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A B S T R A C T   

Understanding the role of guest species in framework materials is important to successfully achieve the control of 
thermal expansion. In this work, the thermal expansion of the Prussian blue analogue FeFe(CN)6 has been 
effectively tailored from negative, to zero to positive through the insertion of Na+ ions. To shed light on the role 
of Na+ ions on thermal expansion behavior, a joint study was conducted by means of high-resolution synchrotron 
X-ray diffraction, EXAFS spectroscopy and lattice dynamics calculations. It has been found out that the insertion 
of Na+ ions reduces the structural flexibility of the CN linkages and affects the low-energy phonons, thus allowing 
the tuning of the overall thermal expansion. This work demonstrates the possibility of precisely controlling the 
thermal expansion of open-framework materials by inserting guest ions and clarifies the physical mechanism 
underlying this control.   

Introduction 

Thermal expansion is an important issue in materials applications. 
However the occurrence of negative thermal expansion (NTE), although 
quite rare, offers the promising possibility to control the thermal 
expansion thus enhancing the reliability of materials [1–6]. It is well 
known that the driving force in many NTE materials depends on the 
flexibility of the atomic linkages [7–10]. For example, the NTE observed 
in some metal oxide and fluoride framework materials comes from the 
transverse vibrations of the central atoms in the M–O–M (M = metal), 
O–M–O or M–F–M linkages [11–13]. This motion, which has the 
effect of drawing the two anchoring atoms closer together, increases in 
magnitude with increasing temperature thus giving rise to the NTE 
through the so-called “tension” or “guitar-string” effect [14,15]. So it 
goes without saying that the thermal expansion for this kind of materials 
can be tuned by changing the structural flexibility. A way to do this is the 
chemical substitution of the metal ions, which changes the bond 
strength, reduces the local structure flexibility and hence modifies the 
thermal expansion behavior [16]. But since the open-framework mate-
rials have many voids in their structure, guest species can be inserted 

thus influencing the dynamics associated with NTE. As example, the 
thermal expansion coefficient (CTE) of YFe(CN)6 [17] was switched 
from negative to positive by insertion of K+ ions and H2O molecules, or 
zero thermal expansion (ZTE) was achieved in ZnPt(CN)6 [18] and TiCo 
(CN)6 [19] by the insertion of H2O molecules. Kepert and co-workers 
used adjusted concentrations of CO2 guest molecules to switch the 
thermal expansion of two PBAs from negative to positive [20]. Colossal 
positive thermal expansion was achieved in MCF-34 by inserting poly-
morphic solvate DMF molecules [21]. Despite these promising results, 
the continuous tailoring of thermal expansion of open-framework 
structures by the introduction of guest ions remains very rare. 

Cyanide framework materials have gained great attention thanks to 
their application properties [22], such as gas storage,[23] proton con-
ductivity,[24] energy,[25] environment, [26,27] medicine, [28] and 
other fundamental physical properties [29], magnetic, electronic and 
optical properties. Owing to their open structure and framework flexi-
bility, they can display 1D, 2D and 3D NTE behavior [30]. Some metal 
cyanides, such as HT-CuCN, AgCN, and AuCN [31], exhibit an inter-
esting 1D NTE behavior along the chains direction. Ni(CN)2 exhibits 2D 
NTE behavior mainly caused by the in-plane rotations of [NiC4] and 
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[NiN4] units and rippling of the layers [32]. Other cyanides, such as Zn 
(CN)2 [33], CdPt(CN)6 [18], LaFe(CN)6 [34] and Ni2W(CN)8 [35], show 
a valuable 3D NTE and are promising materials to achieve a ZTE 
behavior. 

Here, we utilize FeFe(CN)6 Prussian blue analogue as case study to 
tune the thermal expansion from negative to zero to positive through the 
progressive insertion of guest Na+ ions. A combined investigation by 
means of high-resolution synchrotron X-ray diffraction (SXRD), 
Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and ab 
initio lattice dynamics calculations was carried out to disclose the role of 
Na+ ions on the thermal expansion behavior, from the perspective of the 
local structure and vibrational dynamics. It turned out that the insertion 
of Na+ ions reduces the structural flexibility of the CN linkages affecting 
the low-energy phonons, thus making possible the tailoring of thermal 
expansion. 

Experimental and computational details 

Samples preparation and SXRD characterization 

FeFe(CN)6⋅xH2O was prepared by solution precipitation method, 
where 50 mL 0.1 mol/L Fe(NO3)3 was added to 50 mL 0.1 mol/L K3Fe 
(CN)6 aqueous solution. The mixture solution was maintained for 10 h at 
60 ◦C under vigorous stirring. The blue green precipitation was collected 
by filtration, washed many times by water and ethanol, and then dried at 
50 ◦C for 10 h. Finally, the samples were kept in a black screw cap vial. 
The anhydrous sample of FeFe(CN)6 was obtained after the dehydration 
of FeFe(CN)6⋅xH2O by heating at 202 ◦C for 10 h. In the preparation of 
Na0.8FeFe(CN)6⋅xH2O, 2 m mol Na4Fe(CN)6⋅10H2O and 2 mL hydro-
chloric acid (37%) were dissolved in 80 mL deionized water to obtain a 
homogenous solution. Next steps are the same with FeFe(CN)6⋅xH2O. 
The synthesis of Na1.5FeFe(CN)6⋅xH2O was the same of Na0.8FeFe 
(CN)6⋅xH2O, but it needs to add 2 g NaCl and 1 g K58 in 80 mL deionized 
water. The content of Na into FeFe(CN)6 was controlled by the amount 
of Na in solution, which was adjusted by the content of Na4Fe(CN)6 and 
NaCl. This preparation method is reported in previous references [36]. 

The crystal structure of the samples and the lattice thermal expan-
sion were characterized by high-resolution synchrotron x-ray diffraction 
(SXRD), performed at the 11-BM-B beamline of the Advanced Photon 
Source (λ = 0.412634 Å). In order to remove the presence of H2O 
molecules, the samples have undergone a dehydration process at 475 K, 
and the SXRD data have been collected under nitrogen atmosphere. The 
crystal structure was refined through the Rietveld method using the 
FULLPROF program. [37]. 

EXAFs 

Fe K-edge EXAFS measurements of FeFe(CN)6, Na0.8FeFe(CN)6 and 
Na1.5FeFe(CN)6 was performed from 475 K to 300 K with a step of 35 K 
at the XAFS beamline of ELETTRA synchrotron in Trieste (Italy). The 
sample for EXAFS was prepared by mixing and pelletizing the sample 
powder with boron nitride powder, with an amount of sample powder 
chosen to have an absorption edge jump Δμx ~ 1. The Fe K-edge EXAFS 
spectra were collected in a transmission mode in the energy range of 
~6.8–8.4 keV, with an energy step varying from 0.2 eV in the near-edge 
region to about 4.5 eV at the highest energies, thus to obtain a uniform 
wave vector step Δk ~ 0.035 Å− 1. The x-ray beam was mono-
chromatized by a Si (111) double-crystal monochromator. The samples, 
kept under high-vacuum (<10− 5 mbar) during the entire experiment, 
was mounted in a furnace and the temperature was stabilized and 
monitored through an electric heater controlled by a feedback loop, 
ensuring a thermal stability within ± 1 K. Two spectra were collected at 
each temperature point. 

The EXAFS data analysis has been performed following the proced-
ure used for FeFe(CN)6 in N. Shi et al [36]. The final results and the 
corresponding error bars were obtained as average and standard 

deviation on different spectra, on different k-ranges and best-fitting 
simulations. We point out that the Fe-N and Fe-C distances, although 
close, have been distinguished thanks to the inclusion of the second 
shells and multiple scattering paths in the data analysis procedure. More 
details on EXAFS analysis can be found in the Supplementary Material. 

Computational details 

First-principles calculations based on density-functional theory 
(DFT) were performed using the Vienna ab initio simulation package 
(VASP) [38] with the projector augmented wave (PAW) method. [39] 
For the treatment of exchange–correlation energy, we employed the 
generalized gradient approximation (GGA) functional of Per-
dew–Burke–Ernzerhof (PBE). [40] The kinetic-energy cutoff of the 
plane-wave basis set was taken to be 520 eV, and the k-space integration 
was performed with Monkhorst-Pack meshes (9 × 9 × 9). Convergence 
criteria for the total energy and the ionic relaxation were 10-8 eV/atom 
and 10-4 eV/Å, respectively. Vibrational properties were calculated 
through the PHONOPY code, [41] in which the real space force con-
stants were calculated by employing a 1 × 1 × 1 cell. 

Results and discussion 

The structure of FeFe(CN)6 is comprised by FeN6 and FeC6 octahedra 
bridged by CN linkages (Fig. 1a), similar to other simple cubic Prussian 
Blue Analogues (PBAs) such as ZnPt(CN)6

16 and ScCo(CN)6.30 We could 
regard the open framework FeFe(CN)6 as A- site deficient perovskite, 
and the Na+ ions are located at A- site. The as-prepared samples of FeFe 
(CN)6, Na0.8FeFe(CN)6 and Na1.5FeFe(CN)6 contain water molecules, 
which are removed obtaining anhydrous samples after heating at 475 K 
for 10 h. It should be noted that with the insertion of Na ions, part of Fe 
atoms reduce the chemical valence from + 3 to + 2 to maintain the 
chemical equilibrium [42,43]. As shown in Fig. 1a, the XRD patterns at 
room temperature show that the crystal structures remain cubic even 
after the Na+ ions intercalation. Examples of Rietveld refinement are 
shown in Figs. S4–S6. As the content of Na ions increases, the structure 
remains cubic until to change to rhombohedral symmetry for Na2FeFe 
(CN)6

35. Accordingly, the samples of Na0.8FeFe(CN)6 and Na1.5FeFe 
(CN)6 maintain the cubic structure, also on heating. The obtained lattice 
constant increases from 10.13182(4) Å to 10.33152(3)Å for FeFe(CN)6 
and Na1.5FeFe(CN)6, respectively. 

As shown in Fig. 1b, FeFe(CN)6 display strong linear NTE (αl = -4.26 
× 10-6K− 1) from 100 to 475 K, which is consistent with the previous 
report [44]. Interestingly, with the increase of Na content, the thermal 
expansion can be tuned from NTE to ZTE and then to PTE. ZTE was 
achieved in Na0.8FeFe(CN)6 (αl = +0.40 × 10-6K− 1). With the further 
introduction of Na+ ions, PTE appears in Na1.5FeFe(CN)6 (αl = +4.00 ×
10-6K− 1). Accordingly, by adjusting the content of Na+ ions, we can 
efficiently control the thermal expansion of FeFe(CN)6. 

In order to investigate how Na+ ions act on the thermal expansion 
behavior of FeFe(CN)6, EXAFS measurements were performed to gain 
information on the Fe-C and Fe-N atomic pairs. We recall here that 
EXAFS and X-ray diffraction are complementary techniques. Indeed, 
while diffraction measures the difference between the average atomic 
positions, named as the “apparent” bond distance, EXAFS measures the 
instantaneous atomic distance, named as the “true” bond distance. [45] 
As shown in Fig. S7, the true and apparent bond distances of both Fe-N 
and Fe-C show an opposite thermal expansion behavior, the first one 
expands, the second one contracts. With the Na insertion, the thermal 
expansion of the apparent bond distance of Fe-N and Fe-C turns to zero 
and then to positive, while the PTE of the true bond distance is 
concomitantly weakened. 

The atomic mean square relative displacements (MSRDs) for the Fe- 
N and Fe-C bonds have also been extracted to shed light on the local 
vibrational dynamics46. Fig. 2 shows the temperature dependence of the 
perpendicular (⊥) and parallel (||) MSRDs of (a-c) Fe-N and (d-f) Fe-C 
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bonds in FeFe(CN)6, Na0.8FeFe(CN)6 and Na1.5FeFe(CN)6. In FeFe(CN)6, 
the perpendicular MSRDs of Fe-N and Fe-C bonds are both much larger 
than the parallel ones, and the Fe-N perpendicular MSRDs is larger than 
Fe-C ones. With the insertion of Na+ ions, the perpendicular MSRD of Fe- 
N progressively decreases, while that for Fe-C has no marked impact. 
These results indicate that i) the NTE in FeFe(CN)6-based compounds 
come from the transverse thermal vibrations of Fe-N atomic pairs and, 
with less weight, of Fe-C ones; ii) the presence of Na+ ions has a strong 
influence on the Fe-N vibrational dynamics. 

This is clear from the anisotropy of the relative thermal vibrations 
(Fig. S8), where it is possible to notice how Fe-N anisotropy decreases 
strongly with the introduction of Na+ ions. This is the explanation of 
how the thermal expansion of NaxFeFe(CN)6 is switched from negative 
to zero, to positive. A similar behavior was observed in NaxGaFe(CN)6 
and KxYFe(CN)6 compounds [15,46] (Fig. S8c). 

With the aim of further clarifying the relationship between NTE and 
vibrational dynamics, ab initio calculation based on density functional 
theory (DFT) were performed in FeFe(CN)6 and NaFeFe(CN)6. Fig. S9 
shows the temperature dependence of the lattice volume for FeFe(CN)6 
and NaFeFe(CN)6 extracted by DFT calculations which is comparable 
with the experimental results from SXRD. As shown in Fig. 3a and b, the 

low-frequency region of the density of vibrational states (DOS) in FeFe 
(CN)6 and NaFeFe(CN)6 is mainly due to the vibrations of C and N atoms, 
with N atoms playing a leading role. It should be noted that the 
contribution of Na atoms is distributed on the low-frequency region 
below ~200 cm− 1. In FeFe(CN)6, a large fraction of low-frequency 
vibrational modes show a negative Grüneisen parameter (Fig. 3c), in 
agreement with the presence of a NTE. Once Na is inserted, the negative 
Grüneisen parameters disappear in a lot of vibrational modes (Fig. 3d), 
in accordance with the ZTE behavior of NaFeFe(CN)6. As an example, 
the inset in Fig. 3c shows the eigenvectors of the lowest-frequency 
vibrational mode with the largest negative Grüneisen parameter (15 
cm− 1, − 17.5) in FeFe(CN)6, where the C and N atoms move perpen-
dicular to the Fe-C-N-Fe linkage. In contrast, in NaFeFe(CN)6, the Grü-
neisen parameter of the lowest frequency vibrational mode switches to 
positive (55 cm− 1, 4.2), as shown in the inset of Fig. 3d. As a result, the 
insertion of guest Na+ ions affect the vibrational dynamics inhibiting the 
vibrational modes responsible for NTE. 

Conclusions 

In summary, a continuous tuning of the thermal expansion has been 

Fig. 1. (a) X-ray diffraction patterns of FeFe(CN)6, Na0.8FeFe(CN)6 and Na1.5FeFe(CN)6 samples at room temperature. Insets show the structure of FeFe(CN)6-based 
with consisting of corner-shared FeN6 and FeC6 regular octahedral, where Na+ ions are inserted in vacant sites. (b) Relative change of lattice constant with tem-
perature for FeFe(CN)6 (NTE), Na0.8FeFe(CN)6 (near ZTE) and Na1.5FeFe(CN)6 (PTE). Error bars are smaller than the symbols size. 

Fig. 2. Temperature dependence of the perpendicular (blue squares) and parallel (red circles) MSRDs of (a-c) Fe-N and (d-f) Fe-C bonds in, from left to right, FeFe 
(CN)6, Na0.8FeFe(CN)6, and Na1.5FeFe(CN)6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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achieved in FeFe(CN)6 by the insertion of Na+ ions. The EXAFS results 
indicated that the NTE of FeFe(CN)6 come from the transverse thermal 
vibrations of N and C atoms, and the Na+ ions have the effect of sup-
pressing these vibrations, especially the Fe-N transverse vibrations. DFT 
calculations show that the low-frequency vibrational modes associated 
to N and C atoms display negative Grüneisen parameters, and the 
insertion of Na+ ions switches these Grüneisen parameters to less 
negative or positive values, in agreement with the disappearance of the 
NTE. This work realizes the continuous tuning of thermal expansion of 
an open-framework material and discloses the role of guest ions in the 
control of thermal expansion from the perspective of the local vibra-
tional dynamics. 

See the Supplementary Material for the sample characterizations and 
computational methods. 
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