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b PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Departiment of Public Health, Experimental and Forensice 
Medicine, University of Pavia, Pavia 27100, Italy
c National Research Council of Italy (CNR) – Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
d National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
e Department of Civil Environmental and Architectural Engineering, University of Padova, Lungargine Rovetta 8, 35100 Padova, Italy

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Bacterial communities vary significantly 
based on treatment process.

• Biowaste-derived soil conditioners pose 
higher health risks.

• Current safety indicators like Salmonella 
are insufficient.

• Integrated traditional and omic methods 
are essential for risk assessment.

• Propose using PCR protocols for moni-
toring soil conditioner safety.
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A B S T R A C T

In the circular economy, reusing agricultural residues, treated biowaste, and sewage sludges—commonly 
referred to as soil conditioners—in agriculture is essential for converting waste into valuable resources. However, 
these materials can also contribute to the spread of antimicrobial-resistant pathogens in treated soils. In this 
study, we analyzed different soil conditioners categorized into five groups: compost from source-separated 
biowaste and green waste, agro-industrial digestate, digestate from anaerobic digestion of source-separated 
biowaste, compost from biowaste digestate, and sludges from wastewater treatment plants. Under Italian law, 
only the first two categories are approved for agricultural use, despite Regulation 1009/2019/EU allowing the 
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use of digestate from anaerobic digestion of source-separated biowaste in CE-marked fertilizers. We examined the 
bacterial community and associated resistome of each sample using metagenomic approaches. Additionally, we 
detected and isolated various pathogens to provide a comprehensive understanding of the potential risks asso-
ciated with sludge application in agriculture. The compost samples exhibited higher bacterial diversity and a 
greater abundance of potentially pathogenic bacteria compared to other samples, except for wastewater treat-
ment plant sludges, which had the highest frequency of Salmonella isolation and resistome diversity. Our 
findings suggest integrating omics and cultivation-dependent methods to accurately assess the biological risks of 
using sludge in agriculture.

1. Introduction

The use of treated biosolids (BSO) from municipal wastewater 
treatment plants (WWTPs) and source-separated biowaste, as soil en-
hancers in agriculture presents a promising avenue for implementing 
sustainability policies aimed at reducing the carbon and water footprint 
of food production systems [1]. However, while this practice offers 
considerable benefits, concerns regarding potential biological hazards 
loom large, particularly in the absence of comprehensive monitoring 
plans within the European Union (EU) [2].

The transfer of chemical and biological contaminants to soil intended 
for food production raises apprehensions about human health risks 
through food exposure [3]. Among the spectrum of potential hazards are 
pathogenic and zoonotic agents including bacteria and parasites, along 
with antimicrobial resistance genes (ARGs), which can be horizontally 
acquired by pathogenic microorganisms [4].

Directive 86/278/EEC, designed to regulate the use of biosolids 
(BSO) in the EU, aims to prevent adverse effects on soil, vegetation, 
animals, and humans [5]. However, the transposition of this directive 
into national legislation by Member States has been limited, resulting in 
a lack of harmonization in implementation criteria. For instance, in 
Italy, the prevailing reference standard, Dlgs. 99 of 1992, sets the load of 
Salmonella spp. (less than 103 MPN/g) as the sole microbiological cri-
terion for BSO conformity, potentially leading to an underestimation of 
actual biological risks [6].

The presence of pathogens and ARGs in agricultural soils, coupled 
with their persistence, presents novel epidemiological challenges [7]. 
These include the creation of new paths for pathogen release into the 
food chain and the emergence of new microbial variants resistant to 
antibiotics, facilitated by horizontal gene transfer (HGT) [8]. Indeed, 
soils serve as reservoirs for antimicrobial-resistant bacteria and ARGs as 
highlighted by previous literature, demonstrating an increasing di-
versity and abundance of the antimicrobial resistome (total content of 
ARGs) over time [9]. Furthermore, previous studies have elucidated the 
role of practices such as water reuse or sewage sludge application in the 
spread of ARGs in agricultural soil [10].

Starting from these considerations, this paper endeavors to identify 
and characterize the biological hazards associated with the use of soil 
conditioners in agriculture through various approaches:

i) Characterizing the bacterial community, pathobiome (total con-
tent of bacterial genera including at least a confirmed pathogenic spe-
cies, as reported in Bartlett et al., 2022 [11], and antimicrobial resistome 
using amplicon and shotgun sequencing in various types of BSOs, 
encompassing both permitted and forbidden for agricultural use.

ii) identifying and isolating potentially pathogenic strains from the 
various types of BSOs as defined at point i).

iii) Providing a list of bacteria and ARGs as targets to differentiate 
between BSOs from different sources.

Through these analysis, this study aims to shed light on the potential 
risks associated with the use of soil conditioners in agriculture and to 
pave the way for informed decision-making and regulatory measures to 
ensure food safety and environmental sustainability.

2. Materials and methods

2.1. Sample collection and processing

A total of 140 samples of compost, digestate and sewage sludge were 
collected from seven commercial and municipal plants located in 
Northern Italy. The sampling activity was performed in accordance with 
the European standards on waste sampling to minimize the uncertainty 
deriving from sampling operations [12]. The samples were collected in 
two different sampling campaigns.

A total of 33 samples of compost (A) were collected from two 
treatment plants performing conventional industrial-scale aerobic 
treatment of separately collected biowaste and green waste. Composting 
is carried out as a stepwise process beginning with mechanical separa-
tion of impurities from biowaste (sieving and metal separation), fol-
lowed by approximately 30 days of forced aeration and mixing in 
windrows, which allows the feedstocks to reach temperatures of 
50–60 ◦C. The process is then completed with a further 30 days of 
maturation in static piles. Samples from agro-industrial digestates (B) 
were collected downward of two farm-scale digesters equally perform-
ing about 25 days of wet (about 10 % w/w of Total Solids) thermophilic 
(about 55 ◦C) anaerobic digestion of zootechnical (bovine and suine 
manures) and agricultural residues (corn silage and straw) for a total of 
29 samples. Biowaste digestate (C) was gathered in 22 samples from two 
public-private multiutility companies operating integrated anaerobic- 
composting treatment on source-separated biowaste and green waste 
generated in urban contexts. Both plants generate C by performing 
approximately 25 days of wet (10 % TS on a weight base), mesophilic 
(about 40 ◦C), anaerobic digestion of biowaste, mechanically pre-
selected (i.e., sieving and metal separation) to get rid of impurities, 
mixed together with shredded green waste. Additionally, 30 samples of 
compost (D) were collected from the same plants producing C. These 
samples resulted from the composting of previously chipped green waste 
mixed with the a solid fraction of compost (C). The composting process 
was carried out under equivalent conditions used in the production of A 
samples. Further, 26 samples of treated and untreated sewage sludge (E) 
were collected from two WWTPs treating urban drainage and household 
wastewater. In particular, six samples were collected downstream the 
sludge thickener serving the biological treatment (i.e., nitrification- 
denitrification) of wastewater. The remaining samples were consti-
tuted by the digested sludge undergone about 20 days of mesophilic 
(about 30 ◦C), wet (about 4 % TS on a weight base), anaerobic 
treatment.

2.2. Detection and isolation of selected pathogenic bacteria and parasites

2.2.1. Shiga toxin-producing E. coli (STEC)
Detection of STEC was performed following the ISO/TS 13136:2012 

[13]. Twenty-five grams or millilitres for each sample were collected 
and homogenised with 225 ml of buffered peptone water (APTS) in a 
Stomacher bag with filter. The resulting solution (enrichment broth) was 
then incubated for 18–24 h at 37 ◦C.

One ml of the enrichment solution for each sample was used for the 
subsequent DNA extraction as follows: samples were centrifuged at 9000 
x g for 5 min and then the supernatant was discarded. The pellet was 
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washed with 1 ml of phosphate buffer saline (PBS), centrifuged again at 
13000 x g for 1 min. The supernatant was discarded and the pellet was 
resuspended in 200 μl InstaGene Matrix (Bio-Rad) and incubated at 
56 ◦C for 30 min followed by a second incubation at 99 ◦C for 5 min. 
Samples were then centrifuged at 12000 x g for 5 min and the super-
natants were used to detect stx and eae genes using the following 
multiplex real-time PCR (rPCR) protocol. The enrichment broth was 
conserved at 2–8 ◦C degree until negative results from the rPCR (see 
below).

For each sample, the rPCR assay was carried out in 20 μl: 2 μl of DNA, 
0.2 μM of each primer (Table 1), 4 μl of QuantiFast Pathogen Master Mix 
(QIAGEN), and filtered and autoclaved water to the final volume, using 
a CFX96 Real-Time System (Bio-Rad). The rPCR program was 95 ◦C for 
5 min, 45 cycles of 95 ◦C for 15 s and 60 ◦C for 45 s, when florescence 
was read. Ramp rate in each step was set at 5 ◦C/s.

In cases when florescence was detected for stx1 or stx2 gene, 
microbiological isolation of STEC was attempted by plating the enrich-
ment broth directly onto selective MacConkey agar (MCC) plates, 
incubated at 37 ◦C for 18–24 h. Direct plating was performed to ensure 
the isolation of at least 50 E. coli typical colonies. Each presumptive 
E. coli colony was plated in nutrient agar (NA) plates and incubated at 
37 ◦C for 18–24 h. Simultaneously, the presumptive E. coli colony was 
resuspended in 100 μl distilled water for DNA extraction and serogroup 
determination.

2.2.2. Salmonella spp.
Screening of samples positive for Salmonella spp. was initially per-

formed by rPCR according to ISO 17604:2015 [14]. Twenty-five grams 
or millilitres for each sample were collected and homogenised with 225 
ml of APTS in a Stomacher bag with filter. The resulting solution 
(enrichment broth) was then incubated for 18 h at 37 ◦C. One ml of the 
enrichment solution for each sample was used for the subsequent DNA 
extraction with the iQ-Check Salmonella II kit (Bio-Rad). The enrichment 
broth was conserved at 2–8 ◦C degree until negative results from the 
rPCR (see below).

Samples were centrifuged at 12000 x g for 5 min and then the su-
pernatant was discarded. Two hundreds μl of Lysis Reagent A were 
added to resuspend the pellet and then samples were incubated at 95 ◦C 
for 10 min. Samples were then centrifuged at 12000 x g for 5 min and the 
supernatants were used to detect Salmonella using the following rPCR 
protocol.

For each sample, the rPCR assay was carried out in 50 μl: 5 μl of DNA 
and 45 μl of the amplification mix composed of Reagent B (fluorescent 
probe) and Reagent C (amplification mix). Volumes for Reagent B and 
Reagent C were determined following the manufacturer’s instructions. A 
CFX96 Real-Time System (Bio-Rad) was used to perform the rPCR with 
the following program: 95 ◦C for 10 min, 45 cycles of 95 ◦C for 13 s, 
58 ◦C for 5 s and 72 ◦C for 22 s

Samples were considered positive for Salmonella spp. When the 
threshold cycle (Ct) was greater than 10 in such cases the microbio-
logical identification was attempted from the enrichment broth, ac-
cording to ISO 6579–1:2017 [15]. An aliquot of 100 μl of the enrichment 
broth for each sample presumptively positive for Salmonella was plated 
as three distinct droplets onto a modified semisolid 
Rappaport-Vassiliadis (MSRV) plate and incubated at 41.5 ◦C for 24 h. 
At the same time, 1 ml of the enriched broth was added to 10 ml of 

Muller-Kauffmann tetrathionate novobiocin broth (MKTTn) and incu-
bated at 36 ◦C for 24 h. After the incubation period, suspected Salmonella 
colonies grown on MSRV were then plated onto brilliant green agar 
(BGA) and xylose lysine deoxycholate (XLD) agar plates. Ten μl from the 
MKTTn broth were also plated onto BGA and XLD plates. BGA and XLD 
plates were incubated at 36 ◦C for 24 h. Typical Salmonella colonies 
grown onto BGA and XLT plates were transferred onto nutrient agar 
(NA) plates and incubated at 36 ◦C for 24 h for subsequent identification 
and characterization.

Biochemical identification of suspected Salmonella colonies was 
performed by inoculation onto triple sugar iron (TSI) agar, urea- 
supplemented agar, ONPG semisolid agar, lysin-supplemented broth 
and tryptone/tryptophan medium (TTM) and incubation at 36 ◦C for 24 
h. Salmonella strains are expected to induce a color change in TSI (red 
slant, yellow bottom with bubbles, and a black halo) and in lysin- 
supplemented broth. No color changes should be observed in urea- 
supplemented agar, ONPG semisolid agar, and MTT broth.

Serological identification of isolates identified as Salmonella from the 
biochemical characterization was performed by slide agglutination with 
Salmonella antisera towards somatic (O-) and flagellar (H-) antigens, 
according to ISO/TR 6579–3:2014 [15]. The serovar names were 
assigned according to the White-Kauffmann-Le Minor scheme [16,17].

2.2.3. Listeria monocytogenes
Screening of samples positive for Listeria monocytogenes was initially 

performed by rPCR according to ISO 17604:2015 [14]. Twenty-five 
grams or milliliters for each sample were collected and homogenized 
with 225 ml of Listeria special broth (LSB, Bio-Rad) in a Stomacher bag 
with a filter. The resulting solution (enrichment broth) was then incu-
bated for 25 h at 30 ◦C. From the enrichment solution, for each sample 
1.5 ml was used for DNA extraction with the iQ-Check Listeria mono-
cytogenes II kit (Bio-Rad). The enrichment broth was conserved at 2–8 ◦C 
degree until negative results from the rPCR (see below).

Samples were centrifuged at 12000 x g for 5 min and then the su-
pernatant was discarded. Two hundred-fifty μl of Lysis Reagent (A+F) 
were added to resuspend the pellet; samples were vigorously mixed in a 
cell disruptor for 3 min and then incubated at 95 ◦C for 15 min. Samples 
were then centrifuged at 12000 x g for 5 min and the supernatants were 
used to detect Listeria monocytogenes using the following rPCR protocol.

For each sample, the rPCR assay was carried out in 50 μl: 5 μl of DNA 
and 45 μl of the amplification mix composed of Reagent B (fluorescent 
probe) and Reagent C (amplification mix). Volumes for Reagent B and 
Reagent C were determined following the manufacturer’s instructions. A 
CFX96 Real-Time System (Bio-Rad) was used to perform the PCR with 
the following program: 95 ◦C for 10 min, 50 cycles of 95 ◦C for 15 s, 
58 ◦C for 20 s, and 72 ◦C for 30 s

Samples were considered positive for Listeria monocytogenes when 
Ct> 10 and in such cases, microbiological identification was attempted 
from the enrichment broth. An aliquot of 100 μl of the enrichment broth 
for each sample presumptively positive for Listeria monocytogenes was 
plated onto a RAPID’L. mono selective plate. After an incubation at 
37 ◦C for 24 h, typical Listeria monocytogenes colonies were identified.

2.2.4. Campylobacter spp.
Isolation of Campylobacter spp. isolates was performed according to 

ISO 10272–1:2017 [18]. Ten grams or milliliters for each sample were 

Table 1 
Primers and probe used in the rPCR for STEC detection.

Primer/probe name Target genes Forward sequence Reverse sequence

VTrt stx1/stx2 5′-TTTGTYACTGTSACAGCWGAAGCYTTACG− 3′ 5′-CCCCAGTTCARWGTRAGRTCMACRTC− 3′
EAErt eae 5′-CATTGATCAGGATTTTTCTGGTGATA− 3′ 5′-CTCATGCGGAAATAGCCGTTA− 3′
Probe stx1 5′–56-FAM–CTGGATGAT/ZEN/CTCAGTGGGCGTTCTTATGTAA/3IABkFQ/–3′
Probe stx2 5′–5Cy5/TCGTCAGGCACTGTCTGAAACTGCTCC/3IAbRQSp/–3′
Probe eae 5′–/5TEX615/ATAGTCTCGCCAGTATTCGCCACCAATACC/3IAbRQSp/–3′
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homogenized in 90 ml of Preston broth (PR 90) and incubated at 41.5 ◦C 
for 24 h in microaerophilic conditions (enrichment broth). After the 
incubation, the enrichment broth was plated onto modified charcoal 
cefoperazone deoxycholate agar (CCDA) plates using a 10 μl loop and 
incubated again at 41.5 ◦C for 44 h in microaerophilic conditions. 
Typical or suspected Campylobacter colonies were transferred onto 
Columbia Agar (CA) plates and incubated at 41.5 ◦C for 24–48 h in 
microaerophilic conditions. Single Campylobacter colonies from CA 
plates were tested for morphology and motility, ability to grow in aer-
obic conditions after incubation at 25 ◦C for 44 h and reactivity to the 
oxidase test.

2.2.5. Giardia duodenalis and Criptosporidium spp
The detection of Giardia and Cryptosporidium spp. was performed in 

1 g of sample fixed using the commercially available immunofluores-
cence test according to manufacturer instructions (Merifluor® Crypto-
sporidium/Giardia, Meridian Bioscience, Cincinnati, OH, USA). 
Quantification of Giardia cysts and Cryptosporidium spp. oocysts was 
made by counting protozoa elements under the microscope and 
expressed as a number of (oo-) cysts per 1 g of sample.

2.3. DNA extraction

Total genomic DNA was extracted from the different samples using a 
commercial column-based kit (QIAamp Fast DNA Stool, QIAGEN), 
following the manufacturer’s instructions with minor modifications. In 
details, for solid samples, 7–10 g were weighted to be used as starting 
material together with 10 ml of saline solution that were added in a 
Stomacher bag and homogenized for 1 min. From the resulting solution, 
1.5 ml were collected, centrifuged (1 min, 6000 x g) to collect the pellet 
that was used for DNA extraction as described below. For liquid samples, 
0.5 ml was used as the starting material. After centrifugation (1 min, 
6000 x g), the supernatant was discarded and the pellet was weighed. 
One ml of Inhibitex Buffer was added to the pellet from either liquid or 
solid samples, and vigorously homogenized using the DistruptorGenie 
for 1 min. Samples were then incubated for 10 min at 85 ◦C and then the 
protocol was followed as described by the manufacturer. DNA was 
eluted in 100 μl of ATE Buffer and stored at − 20 ◦C until further 
analyses.

2.4. DNA sequencing

2.4.1. 16 SrRNA gene amplicon sequencing
Each obtained DNA sample was used as a template for amplification 

of the V3-V4 hypervariable regions of the 16S rRNA gene. The 16 Sr RNA 
gene library was prepared according to the Illumina 16S Metagenomic 
Sequencing Library Preparation protocol, following the instructions of 
the Nextera XT DNA Library Prep kit (Illumina Inc., San Diego, CA, 
USA). Libraries were checked for both concentration and quality using 
Qubit dsDNA 1X High Sensitivity and 2200 TapeStation (Agilent), 
respectively. Samples were equimolarity pooled, and sequencing was 
performed with an Illumina MiSeq platform using a MiSeq 600V3 car-
tridge (600 cycles, 2 ×300 bp, paired-end reads). The raw data were 
deposited on the European Nucleotide Archive (ENA) with Bioproject n. 
PRJEB76115.

2.4.2. Shotgun sequencing
A subset of 54 samples belonging to A (N = 9), B (N = 15), C (N =

10), D (N = 6) and E (N = 14) matrix respectively, were underpinned to 
shotgun sequencing. The subset of samples was obtained by pooling 
together DNA samples with similar microbial communities. Libraries 
were prepared, using the Nextera XT DNA Library Preparation Kit 
(Illumina Inc., San Diego, CA, USA). The average library size was 
assessed with a 2200 TapeStation system (Agilent). Samples were 
equimolarity pooled and diluted until 1.3 pM. Sequencing was carried 
out on the Illumina NextSeq 550 platform, employing a 2 × 150 bp 

paired-end read sequencing chemistry. The raw data were deposited on 
the European Nucleotide Archive (ENA) with Bioproject n. 
PRJEB76115.

2.5. Bioinformatic analysis

2.5.1. Bacterial community annotation
The raw data obtained by 16S rRNA gene amplicon sequencing were 

processed in RStudio [15] using the dada2package [19]. The sequences 
were first filtered and trimmed utilizing a truncation based on the 
quality profiles of the reads. The filtered sequences were then der-
eplicated to combine all identical sequencing reads into unique se-
quences. After quality check, a total of 117 over 140 samples were used 
for the analyses, belonging to A (N = 26), B (N = 28), C (N = 19), D (N =
18), and E (N = 26) matrices respectively. Then, the forward and the 
reverse reads were merged to obtain the full denoised sequences. To 
increase the accuracy of the results, chimeras were removed. SILVA ri-
bosomal database [20] was used to assign taxonomy to the identified 
Amplicon Sequence Variants (ASVs). The pathobiome was investigated 
by filtering of ASV table to keep only the ASVs belonging to potentially 
pathogenic genera as described in Bartlett et al., 2022 [11]. Briefly,

a list of 267 potentially pathogenic bacterial genera, retrieved from 
Bartlett et al., 2022 [11], was used to filter the ASV table, retaining only 
the ASVs whose taxonomic assignment matched the genera present in 
this list. This approach defined a subset of the global microbial com-
munity here defined as pathobiome.

2.5.2. Antimicrobial resistome annotation
The shotgun sequencing raw data were processed using TrimGalore 

version (0.6.10) [https://github.com/FelixKrueger/TrimGalore/tr 
ee/master], using a Phred score cutoff of 20 and keeping only se-
quences longer than 100 bp.

The resistome was extracted from the trimmed reads using RGI 
(6.0.3) [https://github.com/arpcard/rgi/tree/master], using the RGI- 
bwt module, with the CARD database as a reference, with default 
setting and matching to Protein Homolog Models.

The extracted resistome for each sample was then normalized with 
the 16S rRNA gene copy number obtained with ARGs OAP (3.2.3) 
[https://github.com/xinehc/args_oap/tree/master], using the method 
suggested in Yin et al.(2023). [21].

2.6. Statistical analysis

Statistical analysis and graphical representation were performed 
using R version 4.2.3 software [16] P-value < 0.05 was considered 
significant.

2.6.1. Prevalence estimation of selected pathogens
The prevalence and exact binomial confidence intervals (95 % level) 

of the isolated pathogens were estimated by considering both the overall 
data and the data specific to each type of sludge.

The potential significance of differences in prevalence among types 
of sludge was assessed using the one-tailed Fisher’s exact probability 
test. In case of significance, a pairwise comparison, using the FDR (false 
discovery rate) method to adjust the p-value, was conduct. The packages 
binom [22] and rstatix [23] were applied.

2.6.2. Comparison of diversity indexes on microbiome, pathobiome and 
resistome

Statistical tests were performed on three datasets: the whole bacte-
rial community (n = 117), the pathobiome (n = 117), and the resistome 
(n = 54). The analysis was conducted by phyloseq package [24]. For 
alpha-diversity measures (Shannon index), the count-tables, derived 
from the microbiome, pathobiome and resistome data, were normalized 
using Geometric Mean of Pairwise Rations method (GMPR package)
[25]. The non-parametric Kruskal-Wallis test was used to compare 
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alpha-diversity. If significant, the pairwise comparison Wilcoxon-Mann- 
Whitney test was performed by adjusting the p-value (p adj-value) for 
multiple comparisons using the FDR method. Beta-diversity was evalu-
ated with Bray-Curtis distance and visualized by a Principal Coordinate 
analysis (PCoA) plot. PERMANOVA test was used to compare 
beta-diversity parameters among groups.

Moreover, for the pathobiome and the resistome, a differential 
abundance analysis was conducted via the Kruskal-Wallis test. In 
particular, for the pathobiome, the total abundance of potentially 
pathogenic genera and the abundance of the single food pathogens were 
tested; for the resistome, the total ARG abundance and the abundances 
at the resistance class level were analyzed. If the results of this test had 
statistical consistency, a set of pairwise tests using the Wilcoxon-Mann- 
Whitney test was performed.

2.6.3. Variables reduction and classification on microbiome, pahtobiome, 
and resistome

Bacterial genera, potentially pathogenic bacteria, and ARGs datasets 
were analyzed to reduce the data complexity in terms of variable 
numbers and to identify the most important futures to discriminate 
among the different types of sludge.

In order to reduce the data complexity, a multinomial linear 
regression model, with LASSO (Least Absolute Shrinkage and Selection 
Operator) penalty of maximum likelihood, was applied.

The selection of genera and genes was obtained by using the optimal 
lambda regularization parameter identified as lambda min. Lambda min 
is the value of lambda (λ) that gives the minimum mean cross-validated 
error and tends to preserve a greater number of variables.

The random forest (RF) technique was applied considering the 
genera and genes selected to verify if it is possible to discriminate among 
the various types of sludge. Out-of-bag (OOB) error was used to measure 
the predictive ability of the RF model. Multidimensional scaling (MDS) 
plot of RF results was used to highlight the similarities among the 
sludge. The importance variables’ graph, ordered according to the mean 
decrease accuracy, was used to show the most relevant genera and genes 
in the classification of the sludge. The packages glmnet [26], random-
Forest [27], and ggplot2 [28] were applied.

2.6.4. Network analysis
The co-occurrence between ARGs and their possible bacterial hosts 

was investigated through a network correlation analysis. In particular, 
for the whole bacterial community, only 54 samples matching the 
resistome dataset were analyzed. Moreover, ARGs with a total normal-
ized abundance in all samples ≥ 0.003 and bacterial genera with a total 
normalized abundance in all samples ≥ 1000 were selected. Applying 
these thresholds, at least 20 % of genes/genera from both datasets was 
retained. A matrix of pairwise correlations for each type of sludge was 
obtained by Spearman rank correlation [29], using the psych package 
[30], considering genetic elements significantly correlated for rho> 0.8 
and p < 0.01. The co-occurrence network, based on such significantly 
correlated genetic elements, was characterized and visualized using 
Gephi software v0.10.1 [31]. In the network, a modularity index > 0.4 
identified a modular structure of its components (as defined in Newman, 
2006).[32].

3. Results

3.1. Identification of selected pathogenic bacteria and parasites

Salmonella was successfully detected and isolated in 27 out of 140 
samples. Details on the Salmonella serovars identified are reported in 
Table 1S. Listeria monocytogenes was isolated from 10 samples as detailed 
in Table 2S. Campylobacter spp. was isolated from 3 samples (Table 3S). 
Cysts (from 2 to 6) of Giardia duodenalis were detected in 6 out of 140 
samples. All specimens were Cryptosporidium negative. Despite the 
detection of STEC in a few samples, evidenced by the positivity for stx 

and eae genes (Table 4S), attempts to microbiologically isolate the 
strain were unsuccessful. The prevalence and exact binomial confidence 
intervals (95 % level) of the selected pathogens were reported in Table 2
and Table 8S.

The chi-square test indicated that there was not a significant differ-
ence among the prevalence of the different sludges for Listeria mono-
cytogenes (p = 0.0816), and Campylobacter spp. (p = 0.604), whereas 
there were significant differences for Salmonella spp. (p < 0.001) and 
Giardia duodenalis (p < 0.001). The pairwise comparison indicated that 
the prevalence of Salmonella spp in E was significantly higher than in A 
(p = 0.0066) and B (p = 0.0018). Whereas, the prevalence of Giardia 
duodenalis in E was significantly higher than in B (p = 0.0397), and D (p 
= 0.0397).

3.2. Bacterial community composition

As evidenced by Fig. 1A, the alpha-diversity of the bacterial com-
munity, as measured by the Shannon index, highlighted differences 
among the various sludges. Significant differences were found between 
B and D (p < 0.001), with matrix D exhibiting the highest median 
Shannon index. Statistically significant variances are also observed be-
tween A and D, as well as between B and E (p < 0.05).

The analysis of beta-diversity has revealed a distinct partitioning 
among compost matrices (A and D), digestate matrices (B and C), and 
the treated and untreated, and non-compliant agricultural sludge matrix 
(E), with samples clustering into three different clusters (Fig. 2A). This 
partitioning is reflected in the taxonomic composition (Fig. 3A). Indeed, 
A and D, derived from compost, exhibited higher abundance in Bacilli, 
Alphaproteobacteria, Actinobacteria, and Deinococci, while B and C, 
from digestate, showed greater abundance in taxa belonging to the class 
of Bacteroidia, Gammaproteobacteria, Limnochordia, and Clostridia. 
For E, approximately 50 % of the bacterial community comprised taxa 
belonging to the class of Bacteroidia and Gammaproteobacteria.

Regarding unique and shared bacterial genera, we can observe that 
the matrix showing the highest number of exclusive bacterial genera was 
E. In this case, the unique genera accounted for 50 % of the bacteria 
present in the microbial community of this type of sludge. The matrix 
with the lowest number was matrix D (8 %). For the other types of 
sludges, the unique genera were: 18 % for A, 12 % for B, and 14 % for C 
(Supplementary Fig. S1A).

Considering the bacterial genera, the regression model with LASSO 
penalty selected 67 genera (Table S1 supplementary material). This 
selection was obtained considering a lambda (λ) value of 0.002. The five 
groups of sludge were distinguishable in the RF MDS plot (Fig. 4A left 
panel, OOB=2 %). From this figure, B and C were more similar to each 
other, as for A and D, while E was different from all the others. The most 
relevant bacterial genera for the sludge’s classification were shown in 
Fig. 4A (right panel) and the first five were Dethiobacter, Gracilibacillus, 
Oceanobacillus, Aliivibrio, and Lautropia.

3.3. Pathobiota composition

After filtering the obtained ASV table for the presence of the 267 
potentially pathogenic bacterial genera identified by Barlett et al., 2022 
[11], we retained only 8588 ASVs. The prevalence of potentially path-
ogenic genera (PPG) varied from approximately 10 % to 20 %, with 
differences stemming from the sludge of origin (Fig. 3B). Specifically, 
the prevalence of PPG in A was significantly higher than that found in all 
other types of sludge, while the prevalence of PPG in B was significantly 
lower than in the other sludges (p < 0.005). The prevalence of PPG in D 
was significantly higher than in matrices B, C, and E (p < 0.005); the 
prevalence of PPG in C is significantly higher than in B (p < 0.005), and 
the prevalence of PPG in E is significantly higher than in B and C 
(p < 0.005).

Regarding the diversity of the pathobiota, the Shannon index varied 
significantly depending on the type of sludge. Particularly, the greatest 
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difference in terms of richness was observed in the comparison between 
A and B, B and D, and C and D (p < 0.0001), with D exhibiting highest 
richness and B showing the lowest richness (Fig. 1B). Similarly to what 
was observed in the case of the whole bacterial community, the patho-
biota also exhibited a community-level structure that reflected the type 
of matrix analyzed (Fig. 2B).

The Venn diagram shown in Supplementary Fig. S1B revealed a clear 
differentiation in the composition of the resident pathobiota across the 
analyzed sludges. Particularly noteworthy is the presence of unique 
genera in B, including bacteria belonging to the genera Campylobacter 

and Clostridium, and the presence of Serratia in D, Rickettsia in C, and 
Yersinia in E.

Among the foodborne potentially pathogenic bacteria identified in 
the analyzed matrices, it is noteworthy that the differential abundance 
of Bacillus, Staphylococcus, Escherichia, and Brucella is statistically 
different across the various sludges (Table 2A). Particularly, although 
detected in every matrix, the genus Bacillus was more prevalent in 
samples derived from D. In addition, samples belonging to A displayed a 
higher load of Bacillus than B, C, and E (p < 0.001) and B than in E 
(p < 0.05). The genus Staphylococcus was significantly higher in A if 

Table 2 
Prevalence and confidence interval (CI95) of each pathogen, overall and by type of analyzed substrate (A-E). CI95 is indicated between square brackets.

Prevalence [and CI95]

Pathogens 
N pos/N tot

Overall (140) A (33) B (29) C (22) D (30) E (26)

Salmonella spp. 
19/140

13.57 % 
[8.37; 20.38]

3.03 % 
[0.08; 15.76]

0 % 
[0; 11.94]*

22.73 % 
[7.82; 45.37]

10.00 % 
[2.11; 26.53]

38.46 % 
[20.23; 59.43]

Listeria 
monocytogenes 
10/140

7.14 % 
[3.48; 12.74]

6.06 % 
[0.74; 20.22]

3.45 % 
[0.09;17.76]

18.18 % 
[5.19; 40.28]

0 % 
[0; 11.57]*

11.53 % 
[2.44; 30.15]

Campylobacter spp 
3/140

2.14 % 
[0.44; 6.13]

0 % 
[0; 10.58]*

0 % 
[0; 11.94]*

4.54 % 
[0.11; 22.84]

3.33 % 
[0.08; 17.21]

0 % 
[0; 13.23]*

Giardia duodenalis 
6/140

4.29 % 
[1.59; 9.09]

0 % 
[0; 10.58]*

0 % 
[0; 11.94]*

0 % 
[0; 15.43]*

0 % 
[0; 11.57]*

23.07 % 
[8.97; 43.65]

(*) one-sided, 97.5 % confidence interval

Fig. 1. Boxplots of the Shannon index in five sample matrices. A. Shannon index calculated from the entire dataset of the bacterial community. This panel represents 
the diversity of all bacteria present across the five matrices. B. Shannon index calculated from the pathobiome dataset. This panel shows the diversity specifically 
within the subset of bacteria identified as potentially pathogens. C. Shannon index calculated from the antimicrobial resistome dataset. This panel depicts the di-
versity within the subset of antimicrobial resistance genes. Outliers are indicated by dots in each boxplot. The significance of differences between the matrices is 
indicated by asterisks: * p < 0,05; * * p < 0,01; * ** p < 0001; * ** * p < 0,0001.
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compared to B, C, and E samples (p < 0.001), and in D than in B 
(p < 0.01), C, and E (p < 0001). Additionally, Staphylococcus was 
significantly higher as well as in samples from matrix B than in C 
(p < 0.05) and E (p < 0.01). As regards, the genus Escherichia it was 
more prevalent in E than in the other sampled matrices (p < 0.05) but 
also in- samples belonging to B if compared to C (p < 0.05). The genus 
Brucella was significantly higher in D than in A and B (p < 0.05).

Considering the pathogenic bacterial genera, the regression model 
with the LASSO penalty selects 39 genera (Table S2 supplementary 
material). This selection was obtained considering a value of λ equal to 
0.007.

The five groups of sludge were distinguishable in the RF MDS plot 
(Fig. 4B left panel, OOB=3 %). From this figure, B and C were more 
similar to each other, as for A and D, while E was different from all the 
others. The most relevant pathogenic bacteria genera for the sludge’s 
classification were shown in Fig. 4B (right panel) and the first five were 
Fastidiosipila, Brevibacterium, Ruminococcus, Corynebacterium and 
Lawsonella..

3.4. Antimicrobial resistome composition

The Shannon index related to the resistome showed statistically 
significant differences based on the matrix. Specifically, the greatest 
differences were observed in the comparison between A and E 
(p < 0.0001), and between C and E (p < 0.0001) (Fig. 1C), with matrix 
E having, in general, the highest median Shannon index with respect 
with the other sludges. Looking at the results of beta-diversity analysis, 
the resistome structure highlighted the presence of clusters coinciding 
with the Compost and Digestate matrices, albeit less prominently than 
observed for the structure of the whole microbial community and the 
pathobiome (Fig. 2C).

Regarding unique and shared ARGs, the matrix showing the highest 
number of exclusive genes was E, where unique ARGs accounted for 
59 % of genes detected in this type of sludge. The matrix with the lowest 
number was matrix C (11 %) (Supplementary Fig. S1C).

Among the ARG classes identified in the analyzed matrices, it is 
noteworthy that the differential abundance of resistance determinants to 
Beta-Lactams, Macrolides, Phenicols, Quinolones, and Tetracyclines is 

Fig. 2. PCoA plot of beta diversity. Each point represented the structure of microbial community of samples. Samples with similar composition tended to be in the 
same area of the plot, while points far apart from each other represent samples with dissimilar composition. Kinds of samples’ matrix are identified by different 
colours (A: light-blue; B: red; C: yellow; D: blue; E: green). A. Beta-diversity calculate for whole bacterial community B. Beta-diversity calculate for pathobiome C. 
Beta-diversity calculate for antimicrobial resistome.

Fig. 3. A. Stacked bar charts showing relative abundance (%) of bacterial communities, annotated to the taxonomic level of genus, derived from the five different 
matrices in exam. Each bacterial genus is identified by a color as described in the legend. B. Stacked bar chart depicting % of taxa belonging to pathobiota and non- 
pathobiota. Red bars show the % of pathobiota, and green bar represent other taxa.
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Fig. 4. Random forest output: MDS (left panel) and importance variables according to the mean decrease accuracy (right panel). A. bacterial genera 
characterizing the different samples; B. potentially pathogenic bacteria characterizing the different samples; C. antimicrobial resistance genes characterizing the 
different samples.
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statistically different across the various sludges (Table 2B). Particularly, 
although detected in every matrix, genes encoding for the resistance to 
Beta-Lactams had the highest abundance in E (p < 0.001) (Table 2B). 
Genes encoding resistance to Quinolones were significantly lesser 
abundant in B than in A, D, and E (p < 0.05); whereas, genes against 
Macrolides were lesser in D than in C and E (p < 0.05) (Table 2B). 
Resistance to Phenicols was significantly higher both in B, than in A and 
D, and in E, than in A (p < 0.01) (Table 2B). Resistance to Tetracyclines 
was lower in A and D than B, C, and E (p < 0.05), and in E than in B 
(p < 0.01) (Table 2B). No significant differences among matrices were 
found for the other resistance classes. Moreover, the total ARG abun-
dance was higher in E than in D (p < 0.05) (Table 2B). Looking at the 
single genes, ermC had the highest abundance in A and ermF (both 
encoding for the resistance to Macrolides) in B and C, aph(6)-Id (to 
Aminoglycosides) in D, and msrE (to Macrolides) in E (Supplementary 
Table S7).

Considering the ARGs, the regression model with the LASSO penalty 
selects 57 genes (Table S7 supplementary material). This selection was 
obtained considering a value of λ equal to 0.025.

The five groups of sludge were distinguishable in the RF MDS plot 
(Fig. 4C left panel, OOB=9 %). From this figure, B and C were more 
similar to each other, as for A and D, while E was different from all the 
others. The most relevant ARGs for the sludge’s classification were 
shown in Fig. 4C (right panel) and the first five were aph(3′)-IIIa, cfr(C), 
blaOXA-5, tet(V) and ant(9)-la.

3.5. Co-occurrence network

The co-occurrence network was composed of 126 nodes (52 ARGs 
and 74 bacterial genera) and 395 edges in A (Supplementary Figure 2A); 

221 nodes (85 ARGs and 136 bacterial genera) and 1759 edges for B 
(Supplementary Figure 2B); by 209 nodes (66 ARGs and 143 bacterial 
genera) and 2104 edges for C (Supplementary Figure 2C); by 94 nodes 
(34 ARGs and 60 bacterial genera) and 177 edges for D (Supplementary 
Figure 2D); by 110 nodes (30 ARGs and 80 bacterial genera) and 150 
edges for E (Supplementary Figure 2E). All the networks included 
several potentially pathogenic bacterial genera: e.g., Streptococcus, 
Chryseobacterium, and Arcobacter in the A (Supplementary Figure 2A); 
Treponema, Bacteroides, and Streptococcus in B (Supplementary 
Figure 2B); Mycobacterium, Microbacterium, and Bordetella in C 
(Supplementary Figure 2C); Aeromonas, Pseudomonas, and Brevibacte-
rium in the D (Supplementary Figure 2D); Corynebacterium, Pseudo-
monas, and Paracoccus in E (Supplementary Figure 2E). These genera co- 
occurred with ARGs. Some of the potentially pathogenic bacteria 
comprised genera displaying a transmission by food chain. In particular, 
in C, we had Clostridium sensu stricto 1 and Bacillus, which co-occurred 
with both ARGs (qnrD2, dfrA14, and mph(A)) and other potentially 
pathogenic genera (Microbacterium and Bordetella) (Supplementary 
Figure 2C). In D, a co-occurrence of Clostridium sensu stricto 1 with 
aadA3, aadA5, aadA8b, and tet(36) was observed (Supplementary 
Figure 2D). In E, we had Clostridium sensu stricto 1 and Staphylococcus, 
with the former co-occurring with another potentially pathogenic genus 
(Psychrobacter) and the latter with an ARG (cfr) (Supplementary 
Figure 2E). No potentially pathogenic bacteria with food chain 

Table 2A 
. Results of the differential abundance analysis on the pathobiome and poten-
tially pathogenic genera with a transmission through food chain. For the single 
genera, only the significant ones are shown.

Differential abundance analysis

Pathobiota
A B C D E

A
B 0.577
C 0.078 0.151
D 0.349 0210 0.043
E 4.8e− 06 5,4e− 05 0.184 0.027
Bacillus

A B C D E
A
B 7.2e− 05
C 9.8e− 05 0.399
D 0.005 5.6e− 08 2.8e− 07
E 4.3e− 07 0.017 0.112 4.0e− 09
Staphylococcus

A B C D E
A
B 4.1e− 05
C 5.3e− 06 0.025
D 0.375 0.0005 2.8e− 05
E 3.9e− 07 0.004 0.8218 2.0e− 06
Escherichia

A B C D E
A
B 0.449
C 0.713 0.038
D 0.622 0.449 0.658
E 0.049 0.049 0.049 0.049
Brucella

A B C D E
A
B 0.597
C 0.639 0.877
D 0.048 0.048 0.081
E 0.210 0.210 0.210 0.210

Table 2B 
. Results of the differential abundance analysis on the total resitome and single 
antimicrobial resistance classes. For the single classes, only the significant ones 
are shown.

Differential abundance analysis

Resistome
A B C D E

A
B 0.087
C 0.087 0.630
D 0.681 0.087 0.087
E 0.101 0.311 0.470 0.024
Beta-lactamase

A B C D E
A
B 0.726
C 0.445 0.562
D 0.062 0.110 0.230
E 1.3e− 05 5.3e− 07 8.7e− 06 0.001
Macrolide

A B C D E
A
B 0.459
C 0.142 0.459
D 0.459 0.142 0.034
E 0.142 0.650 0.580 0.017
Phenicol

A B C D E
A
B 0.001
C 0.541 0.100
D 0.347 0.001 0.922
E 0.001 0.100 0.429
Quinolone

A B C D E
A
B 0.017
C 0.834 0.062
D 0.662 0.011 0.662
E 0.155 0.005 0.146 0.271
Tetracycline

A B C D E
A
B 0.002
C 0.009 0.101
D 0.069 0.008 0.026
E 0.009 0.009 0.101 0.024
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transmission were found in A and B (Supplementary Figure 2A, 2B).

4. Discussion

Bacterial communities of the analyzed samples were differentiated 
based on the treatments applied (either anaerobic digestion or com-
posting). Specifically, the bacterial community of the agro-industrial 
digestate resembled that obtained from the anaerobic digestion of a 
mixture of source-separated biowaste and green waste, in contrast to the 
compost samples. This result is particularly interesting, especially 
considering that one set of digestate samples originated from the bio-
waste, while a set of compost samples derived from the digestate of 
biowaste. This indicates that the treatment applied to the samples 
significantly influenced the bacterial community composition of the 
sludge, possibly more than the source of the sample. Indeed in both 
digestate samples Clostridia and Bacteroidia were among the most 
abundant bacteria while Bacilli and Alphaproteobacteria prevailed in 
compost samples, as previously observed [33,34].

The bacterial communities in sludge from WWTP samples differed 
from the others, with Bacteroidia and Gammaproteobacteria being 
prevalent. This is consistent with a previous study where these bacteria 
were found to be abundant within bacterial communities from inlet 
wastewater samples [33]. When analyzing the diversity of bacterial 
communities, we did not observe a specific pattern. There was no 
agreement between the two compost samples and the two digestate 
samples. Indeed, only one of the two compost samples, i.e., the compost 
derived from the biowaste digestate, exhibited higher bacterial com-
munity diversity if compared to the other compost (and to the 
agro-industrial digestate). This finding is intriguing as it suggests that 
despite the application of two sequential treatments (anaerobic diges-
tion and composting) to the samples derived from biowaste, alpha di-
versity appeared unaffected or minimally affected.

Analyzing the sole pathobiome, the different samples exhibited 
similar patterns to those observed in the whole bacterial community: 
digested samples clustered together, composts formed another group, 
while WWTP sludge samples remained distinct. Consequently, it is 
reasonable to reach the same conclusion as for the whole bacterial 
community; the treatments applied to the waste samples markedly 
influenced the composition of the pathobiome in different sludges. The 
compost from biowaste and green waste appeared to be the most human 
concerning sludge, exhibiting the highest abundance of the PPG and 
greater PPG diversity compared to all other samples, being second for 
pathobiome diversity only with respect to the compost derived from 
anaerobically digested biowaste. These findings are consistent with a 
previous study by Tozzoli et al., [35] which indicated that enteric vi-
ruses and pathogenic E. coli could be released into the environment 
through the use of sludge-derived soil improvers (TSI). This finding 
contrasts with the results obtained by the cultivation-dependent ap-
proaches that identified the WWTP sludges as the wastes potentially 
most hazardous for human health. These sludges showed a higher fre-
quency of Salmonella strain isolation, if compared to the sludges avail-
able for agriculture. Currently, Salmonella is the only bacterial genus 
monitored to assess the suitability of sludge for agricultural purposes 
[6]. Overall, these results underscore the limitations of 
cultivation-dependent approaches and of the use of Salmonella as a 
unique indicator of soil conditioners safety, thus emphasizing the ne-
cessity of integrating both cultivation-dependent and 
cultivation-independent methods for comprehensive microbiological 
monitoring, as previously proposed [36,37]. In the pathobiome of 
compost derived from biowaste and green waste, Staphylococcus, 
recognized as a "significant food safety hazard" [38], was found to be 
significantly more abundant compared to other types of substrates. This 
result suggests a need for further characterization of Staphylococcus 
populations in sludges allowed for use in agriculture, to identify the 
virulence and the potential pathogenic behavior of these bacteria.

Contrary to the results from the pathobiome analysis, the 

characterization of the antimicrobial resistome identified the WWTP 
sludge samples as potentially more hazardous compared to the other 
types of sludges. This was clear by observing both a higher diversity and 
a greater number of exclusively detected ARGs. Notably, beta- 
lactamases were prevalent, including several genes, e.g., blaGES-11, 
blaOXA-10, defined as high-risk ARGs for human health [39]. However, 
the digestate from biowaste and green waste samples shared some 
high-risk ARGs, e.g., blaOXA-10, with the WWTP sludge samples and their 
antimicrobial resistome was rich in the ermC gene, which has also been 
classified as a high-risk ARG [39]. Noteworthy, another set of samples 
allowed to be used in agriculture, namely agro-industrial digestate 
samples, showed a greater prevalence of quinolone resistance genes 
compared to the other samples. These ARGs are generally associated to 
mobile genetic elements [40] and are increasingly detected in patho-
genic bacteria [41]. Furthermore, although the co-occurrence of food 
pathogens and ARGs was observed only in the samples categorized as 
not available for agriculture, potentially pathogenic bacteria and ARGs 
co-occurred in all the sludges, underscoring once more that also the 
sludges usable for agriculture might be dangerous for the transmission of 
potentially pathogenic and antimicrobial resistant bacteria.

Overall, our findings indicate that the current biological parameters, 
such as the presence of Salmonella, used to determine the suitability of 
soil conditioners for agricultural use are inadequate. Soil conditioners 
deemed compliant under these regulations may still pose greater risks to 
human health, especially when considering the entire pathobiome and 
resistome, compared to those that are prohibited for agricultural 
application. Furthermore, they underscore that the integration of omic 
approaches with classical microbiological methods can univocally 
define the potential risks associated with sludges for agricultural use. 
Nonetheless, employing metagenomic analysis for diagnostic purposes 
on these samples might not be straightforward. Therefore, we refined 
the whole bacterial community, pathobiome, and resistome to focus on a 
selection of a few targets that can discriminate between the different soil 
conditioners. These targets could be used to develop quantitative Real- 
time PCR or digital droplet PCR protocols for monitoring the sludge 
samples to be used in agriculture.

This study represents the hazard identification phase, the initial step 
in the risk assessment process.

The next step in this process is to evaluate the persistence of these 
pathogens and ARGs in soils when soil conditioners are used in real-life 
scenarios. This involves investigating how long these contaminants 
remain active and viable in the soil environment and under various 
agricultural conditions. Understanding the persistence of these hazards 
is crucial for assessing long-term risks and their potential to impact soil 
health and crop safety over time. If the persistence of these pathogens 
and resistance genes is confirmed, we will proceed to the exposure 
assessment phase. This phase aims to evaluate the actual rate of transfer 
of these biological contaminants from soil to food crops. By determining 
how these contaminants move through the soil and into the plants, we 
can more accurately gauge the potential risks to human health. This 
comprehensive evaluation will involve field studies and controlled ex-
periments to monitor the uptake of pathogens and ARGs by crops under 
different agricultural practices.

Through this detailed risk assessment process, we aim to provide 
robust data to inform the development of effective regulatory measures. 
These measures will ensure that soil conditioners used in agriculture do 
not compromise food safety, thereby safeguarding public health while 
promoting sustainable agricultural practices.

5. Conclusion

• In the context of a circular economy, using biosolids as soil condi-
tioners allows for the conversion of waste into valuable resources. 
However, as highlighted by this study, this practice necessitates a 
thorough risk assessment for both environmental and human health.
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• The parameters set by current legislation appear to be too restrictive. 
Soil conditioners that are deemed compliant for agricultural use may 
still pose potential public health risks when considering the entire 
resistome and pathobiome.

• The combined use of cultivation-dependent and cultivation- 
independent methods could significantly improve the assessment 
of the biological risk of biosolids used as soil conditioners.

• Integrating various omic approaches has enabled the identification 
of specific targets for each matrix. These targets could be used to 
develop real-time PCR or digital droplet PCR protocols for a rapid 
monitoring to discriminate the diverse types of biosolid conditioners.
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influence of municipal wastewater treatment technologies on the biological 
stabilization of sewage sludge: A systematic review. Sustainability 14 (10), 5910.

[2] Pivato, A., Beggio, G., Bonato, T., Butti, L., Cavani, L., Ciavatta, C., et al., 2022. The 
role of the precautionary principle in the agricultural reuse of sewage sludge from 
urban wastewater treatment plants. Detritus 19.

[3] Pakdel, M., Olsen, A., Bar, E.M.S., 2023. A review of food contaminants and their 
pathways within food processing facilities using open food processing equipment. 
J Food Prot 86 (12), 100184.
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