Wavefunction. From the

latter we have also access the PCMSolver routine that we leverage to update the

polarization charges and to compute the corresponding value of polarization energy
1
2
⟨V̂σ⟩. This last step summarized in the pseudocode as Compute_sol_solv_int(d(θ̄k),

QPCM) is realized linking the call to the Psi4/PCMSolver function to the output of

the QNode built with the PennyLane library. Finally PennyLane’s optimizers up-

date the variational parameters until the convergence criteria are met.

UCCSD Ansatz

Here we report additional results with a noiseless simulation concerning the calcu-

lation of the ground state energy of the HeH+ molecule at the equilibrium distance
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Algorithm 1 PCM-VQE - Pseudocode of the implementation.

Require: Molecular_integrals, QPCM ▷ Psi4, PCMSolver
Ensure: G[θ̄], θ̄

Initialization: ▷ PennyLane
Fermion_to_qubit_mapping(Molecular_integrals)
Set_Variational_Form()
Set_Classical_Optimizer()
k=0
θ̄k ← θ̄guess
while k ≤ max_iter or ∥G[θ̄k]− G[θ̄k−1]∥ ≤ ϵ do

Execute_variational_circuit(θ̄k) return d(θ̄k), ⟨Ĥ0⟩ ▷ PennyLane
Compute_sol_solv_int(d(θ̄k), QPCM) return ⟨V̂σ(θ̄k)⟩θ̄k ▷ Psi4,

PCMSolver
G[θ̄k]← ⟨Ĥ0⟩θ̄k +

1
2
⟨V̂σ(θ̄k)⟩θ̄k

k+=1
θ̄k ← θ̄k+1 ▷ PennyLane
G[θ̄k]← G[θ̄k+1]

end while
θ̄ ← θ̄k
G[θ̄]← G[θ̄k]
return G[θ̄], θ̄
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in dimethyl sulfoxide (DMSO) (Fig. S1) using the PCM-VQE.

Figure S1: Ground state energies of the HeH+ molecule in DMSO. (Left panel) The
solid blue line represents the energy obtained with the PCM-VQE as a function
of the iterations using a STO-3G basis set. As a reference we show the energy
obtained with an HF-PCM calculation (green dashed line) and with a CCSD-
PCM calculation (orange dashed line) using the same basis set. (Right panel) The
same plot is reported adopting the 6-31G basis set.

We have run these calculations to test the hybrid algorithm also on a well

established ansatz such as the Unitary Coupled Cluster with Singles and Doubles

(UCCSD). We recall that in this approach the optimization parameters coincide

with the cluster amplitudes of the single and double excitation operators:

Û(θ̄) = eT̂1(θ̄)+T̂2(θ̄) ,

T̂2(θ̄) =
∑

i>j>k>l θijkl(a
†
ka

†
lajai − a

†
ja

†
iakal)

T̂1(θ̄) =
∑

i>j θij(a
†
jai − a

†
iaj)

(S1)

The implementation of the previous unitary is done performing a Trotterization

since the two excitation operators do not commute. The order of the Trotterization

determines the number of control parameters and the depth of the circuit, here

we employed a first order approximation[83]. The circuit template is provided by

default in the PennyLane library.

Moreover, here we wanted to explore not only a different ansatz but also the
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effect of a larger basis set. For this reason we chose to investigate HeH+, as

the smallest system exhibiting substantial impact by the presence of a solvating

environment, with the STO-3G basis and with the 6-31G basis set. As for the

results shown in the main text, the initial state is the Hartree-Fock wavefunction,

the molecular wavefunction is mapped onto the quantum computer state with

the Jordan-Wigner method and the variational network parameters have been

optimized with the same adaptive gradient descent algorithm. The variational

parameters are initialized at random.

With regard to the quantum resources required for this calculation the helium

hydride wavefunction with a STO-3G basis is mapped in a four qubits’ quantum

register, on the other hand for the calculation in the 6-31G basis eight qubits are

needed.

As we can see we are able to obtain good results recovering for the STO-3G

basis set calculation (left panel) > 99% of the free energy in solution with respect

to the exact calculation, while, for the 6-31G basis set (right panel), we reach

the 85.4% . It is important to notice that, in this case, the classical optimization

algorithm did not meet the convergence criteria and the result could be further

improved by increasing the number of iterations.

These results further contribute to show that the performance of the PCM-

VQE is similar to what has already been reported in literature for the UCCSD in

vacuo[39, 84] and that the inclusion of solvation effects does not impact the overall

algorithmic efficiency.

H+
3 calculations with PCM-VQE/6-31G

Here we report additional results on the H+
3 molecule using the 6-31G basis set

in DMSO (see Fig. S2). To perform the calculations we have adopted an adaptive

ansatz including only the relevant excitations that contribute to the ground state

wavefunction as described in the computational details’ section of the main text.

We have also reported the circuit structure in Fig. ??. As we can see in Fig. S2
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the adaptive ansatz is able to reproduce exactly the energy in vacuum. Indeed we

recall that for a two electron system the CCSD calculation is equivalent to Full

Configuration Interaction.

Moving to the results for the solvated molecule (right panel) again we can see a

very good agreement between the PCM-CCSD and the PCM-VQE calculations but

in contrast with the gas phase result the numerical values are not exactly matching.

Particularly, the PCM-VQE free energy is 8 meV lower. This is due to the fact that

for the solvated system the PCM-CCSD calculation is performed approximating

the reaction field at the HF level (PTE approximation in the original reference

[31]) as implemented in Psi4 [59]. Interestingly this effect is not noticeable in the

STO-3G results of the main text because adopting a smaller basis set the error

due to the PTE approximation is negligible.

Finally, it is worth to comment the convergence rate of this calculations w.r.t.

the results obtained with a 6-31G basis set in the previous subsection (Fig. S1).

As expected, the number of iterations and the convergence rate of the optimiza-

tion procedure is dramatically improved using the adaptive ansatz instead of a

less chemically-aware UCCSD circuit. This is in agreement with what already

discussed in literature: the expressibility[85] of a parameterized quantum circuit

affects the convergence properties of the classical optimizer due to wider Hilbert

space sectors explored[86] w.r.t. adaptive circuits and to the emergence of barren

plateaus[87].

Additional results in aqueous solution

In this section we show additional calculations performed to test the PCM-VQE

on the same systems studied in the main text but with a different solvent, i.e.

water. These results, in accordance with what already discussed for the case of a

DMSO solution, allow us to discuss the performance of the algorithm on another

very common solvent in the chemical practice.
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Figure S2: Ground state energies of the H+
3 molecule with a 6-31G basis set. (Left

panel) VQE results in vacuo; (Right panel) PCM-VQE results in DMSO. Solid
blue line represents the energy obtained from the trial wavefunction as a function
of the iterations. As a reference we show the energy obtained with an HF-PCM
calculation (green dashed line) and with a CCSD-PCM calculation (orange dashed
line) using the same basis set.

Single point calculations

In Tab. S1 we report the results obtained running a PCM-VQE calculation in

water. Analogously to what discussed in the main text for the case of DMSO,

with the PCM-VQE we are able to reproduce the exact results reported for the

CCSD-PCM calculation of the H+
3 molecule and to recover a value of free energy

in solution for the larger molecules (BeH2 and H2O) close to the total FCI en-

ergy comprehensive of the polarization energy contribution. All the calculations

have been carried out according to the computational protocol described in the

computational details’ section referring to the results shown in the main text.

Energy and free energy plot for the H2O double dissociation profile

Here we report additional results regarding our analysis on the polarization energy

and hydration free energy discussed in the main text for the double bond dissocia-
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Table S1: Solvation free energies in water solution for the studied systems. Com-
parison between IEF-FCI/IEF-CCSD/PCM-VQE (H2O). Molecular geometries for
the calculations have been taken from Ref. [66]. Energy values are reported in eV.

FCI-PCMa CCSD-PCM PCM-VQE
∆GH+

3
-4.082 -4.082 -4.082

∆GBeH2 -0.539 -0.468 -0.545
∆GH2O -0.142 -0.117 -0.133

(a) For FCI-PCM, polarization energies are reported rather than solvation free energy.

tion profile of the water molecule. In Fig. S3a-b we report, respectively, the total

energy (Fig. S3a) and the free energy in solution (Fig. S3b) computed with the

PCM-VQE (red triangles). The energies reported correspond to an optimization

convergence rate ϵ < 10e−8 or to a maximum number of 500 iterations. In this

case, while maintaining the same trend as observed for Upol and ∆G, we can see

that the differences are considerably more pronounced for the total energy E and

the free energy in solution G. In particular, while up to 1.4 Å the (PCM-)VQE

result is quantitatively in agreement with that of the FCI (orange solid line) or

CCSD (green dashed line), for higher bond length values we observe deviations

from the value calculated by the FCI/CCSD method of about 0.2 Ha.

Finally, we comment the data reported in Fig. S4 which show the convergence

behavior of the classical optimization procedure as a function of the iterations

(different colors) and as function of the bond length rOH. As a first comment we

can notice that the converge rate of the optimization procedure for the PCM-VQE

(crosses) is very similar to the one observed in vacuo (triangles) in accordance

with the plots shown in the main text for the single point calculations and with

the results shown in Fig. S1 suggesting that the inclusion of a non-linear term in

the cost functional should not further affect the classical optimisation algorithm.

Finally, we also notice that the rate of convergence of the optimization slows

down considerably as the bond distance increases. This behavior is not surprising

and can be explained considering (i) that as the dissociation regime approaches

the initial guess state |HF⟩ provides a worse approximation of the optimal result



CHAPTER 3. QUANTUM SIMULATION OF MOLECULES IN SOLUTION107

(a) (b)

Figure S3: Double bond dissociation profile for the water molecule in gas phase (a)
and in water (b). Reference values with classical methods are reported: FCI (solid
orange line), CCSD (green dashed line) and HF (purple dashed line). Red triangles
show the results obtained with the (PCM-)VQE method. All the calculations were
performed with a STO-3G basis set.

Figure S4: Convergence plot of the classical optimization procedure for the VQE
(triangles) and PCM-VQE (crosses) as a function of the bond length. Color code:
yellow (≤ 100 iter.); green (≤ 200 iter); red (≤ 300 iter.); brown (≤ 400 iter.);
purple (≤ 500 iter.).
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and therefore a greater number of iterations is required to achieve convergence.

(ii) The adaptive ansatz here used includes excited configurations among the most

relevant to capture electronic correlation at the equilibrium geometry whose elec-

tronic structure is increasingly different from the one at the bond dissociation

limit.

Measurement budget allocation and statistical errors

In this section we give a brief account of the effects of finite sample size on

the accuracy of the expectation value estimates performed during the VQE and

PCM-VQE procedure. The goal of this section is two-fold: on one hand we want

to provide a practical recipe to estimate the number of shots N needed to achieve a

desired accuracy on solvation quantities (and, in general, on any expectation value

calculated from the VQE wavefunction); on the other hand we want to rationalize

the magnitude of the errors at fixed number of shots for different systems and

solvation quantities.

The analysis we report explicitly refers to an error due to finite sampling for

which it is exact to consider the variances of the expectation values. We point out

that in presence of quantum computer noise it would be more appropriate to work

explicitly with the mean squared error MSE(X) defined as

MSE(X) = Var(X) + Bias(X) , (S2)

where X is a random variable representing the expectation value, Var(X) is its

variance and Bias(X) comprises the error due to the presence of the quantum

computer noise.

We first consider the problem of estimating the number of optimal shots N

needed to estimate the expectation value of an observable Ô within a desired accu-

racy ϵ. We follow Rubin et al.[88] who derived an optimal number of measurement

for ⟨Ô⟩ =
∑

γ hγPγ given by
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N =
K

ϵ2
, (S3)

where the factor K is obtained taking into account the fluctuation of each inde-

pendently measured Pauli word Pα needed to compute the desired expectation

value:

K =
(∑

B

√∑
α,β∈B

hαhβCovar(Pα, Pβ)
)2

(S4)

Here B is a label that runs over the different sets of non-commuting Pauli words

and hα, hβ are the corresponding matrix elements of the mapped operator Ô.

We highlight that Eq. S4 is a direct consequence of error propagation theory

and formalizes two important statements: (i) the number of shots increases as the

number of independently measured Pauli words increases, (ii) the number of shots

increases as the magnitude of the matrix elements of Ô increases.

In order to use Eq. S4 in practice we need to replace Covar(Pα, Pβ) with a

reasonable estimate. A common choice[89, 90], since Var(Pα) = 1−⟨Pα⟩2, is to set

all the variances to 1 and all the covariances to zero. It is possible to show that

this corresponds to assuming that the Pauli strings are sampled from a uniform

distribution [91].

With this assumption, K (and in turn the number of shots N) will depend only

on the Frobenius norm of the operator ||O||:

K ≈ ||O||2 =
∑
B

∑
α∈B

|hα|2 (S5)

Gonthier and coworkers[90] found numerically (for quantum chemistry ground

state calculations on organic molecules at CCSD(T) level of accuracy) that putting

covariances at zero overestimates K (and thus the required number of shots N) by

a factor of 2, while assuming the variances to be all equal to 1 lead to a 20%-30%

overestimation of K. Overall, their results show that using Eq. S3 together with

the K estimate in Eq. S5 yields quite conservative (i.e., on the safe side) values of
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N .

To use what reported here in practice, if a given precision ϵ is sought, one

has first to estimate the factor K summing all the squared Ô matrix elements

corresponding to non-commuting Pauli strings and then to divide by ϵ2 to obtain

the corresponding number of samples N to collect.

Now we shall consider the error estimated on the total energy and total free

energy. This is also relevant for the error on solvation free energies, which are

obtained as differences of total free energy in solution and total energy in gas-

phase. Suppose for example that an error of ϵ = 0.1 Ha on the total energy (or

free energy) for water at the STO-3G level is desired. The first step is to calculate

K = ||H||2 for water from eq. S5, that turns out to be ≈ 6 · 103. Then, eq. S3

gives a number of samples N ≈ 6 · 105.
The presented discussion can also be used to numerically explore how error

estimates depend on the specific calculation, via the Hamiltonian norm and the

number of non-commuting sets of Pauli words at fixed number of shots, see Tab.

S2.

Table S2: Frobenius norm of the Hamiltonian Ĥ, number of non-commuting sets
of Pauli words B and statical errors ϵ for the molecules studied in this work at
the STO-3G basis set level. Estimates computed according to Eq. S5. Values
obtained for a number of samples N = 8192. All quantities are given in atomic
units.

||H|| B ϵ
H+

3 1.12 10 0.0124
BeH2 17.7 17 0.195
H2O 78.5 23 0.867

As we can see from such Table, the error increases both as the number of non

commuting Pauli terms and the Hamiltonian norm increases. This is in accordance

with Eq. S3 and Eq. S5.

Turning now to the error on the polarization energy, that we identify in the

main text as a robust solvation quantity also for noisy quantum computers, we note

that the same procedure just described to estimate N to obtain a desired accuracy
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ϵ can be applied directly to the operator Vσ. Moreover, by using Eq. S4 we can

also rationalize the different accuracy observed in estimating the solvation free

energy and the polarization energy. Ultimately this should be ascribed to the fact

that the number of independently measured Pauli strings is much smaller for the

polarization energy alone than for the overall solvation free energy since in one case

we deal with a one-electron operator while in the latter case we have to include all

the measurements coming from the two-electrons part. More specifically, in Tab.

S3 we show estimated sampling errors for 1
2
Vσ (the operator needed to compute

the polarization energy). The comparison of the magnitude of the errors reported

in this Table with those in Tab. S2 confirms our qualitative analysis. Interestingly,

the error for the smallest molecule H+
3 here is the largest in the Table. This is not

surprising, since H+
3 is the only charged molecule in the set, and as a consequence

the Vσ norm is the largest.

Table S3: Frobenius norm of the operator 1
2
Vσ, number of non-commuting set of

Pauli words B and statistical errors ϵ for the molecules studied in this work at
the STO-3G basis set level. Estimates computed according to Eq. S5. Values
obtained for a number of samples N = 8192. All quantities are given in atomic
units.

1
2 ||Vσ|| B ϵ

H+
3 0.712 3 0.00786

BeH2 0.0735 5 0.00081
H2O 0.104 6 0.00115

Algorithmic complexity: PCM classical overhead

The proposed PCM-VQE algorithm is an hybrid one, combining a classical

portion with a quantum one. In view of realistic simulations on future quantum

computers, it is important to assess that the extension to PCM does not hamper

potential quantum advantage from the VQE approach. The goal of this section is

not to provide a thorough analysis of the algorithmic cost, which depends on the
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particular flavour of VQE considered, but to highlight the computational overhead

due to the inclusion of solvation effects within the PCM framework.

Since we are considering an hybrid algorithm we estimate the overall cost C =

CQ + CC where CQ is the cost associated with operations run on the quantum

computer and CC the classical cost to compute the molecular integrals .

Concerning CQ, we note that gas-phase VQE requires evaluation of 1- and

2-RDM to obtain the expectation value of the molecular Hamitonian ⟨Ĥ0⟩ (see

Figure 1 in the main text). The 1-RDM is the only information from the quantum

computer that is also needed to calculate ⟨V̂σ⟩ , i.e., the additional part with

respect to ⟨Ĥ0⟩ to calculate the total free energy. Since the 1-RDM is calculated

for the standard VQE as well, there is no quantum overhead for PCM-VQE with

respect to gas-phase VQE (i.e., Cgas
Q = CPCM

Q ).

Now we move our analysis to the classical cost of the algorithm. Here the inclu-

sion of solvation effects may potentially affect the algorithmic cost. Particularly,

the standard molecular Hamiltonian is usually built computing the molecular one-

and two-electron integrals [55]. On the other hand, inclusion of solvation effects

calls for (i) computing the solvent response at each iteration q and (ii) calculating

the solute-solvent interaction term ⟨V̂σ⟩ at each iteration. (i) Formally, comput-

ing the response charges implies the inversion of the PCM response matrix whose

computational cost is O(N3
tess). In practice it is possible to achieve a linear scaling

with Ntess for this step adopting techniques such as the Fast Multipole Method

(FMM) and parallelization [92]. In turn, Ntess is scaling with the size of the molec-

ular surface, that is linear with the number of atoms Natoms in the worst case of

linear molecules. This is a negligible scaling w.r.t. the following contribution. (ii)

Concerning the calculation of ⟨V̂σ⟩, at each step we have to contract the 1-RDM

with the vrs array a step costing O(N2
aNtess) = O(N2

aNatoms) additional opera-

tions. Reasonably assuming that Na is scaling linearly with Natoms, this step has

a O(N3
a ) scaling. This is still a better scaling than the cost of the contraction

of the 2-RDM with the gas-phase bielectronic integrals (that dominates the gas-

phase CC), where a sum over four index is needed (O(N4
a )). As such the scaling
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of CPCM
C will be at most equal to that of Cgas

C . Of course, any strategy to improve

such O(N4
a) scaling (e.g., use of molecular symmetry, prescreening of the molecular

integrals) can also be used to improve the scaling of the classical PCM term.

In conclusion, the overhead of the PCM extension to VQE is null for the quan-

tum part, and does not worsen the scaling of the classical part with respect to

gas-phase calculations; a potential quantum advantage of gas-phase VQE is there-

fore unhampered by the inclusion of the PCM solvent. The bottleneck remains to

be the solution of the electronic structure problem.

Quantum circuits
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Chapter 4

A fully differentiable quantum phase

estimation

Background and personal contribution

In this final chapter, I present work started during an internship in the algorithms

team at Xanadu Quantum Technologies, led by Dr. Juan Miguel Arrazola.

Here, I consolidate all the aspects highlighted in the Introduction: (i) a focus

on molecular properties beyond energies (as we develop a method to compute

forces in molecules), (ii) emphasis on software development (as it represents the

first example of automatically differentiable Quantum Phase Estimation), and (iii)

attention to hardware by comparing the cost analysis with specifically devised

fault-tolerant algorithms.

Once again, I present the results of this work in the form of a paper.

I developed the smoothing strategy and conducted the numerical and formal

analysis. Throughout the code development, I received assistance from Dr. Soran

Jahangiri (Xanadu). Finally, I drafted the paper in its original version with the

help of Dr. Agostino Migliore who also assisted me during part of the derivation

presented in Sec. 3 of this work.
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Abstract

We develop a strategy to integrate the quantum phase estimation algorithm within

a fully differentiable framework with a focus on quantum chemistry applications.

This is accomplished generalizing a smooth estimator associated with the parent

distribution induced by an exact input eigenstate to arbitrary initial states. We

provide analytical expressions to characterize the statistics and algorithmic cost

of this generalized circular estimator. Furthermore, we numerically prove that the

estimation accuracy is retained when an arbitrary state is considered and that it

exceeds the one of standard majority rule. Finally, we explicitly link this procedure

to physically meaningful quantities for the molecular Hamiltonian and prove our

implementation performing ground state (singlet and triplet) geometry optimiza-

tion with simulations up to 19 qubits. This work paves the way for future strategies

aimed to merge interference methods and quantum differentiable programming.

4.1 Introduction

Increasing demand for large-scale computational needs[1] in the upcoming decades

will be fostered by advances of big data information processing[2] and sophisticated

multiscale modeling[3, 4] required by cutting-edge research.

This pressing need is already fuelling a paradigm shift in how we think com-

putation. As on-chip power dissipation of available semiconductor technologies

hampers the development of standard processing architectures, it will be more

likely to witness a slowdown of Moore’s law. Along the same line, diversification

of computing paradigms, both architecturally and algorithmically speaking, could

be beneficial for a more sustainable growth in energy and material utilisation[5].

To some degree, such a transition has already taken place in the context of

electronic structure theory. Indeed, very active research lines are improving per-

formances and costs of simulating molecular Hamiltonians by developing imple-

mentations on Graphical Processing Units (GPUs)[6–8] and, more recently, Tensor

Processing Units (TPUs)[9]. These contributions concern not only improvements
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w.r.t. accuracy and time-to-solution in obtaining molecular energies but also re-

gard molecular properties. The latter, from a chemist point of view, can be even

more important when it comes to simulating real-life experiments. Indeed, it is

well known that many molecular properties can be expressed in terms of energy

derivatives[10] and can be used for a variety of applications ranging from electronic

to magnetic responses or determination of minimum energy paths to understand

reaction mechanisms and drug-protein interaction for pharmaceuticals purposes

and materials discovery[11, 12]. For these reasons, much effort has been devoted

during the years to develop efficient methods to work out analytical expression for

gradients and higher order derivatives in many fields of quantum chemistry[13–15].

With the same spirit, in this work we aim to contribute developing the first

example of automatically differentiable Quantum Phase Estimation geared to com-

pute energy derivatives for molecular Hamiltonians.

Automatic differentiation (AD), a clever combination of the chain rule and

dynamic programming, is the workhorse of deep learning techniques[16] and in

the last years has been proven very valuable also when applied to quantum chem-

istry[17–19] and, more broadly, scientific computation[20–22]. With the advent of

NISQ devices, variational algorithms[23], in which the circuit is trained to optimize

parameters defining the action of gates tasked with a specific goal, have spurred

the development of extensions of automatic differentiation tailored for quantum

computing. Much progress has been done to build AD techniques in quantum

computing that account for programs with[24] or without[25, 26] any control flow.

These works have led to several implementations of quantum differentiable frame-

works[27, 28].

On the other hand, the application of these methods to fault-tolerant algo-

rithms, such as the QPE, has not yet been explored. Despite several works aimed

to reduce the cost of quantum simulations[29–31] or to extract physically relevant

quantitites[32, 33] other than single point energies, very little has been done to

study the presence of a parametric dependence within the phase estimation cir-

cuit. Along this line, in a recent work by O’brien et al.[34], the authors focused on
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calculating derivatives in a fault-tolerant setting and proposed different options:

(i) finite difference approximations, (ii) overlap estimation via Hellman-Feynman

theorem, and (iii) direct estimation of the gradient function via the application of

the algorithm developed in Ref. [35]. We refer to Sec. 4.4.2 where we describe in

more detail these other options.

Here, we specifically focus on the aspect of differentiating through the Quantum

Phase Estimation circuit as described in the standard textbook by Nielsen and

Chuang[36]. We note the importance of a smooth estimator for the eigenvalue and

emphasize the necessity of a formal analysis to quantify the cost associated with

incorporating such an additional feature.

This study is organized as follows. Section 4.2 is devoted to recall the Quan-

tum Phase Estimation (QPE) algorithm and sketch the proposed quantum differ-

entiable pipeline. In Section 4.3 we discuss the main contribution of this work:

building on the original paper of Cruz et al. [37] we develop a smooth estimator

for the QPE to be used with arbitrary input states of the system register. This al-

lows to seamlessly integrate the QPE algorithm in a fully differentiable workflow.

We discuss its properties and derive error bounds to estimate how the smooth-

ing procedure affects the computational cost of eigenvalue evaluation and of its

derivatives (see Sec. 4.4). As previously mentioned, Sec. 4.4.2 provides a summary

of the main options[34] devised to compute energy derivatives in a Fault-Tolerant

setting. Further, in Sec. 4.5 we apply this method to two examples: H+
3 and CH2O

performing geometry optimization for the ground singlet and first triplet state.

In this work, we develop a technique for post-processing measurements out of

the quantum phase estimation circuit that allows it to be integrated into an au-

tomatically differentiable software. These findings may be relevant on their own

giving insights into how one can reduce the cost of QPE, which although asymptot-

ically efficient, is still impractical for demonstrating a clear and scalable quantum

advantage[38–41]. The results we show indicate that to obtain a differentiable

routine one must pay an additional computational cost. In the conclusions, we

indicate potential roadblocks and possible ways around this issue.
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4.2 Preliminaries and notation

To begin with, we revisit the fundamental components of the Quantum Phase

Estimation algorithm in its standard formulation[42]. We will not go into the

details of the different simulation techniques used within the QPE circuit as they

go beyond the purposes of this study. Additionally, the second crucial element

of this work involves quantum differentiable programming. Consequently, we will

underscore the main features needed for our development and elucidate why a

smooth estimator of the eigenvalues is imperative in this particular context.

4.2.1 Quantum Phase Estimation

The QPE algorithm aims to find the eigenvalues of an arbitrary unitary U with

precision ϵ. In this work we will focus on the problem of quantum simulation,

i.e. for us the eigenvalues of the unitary will be directly related to the energies

{Ei | i = 1, 2, . . . R} of a quantum system encoded in a qubit register (referred to

as system register) of n qubits. This is done choosing the unitary U in such a way

that it shares the same eigenstates {|i⟩} with the Hamiltonian H of the system and

that their eigenvalues are related by an invertible function ϕi = f(Ei) as shown in

Refs.[36, 42].

The QPE circuit (Fig. 4.1) is implemented using two qubit registers, (i) the

system register of n qubits encoding the wavefunction of the simulated system and

(ii) the readout register of t qubits which are measured at the end of the circuit

execution to estimate the phases ϕi.

We can notice from the circuit that the algorithm consists of four main steps.

First the system register is prepared into the state |ψ⟩ =
∑

u cu|u⟩ and the readout

register into the state H⊗t|0⟩ = 1
2t

⊗t
k=1(|0k⟩+ |1k⟩). After this stage the QPU is

in the state

|Ψ⟩ = 1

2t

∑
u

cu

t⊗
k=1

(|0k⟩+ |1k⟩)|u⟩ . (4.1)
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|0⟩ H • . . .

QFT−1|0⟩ H • . . .
...

|0⟩ H . . . •

|0⟩ /⊗
n

P U(x) U2(x) . . . U2t(x)

Figure 4.1: Schematic representation of of the Quantum Phase Estimation circuit.
The readout register comprises t qubits each initialized in the state |0⟩ while the
system register is specified by n qubits to which is apply a generic state preparation
routine P setting up the state ψ =

∑
u cu|u⟩. We highlighted that the unitary U

can be dependent on the set of parameters x. In this work we focus on the task
of differentiating the eigenvalues estimated from this circuit w.r.t. x.

We recall that here the label u runs over the eigenstates of the Hamiltonian and t

is the number of qubits in the readout register.

Then the unknown phases are encoded into the quantum circuit performing a

sequence of controlled evolutions of the system register conditioned on the states

of the readout register. This brings the QPU into the state

|Ψ⟩ = 1

2t

∑
u

cu

t⊗
k=1

(|0k⟩+ ei2π2
k−1ϕu|1k⟩)|u⟩ . (4.2)

This state is achieved as the application of a unitary evolution on the system

register gives U |ψ⟩ =
∑

u cue
i2πϕu|u⟩.

After all the phases are encoded into the readout register their values are

transferred from the amplitudes to the computational basis spanned by the readout

register applying an inverse Quantum Fourier Transform. This step is crucial for

the whole algorithm. Here the digitalization of the encoded phase occurs; we can

think of the computational basis spanned by the readout register as a grid of 2t

points evenly spaced that we can use to represent discretely the Fourier transform

of the amplitudes encoded into the state of Eq. 4.2. Now the state of the QC

reads:
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|Ψ⟩ =
∑
u

cu|u⟩
1∑

b1,u=0

1∑
b2,u=0

· · ·
1∑

bt,u=0

( 2t∑
k

ei2π(ϕu−0.ϕu)(k−1)

2t
)
|b1,u⟩|b2,u⟩ . . . |bt,u⟩

(4.3)

Where the binary fraction 0.ϕu = 0.b1,ub2,u . . . bt,u is a shorthand for 0.b1,ub2,u . . . bt,u =∑t
k
bk,u
2k

.

Finally, measuring the state of Eq. 4.3 on the computational basis we get a par-

ent distribution given by P (0.ϕ) =
∑

u Pϕu(0.ϕ) where each Pϕu is the probability

of measuring the bitstring 0.ϕ induced by the eigenphase ϕu:

Pϕu(0.ϕ) =

1 ∆ϕ = ϕu − 0.ϕ = 0

g(0.ϕ)
22t

= 1
22t

sin2(2tπ(ϕu−0.ϕ))
sin2(π(ϕu−0.ϕ))

∆ϕ = ϕu − 0.ϕ ̸= 0
(4.4)

We will analyze in detail the shape of the probability distribution in Sec. 4.3

as this will be the starting point to generalize the circular estimator developed in

Ref.[37]. At this stage we only highlight that the result of this type of functional

form is to have a superposition of peaks that is the narrower the more dense the grid

with which we operate the discretization (e.g. the more readout qubits). Each of

these peaks corresponds to an eigenstate |u⟩ with non-zero overlap with the initial

state |ψ⟩ and is centered on the string that best approximates the phase ϕu. As

a consequence the usual strategy for estimating the eigenvalue of the unitary U

is to prepare a state with high overlap and estimate the corresponding phase ϕu
as ϕu ≈ argmax(P (0.ϕ)) = 0.ϕu. This estimator is often referred to as majority

rule estimate (in the following, ME). Its accuracy is bounded by the number of

discretizing points used to represent P (0.ϕ), particularly the associated error of

the estimate is |∆ϕ| = |ϕu − 0.ϕu| ≤ 1
2t+1 .

We now move to discussing quantum gradients and differentiability as they will

give us the reason to go beyond the majority rule estimator in Sec. 4.3.
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4.2.2 Differentiating through the Quantum Phase Estima-

tion circuit

Differentiable programming is a programming paradigm that leverages the chain

rule to get the derivative of a computer program with respect to an input pa-

rameter. Underlying this computational paradigm is automatic differentiation, a

method to compute exact numerical derivatives which underlies many machine

learning techniques such as the renowned backpropagation algorithm[43]. The ba-

sic idea behind automatic differentiation is that the computer, regardless of the

complexity of the function to evaluate, executes very simple operation that can be

all tracked down and stored in memory. Such a sequence of operations is usually

called evaluation trace and can be represented on a computational graph, see Fig.

4.2.

x

b

R HF

C

Hmol

QPE S E

Figure 4.2: Coarse representation of the hybrid computational graph traversed to
compute the molecular energy (and its derivatives) with the QPE algorithm. Each
node represents deeply involved functions and is, in pratice wrote down much more
accurately. As an example, we can consider the quantum circuit of Fig.4.1 as spe-
cific representation of the QPE node. Please notice as, in this representation, the
initial state C fed into the QPE circuit is explicitly an independent (differentiable)
variable. For an interpretation of this AD pipeline in terms of electronic structure
theory quantities, please refer to Appendix 4.6. This work is mainly devoted to
the development of S such that it provides a smooth estimator of the molecular
energy E.

The example depicted in figure illustrates a coarse-grained representation of

the computational graph, corresponding to the calculation of molecular electronic

states’ energies. In Sec. 4.5, we present outcomes related to derivatives concern-

ing atomic positions (R). We have distinguished the input variables to explicitly

convey that other possibilities are natural extensions of this work. For instance,



CHAPTER 4. A FULLY DIFFERENTIABLE QUANTUM PHASE ESTIMATION129

derivatives with respect to parameters of the basis set (b) or external perturbations

(x) are potential avenues for exploration. The latter, in particular, will be explored

in greater detail in a future work, given their capacity to enable the calculation of

molecular properties relevant to spectroscopy.

A differentiable program is able to compute the derivative of the evaluation

trace by traversing the computational graph through all its paths and gathering

the partial derivative associated with each node. Specifically, during this operation,

referred to as Jacobian accumulation, the program calculates the derivative of the

function using the chain rule, which is composed of the derivatives of all the nodes

(i.e., the fundamental operations executed by the computer to evaluate a function

f) in the computational graph. It is crucial to emphasize for our purposes that,

in order to maintain differentiability (and thus, the viability of the algorithm) of

the evaluation trace, all individual steps must themselves be differentiable.

We refer to quantum differentiable programming when computational graphs

include expressions evaluated on both classical and quantum hardwares. Here,

we developed a fully differentiable QPE algorithm and applied it to quantum

chemistry, the latter being one of the most promising fields of applications for

this algorithm. From this standpoint, the PennyLane package represents a natural

choice offering end-to-end differentiability thanks to the differentiable Hartree-Fock

solver integrated within the library[44] and the possibility to include quantum

functions into the computational graph.

Generally speaking, quantum functions take as input instructions for the quan-

tum circuit and output results of its execution (i.e., measurements). For our par-

ticular purpose we can explicitly write the QPE parent distribution as a result of

a parameterized expectation value:

QPE(x) = ⟨0⊗t |⟨ψ|QFT†U †
t (x)QFTσ⊗t

z QFT†Ut(x)QFT|ψ⟩|0⊗t⟩ (4.5)

Where Ut is the sequence of controlled evolutions used to encode the phase on the
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readout register Ut(x) =
∏t

k(|0t⟩⟨0t| ⊗1⊗n
+ |1t⟩⟨1t| ⊗Uk(x)), and the initial layer

of Hadamard gates has been identified as a QFT on the readout register in the

product state |0⟩⊗t .

Repeated calls to the QPE(x) function allow to reconstruct the parent distri-

bution P(0.ϕ) (Eq. 4.4) which is now parameterically dependent on x here used as

arbitrary independent variables.

To perform Jacobian accumulation of hybrid computational graphs it is neces-

sary to develop techniques to compute gradients of quantum functions. Extensive

literature focuses on evaluating derivatives of expectation values of parameterized

quantum circuits[45–47]. Most relevant for our purposes are the works of Refs.[48–

52] as they provide general parameter-shift rules to compute derivatives of gates

like U(θ) = eiθH with arbitrary H. In Sec. 4.4 we will make use of their results to

evaluate the number of calls needed to compute gradients differentiating through

a QPE circuit.

Finally, now that we have discussed the basics of differentiable programming we

can notice that if one wants to build up a program that estimates the phase out of

the parent distribution induced by a QPE circuit also the classical postprocessing

that evaluates an estimator for the phase out of the P (0.ϕ) must be differentiable.

By definition the majority rule estimator discussed in the previous section does

not fulfil this requirement. Therefore, in the next section we will focus on the main

result of this work: the development of a smooth estimator for QPE.

As anticipated in the introduction, we propose an extension of the work of Cruz

et al. [37] for an estimator to which we refer as Generalized Circular Estimator

(GCE), whose features will be analyzed in the next section.

4.3 Generalized circular estimator

In this section we present a general smooth estimator for the QPE algorithm, char-

acterize its statistical properties and discuss its application within a differentiable

programming framework meant for evaluating energy derivatives of the molecular
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Hamiltonian.

Our idea is to combine the Softmax-Gumbel approach [53], used in machine

learning to efficiently differentiate through categorical distributions, and the idea

of Cruz et al. [37] of estimating the phase from a circular average[54] of the parent

distribution (Eq. 4.4). We will start recalling the results of Ref. [37] which are

valid when the input state corresponds to an eigenstate |u⟩ of the unitary U .

The authors propose to use as estimator of the energy the mean phase direction

µ of the first trigonometric moment of the QPE final measurement distribution.

Particularly, the first trigonometric moment θ reads

θ =
∑
0.ϕ

Pϕu(0.ϕ)e
i2π0.ϕ = |θ|ei2πµ (4.6)

Where 0.ϕ is a label for the binary fraction, ranging from 0 to 1, represented by

each bitstring of the computational basis spanned by the readout register. We

recall that Pϕu is defined by Eq. 4.4.

As the original authors point out a nice way to picture the meaning of θ it

is that is equivalent to taking a vector sum in the complex plane where each

vector has a direction specified by ei2π0.ϕ and modulus given by Pϕu(0.ϕ). This

representation explains another important feature of θ (that we will recover in

our generalization), i.e. its accuracy exceeds that of the majority rule estimator.

This stems from the fact that each string over- or under-represents the true phase

ϕu because of the discretization in binary fractions, then averaging among several

strings weighted by their probabilities allows to get a more accurate estimate due

to error cancellation effects.

Subsequently, the mean phase direction µ of θ is given by:

µ = arg(θ) (4.7)

Plugging into the definition of θ Eq. 4.4, the authors get an explicit expression

for µ, θ and |θ|.



CHAPTER 4. A FULLY DIFFERENTIABLE QUANTUM PHASE ESTIMATION132

θ =
2t − 1

2t
ei2πϕu +

1

2t
e−i(2

t−1)2πϕu (4.8)

µ =
1

2π
arctan

(
(2t − 1)sin(2πϕu)− sin((2t − 1)2πϕu)

(2t − 1)cos(2πϕu) + cos((2t − 1)2πϕu)

)
(4.9)

|θ| =
√

4−t(4t − 2t+1 + 2 + 2(2t − 1)cos(2t+1πϕ)) (4.10)

Both from Eq. 4.8 and Eq. 4.9 we can see that for large values of t the estimator µ

approaches the true value of ϕu. Further, looking at Eq. 4.10 we can see that in the

same regime (i.e., large t) the first trigonometric moment’s modulus approaches

|θ| = 1. Further, this value is approached exponentially fast. As we shall see later

on, from an algorithmic point of view it means that the additional sampling cost

presented by the definition of this estimator becomes negligible as we increase the

number of readout qubits.

All the statements done so far about the circular average estimator hold if the

input state of our QPE algorithm is an eigenstate of our Hamiltonian. We now

extend them to an arbitrary input state.

First of all it is important to understand why we can not use directly Eq. 4.8

when |ψ⟩ is not an eigenstate of U . As recalled in Sec. 4.2.1, the probabilities

P (0.ϕ) are due to the contributions of all the eigenstates with non-zero overlap

with the initial state.

Thus if we applied straightforwardly the definition of first trigonometric mo-

ment on this new distribution we would get:

θ′ =
∑
u

|cu|2
∑
0.ϕ

Pϕu(0.ϕ)e
i2π0.ϕ =

∑
u

|cu|2θu = ρ′ei2πµ
′

(4.11)

The issue with this expression is that now we are taking a circular average which

accounts for contributions due to different eigenstates. Interestingly, we could

show that the last expression leads to an estimator for ⟨ψ|H|ψ⟩ as ⟨H⟩ =̂ arg(θ′).

We will not go through this as goes beyond the purpose of this study. Nonetheless
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we point out that comparing the cost of this estimator with existing algorithms[33]

for evaluating expectation values in a fault-tolerant setting could be a matter of

interest per se.

Eq. 4.11 is important not only because it provides us with an estimator for

an expectation value of a generic |ψ⟩ state, but also because it gives us a clue as

to what needs to be done in order to generalize Eq. 4.6. Indeed, if we were able

to filter out from the parent distribution all the spurious contributions due to the

presence of the states |u′⟩ ̸= |u⟩ we could use again the original definition of θ.

The strategy we adopt here is as follows: (i) we develop a method to obtain a

new distribution analogous to the initial distribution except for the contribution

of all the |u′⟩s not of interest, (ii) we apply the original definition of θ to this new

distribution to obtain a Generalized Circular Estimator (GCE) θ̃. This steps are

summarized in Fig. 4.3.

To accomplish the first step we assume that our initial state has the highest

overlap |cu|2 with the eigenstate of interest |u⟩, this is a standard assumption as we

are usually interested in minimizing the cost which for the majority rule estimator

scales as O( 1
|cu|2 ).

Then we can identify the region of the parent distribution induced by |u⟩ using

a tempered softmax function ST . This function amplifies differences in the original

distribution depending on a parameter T (often referred to as temperature due to

the equivalence of this function to the Boltzmann distribution) according to the

following rule:

P ′(0.ϕ) = ST (P (0.ϕ)) =
e−

P (0.ϕ)
T∑

0.ϕ e
−P (0.ϕ)

T

(4.12)

The shape of P ′(0.ϕ) depends on the chosen temperature T and on the ini-

tial state |ψ⟩ in the very same fashion of the Boltzmann distribution in statistical

mechanics[55]. Particularly, when the temperature is very low we tend to get

a one-hot distribution[56] peaked on the most sampled bitstring of the distribu-

tion, i.e. 0.ϕu. Subsequently, we can extract the 0.ϕu value weight-averaging the
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1) Sample parent distribution 2) Apply Softmax function

3) Filter with smooth boxcar 4) Average filtered distribution

P (0.ϕ)

0.ϕ

P (0.ϕ)

0.ϕ

P (0.ϕ)

0.ϕ

P (0.ϕ)

0.ϕ

Figure 4.3: Schematic representation of the postprocessing applied to compute
the GCE. Lineshapes of the distributions do not reproduce quantitatively Eq. 4.4.
(1) different colors indicate bitstrings samplings induced by different eigenstates,
please notice that, depending on the associated eigenvalues the degree of overlap of
two peaks may differ. (2) The effect of the tempered Softmax (Eq. 4.12) is to spot
the position of the most sampled peak by suppressing all the other contributions.
(3) Based on the distribution in (2) we are able to build a smooth boxcar around
the peak of interest. (4) Finally, we can estimate the GCE making a convolution
between the parent distribution and the boxcar filter.

P ′(0.ϕ) distribution with the binary fraction represented on the computational

basis, 0.ϕu =
∑

0.ϕ 0.ϕ P
′(0.ϕ).

Once this is done, we want to identify a subset of bitstrings around 0.ϕu to

be used for circular averaging exactly as in the starting case of Eq. 4.6. The

reason why we assume we can decouple the contributions of different eigenvalues

in populating the same string lies in the definition of Pϕu(0.ϕ). As we can see in

Fig. 4.4a, where we plot Eq. 4.4 for different values of t, P0.ϕu is a function that

shrinks exponentially with the number of readout qubits having a central lobe Full

Width at Half Maximum (gFWHM) dependency on the readout qubits given by[57]
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gFWHM =
1

2t
. (4.13)

This feature is essential for our filtering procedure as it allows to identify a

subset of binary strings 0.ϕ for each eigenstate |u⟩ where the following condition

holds:

P (0.ϕ) ≈ |cu|2Pϕu(0.ϕ) (4.14)

The meaning of this statement is that when two eigenphases are far apart then the

contribution of one of the two to the sampling probability of the same bitstring

will be negligible. In other words, given a sufficient number of readout qubits we

can always find a bitstring 0.ϕ for which P (0.ϕ)− |cu|2
22t

Pϕu(0.ϕ) < γ, where γ is an

arbitrary small number.

These arguments allow us to propose an extension of θ to arbitrary initial input

states, which we label θ̃, as:

θ̃ = |cu|2
∑
0.ϕ∈G

Pϕu(0.ϕ)e
i2π0.ϕ (4.15)

Here we have introduce the set of relevant bitstrings G = {0.ϕu − h, 0.ϕu + h}.
Where h is a width parameter defining how many bitstrings to include in the

circular average.

In practice, when running the QPE circuit we can only access measured prob-

abilities, to get a distribution similar to Eq.4.15 we apply a smooth boxcar filter

centered at 0.ϕu:

θ̃ =
∑
0.ϕ

Bh
k (0.ϕ)P (0.ϕ)e

i2π0.ϕ (4.16)

Where Bh
k (0.ϕ) is given by:

Bh
k (0.ϕ) =

1

2

{
tanh[k (0.ϕ− (ϕu − h)]− tanh[k (0.ϕ− (0.ϕu + h)]

}
(4.17)
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(a) (b)

Figure 4.4: a) Plot of the quantum phase estimation distribution kernel as per
Eq. 4.4. As we can observe, the main lobe exponentially shrinks as the number of
readout qubits increases. b) Size of the window filter as a function of the number
of readout qubits. The values are obtained such that the area integrated by the
peak underlying the filter is 95% (orange dots) and 99% (blue dots) of the integral
over the entire domain, respectively.

With k being a tunable parameter which accounts for the steepness of the window

function. As we can see (Fig.4.5), an appropriate choice of the value of k is

necessary to keep the assumptions underlying Eq. 4.15 valid.

Finally, we obtain the following expressions for the first trigonometric moment

θ̃ and its mean phase direction µ̃ (which we recall is our estimator for the target

eigenvalue):

θ̃ = |cu|2
∑
0.ϕ∈G

Pϕu(0.ϕ)e
i2π0.ϕ ≈

∑
0.ϕ

Bh
k (0.ϕ)P (0.ϕ)e

i2π0.ϕ = |cu|2ρei2πµ̃ (4.18)



CHAPTER 4. A FULLY DIFFERENTIABLE QUANTUM PHASE ESTIMATION137

Figure 4.5: Smooth boxcar filter for different values of k as per Eq. 4.17. The
values reported are obtained for a t=10 qubits readout grid with a window width
of |G| = 16 bitstrings corresponding to h ≈ 0.015.

µ̃ = arg(θ̃) =
1

2π|θ̃|
arctan(

Im(θ̃)

Re(θ̃)
) (4.19)

At this stage we need to understand how to choose a possible value for h. This

should be done balancing two factors: (i) including the greatest number of bitstring

possible, (ii) avoiding spurious contributions from other eigenstates’ distributions.

A possible heuristic to obtain a reasonable value for h is to consider a window

size such that the ratio Ih(g)
I(g)

between the integrated area of P (∆ϕ) in the window

spanned by h and the integral over the complete domain I(g) is at least 0.95, see

Fig. 4.4b. Such a strategy may prioritize the first constraint over the exclusion

of other eigenstates’ distribution from the circular average. To better understand
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this a formal analysis is needed.

In the next section we will provide analytical expressions for µ̃ which will

allow to provide a rationale of this heuristics and to demonstrate the accuracy of

the generalized circular estimator. Finally, we will also be able to quantitatively

account for the sampling cost of the measurement distribution.

4.3.1 Statistical analysis of the GCE

In this section we derive analytic expressions for the GCE to understand its nu-

merical and statistical properties.

The first step is to recognize that by substituting Eq. 4.4 in the definition of

θ, in the limit of large number of readout qubits the grid resolution with which we

estimate the phase ϕ becomes infinitesimal and we can write

θ̃ =
|cu|2

2t

∫ 0.ϕu+h

0.ϕu−h

sin2(2tπ(ϕ− x))
sin2(π(ϕ− x))

ei2πxdx (4.20)

Where we have dropped the label u to indicate that the phase ϕu refers to the

eigenstate |u⟩ and changed the variable 0.ϕ → x as it is now continous. We also

remark that 0 ≤ h ≤ 1
2
.

It is important to notice that w.r.t. the original formulation of Cruz et al.,

here we will obtain only the first term of Eq. 4.8 as we do not perform explicit

summation but integrate over a continous variable. This choice does not affect

the accuracy of our analysis provided we are considering approximatively t ≥ 10

qubits.

After some algebra we rewrite Eq. 4.20 as

θ̃ =
|cu|2ei2πϕ

π2t

∫ π(∆ϕ+h)

π(∆ϕ−h)

2t−1∑
n,n′=0

e2i(n+n
′−2t)udu (4.21)

Where we have used Euler equations to manipulate the integral function and

changed the variable to u = π(ϕ− x). Further we have introduced ∆ϕ = ϕ− 0.ϕu

as a shorthand for the phase mismatch between the real eigenphase and the center
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of the filtering box.

To solve Eq. 4.21 we consider separately the terms n+n′ = 2t and n+n′ ̸= 2t:

θ̃ =
|cu|2ei2πϕ

π2t

[
(2t − 1)

∫ π(∆ϕ+h)

π(∆ϕ−h)
du+

∫ π(∆ϕ+h)

π(∆ϕ−h)

2t−1∑
n,n′=0 , n+n′ ̸=2t

e2i(n+n
′−2t)udu

]

=
|cu|2ei2πϕ

π2t
|
[
(2t − 1)u− i

2t−1∑
n,n′=0 , n+n′ ̸=2t

e2i(n+n
′−2t)u

2(n+ n′ − 2t)

]
|π(∆ϕ+h)π(∆ϕ−h)

=
|cu|2ei2πϕ

π2t

[
2π(2t − 1)h− i

2t−1∑
n,n′=0 , n+n′ ̸=2t

e2i(n+n
′−2t)π(∆ϕ+h) − e2i(n+n′−2t)π(∆ϕ−h)

2(n+ n′ − 2t)

]
(4.22)

This expression is exact and contains two terms arising from different contri-

butions. We are interested in studying the limiting cases of this formula: (i) when

the box spans the all possible values of the phase (i.e., h = 1
2
) and (ii) when the

box is very narrow and comparable with the grid spacing (i.e., h = |G|
2t

with |G|
being the number of bitstrings included in G). The first one is interesting because

we can see that we are able to recover the original picture of Cruz et al.[37], on

the other hand the latter case is useful as represents the tipical regime of use for

the GCE.

Starting with the case of h = 1
2

it is straightforward to show that θ = |cu|2ei2πϕ

2t
(2t−

1) with modulus

|θ̃| = |cu|2
2t − 1

2t
. (4.23)

Which is exactly the result of Ref.[37] when |cu|2 = 1 (i.e., the input state is an

eigenstate) and the limit of large t is considered.

We now move to the case of h = |G|
2t

. We start expanding the complex expo-

nentials in the sum around ∆ϕ = 0 and h = 0, which holds when the number of

readout qubit is reasonably high:
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Figure 4.6: Estimation accuracy of the generalized circular estimator. We report
the error ϵ w.r.t. the FCI solution for the H+

3 molecule at the ground state geometry
varying the number of readout qubits. Red stars show the error obtained with the
majority estimator (i.e. considering only the most sampled bitstring), dots display
the error obtained with the estimator proposed in this work varying the window
width (shades of blue).

θ̃ ≈ |cu|
2ei2πϕ

π2t

[
2π(2t − 1)h− i

2
(i4πh

2t−1∑
n,n′=0

1− 8π2∆ϕh
2t−1∑
n,n′=0

(n+ n′ − 2t))
]

=
|cu|2ei2πϕ

π2t

[
2π(2t − 1)h+ 2πh22t − i4π2∆ϕh22t

]
=
|cu|2ei2πϕ

π2t

[
2π(2t − 1)

|G|
2t

+ 2π|G|2t − i4π2|G|
]

=
2|cu|2|G||B|

2t
ei(2πϕ−α)

≈ 2|G||cu|2ei2πϕ

(4.24)
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Where moving from the second to the third line we have used the fact that h = |G|
2t

and that ∆ϕ is at most 1
2t

. In the fourth line we have introduced B as a shorthand

for

B = |B|e−iα = 2t +
2t − 1

2t
− i2π , (4.25)

finally, the last step is obtained keeping only the leading term in 2t. The additional

terms originate as an artifact of the smoothing procedure, but it is easy to show

that for large t values |B| = O(2t) whence α ≡ arcsin( 2π
|B|) ≈ 0.

This expression is useful as shows that the GCE introduces an exponentially

vanishing bias into our estimator. This result comes from an expression obtained

expanding Eq. 4.22 around small values of ∆ϕ and h at the first order; in practice,

considering the complete expression, the GCE accuracy can exceed the one of

the standard majority estimator. This result was already found for the case of

an exact input eigenstate[37], here we show that this feature holds even when an

arbitrary input state is considered provided that the measurement distribution

is reconstructed via a sufficient number of samples. Particularly, in Fig. 4.6, we

report an example of the error ϵ made by the GCE in estimating the energy of an

electronic state as a function of the number of readout qubits (dots); we compare

this error to that made using the standard majority rule (stars). Further, we have

also studied the effect of varying the number of bitstring included in the circular

average (i.e., |G|) (different shades of blue). First of all, we can notice that the

GCE is performing better than the majority rule estimate for all values of t. More

precisely the error of the latter scales as ϵMR = 1
2t+1 while the circularly averaged

estimated error scales as ϵGC = 1
2t+2 .

If we now consider the dependency on the window size, two effects become no-

ticeable: (i) for smaller values of t, there are some values of h for which we make

a larger error than expected using the standard estimator; (ii) contrary to expec-

tations, for low values of t, it does not hold true that a wider window necessarily

gives a more accurate result. The first effect is related to the final discussion of

the last paragraph, i.e., including too many bitstrings when peaks corresponding

to different eigenstates are not sufficiently separated may introduce spurious con-
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tributions. The second effect stems from the fact that the improved accuracy of

the GCE is due to error cancellation effects. With a lower number of qubits, this

error cancellation may undergo significant variation due to discretization effects

on the averaged distribution P (0.ϕ).

We now conclude this section addressing the question: how many samples do

we need to reconstruct the parent distribution and obtain the accuracy shown in

Fig. 4.6? To answer we can compute the variance of the mean phase direction µ̃

and use Chebyshev’s inequality:

(a) (b)

Figure 4.7: Sampling cost of the generalized circular estimator. a) Modulus of
θ̃ as a function of the box width varying the number of readout qubits (shown
with different colors) according to Eq. 4.22. We set ∆ϕ = 1

2t
. Further, we have

considered an initial state with an overlap with the target state of |cu|2 = 0.8. b)
Sampling cost of the generalized circular estimator NGCE

samples, based on Eq. 4.26, as
a function of the initial state overlap with a target ground state |⟨ψ|GS⟩|2 varying
the window width h (shown with different colors).

NGCE
samples =

Var(µ̃)
ϵ2

(4.26)

The variance of the mean phase direction is obtained appyling error propagation

theory on θ̃ (Eq. 4.27) assuming the latter is a proper random variable [58] and
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using the definition of variance for θ̃ according to circular statistics [54] (Eq. 4.28):

Var(µ̃) =
1

2

[
| ∂µ̃

∂Re{θ̃}
|2Var(θ̃) + | ∂µ̃

∂Im{θ̃}
|2Var(θ̃)

]
(4.27)

Var(θ̃) = 1− |θ̃| (4.28)

In Fig. 4.7 we study the cost of obtaining an estimate for the mean phase

direction with an error of ϵ = 1mHa. Particularly, in Fig. 4.7a we plot |θ̃| varying

both the number of readout qubits and the box width h. We can notice that the

effect of increasing the number of readout qubits is to recover the full information

of the peak (i.e. reach the limit of Eq. 4.23) with a smaller window. From Eqs. 4.26-

4.28 we can understand that this directly impacts the cost of the routine. Indeed,

as we approach Eq.4.23 we tend to lower the cost of the estimation, in order to do

so carefully (i.e. without including other peaks’ contributions in the average) we

need to increase the grid resolution. Similar considerations can be drawn looking

at Fig.4.7b. Here we see the effect of the initial state overlap on the cost varying

the window width at fixed number of readout qubits (t = 13). For a numerical

assessment of these estimates we refer to the appendix 4.6.

Overall we see that the increased accuracy of µ̃ has a considerable computa-

tional cost, especially if the input state has a small overlap with the eigenstate of

interest. Further investigation is required to reduce such a computational over-

head and thus enhance the scalability of the approach with respect to the size of

the system. The improvement would be particularly relevant to the treatment of

strongly correlated systems, where, even for modest system size, the initial state

is generally expected to have a relatively small overlap with the target state[39].

Finally, we recall that beyond an improved accuracy this approach allows to ob-

tain gradients of the estimated eigenvalues. This is a completely different task and

in the next section we go through the costing of this routine and compare with

existing methods in literature.
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4.4 Cost of gradient estimation and related works

Building on the previous analysis, in this section we analyze the cost of evaluating

the gradient with the quantum differentiable program sketched in Fig. 4.2 and

compare our results with state-of-the-art methods to evaluate energy gradients for

the molecular hamiltonian on a fault-tolerant quantum computer.

4.4.1 Computational cost analysis

The overall cost for the gradient evaluation with the differentiable QPE will be

given by:

C̃ = CNk (4.29)

Where C is the cost of a single QPE circuit evaluation, N is the number of calls to

the routine needed for evaluating µ̃ with an ϵ-good estimate and k is the number of

calls required for evaluating the gradient. In this section we estimate C̃ breaking

down the different contributions.

It is important to note that, with regard to molecular systems, the scaling of

the routine cost with the system size meant as number of electrons/spin-orbitals

is included in the quantity C and here will not be considered. Concerning N , by

definition we have N = NGCE
samples as defined in Eq. 4.26.

Thus, we are only left to estimate k. The number of calls to the QPE sub-

routine to estimate the gradient with a parameter-shift rule, following Wierichs

et al.[51], is given by k = RM where M is the number of cartesian coordinates

(or more generally the number of variables) w.r.t. which differentiate and R is a

factor counting either the number of parameter-dependent gates (decomposition

based parameter-shift rule) or the number of unique positive differences in the

parameterized circuit spectrum (Fourier based parameter-shift rule). Depending

on the structure of the Hamiltonian the number of independent circuits executions

needed for the parameter-shift rule can vary substantially. Since the eigenvalue

distribution for a molecular Hamiltonian does not have an ordered structure it
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is safer to consider in the cost analysis a decomposition based strategy for the

quantum gradient. If we indicate as G the number of gates where the parame-

ters appear after the compilation of the simulation routine implemented in the

quantum circuit we get:

k ≈ O(GtM) (4.30)

Where t is the number of readout qubits and, thereby, the number of times we call

the quantum simulation routine inside the phase estimation circuit.

The last step needed to estimate the overall cost C̃ is to obtain the number of

shots required for the gradient estimation. As we focus on the quantum chemistry

framework we will label the parameters w.r.t. which we are taking the gradient as

R to indicate nuclei positions. Of course we recall that, as mentioned in the intro-

duction, the application range of energy derivatives and automatic differentiation

for quantum chemistry is much broader than just geometry optimization.

Within the parameter-shift framework (either decomposition-based or Fourier-

based) we can write the force acting on the nucleus at the position Rj using the

generalized circular estimator as:

∂µ̃

∂Rj

=
k∑
l

ylµ̃(Rl) (4.31)

Where k is the number of function evaluation required by the parameter-shift rule

and y is a coefficient vector defined by the particular flavour of gradient rule used.

The optimal budget shot allocation to obtain ∂µ̃
∂Rj

within a tolerable error ϵ is:

N∂j µ̃ =
Var(µ̃)||y||21

ϵ2
(4.32)

Finally, we conclude this section estimating the number of queries to a circuit

implementing the evolution operator U for estimating the gradient with a fully

differentiable Quantum Phase Estimation as:
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C̃ = O(GtMN∂j µ̃) (4.33)

Interestingly, lowering the number of readout qubits affects simultaneously:

(i) t, (ii) ϵ and (iii) N∂j µ̃ as we expect the 1-norm of the parameter-shift rule’s

coefficients to decrease as their number decreases. To this end methodologies as

the ones developed in Ref.[59] may be extremely beneficial in this context.

4.4.2 Related works on gradient estimation

The goal of this section is to briefly summarize previous works on evaluating energy

derivatives within the context of quantum computation. This account closely fol-

lows the work of O’ Brien et al.[34] which reported current state-of-the-art methods

to compute energy gradients in a fault-tolerant setting.

We remark that all our considerations are made for a fully variational wave-

function meaning that given a set of external physical parameters x and a set of

wavefunction parameters λ we calculate the energy from the expression

E(x) = E(x, λ∗) (4.34)

where the parameters λ∗ represent the optimal value of λ and where the optimized

energy function E(x, λ∗) satisfies the variational conditions for all values of the

external parameters x. This statement holds true also for the quantities extracted

from QPE as, within the discretization error due to the finite number of readout

qubits, we sample from the exact eigenbasis of the molecular Hamiltonian.

Hellmann-Feynman approach

This first approach is based on the seminal work of Feynman [60]. The idea is that

we can compute energy derivatives from the expectation value of the Hamiltonian

derivative operator:
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dE

dx
= ⟨Ψ|dH

dx
|Ψ⟩ (4.35)

As we can notice Eq. 4.35 does not provide a recipe for evaluating energy

gradients but only tells us the quantity that we need to evaluate. Among the

various strategies proposed in literature a possible strategy is to use the overlap

estimation algorithm which allows to compute Eq. 4.35 at the Heisenberg limit

(i.e. with a cost scaling as O(ϵ−1)). This method provides an estimate of the

energy gradient by directly calculating the expectation value with the algorithm

proposed in Ref. [61]. As compared to the latter, since we are dealing with a real-

valued expectation we only need to call the amplitude estimation algorithm two

times instead of three as originally sketched in Ref.[61].

It is important to notice that this method implies to adopt a block-encoding

routine for the energy derivative operator. Using tensor hyper-contraction the

authors of Ref. [34] were able to show that, despite a larger prefactor, the asymp-

totic cost of block-encoding dH
dx equals the asymptotic cost of block-encoding the

molecular Hamiltonian.

Direct gradient-based quantum estimation algorithm

As an alternative to the previous method, we can employ another ad-hoc approach

developed for computing gradients of functions. In particular, building upon the

algorithm developed in [62] and refined in [35], the authors of [34] demonstrate

that nearly optimal scaling can be achieved for calculating the forces of molecular

Hamiltonians.

Without going into the details the main idea is that using a single query to

a state preparation routine Uψ (i.e. we need to know how to prepare the exact

ground state of the molecule) and querying O(
√
M
ϵ
) (where M is the number of

variables to differentiate) times the oracle

Up : |x⟩|0⟩ → |x⟩ ⊗ (
√

(f(x))|ψ1(x)⟩|1⟩+
√
(1− f(x)))|ψ0(x)⟩|0⟩ (4.36)
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it is possible to simultaneously evaluate a given f(x) at differents points and

computing a finite difference approximation of the function directly on the quan-

tum computer.

This algorithm, which makes use of different qubits register, makes several calls

to routines implementing operators like U = e
−it dH

dRk for which the same results on

block-encoding discussed in the previous paragraph is used.

Finite differences approach

Finally, another possibility is to consider the QPE algorithm itself as a black-box

which allows to sample the function at a given point in the parameter space. From

this standpoint we can use it to compute gradients via classical finite differences

approximations.

Concerning this method, again we follow Ref. [34] and consider a degree-2m

finite difference formula as:

dE(m)

dx
=

l=m∑
l=−m,l ̸=0

b
(m)
l E(x + l dx · v)

b
(m)
l =


0 l = 0

(−1)l−1

dx l
(m|l|)

(m+|l|
|l| )

l ̸= 0

(4.37)

We will not analyze in detail the cost of this algorithm as it is already discussed

by the same authors. Nonetheless, we want to highlight the difference in Eq. 4.37

when using the ME estimator or the GCE estimator. Particularly, propagating

errors through the previous equations we get:

∣∣∣dE
dx
− dE(m)

dx

∣∣∣ = l=m∑
l=−m,l ̸=0

ϵPE|bl|2 + ϵFD (4.38)

In the last equation appear two sources of error: (i) the error due to the phase

estimation procedure and (ii) the error due to the finite difference approximation.
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At first, we focus on the error due to the phase estimation procedure. When using

the ME estimator, ϵPE = ϵME = 1
2t+1 . On the other hand, if we consider the

GC estimator we should use: ϵPE = ϵGC = 1
2t+2 +

√
Varh,t(µ)

N
. From the last two

expressions, we can deduce that the gradient approximation obtained with the GC

estimator is more accurate when√
Varh,t(µ)

N
≤ 1

2t+2
. (4.39)

At this point it is important to stress that, when using the MR estimator, the

step size used must be such that it satisfies

dx : |ϕ(x + l dx · v)− ϕ(x + l′ dx · v)| > 1

2t
∀ l, l′ (4.40)

The last condition stems from the fact that for a signal to be detected with

the finite difference approximation not only the step size must be small enough

to avoid truncation errors but should also be large enough that we are able to

spot function variations at different points as per the QPE grid resolution. If

these conditions are not met, as shown in Fig. 4.8, we are not able to approximate

the gradient even though we use high-order degrees of approximation. In partic-

ular, Fig. 4.8a shows the gradient norm |∇⟨H⟩| (used as a metric of sensitivity)

computed with a central finite difference approximation at different orders (blue

stars) adopting a ME estimator. For comparison we reported with a solid blue

line the analytical result at the CCSD level (which is equivalent to FCI for a two-

electron system as the one considered in this case) and with a solid orange line

the gradient norm corresponding to the result of the differentiable QPE. As we

can see, even using a degree-8 finite difference approximation with a step size of

dx = 10−3Å the resolution enabled by a t = 13 grid does not allow to detect any

signal. In Fig. 4.8b we compare the error of the gradient (as the gradient norm

difference) estimated with a degree-2 finite difference method using the GCE (or-

ange stars) and the ME estimator (blue stars). The black dashed line represents

a threshold determined by the exact gradient norm: points situated below this
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(a) (b)

Figure 4.8: Finite discretization affects the evaluation of gradients through finite
difference methods. a) Energy gradient norm with respect to the nuclei position
for H+

3 at the HF equilibrium geometry. Blue stars represent values obtained
with a finite difference approximation at different orders using the majority rule
estimator. The solid blue line corresponds to the analytically computed gradient at
the CCSD level of theory, while the orange solid line corresponds to the gradient
obtained with the fully differentiable pipeline described in Fig. 4.2. b) Error in
estimating the gradient using a finite difference method (order 2) as a function of
step size. The blue stars represent values obtained with the majority estimator,
while the orange stars are obtained using the estimator developed in this work.
All calculations have been performed using t=13 readout qubits.

line suggest a better approximation of the gradient. Conversely, points lying on

(or above) the line are associated with null (or incorrect) gradients. The smooth

GCE, as observed, enables the computation of gradient approximations even with

very small step sizes, whereas the ME estimator fails to detect any signal. Upon

increasing dx we see that the estimated gradient starts suffering from truncation

errors. Eventually, at values of dx ≈ 0.1Å the estimated gradients becomes more

accurate, nonetheless these values of step size have already proven unreliable in

standard quantum chemistry settings where we usually aim to an error on the final
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predicted equilibrium bond lengths of around ∆r ≈ 0.01Å.

These results show that with a small scale fault-tolerant computer (e.g. using

t ≈ 10 − 20), despite the good asymptotic scaling shown in Ref.[34], using finite

differences with the ME estimator may not be feasible.

To conclude this section we want to summarize the result of this comparison:

our approach currently suffers from a finite-shot sampling cost which makes it

unfavourable w.r.t. other strategies such as Ref. [63] and Ref. [35] which saturate

the Heisenberg limit. On the other hand, the proposed strategy is more flexi-

ble when it comes to consider extensions of this algorithm towards higher-order

derivatives. Indeed, both considering an Hellmann-Feynman kind of approach and

the gradient-based estimation algorithm, the extension to higher order derivatives

requires in the former case an exponentially higher[63] cost, in the latter a redesign

of the algorithm itself. In addition, and perhaps more importantly, our algorithm

does not necessitate the preparation of the exact ground state on the quantum

computer, a requirement that, on the other hand, is mandatory in both previous

cases. Such a condition could potentially limit the application of these method-

ologies to regimes where classical computation proves more efficient than quantum

computation[38, 39].

The goal of a future work will be to restore optimal (Heisenberg) scaling of the

approach proposed here by leveraging techniques such as compressed sensing[64]

or amplitude amplification [65] tailored to an automatically differentiable frame-

work. Another essential direction to align this strategy with existing literature

proposals involves reducing the cost of differentiation itself. Currently, quantum

differentiation methods exhibit backpropagation-like scalings[66] for only a specific

class of circuits. Our cost analysis, based on a general differentiation rule, would

greatly benefit from this improvement.
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4.5 Numerical results

Here we report the numerical results of our implementation of the GCE described

in Sec. 4.3 coupled to the automatically differentiable pipeline provided by Pen-

nyLane. The latter, thanks to the differentiable quantum chemistry[44] feature

ensures end-to-end differentiability of the procedure and allowed us to apply this

method to the evaluation of energy gradients of molecular Hamiltonians which is

of utmost importance in the field of quantum chemistry.

In addition to numerically validating the algorithm proposed in this study, these

calculations themselves represent a novelty. To the best of our knowledge, only

two other papers (focusing on fault-tolerant algorithms) in literature report similar

calculations: O’Brien et al.[63] calculated the equilibrium bond length of H2 on

an actual quantum processor in a minimal basis set, and more recently, Sugisaki

et al.[67] developed a protocol for optimizing geometry using a Bayesian phase

difference algorithm, applying it to different molecules with the largest system

being N2 with a Complete Active Space CI using 6 electrons and 6 orbitals (6e,

6o).

4.5.1 Computational details

All the calculations have been performed with a locally modified version of Pen-

nyLane[27] v0.24, the code generating all the data of this section can be found at

[68]. Reference calculations have been performed with the Psi4[69] code for the

calculations at the FCI level, CASCI calculations on the CH2O molecule have been

performed with the PySCF[70] code. All the calculations are performed adopting

a STO-3G basis set; concerning the H+
3 molecule this implies 6 qubits needed for

encoding the wavefunction into the system register using a Jordan-Wigner encod-

ing[71], for the CH2O molecule the active space was chosen keeping active only two

electrons and the four highest lying MOs. For all the calculations we set the value

of k = 1000 for smoothing the boxcar function and a window width h = 8
2t

. We set

the temperature for the tempered-softmax distribution (Eq. 4.12) at T = 0.0035.
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We found that higher values (i.e. k > 5000) of k lead in some cases to numerical

instabilities. We recall that a thorough analysis of the window size effects is given

in Sec. 4.3 (Fig. 4.6). Further, we set the number of readout qubits t = 13 for

the H+
3 molecule and t = 11 for the CH2O molecule. Altogether we simulated 19

qubits in both cases.

It is important to notice that QPE methods always involve a rescaling of the

Hamiltonian needed to avoid aliasing for the recovered energy. In practice, it

means working with a rescaled Hamiltonian HSC = Hmol−EminI
∆E

with ∆E being

the spectral range of interest. Unfortunately, such a procedure increases the cost

making the overall scaling from O(ϵ−1) to O(∆Eϵ−1). In all our numerical sim-

ulations we mitigated this issue working with the purely electronic Hamiltonian

(i.e. adding a posteriori the frozen core contribution and/or the nucleus-nucleus

interaction terms). Finally, for the calculations on the trihydrogen cation, we used

a gradient descent optimizer with stepsize of 0.01 as implemented in PennyLane;

regarding the formaldehyde, we adopted an in-house automatically differentiable

implementation of the BFGS[72] optimizer.

4.5.2 Trihydrogen cation (H+
3 )

As a first application of our differentiable pipeline, we show two examples of geom-

etry optimization on the H+
3 molecule. This system, being the simplest polyatomic

molecule has been extensively studied for benchmarking ab initio models[73, 74]

and it has also attracted attention for being one of the most common species in

molecular hydrogen plasmas occurring in interstellar clouds and planetary iono-

spheres[75].

In Fig. 4.9 we report a convergence plot of the geometry optimization for the

ground state which is stable if the hydrogen atoms are arranged in a triangular

shape[76]. The initial state used for this calculation is the HF state which after

Jordan-Wigner mapping reads |HF ⟩ = |110000⟩. The initial geometry has been

set equal to an isosceles triangle with bond lengths slightly distorted from the HF

equilibrium geometry. Please notice that in Fig.4.9b the dashed dotted lines refer
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to different bond lengths and that the green and yellow ones are superimposed.

As we can see, after 20 iterations the optimization is able to recover the correct

equilatelar (D3h symmetry) shape in agreement, within chemical accuracy, with

the FCI optimized geometry. Interestingly, we can notice how the energy obtained

with the QPE is slightly below the FCI reference (orange dashed line in Fig.4.9a),

this is due to the fact that the QPE is not a variational method.

(a) (b)

Figure 4.9: Ground state geometry optimization for the H+
3 molecule. a) Conver-

gence of the ground-state energy E and b) the bond length rH−H . Dashed-dotted
lines represent values obtained during the optimization at the QPE level, dashed
lines are reference values obtained at the FCI level.

We consider a second example for the same molecule: the first excited triplet

state. Here the initial state used is a spin-flipped doubly excited determinant built

upon the HF configuration, i.e. |ψ⟩ = t3501|HF ⟩ = |0001010⟩. As already reported

in literature[77], the triangular geometry is not stable under this excitation and

undergoes photodissociation. On the other hand, a linear structure is a stable

configuration for the |T0⟩ state; thus, we initialized the geometry in a linear shape

with the two terminal hydrogens not equally distant from the central one (see

Fig. 4.10b). Again we can see how the optimization allows to reach energy and bond
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length with errors below chemical accuracy (i.e. ∆E < 1mHa and ∆r < 0.01Å).

(a) (b)

Figure 4.10: First triplet state (|T0⟩) geometry optimization for the H+
3 molecule.

a) Convergence of the ground-state energy E and b) the bond length rH−H .
Dashed-dotted lines represent values obtained during the optimization at the QPE
level, dashed lines are reference values obtained at the FCI level.

In the next section we showcase an application to a larger molecule to under-

stand the impact of our procedure when considering a more elaborate electronic

structure.

4.5.3 Formaldeyhde (CH2O)

Here we show two examples of geometry optimization carried out with our au-

tomatically differentiable QPE on a larger molecular system. We studied the

formaldehyde molecule in its ground state and first triplet state (|T0⟩) correspond-

ing to the spin-flip transition 3(n → π∗). These systems have been extensively

studied both theoretically and experimentally[78–80] as representatives systems

for the carbonyl-chemistry and, more broadly, for their role played in photochem-

istry.
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In order to perform geometry optimization with the scheme proposed in Sec. 4.3,

we differentiated throughout all the optimization an eigenstate distribution in-

duced by the |HF ⟩ state which, for the active space considered, reads |HF ⟩ =
|11000000⟩. In Tab. 4.1 we report the results of our optimization and compare

them with a geometry optimization carried out at the CASCI level (within the

same active space) and with experimental data from [81] as reported in [82].

As we can see the predicted CO double bond length is within chemical accuracy

(∆r < 0.01Å) both considering as a reference the theoretical calculations at the

CASCI level and the experimental values. Also, considering the predicted angles,

an error of ∆θ ≈ 2◦ represents a good agreement between theory (both meth-

ods) and experiments. Instead, looking at the predicted CH bond length we can

see that a more significant mismatch is present between the theoretical methods

(∆r ≈ 0.05Å). Such a difference may be ascribed to different factors: (i) biases

induced by the external parameters T and k, (ii) possible numerical instabilities

encountered in the AD pipeline or (iii) differences in the optimization procedure

and the underlying Hartree-Fock solver. Notably, we can observe an error can-

cellation effect (with the active space truncation) as, looking at the experimental

values, we can appreciate a better agreement with the result obtained with the

differentiable QPE. Such an agreeement gets even better (i.e. within chemical

accuracy) if we look at the experimental results reported by Ref. [83].

Table 4.1: Geometry optimization of the |GS⟩ electronic state of formaldehyde.
Distances are expressed in Å, angles in degrees. Experimental errors are reported
in brackets.

CASCI(2e, 4o) QPE(2e, 4o) Exp.[81]
rCO 1.212 1.211 1.21(1)
rCH 1.055 1.106 1.12(1)
OĈH 123.18 122.96 121(1)
OĈH 123.18 122.96 121(1)
HĈH 113.64 114.08 -

We now move on to the discussion of the results concerning the optimization of

the first triplet state (|T0⟩). Here, all along the optimization procedure, we differ-



CHAPTER 4. A FULLY DIFFERENTIABLE QUANTUM PHASE ESTIMATION157

entiated through a distribution induced by the triplet state built upon excitation

of the HF determinant, |ψ⟩ = t20|HF ⟩ + t31|HF ⟩ with tji being a single excitation

from spin-orbital i to j. We recall that in our convention for labeling the orbitals,

α/β spins are interleaved and that spin-orbital labeling starts with the leftmost

qubit being indexed with 0.

As we can notice in Tab. 4.2, bond lengths and angles are within chemical accu-

racy comparing the QPE results and the classical CASCI reference further proving

that the GCE estimator coupled with the automatic differentiation pipeline of Pen-

nyLane is able to reproduce both total energies and forces. On the other hand,

looking at the experimental reference, we can see that the active space chosen (re-

gardless of the theoretical method employed) induces an error of about ≈ 0.02Å

overestimating the CO bond length and underestimating the CH bond length.

This is in agreement with other results reported in literature for calculations in

restricted active space; for example, Angeli et al.[79] (including orbital optimiza-

tion) report an error of 0.062 and 0.028Å for the CO bond length and 0.005 and

0.028Å for the CH bond, respectively for two different active spaces.

Table 4.2: Geometry optimization of the first triplet state (|T0⟩) electronic state
of formaldehyde. Distances are expressed in Å, angles in degrees.

CASCI(2e, 4o) QPE(2e, 4o) Exp.[80]
rCO 1.320 1.325 1.307
rCH 1.063 1.060 1.084
OĈH 117.36 119.75 -
OĈH 116.72 119.74 -
HĈH 125.92 120.51 121.8

These results demonstrate not only the effective application of the automati-

cally differentiable QPE to a non trivial chemical system but also emphasize the

importance of numerics alongside with theoretical cost analysis when proposing

an algorithm. Indeed, these findings underscore the necessity of specific domain-

knowledge and stress the importance of maturing practical experience, as similarly

demonstrated in the literature for standard computational quantum chemistry, for

achieving results that align with other methods and experiments. In particu-
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lar, we found that to practically extend these experiments to the optimization

of high-energy excited states it is mandatory to conduct on-the-fly assessments to

understand how the displacement of atoms induces changes in electronic structure,

and consequently, determining how to modify the input molecular state within the

quantum circuit. The development of a cheap and fast algorithm to make this

assessment practical is a possible avenue of this work.

4.6 Conclusions

In this work we have extended the smooth estimator proposed in Ref.[37] for the

QPE to be used when the exact eigenstates of the unitary U are not known.

This allowed the implementation of the phase estimation algorithm in a quantum

differentiable framework applicable to non-trivial problems, such as molecular ge-

ometry optimization. These calculations represent a milestone unreported so far

both concerning system size (number of atoms) and target state (we showcased

optimizations beyond the singlet ground state).

Despite the various possibilities that this work offers, there are some aspects

that limit its scalability to larger systems at present. Particularly, we have seen how

reconstructing the measurement distribution requires a substantial computational

overhead, that can be mitigated by improving the wavefunction guess.

As we mentioned in Sec. 4.4.2, a straightforward improvement may be the in-

clusion of a cosine or Kaiser window into the phase estimation circuit; this con-

centrates the information in the main lobe of the distribution and may lower the

number of relevant bitstrings to sample for the circular average. As shown in

Ref.[59] this has already proven a cubic speedup for the majority rule estimator

and may provide similar speedups for the GCE. In addition to the rise in cost, it

is important to note that the smoothing procedure we have reported results in a

nontrivial dependence on both the temperature (T) and the boxcar hardness factor

(k). Procedures to mitigate the bias arising from these factors are necessary for

applying this technique to more intricate calculations, such as the optimization of
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excited-state geometry or higher-order derivatives. Possible strategies could imply

resorting to recent variations of the quantum phase estimation such as[64, 84, 85].

Once a more stable smoothing procedure is found an important contribution

would be showing the application of this pipeline to the simulation of spectroscopy

experiments.

It should also be emphasized that when developing a quantum algorithm we

are not only concerned with finding a solution to a useful problem but also about

ensuring that the runtime of the algorithm is feasible and advantageous compared

to other solutions, including classical ones. Despite the favorable scaling of QPE,

the answer to this question in the field of quantum chemistry is still open[38, 40,

41, 86]. Considering the algorithm proposed in this work, there will undoubtedly

a need for further work reaching cost-effective differentiable solutions. This study

further underscores the importance of expanding the classes of circuits that allow

for backpropagation scaling in derivative calculations[66].

Appendix A: The physical meaning of differentiat-

ing through the measurement distribution

In this section we derive analytic expressions for the energy derivative as defined

by Eq. 4.15. These expressions allow us to understand the physical origin of the

automatically computed gradient.

The main idea is that we can recast the whole differentiable QPE procedure in

this expression:

E ≈ S
[ ∫
⟨Ψ|e−iHt|Ψ⟩eiωtdt

]
= S

[
I(ω)

]
(4.41)

Where S is a differentiable functional corresponding to the smoothing procedure

outlined in Fig. 4.3 of the main text.

Accordingly, we can write explicitly the energy derivative differentiating the

last expression:
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∂µ

∂R
=
δS
δI

∂I

∂R
(4.42)

Here, our focus is on the second factor ∂I
∂R , as the first does not provide any

information about the physics of the system; instead, it pertains to the dependence

of our estimator on the parameters denoted as T and k in the main text.

By expanding |Ψ⟩ on the Hamiltonian eigenbasis we get:

I(ω,R) =
∑
i

|ci(R)|2δ(ϕi(R)− ω) (4.43)

Where, as expressed in the main text introduction (Sec. 4.2.1), ϕi = f(Ei).

Differentiating and accounting for the finite precision of the quantum register

grid we obtain:

∂I

∂R
=
∑
i

∂|ci|2

∂R
∂P

∂ϕi

∂ϕi
∂R

(4.44)

Where P is the parent distribution kernel defined in Eq.4.4 of the main text and

i is a label running over the electronic eigenstates.

In our approximation, i.e. Eq. 4.14, the previous Eq. reduces to:

∂I

∂R
≈ ∂|ci|2

∂R
∂P

∂ϕi

∂ϕi
∂R

(4.45)

With |i⟩ being the only eigenstate contributing to the probability P .

Again we focus on the terms which bring the molecular physics into the algo-

rithm. As such we do not comment the term ∂P
∂ϕi

which can be obtained analytically

from Eq. 4.4.

Applying the chain rule to the eigenphase derivative we can easily notice the

emergence of the true molecular energy derivatives: ∂ϕi
∂R = ∂ϕi

∂f
∂f
∂Ei

dEi

dR . The depen-

dence on f is a purely algorithmic choice and will not be considered here. On the

other hand, following Ref. [34] we can directly relate the force calculated w.r.t. the

i-th eigenstate to molecular integrals derivatives as:
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dEi
dR

=

(∑
pq

γpq
dhpq
dR

+
∑
pqrs

Γpqrs
dgpqrs
dR

)
−

(∑
pqm

γpqhmq
dSmp
dR

+2
∑
pqrst

Γpqrsgtqrs
dStp
dR

)
(4.46)

Where γpq and Γpqrs are, respectively, the one- and two-electrons reduced density

matrices[87] for the i-th eigenstate, h and g are the one- and two-electrons inte-

grals representing all the interactions present in the molecular Hamiltonian (i.e.,

electronic motion, electron-nuclear interactions and electron-electron interactions).

All indexes of the summation run over the spin-orbitals. Finally, S is the basis

overlap matrix.

To obtain a complete expression we now consider the evaluation of ∂|cu|2
∂R . We

consider a real-valued wavefunction (without any loss of generality as long as we

are not neglecting the presence of external magnetic fields) for which we can write

the first-order response of the wavefunction w.r.t. a perturbation (in our case

being a nuclear displacement) as [88]:

∂cµ
∂R

= −
∑
ν

G−1
µν

∂Fν
∂R

(4.47)

Where G and F are, respectively, the electronic Hessian and the electronic gradient

defined as:

Gµν =
∂2E

∂cµ∂cν
= 2(⟨µ|H|ν⟩ − EGS⟨µ|ν⟩) (4.48)

Fµ =
∂E

∂cµ
= 2⟨µ|PH|Ψ⟩ (4.49)

Previous Eqs. hold if we are considering derivatives of the ground state coefficients.

Moreover, we point out that |µ⟩ and |ν⟩ are N -electrons Slater determinants. The

expressions on the Hamiltonian eigenbasis can be recovered considering that the

two sets of coefficients are related by the basis change C{|u⟩} = V†C{|µ⟩}V (where V

is the Hamiltonian diagonalizing matrix). Finally, in Eq. 4.49 we have introduced
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the projection operator P = 1− |Ψ⟩⟨Ψ|.
From Eq. 4.47 and ∂|cu|2

∂R = 2cu
∂cu
∂R we can attribute a precise physical mean-

ing to the overlap derivative term: in analogy with Hooke’s law the wavefunction

relaxation is proportional to the “force" −∂Fν

∂R and inversely proportional to the

“force constant" G. Indeed, in absence of external perturbation (i.e. nuclear dis-

placement) the electronic gradient is null and the wavefunction is stable.

Finally, adding the contribution of Eq. 4.46 we can reconstruct the meaning of

Eq. 4.45. In essence, Eq. 4.45 tells us that the measurement distribution induced

by the QPE circuit varies as nuclei are displaced by effect of the variations of the

electronic energies (Eq. 4.46) and of the wavefunction coefficients (Eq. 4.47). These

contributions are singled out and modulated by the functional S, other algorithmic

choices (e.g. f ∝ cos−1 when employing a qubitization[89] based QPE), and the

number of readout qubits entering the quantity ∂P
∂ϕi

.

Appendix B: Effect of sampling noise

In Fig. 4.11, we illustrate the effect of sampling on the geometry optimization of

H+
3 in its singlet ground state using the strategy defined in the main text, see

Sec. 4.2 and Sec. 4.3.

As we can observe, both in terms of energy error (∆E, Fig. 4.11a) and bond

length error (∆r, Fig. 4.11b), the estimate for the number of samples to be mea-

sured outlined in Fig. 4.7 is consistent with the findings reported here. Indeed, the

initial state used for performing the geometry optimization is always the Hartree-

Fock determinant, which, starting from the initial geometry (the same one used

for the calculations presented in the main text), exhibits an overlap with the FCI

solution > 90%.

Interestingly, by looking at Fig. 4.11, we may be tempted to conclude that the

generalized circular estimator variance does not actually depend on the number

of readout qubits as very similar trends are observed w.r.t. the number of shots

regardless of the number of readout qubits and also, the final errors w.r.t. the
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(a) (b)

Figure 4.11: Ground state geometry optimization under sampling noise. (a) En-
ergy error (∆E) and bond length error (b) (∆r) w.r.t. the FCI optimized solution
as a function of number of readout qubits varying the number of collected sam-
ples for reconstructing the parent distribution (shown with different colors). We
remark that each point is an independent optimization run.

exact geometry look quite independent on t. As we have discussed in Sec.4.3.1,

this is not the case. The results shown in Fig. 4.11 arise from the interplay of

two effects: (i) the window sizes that we have used in these calculations shrink

exponentially with the number of qubits as reported in Fig. 4.4; this implies that

the number of bitstrings included in the circular average (for the calculations

reported in Fig. 4.11) is always the same regardless of the number of readout qubits.

Clearly, this approach works also with a lower number of qubits because the input

state used allows to sample from a large number of bitstrings without adding

information from spurious excited states. Moreover (ii) the results that we are

showing do not refer to the evaluation of a single point energy but are obtained as

a result of different independent optimization processes; to this extent the errors

reported combine the errors on the function (and gradient) evaluations with the

optimization process.
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Chapter 5

Conclusions

This thesis work is inscribed within the field of quantum computation aimed at

the simulation of molecular systems. Its organization reflects a progression of

the algorithms developed to describe chemical systems: starting with a method

for calculating ground state electronic energies in gas-phase proceeding to more

complex systems and molecular properties.

The variety of tools adopted and possible scenarios to be considered also reflects

the current state of hardware development. In particular, the uncertainty regarding

the type of physical implementation, the type of architecture and (potentially)

also the type of programming paradigm means that the development of useful and

effective algorithms does not only involve efficient scaling but also flexibility due

to the variations that this type of technology will inevitably undergo.

The insights developed over the past decades by the scientific community in

studying the electronic structure problem suggest that there is still much room for

improvement and extension in the field of quantum information.

In particular, in Chapter 2, by addressing the electronic structure problem

with optimal control tools, we introduced a parameterization that explicitly acts

by introducing time-varying effective nuclear charges. What is the effect of using

localized basis functions in this scenario?

Similarly, Chapter 3 presents an extension of VQE for condensed-phase molec-
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ular systems. The analysis presented in this thesis focuses on the calculation of

the electronic structure of the ground state. What are the best strategies, tak-

ing into account different solvent relaxation regimes, for the calculation of excited

states properties in solution? More generally, the possibility of including a solvent

description is a necessary step to bring these techniques closer to capturing the

complexity of chemical phenomena. Thus, the development of quantum multiscale

methods is, in general, a possible continuation of this thesis work.

The last chapter explored the possibilities offered by extending quantum phase

estimation to an automatic differentiation paradigm and highlighting its possible

limitations. Clearly, an algorithm capable of scaling backpropagation on universal

circuits would be a game-changer beyond the work proposed in this thesis, but it

would inevitably impact the cost of the proposed routine. Nevertheless, a future

perspective for this work would be to devise more efficient methods for calculating

gradients by reducing the number of circuits to independently measure. This,

coupled with the development of alternative smoothing procedures and methods

such as those explored in Chapter 2, could represent a significant step forward in

the development of useful quantum algorithms on an industrial scale.
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