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Abstract: Conservation Agriculture includes practices focused on the conservation and the restora-
tion of main soil features, such as organic carbon content, structure, and biological diversity and
activity. Our study was conducted in three farms in North-Eastern Italy in pairs of closely located
fields to compare conservation agriculture (no tillage, cover cropping) with conventional agriculture.
Differences in terms of soil enzymatic activity, such as FDA and β-glucosidase through spectrophoto-
metric analyses, microbial biomass carbon and nitrogen contents, total organic carbon, and nitrogen
contents with CNS Elemental Analyzer and soil arthropod community via the QBS-ar index were
investigated. Enzymatic activities resulted to be readily and positively affected by conservation
agriculture whereas total and microbial carbon, nitrogen contents, and microarthropod community
seemed to be more dependent on the time factor. The responses to conservation agriculture differed
between the three farms, pointing out that differences in soil features may drive the effectiveness of
conservation management. N stock, maybe dependent on previous soil management, might be the
key characteristic able to influence soil evolution in the studied conditions. The present results could
be helpful to predict soil reaction to sustainable agriculture in short periods.

Keywords: crop rotation; no tillage; soil quality; QBS-ar; conventional/conservation agriculture;
soil biodiversity

1. Introduction

Conservation Agriculture (CA) is a system of agronomic practices initially conceived
as a countermeasure to the US “Dust Bowl” phenomenon [1]. Since then, CA reached
Europe starting from the 1970s with marked differences from country to country [2]. In
particular, in Italy, the introduction and the dissemination of “Agricoltura Blu” principles [3]
encouraged a larger diffusion among farmers [2].

The global evidence shows that CA is now a worldwide phenomenon. It is esti-
mated that in 2015/16 CA covered 180 million hectares worldwide, representing 12.5%
of total cropland [4]. Compared to other regions, Europe is lagging behind in terms of
the adoption of CA with approximately 1.36 million ha (not including Russia) under CA,
which corresponds to approximately 2% of the global arable cropland [5]. In Italy, in 2015,
380,000 hectares were reported to be managed according to CA guidelines [6].

In general, CA consists of: (1) reduction in tillage to achieve non inversion of the
topsoil layer, involving controlled tillage seeding systems to disturb no more than 20–25%
of the soil surface; (2) permanent soil cover by main and cover crops, also by crop residues,
aiming at protecting the soil from wind and water erosion, while improving its physical,
chemical, and biological properties; (3) crop rotations, including cover crops to help mitigate
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disease, pest and weed problems, and to provide farmers with economically viable cropping
options [7]. According to FAO, this approach improves productivity, profits, and food
security while preserving and enhancing the resource base and the environment [8]. CA is
deemed to be practiced only when all three principles are meticulously applied [9].

Despite long-term research on CA, many aspects are still debated with respect to its
effects on crop yields [10,11], its influence on carbon sequestration [12], its applicability
in different farming contexts [13], and its impact on soil biodiversity [7]. Advantages
of CA including nutrient cycling, carbon sequestration, and soil biodiversity are quite
variable, from positive, to neutral or even negative [14] depending on site-specific context,
management, soil type, and climate [13]. To increase the adoption of CA worldwide, it is
critical to adapt the system to specific climates, soil types, and communities [15].

Although soil organic matter (SOM) changes related to CA management are the most
studied effects in the literature, soil biological quality and biodiversity also deserve research
attention [16]. The contribution of soil organisms to decomposition, nutrient cycling,
maintenance of soil physico-chemistry and structure properties, and as bioindicators of soil
health is well recognized [17,18].

Microbial community access to organic matter is greater with tillage as organic residues
are broken into smaller pieces, which increases the available surface area for microbial
colonization [19]. On the other hand, the no-till soil microclimate is cooler and moister
than in soils which undergo tillage [20]. Cover crops can minimize soil erosion, promote
nutrient cycling, prevent water loss, and increase soil organic C and biological activity [21].
Finally, crop rotations influence the type and quantity of crop residues being returned to
the soils; thus, shaping the microbial community. In a 3-year field study, Fiorini et al. [22]
evaluated the effects of selected winter cover crops under NT on grain yield of maize
and soybean, cumulative biomass, C, and N input to the soil, as well as soil C pools
and biodiversity in an intensive crop production system. The authors suggested that the
inclusion of extra-biomass amount into the soil with leguminous-based cover crops may
positively affect soil biodiversity. Therefore, they suggested that properties of leguminous
biomass could be considered efficient drivers to define the complexity of arthropod and
earthworm communities. As reported in Pittarello et al. [23] main crops and cover crops
can have an important and variable influence on microbial activity depending on the
mix of species employed. Microbial biomass and enzymatic activities are commonly
used as a tool for soil quality detection [24]. Among soil enzymatic activities, fluorescein
diacetate (FDA) hydrolase and β-glucosidase are involved in the decomposition of complex
organic compounds and are correlated with fungal and microbial biomass [25]. The
activities of these enzymes have been widely used as response indicators of soil microbial
communities to several environmental pressures [26]. Considering the complex interactions
that take place in soil, microbial biomass is affected, directly and indirectly, by the soil
fauna community. Soil fauna plays an important role in maintaining soil quality and health,
as well as providing ecosystem services [27] through processes such as organic matter
translocation, fragmentation and decomposition, nutrient cycling, soil structure formation
and, consequently, water regulation [17,18]. Some groups are highly sensitive to changes in
soil quality because they are adapted to specific soil conditions [28] and may be informative
of soil quality alteration [29]. Beyond its important role in maintaining soil functionality
and providing ecosystem services, soil fauna has been included in monitoring plans as
indicators of soil health and biological quality [17].

The Po valley is the most exploited Italian area in terms of intensive agriculture and
urbanization [30]. In this context, CA could mitigate the environmental impact of crop
production, in particular in terms of soil dynamics such as organic carbon accumulation
and changes in microbial populations [31]. In a previous study [32], results on soil organic
carbon (SOC) evolution over a 3-year transition period from conventional to CA in three
field experiments located in the low plain of the Veneto Region has been reported. The
research highlighted that CA did not affect the overall SOC stock but altered its stratification
within the profile by avoiding soil inversion and influencing the root growth and pattern.
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In the same experimental fields, we determined soil enzyme activities, soil arthropod
community (QBS-ar index), microbial biomass C and N over the same time frame.

As reported by Li et al. [33] although main trends are identified in terms of SOC accu-
mulation and microbial community evolution, some factors make clear data interpretation
difficult, such as variations in cropping intensity and crop species diversity. In particular,
the effects of crop rotations and CA are still poorly explored in this region, while coupling
soil enzyme activities with arthropod community to monitor soil biodiversity represents
a novel approach. In the present paper, two hypotheses were explored: (I) Conservative
Agriculture (CA) management can ameliorate soil biological parameters independently
of the cultivated crop species and (II) standardized CA management applied to different
farms in the same geographical area can give the same soil evolution and/or restoration
outcomes in terms of soil biodiversity. To test these hypotheses, the same pool of crop and
cover crop species were rotated in the same fields over three consecutive years, in three
North-Eastern Italian Farms. The main objective was to monitor soil responses to the newly
adopted conservative management starting from a conventional farming regime, with the
secondary objective to correlate soil enzyme activities and arthropod community index.

2. Materials and Methods
2.1. Experimental Sites

The study was conducted in three farms located in North-Eastern Italy: ‘Vallevecchia’,
placed on the Adriatic coast (45◦38′350′ ′ N 12◦57′245′ ′ E, −2 m m.a.s.l.), is characterized
by a silty-clay/sandy-loam soil classified as Gleyic Fluvisols or Endogleyic Fluvic Cam-
bisols [31]; ‘Diana’ and ‘Sasse Rami’, are located on the western, on the central (45◦34′965′ ′ N
12◦18′464′ ′ E, 6 m m.a.s.l.), and southern plain (45◦2′908′ ′ N 11◦52′872′ ′ E, 2 m m.a.s.l.), re-
spectively. Both are characterized by Endogleyic Cambisols [34] silty-loam soil.

The average annual rainfall, typical of sub-humid climate, was 829 mm in Vallevecchia,
846 mm in Diana, and 673 mm in Sasse Rami. The highest rainfall peaks are in autumn
(302, 241, and 187 mm, respectively) whereas the lowest in winter (190, 157, and 129 mm,
respectively). Temperatures varied from a minimum of −0.1 ◦C in January to a maximum
of 29.6 ◦C in July, from −0.9 to 29.3 ◦C and from −0.2 to 30.6 ◦C, respectively. Reference
evapotranspiration (ETo) was 860, 816, and 848 mm, with a peak in July (4.9, 4.6, and
4.8 mm d−1). ETo exceeded rainfall from May to September in Vallevecchia and Diana and
from May to October in Sasse Rami.

Total organic carbon (TOC) and total nitrogen (TN) contents have been evaluated in
the three farms in 2011, before the experimental period (Table 1) following the sampling
scheme and analytic protocols described in the next paragraphs.

Table 1. Soil parameters of the three farms in 2011, localization of places, and climate parameters
during the experiment.

Latitude and Longitude A.A.R. A.T.R. TOC TN

mm ◦C %

Diana 45◦34′965′ ′ N 12◦18′464′ ′ E 846 −0.9/29.3 0.90 ± 0.04 a 0.13 ± 0.01 b
Sasse Rami 45◦2′908′ ′ N 11◦52′872′ ′ E 673 −0.2/30.3 1.03 ± 0.06 a 0.16 ± 0.01 a

Vallevecchia 45◦38′350′ ′ N 12◦57′245′ ′ E 829 −0.1/29.6 0.92 ± 0.06 a 0.12 ± 0.01 b

A.A.R = average annual rainfall. A.T.R = annual temperature range. Values are the total average of both CONV
and CONS fields ± their standard errors. Different letters mean significant differences (Tuckey test p < 0.05).

2.2. Experimental Design

In 2011, field research started to assess agronomic and environmental effects of the
Rural Development Programme (RDP), Measure 214—Sub-Measure I, ‘Eco-compatible
management of agricultural lands’ protocol implementation. This measure was economi-
cally supported by the Veneto Region (Regione Veneto, Italy, 2013). Each farm was managed
both following conservative agriculture (CONS) principles and following conventional
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agricultural (CONV) practices for the area. Pairs of closely located fields (1–1.5 hectares
in size), selected to be homogeneous in terms of pedological characteristics, were chosen
in each farm, repeated for each crop (wheat, canola, maize, soybean). The whole experi-
mental area was constituted by a total of 24 (2 treatments × 4 crops × 3 farms) rectangular
(40 × 30 m) fields, with the CONS and CONV adjacent theses. The fields managed through
Conventional Agriculture (CONV) were considered as the control.

CONV fields were ploughed at a 35 cm depth and crop residues were buried and
seedbed prepared by <15 cm depth chiseling. In CONS fields, no-tillage was associated to
cover crop suppression, sod seeding both for main and cover crops leaving on the surface
all residues after harvesting.

Crop rotation was as follows in both CONV and CONS: wheat (Triticum aestivum L.),
oilseed rape (Brassica napus L.), maize (Zea mays L.), and soybean (Glycine max (L.) Merr.).
In CONV, the soil remained bare between the main crops. Conversely, in CONS, the main
crops were interspersed with sorghum (Sorghum vulgare Pers. Var. sudanense) during
spring–summer, and a mix of vetch (Vicia sativa L.) and barley (Hordeum vulgare L.) in
autumn–winter.

Both groups of fields were locally supplied with mineral fertilizers in pre-sowing of
all crops, integrated with a side dressing treatment in maize and wheat. In agreement with
the sub-measure protocol, cover crops were not fertilized.

The same amount of herbicide was applied for CONV and CONS depending on crop,
according to IPM implementation. CONS winter cover crops were suppressed before spring
seeding, adding N-(phosphonomethyl) glycine before spring seeding, whereas sorghum
was terminated by shredding.

2.3. Soil Sampling

Sampling for TOC, TN, microbial biomass, enzyme activities, and soil arthropods ex-
traction was performed in 2012, 2013, and 2014, in May in soils cultivated with soybean and
wheat; in September for the soils cultivated with maize and oilseed rape. The two sampling
periods were chosen to minimize soil disturbance.

Soil samples were collected in 6 positions per field according to a systematic sampling
scheme in the 0–20 cm profile, using a soil auger. The same points were sampled in the
three campaigns, identifying the positions using a GNNS with Real Time Kinematic (RTK)
correction (precision of ca. 2 cm). For each experimental field, two bulked samples were
obtained for enzyme activities analyses.

2.4. Total Organic Carbon and Nitrogen

A total of 24 samples were analyzed for TOC and TN in 2011, one bucked sample
per field. A total of 144 samples were analyzed for the years 2012–2014. Samples were
weighed, air-dried, and sieved at 2 mm for total C and N determination using the flash
combustion method using a CNS Elemental Analyzer (Vario Max, Elementar Americas,
Inc., Langenselbold, Germany); organic carbon was determined after removal of organic C
with acid pre-treatment [32]. TOC and TN were calculated as a difference between total
and inorganic values.

2.5. Microbial C and N and Enzymatic Activities Determination

A total of 144 samples were analyzed for microbial biomass, 2 bulked samples per
field × 2 treatments (i.e., CONS and CONV) × 4 crops × 3 farms × 3 years (2012, 2013
and 2014).

The microbial biomass-C and -N (micr C and micr N) contents were determined by the
fumigation-extraction method [35] as reported in [36]. For each sample three fumigated and
three non-fumigated aliquots were analyzed. Fumigation was performed under vacuum
in a glass desiccator containing 3 mL H2O, 2 g of NaOH pellets and a beaker with 50 mL
of chloroform. After 16 h of incubation in the dark, fumigated soil was transferred to
a centrifuge tube with 0.5 mol L−1 K2SO4 at a 1:4 w/v ratio. After 30 min of rotatory
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shaking at 120 rpm, the sample was centrifuged for 5 min at 6500× g and the supernatant
filtered through Whatman no. 4 filters and kept in polyethene tubes at −20 ◦C until
micr C and micr N determination. Micr C was measured by oxidation with potassium
dichromate and titration with ammonium iron(II) sulfate [37]. Micr N was determined
spectrophotometrically following the method of Cabrera et al. [38].

The fluorescein diacetate hydrolase (FDA) was assessed [39] on a 2 g soil sample shaken
with 15 mL of 60 mmol L−1 potassium phosphate pH 7.6 buffer and 0.2 mL of 1000 g mL−1

FDA solution for 20 min at 30 ◦C. Then, 15 mL of 2:1 chloroform/methanol solution was
added, and the contents were shaken thoroughly by hand before filtration (Whatman 2). The
absorbance was measured spectrophotometrically at 490 nm on the filtrate. The concentration
was expressed in g of fluorescein diacetate released g−1 dry soil h−1.

β-glucosidase (EC 3.2.1.21, β-D-glucoside glucohydrolase) activity was determined
according to official Italian methods for soil analysis [40] and reported as µg p-nitrophenol
(pNP) g−1 dry soil. For the determination of β-glucosidase activity, 4 mL of modified
universal buffer (MUB), pH 6, and 1 mL of substrate p-nitrophenyl-b-D-glucopyranoside
(PNG) 0.025 mol L−1 were added to 1 g of soil and incubated at 37 ◦C for 1 h. The reaction
was stopped by adding 1 mL 0.5 mol L−1 CaCl2 and 4 mL 0.1 mol L−1 TRIS-NaOH pH 12
buffer [41]. The p-nitrophenol (pNP) formed in β-glucosidase activity was determined by
spectrophotometry at 400 nm. Enzyme activities were determined in triplicate on fresh
moist sieved (<2 mm) soils within 10 days of sample collection. Control assays were
performed by adding the substrate after the reaction was stopped and before filtration of
the soil suspension. All data were corrected to soil dry weight by means of soil moisture
content data. Standard error within triplicate measures was always below 5%.

2.6. Soil Arthropod Extraction and QBS-ar Application

For the soil arthropod study, soil samples (dimensions 10 cm × 10 cm × 10 cm) were
collected in 6 RTK referenced points of the field, placed in plastic bags, kept oxygenated,
and brought to the laboratory. A total of 144 samples per year (2012, 2013, and 2014) were
analyzed for arthropod extractions: 6 samples per field × 2 treatments × 4 crops.

In the lab, soil arthropods were extracted with the Berlese-Tüllgren extractor [42].
Following the QBS-ar protocol, an ecomorphological score (EMI) was assigned to each
taxon found, ranging between 1 and 20 depending on their adaptation to soil (1: low
adaptation; 20: maximum adaptation) [29,42]. For each replicate, the QBS-ar value was
calculated as the result of the sum of the highest EMI values for each taxon [29] considering
that QBS-ar is based on the different adaptation level to soil of edaphic arthropods [27,29].
QBS-ar has been applied in different land uses as bioindicator of soil health, e.g., during
restoration processes [43]; in natural and degraded soils in Mediterranean areas [44];
and in roadside anthropogenic soils [45]. Furthermore, it can be used as an indicator of
anthropogenic impact on soil resources caused by land use practices [46].

2.7. Statistical Analysis

One-way repeated measures ANOVA was performed to compare treatments among
the sampling periods; Tukey’s t test was performed for post-hoc comparisons. Levene
and Mauchly’s tests were applied to check normality, homoscedasticity, and sphericity, to
ensure that assumptions of the model were met. All these procedures were performed
using IBM SPSS 27.0 (IBM Corp., Armonk, New York, NY, USA, 2020).

3. Results
3.1. Total Organic Carbon and Nitrogen

Considering the three farms at time 0 (2011) separately, TOC percentages were com-
prised between 0.90% and 1.03%, and TN between 0.12% and 0.16% (Table 1). Statistical
analysis highlighted a significant difference: Sasse Rami showed higher TN percentage
compared to Diana and Vallevecchia farms (Table 1).
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The aggregated dataset from the three farms (Table 2) shows the following scenario:
TOC and TN were not significantly influenced by Management, but the interaction between
Management and Time affected TN significantly.

Table 2. Aggregated data of macronutrients, enzymatic activities, BF, and QBS-ar rate.

p Value

Parameters Management 2012 2013 2014 Average M T M ∗ T

TOC (%) CONS 0.999 ± 0.04 0.991 ± 0.04 0.961 ± 0.05 0.984 ± 0.02
0.305 0.533 0.487CONV 0.924 ± 0.04 0.886 ± 0.04 0.914 ± 0.05 0.908 ± 0.03

TN (%) CONS 0.131 ± 0.01 0.125 ± 0.01 0.122 ± 0.01 0.126 ± 0.004
0.560 0.646 0.020 *CONV 0.119 ± 0.01 0.119 ± 0.01 0.125 ± 0.01 0.121 ± 0.003

Microbial C
(mg kgds

−1)
CONS 205.5 ± 21.8 122.7 ± 8.7 199 ± 19.2 175.7 ± 10.9

0.423 <0.0001 * 0.723CONV 174.5 ± 20.9 105.1 ± 7.1 193 ± 26.7 157.5 ± 12.2
Microbial N
(mg kgds

−1)
CONS 14.9 ± 1.6 11.5 ± 1.1 19.4 ± 1.9 15.3 ± 1

0.413 <0.0001 * 0.597CONV 13.8 ± 1.4 11.5 ± 1.8 16.7 ± 1.4 14 ± 0.9
FDA

(µg FDA gds
−1 h−1)

CONS 0.94 ± 0.09 1.127 ± 0.09 0.99 ± 0.07 1.02 ± 0.05
0.007 * 0.224 0.534CONV 0.74 ± 0.10 0.79 ± 0.07 0.79 ± 0.11 0.77 ± 0.05

β-glucosidase
(µg PNP gds

−1 h−1)
CONS 79 ± 6.9 85.4 ± 4.9 88.7 ± 7.5 84.4 ± 3.7

0.002 * 0.042 * 0.977CONV 52 ± 4.5 59 ± 2.9 63.4 ± 3.1 58.1 ± 2.1
BF

(Number of biological forms)
CONS 8.8 ± 0.4 7.8 ± 0.3 7.6 ± 0.3 8.1 ± 0.2

0.055 0.094 0.214CONV 7.1 ± 0.4 6.4 ± 0.3 6.8 ± 0.3 6.8 ± 0.2
QBS.ar

(Highest EMI scores summary)
CONS 111.6 ± 5 82.1 ± 3.5 81.5 ± 3.5 92.4 ± 2.6

0.103 <0.0001 * 0.160CONV 88.9 ± 4.6 71.6 ± 4.2 75.1 ± 4.2 79.7 ± 2.6

TN = Total Organic Nitrogen; TOC = Total Organic Carbon, both reported in % (w/w). Microbial C and N are
measured through mg kg−1 of dry soil. β-glucosidase and FDA activities are reported as µg of p-nitrophenol (pNP)
g−1 dry soil released per hour and µg of fluorescein-diacetate (FDA) g−1 dry soil released per hour, respectively.
BF = number of biological forms among microarthropods encountered. QBS-ar = soil biological quality index.
T = Time factor; M = Management factor; T ∗M: interaction between Time and Management. Significant p values
are reported with asterisk. p < 0.05. Values are reported ± standard errors.

Considering the three farms separately (Tables 3–5), only TN Vallevecchia farm was
significantly influenced by Time and by the interaction of Management and Time (Table 5).

Table 3. Soil evolution in Diana farm.

Diana M T M ∗ T
Management 2012 2013 2014 M Average p Value

TOC
CONS 0.92 ± 0.05 0.89 ± 0.06 0.93 ± 0.06 0.91 ± 0.03

0.135 0.182 0.519CONV 0.81 ± 0.02 0.75 ± 0.04 0.88 ± 0.05 0.81 ± 0.02
T average 0.86 ± 0.03 0.82 ± 0.04 0.90 ± 0.04

TN
CONS 0.13 ± 0.01 0.13 ± 0.00 0.14 ± 0.01 0.13 ± 0.003

0.1506 0.2783 0.428CONV 0.12 ± 0.00 0.12 ± 0.00 0.13 ± 0.01 0.12 ± 0.002
T average 0.12 ± 0.00 0.13 ± 0.00 0.13 ± 0.01

Microbial C
(mg kgds

−1)

CONS 217.5 ± 21.9 150.1 ± 8.7 242.5 ± 23.4 203.4 ± 13.3
0.5617 0.0001 * 0.2243CONV 221.1 ± 39.5 128.5 ± 8.9 181.9 ± 36.6 177.2 ± 19.1

T average 219.3 ± 21.8 139.3 ± 6.6 212.2 ± 22.4

Microbial N
(mg kgds

−1)

CONS 17.5 ± 4 10.6 ± 2.2 21.6 ± 1.6 16.6 ± 1.8
0.9713 0.0001 * 0.9132CONV 17.2 ± 1.9 11.4 ± 2.2 20.7 ± 2.5 16.4 ± 1.5

T average 17.4 ± 2.1 11 ± 1.5 21.2 ± 1.4

FDA
(µg FDA gds

−1 h−1)

CONS 1.007 ± 0.15 1.59 ± 0.11 1.10 ± 0.15 1.23 ± 0.09
0.0936 0.0028 * 0.3637CONV 0.729 ± 0.13 1.09 ± 0.08 0.97 ± 0.18 0.93 ± 0.08

T average 0.868 ± 0.10 1.34 ± 0.09 1.04 ± 0.12

β-glucosidase
(µg PNP gds

−1 h−1)

CONS 88.5 ± 11.9 101.5 ± 4.3 65.4 ± 7.9 85.1 ± 5.7
0.1121 0.012 * 0.0013 *CONV 60.1 ± 4.9 68.1 ± 4.2 71 ± 3.1 66.4 ± 2.5

T average 74.3 ± 7.2 84.8 ± 5.2 68.2 ± 4.2
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Table 3. Cont.

Diana M T M ∗ T
Management 2012 2013 2014 M Average p Value

BF
(Number of biological

forms)

CONS 8.42 ± 0.46 7.5 ± 0.39 7.58 ± 0.42 7.83 ± 0.25
0.0941 0.2730 0.4371CONV 7.13 ± 0.52 6.5 ± 0.57 7.5 ± 0.54 7.04 ± 0.31

T average 7.77 ± 0.36 7 ± 0.35 7.54 ± 0.34

QBS.ar
(Highest EMI scores

summary)

CONS 113.7 ± 6.8 84 ± 4.3 83.8 ± 5.2 93.8 ± 3.6
0.4850 0.0001 * 0.3117CONV 96.9 ± 7.4 77.7 ± 7 84.9 ± 6.3 86.5 ± 4.1

T average 105.3 ± 5.1 80.8 ± 4.1 84.4 ± 4

β-glucosidase and FDA activities are reported as µg of p-nitrophenol (pNP) g−1 dry soil released per hour and
µg of fluorescein-diacetate (FDA) g−1 dry soil released per hour, respectively. T average = average of the year;
M average = average of the treatment. T = Time factor; M = Management factor; T ∗M: interaction between Time
and Management. Significant p values are reported with asterisk. p < 0.05. Values are reported ± standard errors.

Table 4. Soil evolution in Sasse Rami farm.

Sasse Rami M T M ∗ T
Management 2012 2013 2014 M Average p Value

TOC
CONS 1.12 ± 0.07 1.08 ± 0.07 1.08 ± 0.08 1.09 ± 0.04

0.5707 0.3533 0.9787CONV 1.05 ± 0.05 0.99 ± 0.06 1.01 ± 0.07 1.02 ± 0.03
T average 1.09 ± 0.04 1.03 ± 0.05 1.05 ± 0.05

TN
CONS 0.15 ± 0.01 0.14 ± 0.01 0.14 ± 0.01 0.14 ± 0.01

0.6047 0.8521 0.2332CONV 0.13 ± 0.01 0.14 ± 0.01 0.141 ± 0.01 0.14 ± 0.01
T average 0.14 ± 0.01 0.14 ± 0.01 0.14 ± 0.01

Microbial C
(mg kgds

−1)

CONS 304.2 ± 30.3 145.7 ± 9.5 178.4 ± 20.7 209.4 ± 18.7
0.1201 <0.0001 * 0.0806CONV 203.6 ± 37.7 108 ± 8.2 182.9 ± 22.7 164.9 ± 16.6

T average 253.9 ± 26.7 126.9 ± 7.7 180.7 ± 14.9

Microbial N
(mg kgds

−1)

CONS 15.1 ± 2.3 14.1 ± 1.7 24.7 ± 4.4 18 ± 2
0.3158 0.037 * 0.5138CONV 14.9 ± 3 12.9 ± 3.9 17.9 ± 2.1 15.2 ± 1.8

T average 15 ± 1.8 13.5 ± 2.1 21.3 ± 2.5

FDA
(µg FDA gds

−1 h−1)

CONS 0.63 ± 0.13 0.72 ± 0.08 0.96 ± 0.12 0.77 ± 0.07
0.077 0.0013 * 0.2045CONV 0.29 ± 0.03 0.44 ± 0.06 0.46 ± 0.13 0.39 ± 0.05

T average 0.46 ± 0.08 0.58 ± 0.06 0.71 ± 0.11

β-glucosidase
(µg PNP gds

−1 h−1)

CONS 83.9 ± 10.1 90.5 ± 8.2 125.2 ± 9.6 99.9 ± 6.4
0.002 * 0.0003 * 0.0201 *CONV 39.5 ± 4.6 59.2 ± 5.2 56.3 ± 4 51.7 ± 3.1

T average 61.7 ± 7.9 74.9 ± 6.2 90.8 ± 10.2

BF
(Number of biological

forms)

CONS 9.92 ± 0.68 8 ± 0.52 9.06 ± 0.43 9.08 ± 0.35
0.0418 * 0.1281 0.4998CONV 6.96 ± 0.64 6.56 ± 0.4 6.35 ± 0.46 6.66 ± 0.31

T average 8.44 ± 0.51 7.28 ± 0.34 7.71 ± 0.39

QBS.ar
(Highest EMI scores

summary)

CONS 134.1 ± 9.3 86.4 ± 6.9 106.7 ± 5.6 111.7 ± 5.3
0.0399 * <0.0001 * 0.4808CONV 94.9 ± 8.5 67.1 ± 6.4 70.1 ± 5.9 79.3 ± 4.6

T average 114.5 ± 6.9 76.8 ± 4.9 88.4 ± 5.1

β-glucosidase and FDA activities are reported as µg of p-nitrophenol (pNP) g−1 dry soil released per hour and
µg of fluorescein-diacetate (FDA) g−1 dry soil released per hour, respectively. T average = average of the year;
M average = average of the treatment. T = Time factor; M = Management factor; T ∗M: interaction between Time
and Management. Significant p values are reported with asterisk. p < 0.05. Values are reported ± standard errors.

3.2. Microbial C and N and Enzymatic Activities

Considering the aggregated dataset from the three farms (Table 2), microbial C was
comprised between 105.1 mg kgds

−1 in CONV 2013 and 205.5 mg kgds
−1 in CONS

2012, while microbial N ranged between 11.5 mg kgds
−1 in CONS/CONV 2013 and

19.4 mg kgds
−1 in CONS 2014. Both microbial C and N were influenced only by the

time factor (T) (Table 2). This result emerged also when the three farms were considered
separately (Tables 3 and 4), except for Vallevecchia farm for microbial N (Table 5).

FDA showed higher values in CONS for all the three years when compared with
CONV, and it was comprised between 0.74 µg FDA gds

−1 h−1 in CONV 2012 and 1.127 µg
FDA gds

−1 h−1 in CONS 2013. Management significantly affected this parameter. β-
glucosidase activity, comprised between 52 µg PNP gds

−1 h−1 in CONV 2012 and 88.7 µg
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PNP gds
−1 h−1 in CONS 2014, was significantly increased by CONS management and

affected by Time.

Table 5. Soil evolution in Vallevecchia farm.

Vallevecchia M T M ∗ T
Management 2012 2013 2014 M Average p Value

TOC
CONS 0.95 ± 0.08 1.01 ± 0.06 0.87 ± 0.09 0.94 ± 0.05

0.1052 0.7775 0.719CONV 0.91 ± 0.10 0.91 ± 0.09 0.85 ± 0.13 0.89 ± 0.06
T average 0.93 ± 0.06 0.96 ± 0.05 0.86 ± 0.08

TN
CONS 0.11 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 0.1 ± 0.01

0.7952 0.0248 * 0.0448 *CONV 0.108 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 0.11 ± 0.01
T average 0.11 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

Microbial C
(mg kgds

−1)

CONS 94.7 ± 10.5 72.2 ± 6.5 176 ± 47.3 114.3 ± 18.1
0.7395 0.0009 * 0.827CONV 98.6 ± 9.4 78.9 ± 13.2 214.3 ± 71.1 130.6 ± 26.3

T average 96.7 ± 6.8 75.5 ± 7.1 195.2 ± 41.5

Microbial N
(mg kgds

−1)

CONS 12 ± 1.5 9.8 ± 1.5 12 ± 1.2 11.3 ± 0.8
0.6284 0.6647 0.7023CONV 9.4 ± 1.7 10.3 ± 3.2 11.5 ± 1.7 10.4 ± 1.3

T average 10.7 ± 1.2 10 ± 1.7 11.7 ± 1

FDA
(µg FDA gds

−1 h−1)

CONS 1.17 ± 0.15 1.07 ± 0.06 0.92 ± 0.08 1.05 ± 0.06
0.5321 0.0779 0.4961CONV 1.20 ± 0.12 0.84 ± 0.06 0.92 ± 0.20 0.99 ± 0.08

T average 1.18 ± 0.09 0.95 ± 0.05 0.92 ± 0.10

β-glucosidase
(µg PNP gds

−1 h−1)

CONS 64.7 ± 13.1 64.1 ± 6.6 75.4 ± 10.5 68.1 ± 5.9
0.4356 0.2141 0.9043CONV 56.3 ± 10.8 49.6 ± 3.9 62.9 ± 7.5 56.3 ± 4.5

T average 60.5 ± 8.3 56.8 ± 4.2 69.2 ± 6.4

BF
(Number of biological

forms)

CONS 8.13 ± 0.61 8.04 ± 0.72 6.67 ± 0.37 7.61 ± 0.34
0.9548 0.1580 0.0637CONV 7.08 ± 0.66 6 ± 0.62 5.9 ± 0.74 6.54 ± 0.41

T average 7.6 ± 0.45 7.36 ± 0.54 6.44 ± 0.34

QBS.ar
(Highest EMI scores

summary)

CONS 86.8 ± 7.2 77 ± 7 61.5 ± 3.8 75.1 ± 3.7
0.8298 0.0337 * 0.0144 *CONV 75 ± 7.5 66.3 ± 7.8 60.1 ± 10.3 69.5 ± 4.9

T average 80.9 ± 5.2 73.4 ± 5.4 61.1 ± 4

β-glucosidase and FDA activities are reported as µg of p-nitrophenol (pNP) g−1 dry soil released per hour and
µg of fluorescein-diacetate (FDA) g−1 dry soil released per hour, respectively. T average = average of the year;
M average = average of the treatment. T = Time factor; M = Management factor; T ∗M: interaction between Time
and Management. Significant p values are reported with asterisk. p < 0.05. Values are reported ± standard errors.

The results of each farm show that significant differences are not equally distributed
(Tables 3–5). Time and/or the interaction of Management per Time significantly influenced
β-glucosidase activity and FDA in Diana and Sasse Rami farms (Tables 3 and 4). In this
farm, β-glucosidase was affected also by Management. Vallevecchia did not show to be
affected by both Management, Time, and by the interaction between these two parameters
(Table 5).

3.3. Soil Arthropod and QBS-ar Index

The number of biological forms (BF) was not affected neither by Management nor by
Time (Table 2) considering the overall dataset, but some differences emerged when the three
farms were considered separately and only Sasse Rami was influenced by Management,
showing higher values in CONS when compared with CONV (Table 4).

Differently from FB, QBS-ar index was influenced by the Time factor (Table 2) consider-
ing all data together, and some similitudes emerged between the three farms, all three being
influenced by Time. In addition, Sasse Rami showed to be influenced by Management
(Table 4), in favor of CONS, and Vallevecchia by the interaction between Management per
Time (Table 5).

4. Discussion

Results for SOM parameters (Table 2) such as TOC and TN were not significantly
influenced in the three years of CONS management, consistent with the data reported by
Muscolo et al. [47] while Rakesh et al. [48] in a 4-year-long experiment found a significant
TOC improvement compared to conventionally managed soils. Microbial biomass and soil
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enzymatic activities were found to be more reliable factors to depict the soil evolution both
in short periods [23,49] and long periods [50]. The significant increase in β-glucosidase
activity in CONS indicated an improvement in carbon cycle and the significant differences
between the managements suggest an important role of cover crops in the soil evolution
under conservative management. Weerasekara et al. [51] found that cover crops increased
β-glucosidase activity significantly while TOC and TN significantly decreased, that is the
same trend found in our experiment although without significant decreases across the years
for the last two parameters. As an average of all farms, FDA values were significantly higher
in CONS than in CONV, indicating a higher microbial activity and indirectly confirming
the higher microbial biomass detected in CONS [14,52].

Despite the small differences in soil texture among the farms, the present study
also showed differences in response to management among the three farms: samples
from Sasse Rami showed significant differences in β-glucosidase activity, BF, and QBS-
ar, whereas in Diana farm only β-glucosidase was affected by the different management
and in samples from Vallevecchia TN content was significantly different (Tables 3–5).
Being the C stock similar in the three farms in terms of TOC, these different performances
could be explained by Sasse Rami highest TN content (Table 1) in 2011. N could be
the limiting factor for the development of microbial community and can influence the
responses to the management change [53]. This means that the previous soil history
could exert an important role in accelerating soil evolution under conservative agriculture
management despite the homogeneity of other important parameters. As reported by
Castle [54], nitrogen is a limiting factor for the microbial community in primary succession;
this can be compared with exploited agricultural soils after crop harvest. This implies
that soil quality improvement, in terms of microbial biomass, expected for conservative
agriculture might be postponed or reduced in the situations where nitrogen is most needed.
A second factor to be considered to explain different results between the farms could be
the local microclimate: forest, sea or lake proximity, and wind streams could affect soil
temperature and moisture and consequently its evolution.

The β-glucosidase activity was the parameter better responding to the changes in
management practices and, in our opinion, is the best parameter of all to measure intensity
of soil evolution; indeed, it is related to fungi activity indicating the degree of biomass
replacement and soil quality [55].

Considering arthropod community detected by the application of biological forms (BF)
and the QBS-ar index (Tables 2–4), time seems to have a greater effect than management,
although the conservation system generally provides better conditions for soil fauna, often
interacting with crop type [17], indeed in a two-year-long trial, de Oliveira et al. [56] did
not found any difference between conservative and conventional agriculture in sugarcane
plantations, suggesting the period considered was too short to find differences. QBS-ar
in 2013 showed a lower value when compared to 2012 and 2014 in all the three farms,
but it is in line with what was observed by [18] in a multidisciplinary study carried out
over four years in Northern Italy on a silt loam under continuous maize. In three farms
(in the Emilia-Romagna region, Italy), managed with both conventional and conservation
practices (the last ones with and without sub-irrigation systems), monitored from 2014
to 2017, Menta et al. [16] found that soil arthropod communities varied among farms,
although most differences were found among crops depending on management practices.
Nonetheless, conservation systems and a wider reduction in anthropogenic practices
provided better conditions for soil fauna, enhancing QBS-ar.

5. Conclusions

Also in a short period, conservation agriculture can start a process of soil quality
restoration both for microbiological activity and soil fauna diversity, while in the short
term, soil organic matter is not a reliable parameter to evaluate soil changes. Among the
biological parameters, β-glucosidase was the most affected by the management change,
probably due to its sensitivity to biomass decomposition and nutrient cycling.
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The present results could be helpful to predict soil reaction to conservation agriculture
in short periods. Furthermore, this work can contribute to complete the continuously
increasing dataset of CA effects on agricultural soil evolution around the world. The
reported scenario depicts the carbon sequestration and microbial activity dynamics, with
consequences on soil microfauna, in a ceteris paribus condition across the years: this is a
piece in “the puzzle” of the worldwide variable pathway of agricultural soil evolution,
useful to refine future global strategies in soil management.

Future research should monitor soil biological parameters coupled with soil faunal
communities, in relation to nutrient stocks, in longer experimental periods, to confirm the
trends evidenced in the present short-time trial.

In conclusion, the present study demonstrated that the same soil management, soil
characteristics, crop pool, rotation, and climate do not guarantee the same evolutionary
pathway of soils in different farms. N stock, maybe dependent on previous soil man-
agement, might be the key characteristic able to influence soil evolution in the studied
conditions although not investigated microclimate conditions could have a role in this issue.
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