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1. Introduction

Let π : X → C be a minimal elliptic surface without multiple fibers. We say that X satisfies infinitesimal 
Torelli if the differential of the period map

δX : H1(X,ΘX) → Hom(H0(Ω2
X), H1(Ω1

X))

is injective. (See e.g., [12, Chapter 10].)
There have been various results as to whether the infinitesimal Torelli property holds for X. If the 

geometric genus pg(X) vanishes then obviously the infinitesimal Torelli property does not hold. If X is an 
elliptic K3 surface then it holds by the results on K3 surfaces.

The case g(C) = 0, pg(X) ≥ 2 can be studied by techniques developed by Lieberman–Wilsker–Peters 
[9] and Kii [7]. These papers give a sufficient criterion for infinitesimal Torelli for varieties with divisible 
canonical bundle. In the latter paper Kii proved infinitesimal Torelli for elliptic surfaces in case g(C) = 0, 
pg(X) ≥ 2 and the j-invariant is nonconstant. In [8] the author used a similar method to show that 
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infinitesimal Torelli holds if again g(C) = 0, pg(X) ≥ 2 holds, but the j-invariant is constant, and π has at 
least pg(X) + 3 singular fibers. It is well known that an elliptic surface with pg(X) ≥ 1, g(C) = 0 has at 
least pg(X) + 2 singular fibers. In [8] it is also shown that elliptic surfaces with pg(X) ≥ 2, g(C) = 0 and 
pg(X) + 2 singular fibers do not satisfy infinitesimal Torelli. Chakiris [2], in his proof of the generic Torelli 
theorem for elliptic surfaces with a section and g(C) = 0 obtained a generic infinitesimal Torelli result. On 
the other hand, it is known that variational Torelli does not hold for elliptic surfaces [3].

One easily checks that Kii’s criterion cannot be applied in the case where the genus of C is positive. M.-H. 
Saito claimed in [11] that infinitesimal Torelli holds for elliptic surfaces without multiple fibers such that 
pg(X) ≥ 1 and either the j-invariant is nonconstant or the j-invariant is constant, different from 0, 1728 and 
χ(OX) ≥ 3 hold, but no constraints on the base curve. However, Ikeda [6] recently obtained an example of 
an elliptic surface without multiple fibers, with nonconstant j-invariant and pg(X) = g(C) = 1, for which 
infinitesimal Torelli does not hold.

The original purpose of this paper was to give a new proof for infinitesimal Torelli for elliptic surfaces, 
by methods different from Saito’s. However, when preparing this paper, we learned that each of the steps 
in Saito’s proof hold under the additional assumption that Ω2

X is base point free.
Our basic idea is to use Green’s version of Kii’s criterion [5, Corollary 4.d.3]. By doing so, we can 

reproduce Saito’s result under the same hypothesis that Ω2
X is base point free. The main difference with 

Saito’s proof is that In the case of nonconstant j-invariant, the infinitesimal Torelli result is almost an 
immediate corollary from the Green-Kii criterion. In the constant j-invariant case our method covers many 
cases left out by Saito. In particular, we obtain results for elliptic surfaces with constant j-invariant 0 and 
1728, and for elliptic fiber bundles which are not principal. Moreover, our method yields a series of new 
counterexamples to infinitesimal Torelli.

To formulate our statement, we need a further invariant of the elliptic fibration π : X → C. Let L be the 
dual of the line bundle R1π∗OX on C and let d = deg(L). It is well known that d ≥ 0 and d = 0 corresponds 
to the case of an elliptic fiber bundle. To apply Green’s version of Kii’s criterion, we need to check that Ω2

X

is base point free. It is easy to check that this happens if d > 1 or d = 1 and h0(L) = 0.
Moreover let Δ be the reduced effective divisor on C whose support coincides with the support of the 

discriminant. In this paper we prove two results on classes of elliptic surfaces for which infinitesimal Torelli 
holds, one in the nonconstant j-invariant case and one in the constant j-invariant case.

Theorem 1.1. Let π : X → C be an elliptic surface without multiple fibers and with nonconstant j-invariant. 
If d �= 1 or d = 1 and h0(L) = 0 hold then X satisfies infinitesimal Torelli.

Theorem 1.2. Let π : X → C be an elliptic surface without multiple fibers, and with constant j-invariant. 
Suppose that

(1) if g = 0 then d > 2;
(2) if d = 1 then h0(L) = 0;
(3) if h1(X) is odd then L � OC .

Then X satisfies infinitesimal Torelli if and only if the multiplication map

μπ : H0(Ω1
C ⊗ L) ⊗H0(Ω1

C ⊗ L−1(Δ)) → H0((Ω1
C)2(Δ))

is surjective.

We will comment a bit one the cases excluded. If g = 0 and d ≤ 2 then, depending on d, we have product 
surfaces E × P1 (d = 0), rational elliptic surfaces (d = 1) or elliptic K3 surfaces (d = 2). For each of these 



R. Kloosterman / Journal of Pure and Applied Algebra 226 (2022) 106925 3
cases it is well known whether infinitesimal Torelli does hold (K3) or does not hold (products and rational 
surfaces). If h1(X) is odd and L ∼= OC then it is known that X does not satisfy infinitesimal Torelli [11, 
Section 8] and we will come back to this in Section 5. Hence the only cases not covered by the above two 
theorems are the cases d = 1 and h0(L) > 0, i.e., when Ω2

X is not base point free.
The second theorem does not give a conclusive answer whether infinitesimal Torelli holds, but the map 

μπ is studied extensively in the literature. For many cases we know that μπ is surjective, which yields to 
the following corollary. Recall that if d ≥ 1 then s ≥ d + 1.

Corollary 1.3. Let π : X → C be an elliptic surface without multiple fibers and with constant j-invariant. 
Let s be the number of singular fibers. Suppose that if d = 1 then h0(L) = 0 holds. Moreover, suppose that 
one of the following holds

(1) d ≥ 6;
(2) 3 ≤ d ≤ 5 and s ≥ d + 2;
(3) d ∈ {1, 2} and s ≥ d + 3;
(4) d ∈ {4, 5}, s = d + 1; h0(L−1(Δ)) = 0 and Cliff(C) ≥ 2;
(5) d ∈ {1, 2, 3}, s = d + 1 and h0(L−1(Δ)) = 0, either one of Ω1

C ⊗ L or Ω1
C ⊗ L(−Δ) is very ample and 

Cliff(C) ≥ 2;
(6) d ∈ {1, 2}, s = d + 2, h0(L−2(Δ)) = 0;
(7) d = 0; h1(X) is even; L ∼= OC and C is not hyperelliptic.

Then X satisfies infinitesimal Torelli.

In some cases one can show that μπ is not surjective.

Theorem 1.4. Suppose π : X → C is an elliptic surface, with constant j-invariant and d + 1 singular fibers. 
If g = 0 then suppose additionally that d ≥ 3 and if d = 1 then suppose additionally that h0(L) = 0. If 
h0(L−1(Δ)) > 0 then X does not satisfy infinitesimal Torelli

If g = 0, d ≥ 2 and s = d + 1 then h0(L−1(Δ)) = 2 for degree reasons. Hence X does not satisfy 
infinitesimal Torelli in this case. In this way we recover the counterexamples from [8]. However, the result 
in that paper is much stronger. Namely, there we proved for d ≥ 3 that the period map is constant on the 
locus of elliptic surfaces with constant j-invariant and d +1 singular fibers. However, the above result yields 
new counterexamples if the base curve has genus 1:

Theorem 1.5. Suppose π : X → C is an elliptic surface, with g(C) = 1, d ∈ {1, 2} and constant j-invariant 
different from 0, 1728. Then X does not satisfy infinitesimal Torelli.

There are a few cases not covered by our results. For a certain number of classes of elliptic surfaces with 
d ≤ 5 and constant j-invariant we do not know whether μπ is surjective or not. This is an extensively 
researched problem and we do not aim to elaborate on this.

A second class of surfaces excluded are the surfaces with d = 1 and h0(L) > 0, i.e., the case where Ω2
X

has a one-dimensional base locus and our method breaks down. We expect that infinitesimal Torelli does 
not hold in this case and we will present evidence for this. Note that if moreover the j-invariant is constant 
then μπ is not surjective in this case. Also, Ikeda’s counterexample is of this type.

Our strategy is to use Green’s version of Kii’s criterion. If Ωn
X is base point free then this criterion reduces 

infinitesimal Torelli to a problem on the vanishing of a certain Koszul cohomology group. In the case of 
elliptic surfaces we can relate this Koszul cohomology group with a Koszul cohomology group on the base 
curve. If the j-invariant is nonconstant then it is easy to prove that this group vanishes, whereas if the 
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j-invariant is constant then this group vanishes if and only if μπ is surjective. This strategy leaves out the 
cases where Ω2

X has a base locus, i.e., the case where d = 1, h0(L) > 0; the case g = d = 0 and some 
particular cases (K3 surfaces, nonalgebraic principal elliptic fiber bundles), because of some technicalities 
in the proof.

The paper is organized as follows. In Section 2 we recall some preliminaries on elliptic surfaces and 
on Koszul cohomology. In Section 3 we prove the Torelli result for elliptic fibrations with nonconstant j-
invariant. In Section 4 we prove the results for constant j-invariant such that d > 0. In Section 5 we discuss 
the case d = 0. Finally, in Section 6 we discuss what happens if d = 1 and h0(L) > 0 hold.

2. Preliminaries on elliptic surfaces and on Koszul cohomology

Notation 2.1. Let π : X → C be an elliptic surface without multiple fibers, but possibly without a section. 
Let L be the dual of the line bundle R1π∗OX . (This is a line bundle, see [10, (II.3.5)] for the case of an 
elliptic fibration with a section or [11] for the case of fibrations without multiple fibers.) Let d = deg(L).

If π : X → C is an elliptic fibration, let S = {P1, . . . , Ps} be the set of points of C such that π−1(Pi)
is singular. Let Δ =

∑
P∈S P . Let s = deg(Δ) be the number of singular fibers. With j(π) : C → P1 we 

denote the morphism such that if P /∈ S then j(π)(P ) is the j-invariant of π−1(P ).

We recall the following well known results, proofs of which can be found in [10] in the case of (projective) 
elliptic surfaces with a section and in [11] in the case of (complex analytic) elliptic surfaces without multiple 
fibers.

Proposition 2.2. Let π : X → C be an elliptic surface without multiple fibers. Then the following properties 
hold

(1) d ≥ 0.
(2) d = 0 holds if and only if π is a fiber bundle.
(3) Ω2

X = π∗(Ω1
C ⊗ L). In particular, if L � OC then pg(X) = g + d − 1.

(4) If j(π) is not constant then π∗Ω1
X = Ω1

C .
(5) If j(π) is constant then there is an exact sequence

0 → Ω1
C → π∗Ω1

X → L(−Δ) → 0.

(6) If j(π) is constant then s ≥ 6
5d.

Corollary 2.3. Let π : X → C be an elliptic surface without multiple fibers and d ≥ 1. Then Ω2
X is base point 

free if and only if either d ≥ 2 or d = 1 and h0(L) = 0 holds.

Proof. From Ω2
X = π∗(Ω1

C ⊗ L) we obtain that Ω2
X is base point free if and only if Ω1

C ⊗ L is base point 
free on C.

If d ≥ 2 then deg(Ω1
C ⊗ L) = 2g − 2 + d ≥ 2g. Hence Ω1

C ⊗ L is base point free for degree reasons.
Suppose now that d = 1. The line bundle Ω1

C⊗L has a base point if and only if there is a point p ∈ C such 
that h0(Ω1

C ⊗ L(−p)) = h0(Ω1
C ⊗ L). The right hand side equals g. The left hand side equals h1(L−1(p)). 

Since L−1(p) has degree 0, we have that h1(L−1(p)) = g if and only if L−1(p) ∼= OC . This happens if and 
only if L is effective, i.e., if and only if h0(L) > 0. �
Remark 2.4. If d = 1, g > 0 and Ω2

X is not base point free then the base locus has codimension 1. Moreover, 
if d = 1 and h0(L) = 0 then g ≥ 2.
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We now define Koszul cohomology groups.

Definition 2.5. Let Y be a compact complex manifold. Let F be a coherent analytic sheaf on Y and let L
be an analytic line bundle on Y . Then for any pair of integers (p, q) we define the Koszul cohomology group 
Kp,q(Y, F , L) as the cohomology of

H0(F ⊗ L(q−1)) ⊗ ∧p+1H0(L) → H0(F ⊗ Lq) ⊗ ∧pH0(L) → H0(F ⊗ L(q+1)) ⊗ ∧p−1H0(L).

If F = OY then one write Kp,q(Y, L) for Kp,q(Y, OY , L).

There is an obvious isomorphism Kp,q(Y, F , L) ∼= Kp,q−1(Y, F ⊗ L, L). We will use this identification 
several times in our proofs.

Lemma 2.6. Let π : X → Y be a morphism, F a coherent sheaf on X, L a line bundle on Y . Then for every 
p, q we have that

Kp,q(X,F , π∗L) ∼= Kp,q(Y, π∗F ,L).

Proof. By the projection formula we have

π∗(F ⊗ (π∗L)q) ∼= π∗F ⊗ Lq.

In particular we have isomorphisms

H0(X,F ⊗ (π∗L)q) ∼= H0(Y, π∗F ⊗ Lq) and H0(X,π∗L) ∼= H0(Y,L)

and these isomorphisms are well behaved with respect to the differentials, hence

Kp,q(X,F , π∗L) ∼= Kp,q(Y, π∗F ,L). �
A crucial ingredient for our proofs is the duality theorem. We apply this theorem only in the case of 

curves. In this case the statement simplifies to

Theorem 2.7 (Duality Theorem). Let C be a smooth projective curve. Let L be a base point free line bundle 
on C and r = h0(L) − 1. Then

Kp,q(C,L) ∼= Kr−1−p,2−q(C,Ω1
C ,L)∗.

For a proof see [5, Theorem 2.c.6]

Lemma 2.8. Let L be a line bundle of degree d on a smooth projective curve C. Then Kd+g−3,1(C, Ω1
C , Ω1

C ⊗
L) = 0 if either d ≥ 2 or d = 1 and h0(L) = 0 hold.

Proof. From Corollary 2.3 it follows that Ω1
C⊗L is base point free, moreover pg(X) = h0(Ω1

C⊗L) = g+d −1. 
Hence we can apply Theorem 2.7 and we obtain

Kd+g−3,1(C,Ω1
C ,Ω1

C ⊗ L) ∼= K0,1(C,Ω1
C ⊗ L)∗.

We claim that the latter group is zero. Note that by definition this group is the cokernel of the multiplication 
map
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H0(C,O) ⊗H0(C,L) → H0(C,L),

which is obivously trivial. �
3. Nonconstant j-invariant

In the case of nonconstant j-invariants the proof of the infinitesimal Torelli theorem follows almost 
directly from Green’s version of Kii’s criterion, which we first recall for the reader’s convenience.

Theorem 3.1 (Kii-Green). Let X be a compact Kähler manifold of dimension n. Suppose Ωn
X is base point 

free. Let pg = h0(Ωn
X). Then X satisfies infinitesimal Torelli if and only if Kpg−2,1(X, Ωn−1, Ωn) = 0.

For a proof of this theorem see [5, Corollary 4.d.3].

Theorem 3.2. Let π : X → C be an elliptic surface with nonconstant j-invariant and without multiple fibers, 
such that either d ≥ 2 or both d = 1 and h0(L) = 0 hold. Then X satisfies infinitesimal Torelli.

Proof. Recall that by Corollary 2.3 we have that Ω2
X is base point free. Hence we may apply the Kii-Green 

criterion Theorem 3.1 and it suffices to determine whether Kpg−2,1(X, Ω1
X , Ω2

X) vanishes.
Using Lemma 2.6 for the first isomorphism and various parts of Proposition 2.2 for the second isomor-

phism we obtain

Kpg−2,1(X,Ω1
X ,Ω2

X) ∼= Kpg−2,1(C, π∗Ω1
X ,Ω1

C ⊗ L) ∼= Kd+g−3,1(C,Ω1
C ,Ω1

C ⊗ L).

The third group vanishes by Lemma 2.8. Therefore Kpg−2,1(X, Ω1
X , Ω2

X) vanishes. Hence X satisfies in-
finitesimal Torelli. �
Remark 3.3. If j(π) is nonconstant then d ≥ 1, hence the only case with nonconstant j-invariant and not 
covered by the above theorem is d = 1 and h0(L) > 0.

If g = 0 and d = 1 then h0(L) = 2 by Riemann-Roch. In this case X is a rational elliptic surface and 
infinitesimal Torelli does not hold. If g = d = 1 then h0(L) = 1 by Riemann-Roch. The counterexamples of 
Ikeda [6] are of this type. We discuss the case d = 1 and g > 1 in Section 6.

Remark 3.4. In the proof we use Koszul duality on C. It is very crucial to work on C rather than on X. 
Suppose Y is an n-dimensional complex manifold and we would like to apply Koszul duality [5, Theorem 
2.c.6] to Kpg−2,1(Y, Ωn−1

Y , Ωn
Y ). Then one of the hypothesis of this theorem is that H1(Ωn−1

Y ) vanishes. 
However, if this happens then the differential of the period map is zero anyway and we do not obtain any 
interesting statement.

If C is a hyperelliptic curve of genus g, then for any d > 1 it is straightforward to construct an example of 
an elliptic surface over C with deg(L) = d and nonconstant j-invariant. However, to construct an example 
with deg(L) = 1 and h0(L) = 0 (i.e., one satisfying infinitesimal Torelli) is more involved. We will now 
present such an example, for which we need the following basic result.

Lemma 3.5. Let L be an effective line bundle of degree 1 on a smooth projective curve C of genus at least 
2. Then there exists an element η ∈ Pic(C)[2] such that L ⊗ η is not effective.

Proof. Suppose p is such that L ∼= OC(p). Since g ≥ 1 we have that p is unique.
Pick now an η ∈ Pic0(C)[2] \ {0}. If L ⊗ η is effective then η ∼= OC(q− p) for some q ∈ C. From η2 ∼= OC

it follows that 2p and 2q are linearly equivalent. Hence C is hyperelliptic and both p and q are Weierstrass 
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points. There are precisely 2g + 1 possibilities for q. Since 22g > 2g + 2 for g ≥ 2 there exists an η which is 
not of this form and therefore L ⊗ η is not effective. �
Proposition 3.6. Let C be either a hyperelliptic curve of genus g ≥ 2 or a trigonal curve of genus g ≥ 3, 
with a point p with ramification index 3. Then there exists a Jacobian elliptic surface π : X → C with d = 1
and such that X satisfies infinitesimal Torelli.

Proof. Suppose first that C is a hyperelliptic curve and p a Weierstrass point, let L = OC(p). Then 
h0(L) = 1, h0(L2) = 2, h0(L4) ≥ 3, h0(L6) ≥ 4.

Pick now general elements A ∈ H0(L4), B ∈ H0(L6). Then with (L, A, B) we can associate an elliptic 
surface π′ : X ′ → C, and if (A, B) is general then the j-invariant is nonconstant. (The j-invariant is constant 
if A = 0 or B = 0 or A = λG2, B = μG3, for some G ∈ H0(L2), these conditions define proper subvarieites 
of H0(L4) ×H0(L6).)

We cannot apply Theorem 3.2 to π′ : X ′ → C since h0(L) > 0. However, since g > 1 there exists a 
line bundle η such that η⊗2 ∼= OC and h0(L ⊗ η) = 0. Since (L ⊗ η)⊗2 = L2 we can identify H0(Lk) with 
H0((L ⊗η)k) for k = 4, 6 and associate an elliptic surface π : X → C with the Weierstrass data (L ⊗η, A, B). 
This surface has still d = 1 but satisfies the hypothesis of our theorem and therefore satisfies infinitesimal 
Torelli.

A similar example exists if C is trigonal and the degree 3 map has a point p with ramification index 3. 
If we take L ∼= OC(p) then h0(L6) > h0(L4) > 0 and we can apply the same reasoning. �
Remark 3.7. By multiplying L with a line bundle of order 2 we considered a quadratic twist of the original 
fibration, i.e., there is an unramified degree two cover C̃ of C, such that the minimal smooth models of 
X ×C C̃ and X ′ ×C C̃ are isomorphic.

4. Constant j-invariant

In the case of constant j-invariant we obtain also an infinitesimal Torelli result, but in this case it does 
not directly follow from duality in Koszul cohomology.

In the sequel we have to exclude a few cases, namely g = 0, d ≤ 2 (Products E × P1; rational elliptic 
surfaces and K3 sufaces); d = 1 and h0(L) �= 0 and d = 0. The case d = 0 will be treated in Section 5.

Theorem 4.1. Let π : X → C be an elliptic surface with constant j-invariant. Let us denote with s the 
number of singular fibers. Assume that one of the following conditions holds

• d ≥ 3;
• d = 2 and g > 0;
• d = 1 and h0(L) = 0.

Then X satisfies infinitesimal Torelli if and only if the multiplication map

μπ : H0(C,Ω1
C ⊗ L−1(Δ)) ⊗H0(C,Ω1

C ⊗ L) → H0((Ω1
C)2(Δ)) (1)

is surjective.

Proof. Recall that by Corollary 2.3 we have that Ω2
X is base point free. Hence we may apply Kii-Green 

criterion Theorem 3.1 and it suffices to determine whether Kpg−2,1(X, Ω1
X , Ω2

X) vanishes. By Proposition 2.2
we have that pg(X) = g + d − 1. As in the proof of Theorem 3.2 we obtain
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Kpg−2,1(X,Ω1
X ,Ω2

X) ∼= Kpg−2,1(C, π∗Ω1
X ,Ω1

C ⊗ L) ∼= Kd+g−3,1(C, π∗Ω1
X ,Ω1

C ⊗ L).

We will now calculate the right hand side.
For every q ∈ Z the short exact sequence from Proposition 2.2 tensored with (Ω1

C ⊗ L)q yields a long 
exact sequence, which starts with

0 → H0(Ω1
C ⊗ (Ω1

C ⊗ L)q) → H0(π∗Ω1
X ⊗ (Ω1

C ⊗ L)q) → H0(L(−Δ) ⊗ (Ω1
C ⊗ L)q). (2)

We will now show that this is actually a short exact sequence, i.e., the final map is surjective. From 
the existence of the long exact sequence it follows that the cokernel of the final map is a subspace of 
H1(Ω1

C ⊗ (Ω1
C ⊗ L)q). Note that our assumptions imply that either d ≥ 3; d = 2 and g ≥ 1 or d = 1 and 

g ≥ 2. Hence deg(Ω1
C ⊗ L) = 2g + d − 2 > 0. It follows now that for q ≥ 1 the group H1(Ω1

C ⊗ (Ω1
C ⊗ L)q)

vanishes for degree reasons.
For q ≤ 0, note that s ≥ d +1 and 2g−2 +d > 0. In particular, we have that deg(L(−Δ) ⊗ (Ω1

C ⊗L)q) =
d − s + q(2g − 2 + d) < 0. Therefore h0(L(−Δ) ⊗ (Ω1

C ⊗ L)q) = 0 and the map is surjective.
By [5, Corollary 1.d.4] we can use the short exact sequence (2) to obtain the following long exact sequence 

in Koszul cohomology

· · · → Kd+g−3,1(C,Ω1
C ,Ω1

C ⊗ L) → Kd+g−3,1(C, π∗Ω1
X ,Ω1

C ⊗ L) →
→ Kd+g−3,1(C,L(−Δ),Ω1

C ⊗ L) → Kd+g−4,2(C,Ω1
C ,Ω1

C ⊗ L) → . . .

The group Kd+g−3,1(C, Ω1
C , Ω1

C⊗L) vanishes by Lemma 2.8. The group at the end, Kd+g−4,2(C, Ω1
C , Ω1

C⊗L), 
is dual to K1,0(C, Ω1

C ⊗ L) by Theorem 2.7. By definition, this group is the cohomology of

H0((Ω1
C ⊗ L)−1) ⊗ ∧2H0(Ω1

C ⊗ L) → H0(OC) ⊗H0(Ω1
C ⊗ L) → H0(Ω1

C ⊗ L) ⊗ C.

The group H0(C, (Ω1
C ⊗ L)−1) vanishes for degree reasons, whereas the second arrow is an isomorphism. 

Hence K1,0(C, Ω1
C ⊗ L) vanishes. Therefore we have an isomorphism

Kd+g−3,1(C, π∗Ω1
X ,Ω1

C ⊗ L) ∼= Kd+g−3,1(C,L(−Δ),Ω1
C ⊗ L).

Hence X satisfies infinitesimal Torelli if and only if the latter group vanishes.
To obtain the final statement we can use Theorem 2.7 to obtain

Kpg−2,1(C,L(−Δ),Ω1
C ⊗ L)∗ ∼= K0,1(C,Ω1

C ⊗ L−1(Δ),Ω1
C ⊗ L).

This latter group is the cokernel of the multiplication map

H0(Ω1
C ⊗ L−1(Δ)) ⊗H0(Ω1

C ⊗ L) → H0((Ω1
C)2(Δ)). �

Multiplication maps of sections of line bundles have been extensively studied. We will now show that μπ

is surjective in many cases. For the first result we use the H0-lemma of Green.

Lemma 4.2. Let π : X → C be an elliptic surface without multiple fibers with constant j-invariant and d ≥ 1. 
If d = 1 then suppose that h0(L) = 0. If one of the following holds

(1) d ≥ 3 and s ≥ d + 2;
(2) d ∈ {1, 2} and s ≥ d + 3;
(3) d ∈ {1, 2}, s = d + 2 and h0(L−2(Δ)) = 0;
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then the map μπ is surjective.

Proof. In this proof we want to apply the H0–lemma [5, Theorem 4.e.1]. Applied to μπ we find that if 
Ω1

C ⊗ L is base point free and

h1(L−2(Δ)) ≤ h0(Ω1
C ⊗ L) − 2 = g + d− 3

holds then μπ is surjective. The first condition holds because of our assumptions on d and L. Hence we need 
to check the second condition.

Recall that deg(L−2(Δ)) = s − 2d, and that in all our cases we assumed that at least s ≥ d + 2 holds.
Consider first the case with few singular fibers, i.e., suppose d + 2 ≤ s ≤ 2d − 1. Then d ≥ 3 and 

deg(L−2 ⊗ (Δ)) < 0. Hence

h1(L−2 ⊗ (Δ)) = −χ(L−2(Δ)) = g − 1 − deg(L−2(Δ)) = g − 1 − s + 2d ≤ g − 3 + d

where the last inequality follows from s ≤ d + 2. Hence we covered this case.
Consider now the case s ≥ 2d. Then L−2(Δ) is a line bundle of nonnegative degree and hence

h1(L−2(Δ)) ≤ g.

For d ≥ 3 this is at most g + d − 3, and hence the multiplication map is surjective. So we are left with the 
cases d = 1, 2.

If d = 2 then we need to show that h1(L−2(Δ)) ≥ g − 1. However, L−2(Δ) has nonnegative degree by 
assumption. The only line bundle of nonnegative degree whose h1 equals at least g is the trivial bundle, 
hence for d = 2 and OC(Δ) � L2 we have h1(L−2(Δ)) ≤ g − 1 = g + d − 3. This finishes the case d = 2.

If d = 1 then we need to show h1(L−2(Δ)) ≤ g − 2. Again L−2(Δ) has nonnegative degree. Recall that 
h0(L) = 0 forces g ≥ 2. The only line bundles with h1 ≥ g − 1 are line bundles of degree 0 (i.e., s = 2) or 
effective line bundles of degree 1 (i.e., s = 3 and h0(L−2Δ) > 0). We excluded these cases. �

Recall that for d ≥ 1 we have s ≥ d + 1. Hence cases not covered by the previous lemma have s = d + 1
or s = d + 2. We can use the results of [1] to show that μπ is surjective for some cases with s = d + 1.

Lemma 4.3. Let π : X → C be an elliptic surface without multiple fibers with constant j-invariant with d +1
singular fibers. Assume that g(C) ≥ 2 and Cliff(C) ≥ 2 or g(C) ≥ 3 and 4 − d ≤ Cliff(C) ≤ 1. If d = 1 then 
assume h0(L) = 0. If d ≤ 2 then assume that one of Ω1

C ⊗ L, Ω1
C ⊗ L−1(Δ) is very ample.

If h0(L−1(Δ)) = 0 then μπ is surjective.

Proof. Our assumptions on L and L−1(Δ) yield that both Ω1
C ⊗ L and Ω1

C ⊗ L−1(Δ) are base point free. 
If d ≥ 3 then the former line bundle is very ample. If d ∈ {1, 2} then at least one of the line bundles is very 
ample by assumption. In particular the image of μπ separates points and tangents. This a requirement to 
apply the results of [1].

If Cliff(C) ≥ 2 then

deg(Ω1
C ⊗ L) = 2g − 2 + d ≥ deg(Ω1

C ⊗ L−1(Δ)) = 2g − 1 ≥ 2g + 1 − Cliff(C)

holds. In this case it follows from [1, Theorem 1] that μπ is surjective.
If Cliff(C) ∈ {0, 1} then Cliff(C) ≥ 4 − d. In particular

deg(Ω1
C ⊗ L−1 ⊗ Δ) + deg(Ω1

C ⊗ L) = 4g − 3 + d ≥ 4g + 1 − Cliff(C)
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holds. Hence if g ≥ 3 then we can use [1, Theorem 2] to conclude that μπ is surjective. �
Remark 4.4. Since deg(L−1(Δ)) = 1 the condition h0(L−1(Δ)) = 0 implies g ≥ 2. Hence we have to exclude 
genus 2 curves. Moreover the condition Cliff(C) ≥ min{2, 4 − d} excludes curves with Clifford index 0 (i.e., 
hyperelliptic curves) if d ≤ 3 and curves with Clifford index 1 (trigonal curves and plane quintics) if d ≤ 2. 
Hence for g ≥ 3, d ≥ 4 there are no cases left open.

We will now consider two cases not covered by the previous lemmata where s = d + 2. In these cases 
d ∈ {1, 2}.

Lemma 4.5. Suppose π : X → C is an elliptic surface with d = 2 and L2 ∼= OC(Δ). Suppose Cliff(C) ≥ 1. 
If h0(L−1(Δ)) = 0 then μπ is surjective.

Proof. For degree reasons the line bundle Ω1
C ⊗ L−1(Δ) is base point free. If this line bundle is not very 

ample then there exist points p, q ∈ C such that

Ω1
C ⊗ L−1(Δ)(−p− q) ∼= Ω1

C

Hence L−1(Δ) ∼= OC(p + q). This contradicts H0(L−1(Δ)) = 0. Hence Ω1
C ⊗ L−1(Δ) is very ample. Since 

Cliff(C) ≥ 1 we have that

deg(Ω1
C ⊗ L−1(Δ)) = 2g ≥ 2g + 1 − Cliff(C)

Hence we can apply [4, Theorem 1] to conclude that the multiplication map is surjective. �
Remark 4.6. The conditions d = 2 and L2 ∼= OC(Δ) imply s = 4, i.e., s = d + 2.

Lemma 4.7. Suppose π : X → C is an elliptic surface with d = 1, s = 3, h0(L) = 0 and h0(L−2(Δ)) > 0. 
Suppose Cliff(C) ≥ 2. If h0(L−1(Δ)) = 0 then μπ is surjective.

Proof. As in the previous proof we have that Ω1
C ⊗ L−1(Δ) is very ample and Ω1

C ⊗ L is base point free. 
Since Cliff(C) ≥ 2 we have that

deg(Ω1
C ⊗ L) = 2g − 1 ≥ 2g + 1 − Cliff(C)

Hence we can apply [1, Theorem 1] to conclude that μπ is surjective. �
Remark 4.8. If h0(L) > 0 then h0(L−2(Δ)) > 0 implies h0(L−1(Δ)) > 0. I.e., in order to have the second 
group to be zero one needs h0(L) = 0.

Finally we proceed with two cases where the multiplication map cannot be surjective.

Lemma 4.9. Suppose π : X → C is an elliptic surface with d + 1 singular fibers, such that h0(L−1(Δ)) > 0. 
Then μπ is not surjective.

Proof. Our assumptions imply that there is a point p such that L−1(Δ) ∼= OC(p). This point p is a base point 
of Ω1

C⊗L−1(Δ) and a base point of the image of μπ. Hence the image of μπ is contained in H0(Ω1
C(Δ)(−p)), 

which is of dimension g − 1 + d, whereas h0(Ω1
C(Δ)) = g + d. Hence μπ is not surjective. �

In the case d = 2, s = 4 and L2 ∼= OC(Δ) we use the following lemma to construct a counterexample:
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Lemma 4.10. Let C be an elliptic curve. Let π : X → C be an elliptic surfaces, with d = 2. Assume 
L2 ∼= OC(Δ). Then μπ is not surjective.

Proof. In this case Ω1
C
∼= OC . Now h0(L) = 2 and h0(L2) = 4 by Riemann-Roch. The multiplication map 

μπ factors over Sym2 H0(L) which is three-dimensional hence the map is not surjective. �
Theorem 4.11. Let π : X → C be an elliptic surface with constant j-invariant. Let d = deg(L) and s the 
number of singular fibers. Assume that d ≥ 2 or d = 1 and h0(L) = 0.

If one of the following holds

(1) g = 0 and d = 2;
(2) s ≥ d + 3;
(3) s = d + 2 and d ≥ 3.
(4) s = d + 1; h0(L−1(Δ)) = 0; g ≥ 3 and Cliff(C) ≥ min{4 − d, 2}. If d ∈ {1, 2} then one of Ω1

C ⊗ L, 
Ω1

C ⊗ L−1(Δ) is very ample.
(5) d ∈ {1, 2}; s = d + 2; h0(L−2(Δ)) = 0.
(6) d ∈ {1, 2}; s = d + 2; h0(L−2(Δ)) �= 0; h0(L−1(Δ)) = 0; Cliff(C) ≥ 3 − d,

then X satisfies infinitesimal Torelli.

Proof. If (g, d) = (0, 2) then X is a K3 surface and therefore satisfies infinitesimal Torelli. For all other 
case note that by Proposition 4.1 it suffices to check that μπ is surjective. The second and third case follow 
Lemma 4.2, the other three cases from Lemma 4.3, 4.5, 4.7. �
Remark 4.12. In the case (g, d) = (0, 2) several steps in our proof do not hold anymore. E.g., the sequence 
(2) in the proof of Proposition 4.1 is not exact for several values of q and therefore the long exact sequence 
in Koszul cohomology does not exist.

We have also some counter examples to infinitesimal Torelli:

Theorem 4.13. Let π : X → C be an elliptic surface with constant j-invariant. Assume that d ≥ 2 or d = 1
and h0(L) = 0. If d = 2 assume that g(C) > 0.

(1) If s = d + 1 and h0(L−1(Δ)) > 0 or
(2) if d = 2, g = 1 and OC(Δ) ∼= L2

then X does satisfy infinitesimal Torelli.

Proof. If s = d + 1 and h0(L−1(Δ)) > 0 then μπ is not surjective by Lemma 4.9. If d = 2, g = 1 and 
OC(Δ) ∼= L2 then μπ is not surjective by Lemma 4.10.

Hence it follows from Proposition 4.1 that infinitesimal Torelli does not hold for X. �
The following Corollary recovers the main result of [8]:

Corollary 4.14. Suppose g ≤ 1 and d ≥ 3. Let π : X → C be an elliptic fibration with constant j-invariant 
then X satisfies infinitesimal Torelli if and only if s > d + 1.

Proof. If s > d + 1 then X satisfies infinitesimal Torelli by Theorem 4.11.
If s = d +1 then L−1(Δ) has degree 1. Since g ≤ 1 we have that h0(L−1(Δ)) > 0, hence by Theorem 4.13

X does not satisfy infinitesimal Torelli. �
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Corollary 4.15. Let π : X → C be an elliptic surface with constant j-invariant. Suppose that one of

(1) d = 3 and j �= 0, 1728;
(2) d ∈ {4, 5} and j �= 0;
(3) d ≥ 6

holds. Then X satisfies infinitesimal Torelli.

Proof. If the j-invariant is different from 0, 1728 then π has 2d singular fibers. For d ≥ 3 this is at least 
d + 2.

If the j-invariant is 1728 then π has at least 
4
3d� singular fibers. This is at least d + 2 for d ≥ 4.

If the j-invariant is 0 then π has at least 
6
5d� singular fibers. This is at least d + 2 for d ≥ 6. �

We will finish by showing that for every g there exists an example of an elliptic surface with d = 5
not satisfying infinitesimal Torelli. For this we need to construct an elliptic surface with 6 singular fibers, 
constant j-invariant and h0(L−1(Δ)) = 1.

Example 4.16. Let C be a curve of genus g, such that C admits a morphism f : C → P1 of degree 
6, which a single point over ∞ and 6 points over 0. This implies that there is a f ∈ K(C) such that 
div(f) = P1 + P2 + P3 + P4 + P5 + P6 − 6Q for appropriate distinct points P1, . . . , P6, Q ∈ C.

Now let L = OC(5Q) and let A = 0 ∈ H0(L4) and B = f5 ∈ H0(L6). Then the elliptic surface 
associated with y2z = x3 + Axz2 + Bz3 in P(E) has 6 II∗ fibers, namely over P1, . . . , P6. Moreover, 
OC(Δ) ⊗ L−1 = OC(Q). Hence s = 6, d = 5 and h0(L−1(Δ)) > 0.

Hence infinitesimal Torelli does not hold for X by Theorem 4.13. Examples of such a curve C exist for 
every g ≥ 0.

5. Elliptic fiber bundle case

In [11, Section 7] Saito discusses the infinitesimal Torelli problem for elliptic surfaces such that L ∼= O, 
the case of principal elliptic fiber bundles. In this section we discuss the period map in the case of non-
principal bundles, i.e., when d = 0 and L � OC . Then L is a torsion bundle of order 2,3,4 or 6. In this case 
the relative dualizing sheaf is a line bundle and we have an isomorphism ωX/C

∼= π∗L.
To study infinitesimal Torelli in this case one can use both the strategy of Section 4 as well as the 

approach taken in [11, Section 7]. It turns out that the latter approach yields a stronger result.

Theorem 5.1. Let π : X → C be an elliptic fiber bundle and suppose that L � OC . Then X satisfies 
infinitesimal Torelli if and only if the multiplication map

μπ : H0(Ω1
C ⊗ L) ⊗H0(Ω1

C ⊗ L−1) → H0((Ω1
C)2)

is surjective.

Proof. In the fiber bundle case we have that the relative dualizing sheaf is isomorphic to the sheaf of relative 
differentials, i.e., Ω1

X/C
∼= ωX/C

∼= π∗L. In particular we have a short exact sequence

0 → π∗Ω1
C → Ω1

X → π∗L → 0.

Similarly as in the case of constant j-invariant d > 0 we find that the following pieces of the long exact 
sequence of higher direct images
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0 → Ω1
C → π∗Ω1

X → L → 0 (3)

and

0 → R1π∗π
∗Ω1

C → R1π∗Ω1
X → R1π∗L → 0

are exact. Using the projection formula we obtain isomorphisms

R1π∗π
∗Ω1

C
∼= Ω1

C ⊗ L−1 and R1π∗L ∼= L ⊗ L−1 ∼= OC .

Therefore the second exact sequence simplifies to

0 → Ω1
C ⊗ L−1 → R1π∗Ω1

X → OC → 0 (4)

As argued in [11], we have that X satisfies infinitesimal Torelli if and only if the cup product map

μ : H0(Ω2
X) ⊗H1(Ω1

X) → H1(Ω1
X ⊗ Ω2

X)

is surjective.
Using the Leray spectral sequence we find that X satisfies infinitesimal Torelli if and only if

μ1 : H0(C, π∗Ω2
X) ⊗H1(π∗Ω1

X) → H1(π∗(Ω1
X ⊗ Ω2

X))

and

μ2 : H0(C, π∗Ω2
X) ⊗H0(C,R1π∗Ω1

X) → H0(R1π∗Ω1
X ⊗ Ω2

X)

are surjective.
Recall that Ω2

X = π∗Ω1
C ⊗ L. Using the projection formula we obtain π∗(Ω1

X ⊗ Ω2
X) = Ω1

C ⊗ L ⊗ π∗Ω1
X . 

Tensor (3) with Ω1
C ⊗ L and consider the following piece of the long exact sequence in cohomology:

H1(Ω1
C ⊗ (Ω1

C ⊗ L)) → H1(π∗(Ω1
C ⊗ (Ω1

C ⊗ L))) → H1(Ω1
C ⊗ L2).

We claim that the first group is zero. Since L has finite order, but is nontrivial we have that g is at least 1. 
If g = 1 then Ω1

C ⊗Ω1
C ⊗L is a nontrivial line bundle of degree zero and hence its first cohomology vanishes. 

If g > 1 then the degree of Ω1
C ⊗ Ω1

C ⊗ L equals 4(g − 1) > 2(g − 1) and the first cohomology vanishes for 
degree reasons.

If L has order at least 3 then also H1(Ω1
C ⊗L2) is zero and therefore μ1 is surjective. On the other hand 

if L2 ∼= OC then H1(Ω1
C ⊗ L2) is onedimensional and it suffices to check whether the cup product map

H0(Ω1
C ⊗ L) ⊗H1(L) → H1(Ω1

C ⊗ L2)

is nontrivial. However this map coincides with Serre duality in this case and hence μ1 is surjective.
To show that μ2 is surjective we consider this exact sequence (4) and the sequence tensored with π∗Ω2

X =
Ω1

C ⊗ L. From

H1(Ω1
C ⊗ L−1) = 0 = H1((Ω1

C)2)

it follows that both exact sequences split on sections and we can decompose the map μ2 in
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μ1
2 : H0(Ω1

C ⊗ L−1) ⊗H0(Ω1
C ⊗ L) → H0((Ω1

C)2)

and

μ2
2 : H0(OC) ⊗H0(Ω1

C ⊗ L) → H0((Ω1
C) ⊗ L)

and obtain an exact sequence

ker(μ2
2) → coker(μ1

2) → coker(μ) → coker(μ2
2) → 0.

The map μ2
2 is obviously an isomorphism and μ1

2 is just μπ. In particular, we obtain that coker(μ2) ∼=
coker(μπ). Hence μ is surjective if and only if μπ is surjective and therefore X satisfies infinitesimal Torelli 
if and only if μπ is surjective. �
Remark 5.2. If L ∼= OC then Saito shows that if h1(X) is odd then X does not satisfy infinitesimal Torelli 
whenever g > 1, but does satisfy infinitesimal Torelli for g = 1. If h1(X) is even X then he shows that X
satisfies infinitesimal Torelli if g = 1 or g > 1 and C is not hyerpelliptic.

In the case that h1 is odd L ∼= OC it turns out that the exact sequence (4) does not split on sections. 
This turns out to be an obstruction for the surjectivity of μ2 in this case and therefore for infinitesimal 
Torelli. If h1 is even then we can proceed as above, but one needs a small argument to show that (4) splits 
on sections, since H1(Ω1

C ⊗ L−1) �= 0 in this case. This is precisely the approach by Saito.

Corollary 5.3. Let π : X → C be an elliptic fiber bundle and suppose g = 1. If L is nontrivial then X does 
not satisfy infinitesimal Torelli.

Proof. If L is nontrivial then

H1(Ω1
C ⊗ L) = H1(L) = 0.

At the same time h1((Ω1)2) = 1 hence μπ is not surjective. �
Corollary 5.4. Let π : X → C be an elliptic fiber bundle and suppose g ≥ 2.

(1) Suppose h1(X) is odd and L ∼= OC then X does not satisfy infinitesimal Torelli.
(2) Suppose h1(X) is even or L � OC . Then X satisfies infinitesimal Torelli if and only if

μπ : H0(Ω1
C ⊗ L) ⊗H0(Ω1

C ⊗ L−1) → H0((Ω1
C)2)

is surjective. In particular if L ∼= OC and C is not hyperellitic then X satisfies infinitesimal Torelli.

6. Ω2
X not base point free

In this section we will focus on the case deg(L) = 1 and h0(L) > 0.
If g = 0 then we know that infinitesimal Torelli does not hold, since X is a rational surface. So we assume 

now that g > 0. In particular L ∼= OC(p), for some unique point p ∈ C.
In [11] Saito considers at two occasions a multiplication map

H0(Ω2
C ⊗ L) ⊗H0(T ) → H0(T )
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for some torsion sheaf T . Saito reduces infinitesimal Torelli to the surjectivety of this map. This map is 
surjective if and only if the base locus of Ω1

C ⊗ L and the support of T are disjoint. The latter happens if 
and only if p is not in support in T .

However, the construction of T is not sufficiently explicit to enable us to check this latter criterion.
If the j-invariant is constant there is further evidence. In this case X is of product-quotient type, i.e., 

it is the quotient of a product E × C̃, where E is an elliptic curve, by a finite cyclic group G. However, if 
G has order at least 3 then one can invert the G-action on one of the factor and leave it invariant on the 
other, in order to obtain some sort of dual surface, X̃. On easily checks that this duality interchanges the 
line bundles L and L−1(Δ), hence the multiplication map μπ is the same map for both morphisms. If d = 1
and h0(L) > 0 then the dual surface satisfies s = d + 1 and h0(L−1(Δ)) > 0, hence the dual surface does 
not satisfy infinitesimal Torelli.

In particular, the map μπ is not surjective. However in this case this is insufficient to determine the 
failure of infinitesimal Torelli.

Conjecture 6.1. Let π : X → C be an elliptic surface with d = 1 and h0(L) > 0. Then X does not satisfy 
infinitesimal Torelli.
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