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Memristive synapses connect brain 
and silicon spiking neurons
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Marco Reato2, Marta Maschietto2, Christian Mayr3, Giacomo Indiveri   4,  
Stefano Vassanelli   2* & Themistoklis Prodromakis   1*

Brain function relies on circuits of spiking neurons with synapses playing the key role of merging 
transmission with memory storage and processing. Electronics has made important advances to 
emulate neurons and synapses and brain-computer interfacing concepts that interlink brain and brain-
inspired devices are beginning to materialise. We report on memristive links between brain and silicon 
spiking neurons that emulate transmission and plasticity properties of real synapses. A memristor 
paired with a metal-thin film titanium oxide microelectrode connects a silicon neuron to a neuron of 
the rat hippocampus. Memristive plasticity accounts for modulation of connection strength, while 
transmission is mediated by weighted stimuli through the thin film oxide leading to responses that 
resemble excitatory postsynaptic potentials. The reverse brain-to-silicon link is established through a 
microelectrode-memristor pair. On these bases, we demonstrate a three-neuron brain-silicon network 
where memristive synapses undergo long-term potentiation or depression driven by neuronal firing 
rates.

Invasive spike-based Brain-Computer Interfaces (BCIs) based on implantable neural interfaces have shown great 
potential for neural prostheses1–3. Currently, spike processing is typically managed by digital Von Neumann-based 
hardware running statistical algorithms. However, neuromorphic electronic devices and architectures represent a 
fascinating computational alternative, by virtue of relying on near-biological spike signals and processing strate-
gies4–6. In this context, recent findings that nanoscale memristors can emulate plasticity properties of synapses7,8 
have, on the one hand, boosted hopes of delivering computing systems that are closer to the brain circuits in terms 
of computation capacity and power efficiency9,10. On the other hand, they created the premise for BCIs where 
spikes are seamlessly processed by nanoscale physical elements, as recently demonstrated for the encoding and 
sorting of spikes recorded by large-scale multielectrode arrays from neurons in culture11. Thus, in perspective, 
neuroelectronic systems with memristors are promising to ultimately deliver neuromorphic BCIs where silicon 
and brain neurons are intertwined, sharing signal transmission and processing rules with application in neuro-
prosthetics5 and bioelectronic medicines12.

We hereby demonstrate two memristive connections that link silicon spiking neurons and brain neurons in 
both directions. The connections emulate synaptic function. In the silicon-to-brain path, a TiOx memristor was 
coupled to a metal-thin film TiO2 microelectrode to connect a very-large-scale-integration (VLSI) spiking neuron 
to a biological neuron from a rat hippocampus in culture (Fig. 1a). The link, referred to as artificial-to-biological 
synaptor (ABsyn), was conceived to emulate both the spike transmission and plasticity processing of a brain syn-
apse. The memristor MR1 stores synaptic weights as resistive states. The thin film capacitive microelectrode13 
CME delivers stimuli to the biological neuron (BN) that are adjusted by the memristive weights (Fig. 1b). Thus, 
in analogy with a native synapse, ABsyn operates by injecting in the BN an excitatory current, which reflects a 
plasticity-dependent synaptic strength. To emulate plasticity, the memristor MR1 is operated as a two-terminal 
device through a control system that receives pre- and post-synaptic depolarisations from one silicon neuron 
(ANpre) and one biological neuron (BN), respectively. The plasticity rule is implemented in software, and pro-
gramming pulses are delivered to change the internal resistance of the device. Resistive states (weights) are trans-
lated into adjustable voltage stimuli that, through CME, produce postsynaptic depolarisations in the biological 
neuron (Fig. 1b and Supplementary Fig. 1). Notably, these capacitively-induced depolarisations resemble native 
excitatory-postsynaptic potentials (EPSPs), eventually leading to spike firing when the biological cell threshold 
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is exceeded (Supplementary Fig. 1). We conceived the biological-to-artificial synaptor (BAsyn) following a similar 
approach. BN spikes are recorded by a patch-clamp microelectrode, then processed by the plasticity-driven mem-
ristor MR2, and finally transmitted to a second silicon neuron, ANpost, via current injection. This configuration 
comprises a representative example of hybrid circuit connecting silicon spiking neurons to a biological neuron 
and illustrates how an artificial neuron can influence the firing of another artificial neuron through a biological 
intermediary without any externally forced signals along the route. In summary, along the forward pathway, the 
artificial ‘presynaptic’ neuron ANpre excited BN through ABsyn. Through the return branch, BN stimulated the 
‘postsynaptic’ silicon neuron ANpost through BAsyn (Fig. 1).

An intriguing method for implementing the synaptors involves using the standardised interface of the 
Internet, which has been previously trialled for non-synaptic network communications14–16. We thus instantiated 
our example of synaptor-linked circuit in a geographically-distributed manner. Three set-ups were connected 
via user datagram protocol (UDP): a neuromorphic chip hosting silicon spiking neurons (located in Zurich, 
Switzerland), a memristor handling instrument (Southampton, UK) and a capacitive multi-electrode array with 
neurons of the rat hippocampus (Padova, Italy) (Supplementary Fig. 2). Notably, the artificial and biological neu-
ron set-ups communicated exclusively via the memristor set-up (see also Supplementary Note 2), thereby univo-
cally establishing the two synaptors. The central position of the memristor set-up within the network rendered it 
the de facto control centre of the entire system.

We report a demonstrative experiment where synaptor plasticity was inspired by the Schaffer collateral - 
CA1 neuron glutamatergic synapse and the landmark demonstration of Dudek and Bear that high frequency 

Figure 1.  Synaptors connect silicon and brain neurons in hybrid network. (a) Sketch of the main components 
of the hybrid circuit and of the synaptors. ANpre and ANpost are silicon spiking neurons of a VLSI network28,35 
(SNN), while MR1 and MR2 are Pt/TiOx/Pt memristors36. The capacitive Al/TiO2 electrode, CME, is an element 
of the multi electrode array, CMEA (Supplementary Fig. 1) where rat hippocampal neurons are cultured on 
the functionalized surface of the TiO2 thin film. One neuron is contacted by a patch-clamp pipette, P, for 
intracellular whole-cell recording. The two synaptors, ABsyn and BAsyn, connect the ‘presynaptic’ silicon neuron 
(ANpre) to the brain neuron (BN), and BN to the ‘postsynaptic’ silicon neuron, ANpost. The two memristors, 
MR1 and MR2, emulate plasticity in the two synaptors, whereas electronics-to-BN and BN-to-electronics 
signal transmission are mediated by the CME and the patch-clamp electrode. (b) Operational scheme. In 
ABsyn, changes in MR1 resistive states, R(t), are driven by ANpre and BN depolarisations rates according to an 
approximated BCM plasticity rule (Supplementary Table 1 and Supplementary Fig. 3) resulting in either LTP 
(red), LTD (blue) or no change. MR1 resistive states are translated into weighted voltage stimuli. These are 
delivered to BN through the CME capacitance (CCME) causing EPSP-like depolarisations, in turn leading to 
action potential firing (Supplementary Fig. 1). Similarly, in BAsyn, BN spikes are recorded by the patch-clamp 
electrode through its resistance, Rp, threshold-detected and then transmitted to ANpost as current injections that 
are adjusted via MR2 weights.
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presynaptic activity induces long-term potentiation (LTP) whereas low frequency firing causes long-term depres-
sion (LTD)17. This behaviour can be interpreted on the basis of the Bienenstock-Cooper-Munro (BCM) theory, 
modelling the change of synaptic strength as dependent on the product of the input presynaptic activity and a 
function of the postsynaptic response with a modification threshold accounting for the transition between the 
two plasticity polarities17,18 (Supplementary Fig. 3). For the sake of simplicity, we implemented an approximation 
of the BCM theory with a constant plasticity modification threshold (i.e. following a Cooper, Liberman and 
Oja approach18), and by splitting plasticity polarities across three frequency ranges (Supplementary Fig. 3 and 
Supplementary Table 1). During the experiment, the silicon neuron was acting as a pacemaker. Inspired by the 
Dudek and Bear experimental paradigm, we set ANpre firing at constant frequencies leading to plasticity changes 
that were driven by post-synaptic (i.e., BN) activity. In practice, postsynaptic activity was estimated, in terms 
of depolarisation frequency as measured within a time window immediately preceding each presynaptic spike. 
Memristor weights were then programmed accordingly (Supplementary Fig. 3b). At the start of the experiment, 
BN spiking was elicited through ABsyn by setting the silicon neuron ANpre to fire at high-frequency, eventually 
leading to LTP of the synaptor. As such, the protocol emulated LTP induction in the Schaffer collateral-CA1 
neuron synapse by high frequency discharge of the presynaptic CA3 neuron17. It should be noted that following 
a rate-coded – and not phase-coded– plasticity rule provided a certain degree of immunity against physical and 
location-dependent internet delays in this experiment, as the specific timing of spikes was secondary in impor-
tance to the overall rate.

Experimental results are summarized in Fig. 2. The pacemaker neuron ANpre was set to fire regularly at dif-
ferent rates during four subsequent phases of the experiment (i.e., at 10, 25, 10 and 4 Hz, lasting 20, 20, 20 and 
40 seconds each). This protocol was designed to cause polarity changes at ABsyn along the pattern ‘none/LTP/
none/LTD’ as depicted in Fig. 2a and in accordance with the plasticity rule of Supplementary Table 1. BN spikes 
recorded by the patch-clamp pipette are shown in Fig. 2b (for amplitudes of subthreshold postsynaptic poten-
tials see Supplementary Fig. 4). Spikes triggered in BN during the high rate 25 Hz discharge of the pacemaker 
neuron confirmed ABsyn potentiation. Consistent with LTP induction, BN spiking activity persisted during the 
subsequent phase at 10 Hz presynaptic frequency, thus witnessing no change of plasticity polarity. The subsequent 
setting of the pacemaker to a low frequency (4 Hz) then caused first depotentiation and eventually LTD of ABsyn. 
The resistance of the ABsyn memristor, MR1, is plotted in Fig. 2 throughout the different phases of the experiment. 
The evolution of MR1 resistance during the experiment demonstrates the potentiation of synaptor weight (i.e. 
increase in resistance) during the LTP phase, its maintenance during the ‘none’ phase, and the depotentiation 
(return of resistance to baseline) and subsequent depression (below starting baseline) during the LTD phase.

Results from the return, biological-to-artificial branch of the circuit –where BN was connected through 
BAsyn to its post-synaptic target, the silicon neuron ANpost– are shown in Fig. 3. Importantly, in order to favour 

Figure 2.  ABsyn plasticity in geographically distributed hybrid circuit. (a) Activity pattern of the pacemaker 
artificial neuron ANpre. Firing frequency is modulated in four phases, targeting the induction of plasticity 
as per the sequence: none/LTP/none/LTD, using the chosen plasticity rule. (b) BN firing response to ABsyn 
inputs. After LTP induction, the origianl 10 Hz pacemaker stimulation becomes capable of eliciting BN action 
potentials, thus reflecting the increase of postsynaptic potential amplitudes to above therhold. Firing persists 
until the commencement of the depotentiation/depression phase. (c) MR2 weight evolution. Data points denote 
resistance values for the intended LTP (red), LTD (blue) or no polarity change (black) phases. The right vertical 
axis indicates the correpsonding weight. X-axis common to all panels.
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plasticity modulation at BAsyn, the (artificial) spiking neural network (SNN) environment of ANpost (i.e. the arti-
ficial neurons-on-chip that ANpost connects to) was set to induce a stable background rate of spontaneous firing 
within ANpost. Stable ANpost spontaneous activity is visible during both LTD phases of BAsyn (Fig. 3b). BN firing, 
induced by ABsyn potentiation, then triggers additional ANpost activity during the ‘no plasticity’ phase of the run, 
with BN and ANpost becoming synchronized (Fig. 3b). The weight evolution of the MR2 memristor (Fig. 3c) is 
characterised by a dominant depression trend as the low-rate spontaneous activities of BN and ANpost hampered 
LTP induction at BAsyn. Only during the brief epochs of sustained BN firing the polarity of plasticity changed 
(black data points in Fig. 3c), thus favouring temporal summation of high-frequency BAsyn inputs leading to 
spikes triggering and synchronization of the two neurons.

Discussion
We have introduced the concept and demonstrated the feasibility of synaptors, two synapse-inspired neuroelec-
tronic links that connect artificial spiking neurons and brain neurons. Two different synaptors, ABsyn and BAsyn, 
respectively enabled the artificial-to-biological and the biological-to-artificial communication by emulating two 
fundamental functions of the biological synapse: signal transmission and plasticity-mediated signal processing. 
Our focus here was on demonstrating synaptors with excitatory characteristics.

Synaptors were implemented by relying on two separate physical electronic components: one for signal trans-
mission and one for plasticity. Biological-to-electronic (in BAsyn) and electronic-to-biological (in ABsyn) signal 
transmission was realised through microelectrodes. For BAsyn, a patch-clamp microelectrode in whole-cell con-
figuration recorded the spikes of the biological neuron. This invasive solution was preferred to non-invasive 
extracellular microelectrodes as it gave us the opportunity to capture subthreshold responses of BN to ABsyn 
activity in a very clean manner throughout the reported di-synaptor circuit experiment. Nevertheless, BAsyn is 
also compatible with extracellular spike recording methods through non-invasive bioelectronic interfaces19. Yet, 
signal transmission represented a severe challenge in the case of ABsyn. Along this electronic-to-biological sig-
nal pathway, spikes recorded from the artificial neuron had to be transmitted –after appropriate weighting– by 
eliciting responses similar to EPSPs in the biological neuron. To that end, we deployed a TiO2 thin film capaci-
tive microelectrode technology13,20 achieving a non-invasive and finely tuneable stimulation. Capacitive stimuli 
through the thin film and triggered by ‘presynaptic’ spikes caused membrane depolarisations via voltage gated 
channel opening that resembled EPSPs in terms of temporal dynamics, and that were adjustable in amplitude to 
match synaptic weight.

TiOx memristors were at the core of plasticity emulation in both synaptors. Plasticity was implemented by 
pulse programming one memristor (per synapse) to store synaptic weights, which were computed and updated 
in real-time by a plasticity algorithm based on a BCM-inspired model. BAsyn weights were converted to cur-
rent injections into the silicon neuron; ABsyn weights, instead, were transformed in depolarising voltage stimuli 
delivered through the capacitive microelectrode to the biological neuron. Thus, by making an analogy between 

Figure 3.  Geographically distributed circuit: return pathway. (a) BN firing rate with shadowed areas inidcating 
plasticity polarity at ABsyn (above the dashed line) and BAsyn (below the deshed line). (b) ANpost spiking 
frequency. An increase of spiking activity (expressed as percentage of variation) is observed in the middle of 
the run in coincidence with BN firing followed by a return to baseline. (c) BAsyn weight evolution. The low-rate 
spiking of BN and ANpost caused a strong depression trend (blue) only temporarily reverting to ‘none’ (black) 
during BN excitation and synchronization of the two neurons. X-axis common to all panels.
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ABsyn and an excitatory glutamatergic synapse, transmembrane currents induced by capacitive stimulation cor-
responded to currents through glutamate AMPA receptors; the resistive states of the memristor were changes 
of AMPA conductance driven by long-term plasticity; the plasticity algorithm was collectively representing the 
molecular mechanisms leading to changes of AMPA conductance (e.g., NMDA-dependent mechanisms).

The reported di-synaptor circuit showcased the functionality of the two types of synaptor within a 
plasticity-driven hybrid circuit. Conceptually, the circuit demonstrates an elementary BCI formed by a neuro-
morphic architecture of spiking neurons that seamlessly interact with the brain though synapse-inspired com-
munication pathways. Our demonstration leads to two observations that merit discussion. First, our chosen 
experimental set-up was that of a feedforward chain of three neurons communicating over long distance. The 
chain is controlled by a single signal input: the forced firing of the neuron at the start of the chain (ANpre). At this 
point, we note that in contrast to fully electronic brain-inspired systems, biology introduces nondeterministic 
components that render network behaviour difficult to predict analytically. This raises the challenges of first being 
able to describe the function of such hybrid systems and then developing reliable benchmarking strategies. In our 
case, this phenomenon manifests itself as a pattern of well-controlled plasticity phases at the forward path synapse 
and then a less directly controlled pattern of plasticity induction (of the form LTD/none/LTD) at the backward 
path synapse, as shown in Fig. 3c. This behaviour, however, is reproduced during the repeat (validation) run, as 
shown in Supplementary Fig. 7, thus showing that at least some consistency of results can be expected (and also 
validating that the concept and its underlying hardware/software infrastructure operate correctly).

Secondly, the experiment shows successful synaptor operation over the internet and not only by wire connec-
tion. Crucially, synaptors can be understood as geographically distributed synapses, with different components 
of the synapse physically located in separate places (e.g. the weight is stored in a memristor and the executive arm 
of the synapse is located at the capacitive/current-injection interface). Achieving this is not trivial, since issues 
such as handling UDP propagation delays (which are typically variable and thus difficult to control) need to be 
resolved. To that end, we employed a technique of referencing secondary partner spikes to the primary partner 
(see methods section) and used rate-dependent plasticity. The referencing technique effectively makes a remote 
memristor set-up appear and operate as if it were sitting next to the secondary partner, thus making the whole 
synaptor appear as if it were located in a single place. This also implies that if communication from primary to 
secondary partner is one-way, internet network delays can be de-facto eliminated completely from the oper-
ation of the biohybrid network. For reference, UDP timing measurements indicate variable static delays from 
10–90 ms across European connections, with the timing of individual UDP packets along a connection varying 
below 2 ms, i.e. the relative timing of pulses is stable. However, completely compensating for round-trip delays 
cannot be achieved using this technique (closed loop systems will have to be able to tolerate round-trip delays). 
Nevertheless, synaptors represent the first example of a geographically distributed hybrid network of artificial 
and biological neurons connected through physical synapse-like elements. Intriguingly, whereas brain evolution 
has had to face tight physical constraints that spatially confined connectivity, synaptors are suitable for overcom-
ing such barriers and enabling mixed biological/brain-inspired architectures that are globally interconnected 
(from small groups of sub-neural networks hosted on a few PCs around the world to potentially a huge web of 
IoT-interconnected devices).

In perspective, synaptors are suitable for improvements with respect to both signal transmission and plasticity 
emulation. Nanoscale electrodes21–24 can enhance the quality of interfacing and provide selectivity for neuronal 
compartments, and in vivo interfaces extend the use of synaptors to BCIs in the living animal5. Developments 
in the field of low-voltage operated memristive devices25 will help reducing the burden of signal amplification, 
while analogue emulation of plasticity and the extension to phase-dependent plasticity rules (e.g. STDP)26,27 will 
further expand the application potential for smart bioelectronic medicines and BCIs. For example, synaptors may 
be employed for adaptive bioelectronic control of autonomous reflexes (e.g. for therapy of heart arrhythmias, 
hypertension or bladder dysfunction by neurostimulation of the peripheral nervous system) or for therapy and 
rehabilitation in neurological patients (e.g. in spinal cord injury or Parkinson’s).

Methods
Silicon spiking neurons and AER-based communication.  The central part of the artificial side of the 
bio-hybrid system is formed by a reconfigurable on-line learning spiking neuromorphic processor (ROLLS)28, 
which contains neuromorphic CMOS circuits emulating short-term plasticity (STP) properties of synapses29 
and long-term plasticity (LTP) ones30. In addition, this processor comprises mixed signal analogue-digital 
circuits which implement a model of the adaptive exponential integrate-and-fire neuron31. Input and output 
spikes are sent/transmitted from the chip using asynchronous IO logic circuits which employ the Address-
Event-Representation (AER) communication protocol32. The chip is connected to a host PC which receives 
UDP-packets from the internet. These packets contain information on stimulus destinations and corresponding 
synaptic weights. This information is decoded by a Field Programmable Gate Array (FPGA) device and conveyed 
to the neuromorphic processor. In this work, the parameters of the CMOS synapse circuits were set to produce 
weak excitatory postsynaptic currents (EPSCs) with long time constants, such that high frequency stimulation 
causes an additive effect on the net amplitude of the resulting EPSC. The value of the weight encoded in the UDP 
packet was used to produce spike trains of different frequencies transmitted by the FPGA to the neuromorphic 
processor (see also Supplementary Fig. 4). In addition to the signals arriving from the UDP interface, locally 
generated spike trains were sent to the neuromorphic processor, to provide a controlled stimulus for evoking 
background activity. This system is shown in Supplementary Fig. 4.

Memristors.  The memristive synapse set-up consisted of an array of memristive devices positioned inside 
an ArC memristor characterisation and testing instrument33 (Supplementary Fig. 5. http:www.arc-instruments.
co.uk). The instrument is controlled by a PC, which handles all the communications over UDP; all through a 
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python-based user interface. The software is configured to react to UDP packets carrying information about the 
firing of either artificial or biological neurons (who fired when). Once a packet is received, the ID of the neuron 
that emitted it and the time of spiking are both retrieved from the packet payload and the neural connectivity 
matrix (held at the Southampton set-up) is consulted in order to determine which neurons are pre- and which 
are post-synaptic to the firing cell. Then, if the plasticity conditions are met, the ArC instrument applies pro-
gramming pulses that cause the memristive synapses to change their resistive states. Importantly, the set-up can 
control whether LTP- or LTD-type plasticity is to be applied in each case, but once the pulses have been applied it 
is the device responses that determine the magnitude of the plasticity. Notably, resistivity transitions of the device 
are non-volatile, they hold over at least hours27 as also exemplified in our prototype experiment and are therefore 
fully compatible with typical LTP and LTD time scales of natural synapses. The system is sustained by a spe-
cific methodology for handling timing within the overall network (Zurich, Southampton, Padova). The set-up in 
Southampton being the node that links Zurich and Padova together, controls the overall handling of time. Under 
this system, one of the partners (in our case Zurich) is labelled as the’primary partner’ and all timing information 
arriving from that partner is treated as a ground truth. Every timing information sent by other partners then has 
to be related to this ground truth, for example if the primary partner says that neuron 12 fires a spike at time 305, 
then the secondary partner(s) is informed of this (through Southampton). If then a neuron in the secondary part-
ner set-up fires 5 time units (as measured by a wall-clock) after being informed of the firing of neuron 12, it emits 
a packet informing Southampton that e.g. neuron 55 fired at time 310. This way the relative timing between spikes 
arriving from the primary partner and the spikes triggered by the secondary partner(s) in response is maintained 
despite any network delays. The price is that if the secondary partners wish to communicate spikes to the primary 
partner, network delays for the entire round-trip are then burdening the secondary-to-primary pathway. The 
details of timing control at each partner site are fairly complicated and constrained by the set-ups at each partner, 
but all timing information is eventually encoded in an’absolute time’ record held at Southampton. The rationale 
behind this design decision was to ensure that at least in the pathway from primary to secondary partner(s) tim-
ing control is sufficiently tight to sustain plasticity in the face of network delays.

Neuronal culture and electrophysiology.  Embryonic (E18) rat hippocampal neurons were plated and 
cultured on the CMEA according to procedures described in detail in34. Recordings were performed on 8–12 DIV 
neurons. The experimental setup in UNIPD (Supplementary Fig. 1) enabled UDP-triggered capacitive stimula-
tion of neurons13 while simultaneously recording and communicating via UDP the occurrence of depolarisations 
that were measured by patch-clamp whole-cell recording. The CMEA (20 × 20 independent TiO2 capacitors, each 
one of area 50 × 50 µm2) was controlled by a dedicated stimulation board and all the connections to partners, 
Southampton and Zurich, were managed by a PC running a LabVIEW-based software (National Instruments 
Corp, Austin, TX, USA). The stimulation protocol was derived from13 and further optimized for non-invasive 
adjustable stimulation of the neurons. In brief, capacitive stimulation was adjusted to the memristor’s resistance 
(i.e. the synaptor weight) by varying the repetition number of appropriate stimulation waveforms (Supplementary 
Fig. 1).Patch-Clamp recordings were performed in whole-cell current-clamp configuration using an Axopatch 
200B amplifier (Molecular Devices, USA) connected to the PC through a BNC-2110 Shielded Connector Block 
(National Instruments Corp, Austin, TX, USA) along with a PCI-6259 PCI Card (National Instruments Corp, 
Austin, TX, USA). WinWCP (Strathclyde Electrophysiology Software, University of Strathclyde, Glasgow, UK) 
was used for data acquisition. Micropipettes were pulled from borosilicate glass capillaries (GB150T-10, Science 
Products GmbH, Hofheim, Germany) using a P-97 Flaming/Brown Micropipette Puller (Sutter Instruments 
Corp., Novato, CA, USA). Intracellular pipette solution and extracellular solution used during the experiments 
were respectively (in mM): 6.0 KCl, 120 K gluconate, 10 HEPES, 3.0 EGTA, 5 MgATP, 20 Sucrose (adjusted to 
pH 7.3 with 1N KOH); 135.0 NaCl, 5.4 KCl, 1.0 MgCl2, 1.8 CaCl2, 10.0 Glucose, 5.0 HEPES (adjusted to pH 7.4 
with 1N NaOH). Digitised recordings were analysed by a custom LabVIEW software running on the PC, allowing 
detection and discrimination of firing and EPSP activity through a thresholding approach.

All experiments were performed in accordance with the Italian and European legislation for the use of animals 
for scientific purposes and protocols approved by the ethical committee of the University of Padova and by the 
Italian Ministry of Health (authorisation number 522/2018-PR).
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