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A B S T R A C T   

Quantitative systems models have been increasingly used to accelerate the development of pharmaceutical 
processes that traditionally require time and resource-intensive experimental campaigns. However, despite the 
potential benefits of modelling in pharmaceutical process development, there is often a lack of confidence from 
stakeholders to adopt these approaches in a systematic way. This is particularly important in a highly regulated 
sector such as the pharmaceutical industry, where model uncertainty evaluation may have to be quantified and 
filed if model results are to be included as part of a regulatory submission. In this study, a systematic procedure is 
proposed, combining both standard techniques (e.g., global sensitivity analysis, model-based design of experi-
ments) and new methods based on data analytics to assess model fidelity and to support practitioners in model 
usage for pharmaceutical development. A direct compression systems model for manufacturing oral solid dosage 
products is used as a case study. The systems model is comprised of the following sub-models: (1) Tablet press 
unit operation, (2) Tablet disintegration test unit, (3) In vitro dissolution test unit. The implementation of the 
methodology is critically discussed, showing the effectiveness of the approach and the benefits of the proposed 
techniques in (i) evaluating model fidelity as a result of uncertainty in parameter estimation, (ii) assessing 
whether it is necessary to estimate all systems model parameters in a statistically satisfactory way, and (iii) 
analyzing whether model calibration should be carried out on a unit basis or considering the overall system.   

1. Introduction 

Modeling in pharmaceutical manufacturing has been increasingly 
adopted to accelerate process development and optimization that typi-
cally require long and resource-intensive experimental campaigns 
(Destro and Barolo, 2022). Quantitative models can be used to represent 
the phenomena occurring along the manufacturing line and to examine 
the pharmacological effects of the drug product in the body, supporting 
rational drug design and decision making. The level of knowledge and 
understanding of the process, as well as the data availability required for 
calibration and validation of a model at a given stage of process devel-
opment, can vary significantly, affecting the selection of the modeling 
method (Chen and Ierapetritou, 2020). 

Pharmaceutical manufacturing processes are generally comprised of 
a set of unit operations connected by material and energy streams, which 

can be suitably represented through an integrated model (Boukouvala 
et al., 2012). Rather than exploiting the unit models separately for 
model-based research, an integrated model allows for investigating the 
influence of critical parameters in one unit to key performance in-
dicators (KPIs) and critical quality attributes (CQAs) of the desired 
product downstream in the process line (Metta et al., 2019). The usage 
of mathematical models is not limited to the manufacturing process: 
mathematical models can describe test units assessing whether a phar-
maceutical product meets the required specifications, or can be 
employed to represent the pharmacokinetic and pharmacodynamic 
behaviour of the active pharmaceutical ingredient (API) in the body. 
Such models, even if they are not physically connected to a unit oper-
ation and their inputs may not be material and energy streams derived 
from the manufacturing process, still maintain functional connections 
with the manufacturing model itself. For instance, these may comprise 
the transfer of physical properties and/or quality attributes. In this 
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Nomenclature 

Acronyms 
API active pharmaceutical ingredient 
CI confidence interval 
CQA critical quality attribute 
DAE differential and algebraic equations 
DC direct compression 
DoE design of experiments 
GSA global sensitivity analysis 
HPLC high performance liquid chromatography 
IR immediate release 
KI key indicator 
KPI key performance indicator 
KS knowledge space 
LV latent variable 
MBDoE model-based design of experiments 
MC Monte Carlo 
OSD oral solid dosage 
PC principal component 
PCA principal component analysis 
PLS partial least squares 
R&D research and development 
RTD residence time distribution 
THz terahertz 
USP Unites States Pharmacopeia 
UV ultraviolet 

Greek letters 
α significance level 
β the total fraction of tensile strength that can be lost due to 

lubrication 
γ lubrication rate constant [dm− 1] 
δ Dirac delta function 
ε average porosity of the swollen product [− ]

∊̇ erosion rate [m/s] 
θ set of parameters of the whole systems model 
θMi set of parameters of sub-model Mi 
Θ regressor matrix of PCA/PLS models 
λ swelling rate [s− 1] 
Λ diagonal matrix of the square roots of eigenvalue λa 
λa eigenvalue related to the a th direction 
μ liquid viscosity [Pa s] 
vii iith term of the variance–covariance matrix 
ρp density of particles [kg m− 3] 
Σi variance–covariance matrix of measurements errors in the 

ith experiments 
τ total stress [MPa] 
τor average tablet tortuosity [− ] 
φ experiment design vector 
ϕ shape factor of particles [− ] 
ϕML maximum likelihood function 
ψ selected metric of Vθ that represents the criterion for the 

experimental design 
ω lumped parameter for water penetration model [− ] 

Latin letters 
A number of principal components for PCA model 
a1 extended Kushner parameter (1) 
a2 extended Kushner parameter (2) 
asf Kawakita model parameter (1) 
At tablet surface area 
B number of latent variables for PLS model 
b1 extended Kushner parameter (3) 
b2 extended Kushner parameter (4) 

BAPI rate of release of API 
bsf Kawakita model parameter (2) [MPa− 1] 
C2 Peppas and Colombo parameter (1) [MPa] 
C3 Peppas and Colombo parameter (2) [MPa] 
cAPI bulk concentration of API [kg m− 3] 
csat saturation concentration of API [kg m− 3] 
d length of the short axis of the tablet [m] 
dh tablet hydraulic diameter [m] 
E elastic constant (1) [− ] 
E Θ-residuals for PCA model 
EK K -residuals 
Eθ Θ-residuals for PLS model 
FB,N− B,0.95 95% percentile F-distribution with B, N − B degrees of 

freedom 
FL tablet hardness [MN] 
G0 elastic constant (2) [MPa] 
Hcoat thickness of the coating layer [m] 
K extent of lubrication [dm] 
kAPI mass transfer coefficient of API [(m3kg− 1)nAPI s− 1] 
K response matrix of PLS model 
K set of key indicators of the whole systems model 
Kmj set of key indicators of sub-model mj 

K* vector of target key indicators 
l particle size [m] 
l0,API particle size at the beginning of the process [m] 
LC percentage of label content [− ] 
m number of sub-models of the systems model having 

associated at least one key indicator 
M number of sub-models of the systems model [− ]

Mt tablet mass [kg] 
Mt,0 initial tablet mass [kg] 
n swelling parameter [− ] 
N number of parameters combinations via MC simulations 
nAPI order of dissolution [− ] 
NAPI number of dissolving API particles in particledistribution 

bin L and L+dL size −
NK number of model key indicators 
Nθ number of model parameters 
Nsp number of sampling intervals 
Ny number of measured variables 
P compaction pressure [MPa] 
P Θ-loadings matrix for PCA model 
Pw weighed Θ-loadings matrix 
pc capillary pressure [Pa] 
Pd water penetration depth [m] 
Q K -loading matrix 
R Θ-loading matrix for PLS model 
RAPI,l particle dissolution coefficient [m s− 1] 
S Θ-score matrix for PLS model 
sb semi-axis of the hyper-ellipsoid along the b th direction 
si,j i, j th element of the inverse of the measurement error 

covariance matrix 
Sλ

i,j similarity factor [− ] 
Sp shape factor of pores [− ] 
sf solid fraction [− ] 
t time [s] 
t solution on the score space 
t( • ) critical value of a t-distribution with (1 − α/2) % 

confidence level and (N − Nθ) degrees of freedom 
tnew direct inversion solution on the score space 
tref reference t-value 
tsp vector of the output variables sampling times 
T Θ-scores matrix for PCA model 
T2

lim 95% confidence limit for Hotelling’s statistics 
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perspective, these models can be seen as additional sub-systems within a 
more comprehensive entity, which comprises, but is not limited to, the 
flowsheet model of the manufacturing process. The overall model 
comprising all sub-systems (e.g., all equations describing the relevant 
phenomena occurring in a single unit operation, or in a single in vitro 
product performance test unit) is often referred to as a systems model 
(Avraam et al., 1998). 

Over the last 15 years, several examples of pharmaceutical 
manufacturing systems model applications have been proposed in the 
literature. Just to mention some recent contributions, Bano et al. (2022) 
streamlined the development of an industrial dry granulation process for 
immediate release tablets. White et al. (2022) developed a systems 
model of a pharmaceutical tablet manufacturing process comparing dry 
granulation with direct compression. Moreno-Benito et al. (2022) pre-
sented a hybrid systems model of a continuous direct compression line 
combining first-principles and data-driven approaches. In Yang et al. 
(2022) a systems model is exploited to design a recombinant adeno- 
associated virus drug manufacturing process operating in batch and 
continuous mode. Diab et al. (2022a) proposed a general framework to 
guide control strategies for continuous manufacturing of an API in an 
industrial environment. In Diab et al. (2022b), an integrated approach 
was used to find the optimal process setpoints to optimize the 
manufacturing process of API production. Destro et al. (2022) proposed 
a benchmark simulator for the development and testing of quality-by- 
design and quality-by-control strategies in continuous integrated 
filtration-drying of crystallization slurries. 

Despite the potential benefits of modeling in pharmaceutical process 
development and decision making, the systematic use of these methods 
is not as widespread as it could be. It is not uncommon that stakeholders 
are apprehensive towards the adoption of quantitative models, and that 
is mainly due to the lack of confidence in the prediction capability with 
respect to KPIs and CQAs (Braakman et al., 2022). Another aspect is that 
pharmaceutical processes typically involve very complex phenomena 
that may not be easily captured by first-principles models – this is 
particularly true for the manufacturing of small molecules (e.g., in 
multiphase reactions with heterogeneous catalysts) and biopharma-
ceutical products. Therefore, resorting to empirical models built on 
design of experiments (DoE) is deemed to be less risky. However, high 
in-house expertise and sufficient resources to develop the first-principles 
model in question may be needed. 

The application of standardized model evaluation methods (i.e., 
quantitative and statistical criteria for the assessment of model predic-
tion uncertainty) is required to enhance the adoption of quantitative 
models for pharmaceutical manufacturing development and decision 
making (Zineh, 2019). The aim is ensuring a pre-set confidence in the 
prediction of the model KPIs and CQAs (that from now on will be 
generically named key indicators (KIs)). This is fundamental in a sector 
that is as highly regulated as the pharmaceutical industry, and can be 
used to support the submission of future regulatory filings for new as-
sets. The identification of a rigorous workflow to assess the performance 
of quantitative models has been explicitly identified as a central chal-
lenge to be addressed (Bai et al., 2019). This is particularly relevant to 
process systems models that are being developed in the context of a 

pharmaceutical industrial environment where resources may be limited 
for the model development, but high prediction confidence is required: 
in order to frame methods and techniques available in the literature, 
Braakman et al. (2022) recently proposed a concept paper discussing the 
evaluation of systems models in general terms. 

Considering how expensive pharmaceutical research and develop-
ment (R&D) is, and the timelines in which one must develop and launch 
a product due to its limited patent life (Destro and Barolo, 2022), it is 
essential that a model be developed efficiently as to maximize the 
benefits for process development. This means: (i) developing the model 
quickly, (ii) minimizing the resources required for its development (in 
terms of material and labour), and (iii) ensuring that the confidence in 
the model predictions is sufficient for its intended purpose and impact. 
Whenever a reliable mathematical model is available, the prediction 
fidelity with respect to the KIs (which are typically a subset of all model 
outputs) is strongly affected by the precision of model parameter esti-
mates. In a systems model, not only does the prediction fidelity of a 
selected KI depend on the parameters of the specific sub-model, but it 
also depends on the parameters related to the previous sub-models 
impacting the KI of interest. For instance, let us consider the 
manufacturing of a small molecule API, which is synthesized in a reactor 
(where some impurities are also formed), undergoes some purification 
(e.g., by liquid–liquid extraction) and finally is isolated and separated as 
a solid in a crystallizer. The prediction of the level of critical impurities 
(that may be genotoxic or mutagenic, and thus are key components of 
the quality target product profile) in the drug substance will be impacted 
by the amount of these impurities formed in the upstream reactor. 
Therefore, it is expected that uncertainty in the parameters of the reactor 
model will impact the predicted levels of impurity in the isolated drug 
substance (Diab et al., 2022a). 

In this context, the following questions need to be addressed: 

(i) Since accounting for uncertainty in model predictions is funda-
mental, how can we quantitatively assess the model fidelity, so as 
to ensure an assigned confidence in the prediction of the model 
KIs?  

(ii) Should all model parameters be estimated in a statistically 
satisfactory way, or is it sufficient to focus on just a subset of 
them? What is the parametric precision that must be attained to 
satisfy the prediction requirements for the KIs?  

(iii) Integrated models are currently calibrated on a unit-by-unit basis, 
i.e., fit-for-purpose data generation for each unit sequentially. Is 
this really the most efficient strategy? 

In this study, we propose a model evaluation framework to answer 
the questions above and to support the critical usage of quantitative 
models within a pharmaceutical manufacturing environment. The 
framework aims to: 

(i) Assess model prediction fidelity using standardized model eval-
uation methods, i.e., to quantify the impact of model parameter 
uncertainty on the selected model KIs; 

Tt tablet thickness [m] 
Tt/2 half tablet thickness [m] 
TS tensile strength [MPa] 
TS0 tensile strength at zero porosity [MPa] 
uMi vector of input variables of sub-model Mi 
Vc coating volume [m3] 
Vm liquid volume in the vessel [m3] 
Vθ expected variance–covariance matrix of the model 

parameters θ 
Vθ

0 preliminary parameter variance/covariance matrix 

w wall height of the tablet [m] 
W null space 
W weight matrix 
wl liquid content in the tablet [− ]

xAPI mass fraction of API [− ]

xMi vector of state variables of sub-model Mi 
y vector of measured variables 
y0 vector of initial conditions for the measured variables 
ŷ vector of model predictions 
yMi 

vector of output measured variables of sub-model Mi  
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(ii) Plan the experimental campaigns for the parameter estimation in 
quantitative (systems) models, i.e., optimize the experimental 
campaigns to maximize the information with the minimal 
experimental effort. 

We combine techniques that are typically adopted in different 
modeling contexts – namely, model-based design of experiments 
(MBDoE) for parameter estimation, and data reduction by means of 
multivariate statistical methods to enhance the interpretation of the 
results. A direct compression (DC) systems model for manufacturing oral 
solid dosage (OSD) products will be used as a case study. The systems 
model is comprised of the following sub-models: (1) Tablet press unit 
operation, (2) Tablet disintegration test unit, and (3) In vitro dissolution 
test unit. The implementation of the methodology is critically discussed, 
showing the effectiveness and the benefits of the proposed techniques. 

The article is organized as follows. In Section 2, we introduce the 
framework for the assessment of model prediction fidelity, and we 
briefly outline the general scope of each step of the procedure. In Section 
3, we thoroughly describe the suggested techniques to implement the 
methodology, and we present two possible workflows to be used for the 
evaluation of integrated models. In Section 4, we give details about the 
DC systems model for manufacturing OSD products that is used as the 
case study. In Section 5, we implement the proposed methodology for 
the evaluation of the prediction fidelity of the DC systems model, and we 
critically discuss the results that are obtained. Some final remarks will 
conclude the study. 

2. Framework for model evaluation 

Let us consider the systems model represented in Fig. 1, where a DC 
system for manufacturing OSD products is illustrated; the same systems 

model will be used as a case study in this work. Here, we are not 
considering blend or content uniformity or tablet weight variability, and 
thus the only sub-models we consider are (1) the tablet press unit 
operation, (2) the tablet disintegration test unit, and (3) the in vitro 
dissolution test unit. Note that the tablet press model is the only sub- 
system concerning a unit operation in the manufacturing process; 
however, the methodology we propose is general and thus the results are 
not affected by omission of the other unit operations in a typical DC line 
(i.e., feeder hoppers, screw feeders, blenders, transfer hoppers, tablet 
coater). The other sub-systems represent experimental tests for the 
assessment of product CQAs, and require information from the tablet 
press model, i.e., the lubrication extent attained in the upstream powder 
blending, and the compaction pressure exerted by the press. In this 
example, each sub-system outputs a KI, i.e., the tensile strength from the 
tablet press unit operation, the disintegration time from the tablet 
disintegration test unit, and the API dissolution profile from the in vitro 
dissolution test unit. 

2.1. General procedure 

In mathematical terms, a generic systems model is comprised of a 
number M of models representing the different sub-systems (M1, M2, 
…MM), and the relationship between the unit inputs and outputs can be 
described by a set of differential and algebraic equations (DAEs): 

f Mi

(

xMi (t), ẋMi (t), θMi , uMi (t), t
)

= 0,

yMi
= gMi

(xMi (t)), (1)  

Kmj = hmj

(
xmj (t)

)
with i = 1,2,⋯,M; j = 1,2,⋯,m where xMi , uMi , yMi 

Fig. 1. Integrated entities of the direct compression systems model considered in this study: Tablet press unit operation, Tablet disintegration test unit, and In vitro 
dissolution test unit. The KIs for each sub-system are reported within red dashed boxes, i.e., tensile strength, disintegration time, and API dissolution profile. Black 
solid boxes are unit operations; black dashed boxes are test units; blue boxes identify model inputs; green boxes identify material properties; violet boxes identify 
operating parameters for test units. 
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and θMi refer to sub-model i and are (respectively) the vector of state 
variables, the vector of input variables, the vector of measured output 
variables, and the vector of the model parameters. We indicate with m ≤

M the number of sub-models having an associated vector of KIs, and Kmj 

the vector of KIs for the sub-model j. Here, we assume that the vector uMi 

of input variables coincide with the control variables, i.e., the variables 
we can manipulate to control the KIs. A KI can be equal to a measured 
output yt,Mi or be derived from combinations of outputs/inputs. With 
reference to the entire systems model, we will denote the set of all model 
parameters θ and model key indicators K as follows: 

θ =
[
θM1 , θM2 ,⋯, θMM

]T (2)  

K =
[
Km1 ,Km2 ,⋯,Kmm

]T (3) 

Assessing the fidelity of a given systems model requires quantifying 
how the contributions of all model parameters impact the prediction of 
the KIs. In general, the prediction fidelity depends not only on the pa-
rameters of the specific sub-system model, but also on the parameters of 
all sub-system models impacting the unit being investigated. 

The methodology consists of four sequential steps (Fig. 2) that are 
iteratively repeated until satisfaction of the stop criterion, which is 
attained when all predictions of model KIs are within the desired 
tolerance. 

Step 1. Model identifiability and parameters ranking. 
Before any parameter estimation task can be performed, an identi-

fiability analysis should be performed to determine whether it is possible 
to formally estimate the systems model parameters (Miao et al., 2011). 
Once it has been verified that all parameters can be estimated, the 
objective is assessing their impact on the KIs predictions. In other words, 
it is necessary to rank the importance of parameters with respect to each 
KI of interest in such a way as to prioritize the subsequent experimental 
effort (Step 3) for parameter estimation towards the most influential 
parameters (Saltelli et al., 2007). 

Step 2. Impact of parameter uncertainty on the fidelity of model 
prediction. 

The second step aims at quantifying how uncertainty in parameter 
values impacts the prediction fidelity of the KIs: given the current un-
certainty on estimated values of model parameters, the goal is to assess 
whether the attained precision on the KIs prediction is acceptable or not. 
The stop criterion is satisfied when all model predictions of the KIs fall 
within the range of desired tolerance, and therefore no further 
improvement in the precision of estimated parameters is needed. 

Step 3. Design and execution of experiments. 
If the parameter precision needs improving (i.e., stop criterion not 

satisfied at Step 2), additional experiments should be designed, so that 
model parameters can be estimated on the basis of the new experimental 
observations. Experiments are planned to facilitate the parameter esti-
mation task – namely, to identify all the model parameters with the 
minimal experimental effort. To this purpose, the design of a new 
experiment should follow a rational criterion, i.e., experimental 

conditions should be selected to generate the most informative data for 
model parameterization (Bard, 1974). The new experiment is executed 
using the experimental conditions planned by design. 

Step 4. Parameter estimation. 
Once new data are available, model parameters are re-estimated. 

Most estimation methods require to find values of model parameters 
for which some objective function attains its maximum or minimum 
(Bard, 1974). After the estimation procedure, the reliability and statis-
tical precision of estimates should be investigated; statistical hypothesis 
testing methods have been extensively discussed by Anderson (1958). 

2.2. Workflow 

Different workflows are possible in order to apply the procedure 
presented in this study. We implement and comment on two of them, 
namely (i) a modular approach and (ii) a global approach. 

In a modular approach, the KIs of all units are targeted sequentially. 
Model parameters are estimated on a sub-system basis. Practically, we 
aim at obtaining a reliable prediction of KIs following the process layout. 
For instance, let us consider the process in Fig. 1. First, we focus on the 
tablet press unit operation, where the KI of interest is the tablet tensile 
strength (i.e., hardness). Once the tablet press model parameters are 
precise enough to guarantee sufficient tensile strength prediction fidel-
ity, we move on to the tablet disintegration test unit. When we reach the 
required precision of the relevant parameters, we finally focus on the 
API dissolution profile from the in vitro dissolution test unit. A modular 
approach can be convenient to organize the experimental campaign, 
since experiments are typically designed and implemented for one unit 
at a time. On the other hand, it is assumed that the parametric precision 
attained on that unit will be sufficient to reach the KI fidelity required in 
subsequent units. If this is not the case, an iterative experimental pro-
cedure may be required. 

In the global approach, all KIs are targeted simultaneously, and the 
parameters of all sub-system models impacting the KIs are considered at 
the same time. For the process in Fig. 1, this means that we look at the 
tablet press unit operation, the tablet disintegration test unit, and the in 
vitro dissolution test unit simultaneously. The estimation and design of 
experiments tasks are performed considering all relevant parameters in 
the systems model, until the desired fidelity for all model KIs (i.e., tensile 
strength, disintegration time, and API dissolution profile) is achieved. 
This approach is potentially more efficient than the modular one as no 
iteration over different sub-systems is needed, and the impact of all 
parameters on KIs is comprehensively assessed. However, the imple-
mentation of the experimental campaign may be more difficult as 
different experiments for different units need to be performed simulta-
neously: for example, for a given iteration of the workflow, tablets are 
made in the press, then run in the disintegration test, and finally their 
dissolution profile is measured. 

Fig. 2. Schematic of the proposed general framework to quantify the model parameter impact on the prediction fidelity of model KIs.  

M. Geremia et al.                                                                                                                                                                                                                               



Chemical Engineering Science 280 (2023) 118972

6

3. Implementation of the methodology 

In this section, we present the suggested techniques to implement 
steps 1–4 of the general framework discussed in Section 2. We combine 
methods used in different modeling contexts – namely, MBDoE, and data 
reduction by means of multivariate statistical methods (i.e., principal 
component analysis (PCA), and partial least-squares regression (PLS)), 
as shown in Fig. 3. 

3.1. Model identifiability and parameters ranking 

A discussion on structural model identifiability is beyond the scope 
of this work, and we refer to Miao et al. (2011) and Braakman et al. 
(2022) for a thorough analysis. However, we would like to point out that 
in many practical cases, the assessment of the model structural (or 
global) identifiability, i.e., the theoretical possibility to estimate all 
model parameters, can be difficult to prove and one often needs to rely 
on sensitivity techniques, which are discussed in the following. 
Furthermore, global identifiability may be unnecessary, because the 
goal is to assess model fidelity with respect to some predefined KIs. For 
instance, let us suppose that a parameter cannot be estimated from 
available measurements (i.e., the model is not identifiable), but that 
parameter has little or no impact on the prediction of a KI of interest: in 
such a case, its estimation is of no practical relevance. 

Different techniques can be used to evaluate the influence of 
parameter estimates towards the prediction of selected KIs. Estimability 
analysis (McLean and McAuley, 2012) or, most commonly, local and 
global sensitivity analyses, are the practical tools to assess a model’s 
(local) identifiability. Sensitivity analyses provide metrics to rank the 
importance of parameters with respect to an output of interest: the 
larger the values of the metrics, the more sensitive the model response 
with respect to parameter changes. Local sensitivity analysis focuses on 
the sensitivity of the outputs to the perturbation of one single parameter 
(at a time) around a particular value. When very little preliminary in-
formation on parameter values is available, performing local sensitivity 
analysis is not recommended (Saltelli et al., 2007). On the other hand, 
global sensitivity analysis (GSA) measures the uncertainty in the output 
caused by the uncertainty in the parameter values over a range of 
possible values. GSA methods can be classified as derivative-based (e.g., 
Morris’ (1991) method), correlation-based (e.g., partial rank correlation 
coefficient method, (Iman and Helton, 1988)), and variance-based (e.g., 
Fourier amplitude sensitivity test, (Cukier et al., 1973), Sobol’s (1993) 
method). Variance-based sensitivity analyses are frequently used; they 
decompose the variance in the model output and allocate it to each 
model parameter. Two widely used metrics are the first-order and total 
effects (Homma and Saltelli, 1996). In Section S.1 of the Supplementary 
material, a short description of such metrics and the results of their 
implementation in our case study are shown. 

One limitation of the classical variance based Sobol’s GSA is that it is 

defined under the assumption of independent parameters, which might 
lead to unreliable results if correlations are present (Song et al., 2016), 
unless more sophisticated GSA techniques (e.g., Xie et al., 2019; Barr 
and Rabitz, 2023) are used. In the following, we propose an alternative 
approach based on PCA, which allows (i) simplifying the description and 
graphical representation of parameter combinations, and (ii) visualizing 
their correlation structure. 

3.1.1. PCA analysis for parameter ranking 
The goal is to assess how the fidelity of one KI of interest depends on 

the Nθ model parameters that are affected by uncertainty. The following 
approach is proposed: 

(i) given the initial parametric set θ, we determine the control var-
iables u in such a way that the predicted KI based on the current 
parameter values is equal to the target value, and we fix them;  

(ii) once vector u has been fixed, the uncertainty of the predicted KI 
only depends on the uncertainty of model parameter estimates; 
given the parameter range of variability, we account for their 
uncertainty by generating a sufficiently high number (Kucher-
enko et al., 2015) of parameter combinations using a Monte Carlo 
(MC) method, with probabilistically selected model parameters 
(Fishman, 1995). A uniform distribution of the parameter values 
is assumed;  

(iii) in order to evaluate the influence of model parameters on KI 
prediction, the original (sub-system or systems) model is directly 
exploited to compute the values of the KI for the correspondent 
parameter combinations. We retain the set of N parameter com-
binations, for which the correspondent KI prediction falls within 
± 50% the target value.  

(iv) At this point, PCA (Montgomery, 2013) is used to summarize the 
information of the matrix Θ [N× Nθ] of the N combinations of Nθ 

model parameters by projecting them onto a new coordinate 
system of independent variables called principal components 
(PCs), aiding visualization and graphical interpretation. 

To avoid the scaling effect of different orders of magnitude of the 
model parameters, Θ is autoscaled, i.e., data are mean-centered and 
scaled to unit variance (Wise and Gallagher, 2006). The representation 
of Θ in PCA is given by: 

Θ = TPT + E, (4)  

where T [N× Nθ] is the matrix of scores, P [Nθ × A] is the matrix of 
loadings, and E [N× Nθ] is the matrix of residuals. 

The model parameters can be plotted as points using their loadings 
on PCs as coordinates. If some parameters in Θ are correlated, one 
common direction of variability can be identified, which is described 
through a single PC. Therefore, we can represent the variance of Θ using 

Fig. 3. Schematic of suggested techniques to accomplish steps 1–4 of the proposed general framework.  
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a number A of PCs, which is smaller than the number of parameters, Nθ. 
In this work, we select A according to the “eigenvalue greater than one” 
rule (Kaiser, 1991). Other criteria can be found in the literature (Zwick 
and Velicer, 1986). The Mahalanobis distance (Mahalanobis, 1930) is 
used to measure their distance from the origin of the coordinate system 
of PCs. 

As an example, let us consider the simple case represented in Fig. 4, 
where three parameters are projected onto a coordinate system of two 
PCs. For the sake of simplicity, we can assume that A = 2 is sufficient to 
capture enough variance of data in Θ, and that PC1 and PC2 capture an 
equal percentage of variance (the axes scales in Fig. 4 are equal). It is 
evident that parameters θ1 and θ2 are not correlated (orthogonal load-
ings); parameter θ3 equally contributes to PC1 and PC2. Some correlation 
between pairs θ1-θ3 and θ2-θ3 can be observed, and this may lead to 
potential difficulties in their estimation. The uncertainty in the predic-
tion of the KI of interest can be allocated to each model parameter by 
identifying the most influential contributions according to the length of 
the corresponding projected loading along the PCs; parameter θ3 can be 
identified as the most impactful. 

3.1.2. Use of similarity factor to assess the influence of operating conditions 
The proposed methodology assumes that control variables u, i.e. the 

experimental settings and/or operating conditions in the manufacturing 
process, are fixed. This is quite an important assumption, which is 
common to all methodologies, including sensitivity analyses: a (sub- 
system or systems) model is always assessed at a given operational 
status. In our framework, given a parametric set θ, control variables u 
are fixed in order to attain the target values of the KIs. 

However, along subsequent iterations of the procedure in Fig. 3, the 
estimated values of the parameters may change, and therefore u should 
adapt accordingly, providing new trajectories for time-variant control 
variables and new settings for time-invariant ones. In other words, u 
should adjust according to the model parameterization. The conse-
quence is that, in general, the correlation structure of model parameters 
depends on control variables. Stated differently, this means that the 
relative importance of parameters (and their correlation) cannot be 
separated by process operation. This is not surprising in model that is 

nonlinear in its parameters. As a matter of example, consider a reactive 
system whose reactions kinetics are described using the standard 
Arrhenius expression: note that the importance of activation energies 
with respect to other parameters (e.g., the pre-exponential factors) in-
creases when temperature increases. 

One advantage of the PCA methodology described in Section 3.1.1 is 
that we can exploit established techniques to analyze how the correla-
tion structure of model parameters varies when operating conditions 
change; namely, we can assess how variations in control variables affect 
the interaction between parameters and their relative ranking. In 
particular, different PCA models for matrices Θi [Ni × Nθ] and Θj [Nj ×

Nθ] (i.e., obtained using two sets, i and j, of different fixed operating 
conditions) can be compared through the similarity factor Sλ

i,j (Gunther 
et al., 2009): 

Sλ
i,j =

trace
[
(
Pw

i

)T
(

Pw
j

)(
Pw

j

)T (
Pw

i

)
]

∑A
a=1λi,aλj,a

, (5)  

where Pw
i and Pw

j are the corresponding weighed loading matrices. Pw
i is 

defined as: 

Pw
i = PiΛi, (6)  

with Λi [A× A] being the diagonal matrix of the square roots of the 
eigenvalues λi,a. 

Sλ
i,j is always bounded between 0 and 1. When Sλ

i,j = 0, there is no 
similarity between the two PCA models, which means that when settings 
and operating conditions change, the parameter correlation structure 
changes, too, and therefore the analysis on parameter ranking should be 
performed again. Conversely, when Sλ

i,j is close to 1 there is high simi-
larity between the two PCA models, thus implying that the correlation 
structure of model parameters is scarcely dependent on the operating 
conditions. In Section S.2 of the Supplementary material, a case, where 
process conditions affect the correlation between parameters, are dis-
cussed as a matter of example. 

3.2. Impact of parameter uncertainty on the fidelity of model predictions 

The goal is quantifying the impact of parameter uncertainty on the 
fidelity of model predictions on KIs. Given the current parameter un-
certainty together with their estimated values, the original model can be 
directly used to express the relationship between model parameters and 
KIs, while accounting for the uncertainty of model predictions through a 
Monte Carlo (MC) method (Fishman, 1995). It is worth noting that MC 
simulations require the generation of a sufficient number of model pa-
rameters combinations that typically are pseudo-random sequences or 
quasi-MC with Sobol sequences (Kucherenko et al., 2015). Recently, 
Montes et al. (2018) proposed a modeling activity coupled with MC 
simulations to improve the design and optimization for the production 
of ibuprofen, while Tian et al. (2022) characterized the uncertainty in 
the prediction of the residence time distribution (RTD) for a continuous 
powder blending process via MC sampling of the RTD parameters. 

The above methodology can in principle be applied for the purpose 
of this work, too. However, to improve interpretability of results, here 
we propose an alternative approach. Our methodology is based on a PLS 
regression model (Wold et al., 1983; Geladi and Kowalski, 1996) 
relating the model parameters and the KIs of interest. 

Before introducing the method formally, let us explain the scope 
qualitatively. If the model parameters were estimated perfectly, the only 
issue would be to manipulate the control variables so that the KIs are 
attained. A process operated in that way would target the KIs. However, 
there is always uncertainty in the estimated values of parameters. Thus, 
the question is: considering the range of variability determined by the 
precision of parameter estimation, can we guarantee that KIs will be 
predicted within a pre-defined acceptable tolerance? The procedure 

1

2
3

Fig. 4. Illustrative example of PCA application for parameters ranking, where 
three model parameters are projected onto a coordinate system of two PCs. The 
identification of the most influential contribution (parameter θ3 is based on the 
length of parameter loadings (blue segments), while the correlation structure is 
described by their mutual directions. 
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discussed in the following will aim at determining the parametric space 
that for given control variables u, allows predicting the KIs with the 
required fidelity. The procedure will determine the space containing all 
parametric sets guaranteeing that if the process is carried out in a certain 
way (set by u), then the KIs will be targeted. Conversely, if the uncer-
tainty in the parameter estimates is such that the actual values of the 
parameters may lay outside the acceptability region, then a higher 
precision will be needed. 

Let Θ [N× Nθ] be the same input (regressor) matrix of N combina-
tions of Nθ model parameters we have defined in Section 3.1 and 
generated using MC simulations – where a sufficiently high number of 
scenarios was selected according to Kucherenko et al. (2015), and a 
uniform distribution of parameters values was assumed. Note that if 
more information is available on the actual distribution of parameter 
uncertainties, more rigorous approaches should be used (Schenkendorf 
et al., 2018). K [N× NK] is the correspondent response matrix of N 
combinations of NK KIs, that are computed using model (1). 

PLS is a multivariate regression technique that projects the regressor 
and response variables onto a common latent space, according to the 
model structure: 

Θ = SRT + Eθ, (7)  

K = SQT + EK , (8)  

S = ΘW. (9) 

S[N× Nθ] is the score matrix, R [Nθ × B] and Q [NK × B] are matrices 
of loadings, while Eθ and EK the residuals. W [N× B] is the weight 
matrix, through which the data in Θ are projected onto the latent space 
to give S. B is the number of significant latent variables (LVs) chosen to 
build the model; namely, it corresponds to the dimension of the model 
space. B must be selected as to capture most of the variance of the input 
and output data, and is usually chosen through a cross-validation pro-
cedure (Wold et al., 2001). Confidence limits are considered in the latent 
space in the shape of a hyper-ellipsoid, which defines the knowledge 
space (KS) boundary (MacGregor and Bruwer, 2008); inference using 
the PLS model can be made only for points that lie inside this region. The 
KS boundary is mathematically described by the 95% confidence limit of 
the Hotelling’s T2 statistic (Hotelling, 1993): 

Fig. 5. Illustrative example of PLS model for the assessments of the impact of parameter uncertainty on the fidelity of model predictions. (a) Projection of the 
calibration samples (light blue circles) onto the score space and KS boundary (green ellipse). (b) Inversion solutions tnew (black points) and null spaces across them 
(black lines) for the inequality constraints problem, which define the KI acceptability region (grey area). (c) Case in which some projections of parameter uncertainty 
(red points) fall outside the KI acceptability region. (d) Case in which all projections of parameter uncertainty (red points) fall inside the KI acceptability region. 
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T2
lim =

B(N − 1)
N − B

FB,N− B,0.95, (10)  

where FB,N− B,0.95 is the 95% percentile of the F-distribution with B and 
(N − B) degrees of freedom. 

The semi-axis sb of the hyper-ellipsoid along the bth direction can be 
described as: 

sb =

̅̅̅̅̅̅̅̅̅̅̅̅

λbT2
lim

√

(11)  

where λb is the eigenvalue of the matrix ΘTKK TΘ related to the b th 

direction. 
Once again, it should be stressed that control variables u are fixed in 

order to target the KI values based on the current parametric set. This 
implies that the fidelity of model predictions only depends on the un-
certainty of the parameter estimates. The PLS model can be inverted 
(Jaeckle and MacGregor, 2000) to determine the set of parameters 
combinations that guarantee that the prediction of the KIs of interest is 
within the range of desired tolerance. The PLS model inversion provides 
an immediate graphical reading of results, which can efficiently support 
numerical interpretation. The quality target is described by inequality 
constraints, i.e., the bound values for the response prediction, which in 
turn define the KIs acceptability region. If the dimension of the latent 
space B is equal to NKI, one unique solution tnew for the target response 
variable of KIs, K*, exists: 

tnew =
(
QT Q

)− 1QT K*T (12) 

When the dimension of the latent space B is greater than NK, we 
obtain multiple solutions of the model inversion problem, which are 
defined by: 

W = {(tnew + t), t ∈ ker(Q) } (13)  

W is called the null space (Jaeckle and MacGregor, 1998) and is 
computed analytically by determining the kernel of the loading matrix 
Q. All parameter combinations laying on the null space allow attaining 
K* for the given u. Practically, the null space can be used to define the 
boundaries of the acceptable region, i.e., the possible combinations of 
parameters values leading exactly to the upper and lower limits for the 
KI of interest. 

Recalling the illustrative example of Section 3.1.1, we can now relate 
the three model parameters to the correspondent response variable (NK 
= 1). The projections of the calibration samples onto the score space 
(light blue circles) and the KS boundary (green ellipse) are shown in 
Fig. 5a for B = 2. Then, the PLS model is inverted (Fig. 5b) to determine 
the set of parameters combinations that guarantee that the prediction of 
the KI of interest is within the range of desired tolerance, for the given 
control variables. Since B > NK, multiple solutions of the model inver-
sion problem exist and are identified by the null space, which has 
dimension B − NK = 1 (i.e., a straight line). Moreover, since the quality 
target is described by inequality constraints, three null spaces can be 
computed, i.e., one for the upper bound (upper black line), one for the 
target (central black line), and one for the lower bound (lower black 
line). Note that the null space corresponding to the target is not strictly 
necessary, because we are only interested in the acceptability region 
defined by the lower and upper bounds. We believe, however, that its 
representation is useful to the user in order to assess how close to the 
target the expected prediction is. Direct solutions tnew are also shown as 
black points, while the KI acceptability region corresponds to the grey 
area. 

Estimated uncertainties of model parameters, which we express 
using the corresponding confidence intervals (CIs), can be projected 
onto the PLS model. Practically, if at least one projection falls outside the 
KI acceptability region (Fig. 5c), new experiments are needed to increase 
the parameter precision. No improvement is required if all uncertainties 
fall inside the KIs acceptability region (=stop criterion), as in Fig. 5d. 

Although the methodology is based on a linear PLS model, i.e., an 
approximation of the rigorous model, the advantage is a graphical 
representation of both parameter uncertainty and KIs in a common 
latent space, allowing for an easier interpretation of the results. 

3.3. Design and execution of experiments 

Parameters are estimated on the basis of data obtained from exper-
iments and, thus, they should be planned so as to facilitate the estima-
tion activity. A set of experimental trials can be planned by simply acting 
on the experimental settings; the more common approaches are the full 
or fractional factorial DoE, where only a specific subset of control var-
iables is varied (Box et al., 1978). These approaches are typically called 
“black box” experiment design methods because the analysis is carried 
out on the set of experimental conditions and measurements without 
considering any formal relationship between them. If a model is already 
available, MBDoE can represent an advantage since it exploits prior 
knowledge provided by the model (Franceschini and Macchietto, 2008). 
MBDoE techniques have been successfully applied in the pharmaceutical 
industrial environment, e.g., for model calibration in freeze-drying (De- 
Luca et al., 2020) or in the manufacturing of pharmaceutical agents 
(Shahmohammadi and McAuley, 2020). Since a model is available, 
MBDoE will represent the standard approach in this work. Details 
regarding the mathematical formulation of the MBDoE optimization 
problem are reported in Appendix A.1. Note that the design of experi-
ments task can be tailored to gain the information relevant for the 
estimation of the most significant parameters only, i.e., those parame-
ters that have the greatest impact on the prediction of KIs, as will be 
done in this study. However, other methods can also be implemented for 
model identification (Ljung, 1986). 

The new experiment is, then, executed setting the experimental 
conditions planned by design. 

3.4. Parameter estimation 

The final step is the estimation of model parameters through avail-
able experimental measurements. Several methods can be adopted (e.g., 
least squares or a Bayesian estimator (Sorenson, 1980)). Here, a 
maximum likelihood approach is used (Bard, 1974). Since the method 
allows obtaining information on the conditioned probability distribu-
tion of the final estimate, we exploited it to compute the estimates of 
model parameters, and assess a-posteriori statistics. The mathematical 
formulation of the maximum likelihood function and the testing 
methods to assess a-posteriori statistics are reported in Appendix A.2. 

4. Case study 

We consider a DC systems model as illustrated in Fig. 1. The model is 
built under the following assumptions.  

1. Consistent/perfect blending. API and excipients powders are perfectly 
mixed and have fixed quantities in the powder blend over the entire 
batch. This implies we can omit the feeding and blending unit op-
erations and that blend, content uniformity and tablet weight vari-
ability can be omitted from this study.  

2. Dissolution test method. The analytical method used to measure the in- 
vitro dissolution profile of the API is discriminatory, meaning that 
the method can capture changes in other input factors that could 
impact the dissolution performance (i.e., different input setpoints 
lead to different dissolution profiles). This implies that previous work 
has been carried out for the development of the analytical method for 
dissolution testing for this specific API, i.e., high performance liquid 
chromatography (HPLC) or ultraviolet (UV) spectroscopy calibration 
has been performed. 

The model equations are presented in the following. 
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4.1. Model for the tablet press unit operation 

The variation in tablet solid fraction caused by the compaction 
pressure, P [MPa], exerted by the press is expressed according to 
Kawakita and Lüdde (1971): 

sf =
asf
(
1 + bsf P

)

1 + asf bsf P
(14)  

where sf [–] is the attained tablet solid fraction, while asf [–] and bsf 

[MPa− 1] are model parameters to be estimated. The Kushner (2012) 
equation is used to relate the effect of the extent of lubrication K [dm] 
attained in the upstream powder blending on the tablet tensile strength: 

TS = TS0((1 − β)+ βexp( − γK) ) (15)  

where TS [MPa] is the tensile strength, TS0 [MPa] is the tensile strength 
at zero porosity, γ[dm− 1] is the lubrication rate constant, and β [–] is the 
total fraction of tensile strength that can be lost due to lubrication. Given 
that the original Kushner equation valid only for solid fraction sf =
0.85, the empirical model by Nassar et al. (2021) is used to account for 
the dependence of the Kushner parameters of Eq. (15) on the attained 
tablet solid fraction: 

TS0 = a1exp(b1(1 − sf ) ), (16)  

β = a2(1 − sf )+ b2 (17) 

Seven model parameters associated with the tablet press need to be 
estimated:asf [–], bsf [MPa− 1], γ[dm− 1], a1 [MPa], b1 [–], a2[–], b2 [–]. 

Note that in the industrial practice, it is more typical to have mea-
surements of tablet hardness instead of tablet tensile strength. However, 
TS can be easily derived based on tablet geometry; for capsule-shaped 
tablets, the relation proposed by Pitt and Heasley (2013) can be used: 

TS =
2
3

⎡

⎢
⎢
⎣

10FL

πd2
(
2.84 Tt

d − 0.126 Tt
w + 3.15 w

d + 0.01
)

⎤

⎥
⎥
⎦ (18)  

where F is the tablet hardness [MN], Tt [m] is the tablet thickness, d[m] 
is the length of the short axis of the tablet, and w [m] is the wall height of 
the tablet. 

4.2. Model for the tablet disintegration test 

Both erosion and swelling mechanisms are considered (Markl et al., 
2017). 

Erosion is described as: 

Vc =
(
Hcoat − ∊̇t

)
At, (19)  

where Vc [m3] is the coating volume varying with time t [s], Hcoat [m] is 
the thickness of the coating layer, At [m2] is the tablet surface area, and 
∊̇ [m/s] is the constant erosion rate. 

The dynamic evolution of the penetration depth due to swelling is 
modelled as: 

dPd

dt
=

(
P

FL/At

)n(Tt/2 − Pd)/Tt/2
[

d2
hε

Spτ2
orμPd

]

pc, (20)  

where Pd [m] is the water penetration depth, dh [m] the tablet hydraulic 
diameter, τor [–] the average tablet tortuosity, μ [Pa s] the liquid vis-
cosity, pc [Pa] the capillary pressure. Sp [–] and n [–] are formulation- 
dependent model parameters to be estimated. Parameter n can be esti-
mated if dynamic penetration depth data are available, e.g., via ter-
ahertz (THz) spectroscopy. However, this is a relatively new technology 
in pharmaceutical industrial environments compared to a standard end- 
point disintegration time test (USP 〈7 0 1〉 (2011)). If only end-point 

disintegration data are available, the term 
(

P
FL/At

)n(Tt/2 − Pd)/Tt/2 
in Eq. 

(20) can be replaced with a lumped parameter ω [–] which can be fitted. 
Tt/2 [m] is the time-dependent half tablet thickness, and ε [–] represents 
the average porosity of the swollen product. The stress due to tablet 
expansion from swelling is defined according to Peppas and Colombo 
(1989): 

τ = − TS+C2wl +C3
̅̅̅̅̅
wl

√
, (21)  

where τ [MPa] is the total stress, wl [–] is the liquid content in the tablet, 
and C2 [MPa] and C3 [MPa] are model parameters to be estimated. 

From τ, we can compute ε to be included in Eq. (21): 

τ =
G0exp

(
− Eε

1− ε

)
λt

Tt/2
, (22)  

with G0 [MPa] and E [–] elastic constants from literature, and λ [s− 1] the 
swelling rate (Kuentz and Leuenberger, 1998). The disintegration time is 
defined as the time for which the tablet stops disintegrating, i.e., dPd/dt 
= 0. 

Five model parameters associated with the disintegration test unit 
need to be estimated: C2, C3, ∊̇, n, Sp. 

4.3. Model for the in vitro dissolution test 

We describe the rate of dissolution and the dissolution profile of each 
component of the formulation through a population balance approach 
(Wilson et al., 2012). For this purpose, the elements that constitute the 
formulation are divided in: (i) API, (ii) soluble excipients, (iii) insoluble 
excipients. 

Focusing only on the API, the dynamic evolution of the number of 
particles, NAPI, is modelled as: 

∂NAPI

∂t
= BAPIδ

(
l − l0,API

)
+RAPI,l

∂NAPI

∂l
, (23)  

where BAPI is the rate of release of API from the tablet, l is the particle 
size at given t, l0,API is the particle size at the beginning of the process, 
and RAPI,l is the particle dissolution coefficient; δ is the Dirac delta 
function. Assuming particles have porosity much lower than the tablet 
porosity, and released particles are monodispersed with a fixed average 
diameter l0,API, BAPI can be expressed as: 

BAPI =
1
ρp

(
xAPI

ϕl3
0,API

)
dMt

dt
, (24)  

where xAPI is the mass fraction of API,ρp is the density of particles, and ϕ 
is the shape factor of particles (ϕ = π/6 for spherical particles); dMt/dt 
represents the dynamic evolution of the tablet mass Mt. 

RAPI,l can be described by: 

RAPI,l = kAPI(csat − cAPI)
nAPI , (25)  

where kAPI is the mass transfer coefficient of API, nAPI is the order of 
dissolution, and csat and cAPI are the API saturation concentration and 
the bulk concentration, respectively. The extent of dissolution is typi-
cally described as the percentage of label content %LC: 

%LC = 100
cAPIVm

xAPIMt,0
, (26)  

where Vm is the liquid volume in the test vessel, and Mt,0 is the initial 
mass of the tablet. 

Two model parameters need to be estimated for the in vitro tablet 
dissolution test unit: kAPI, and nAPI. 
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4.4. Product quality and performance assessment 

As shown in Fig. 1, three KIs are here considered (which correspond 
to each sub-model output): tensile strength, target disintegration time, 
and API dissolution profile. Their acceptability limits are discussed in 
the following. 

We consider an immediate release (IR) tablet, with a target TS of 2 
MPa. According to acceptable error ranges suggested by Nassar et al. 
(2021), we set ± 0.2 MPa as the admissible tolerance with respect to the 

TS target value. 
The target disintegration time is assumed to be 4 min. According to 

the USP 〈7 0 1〉 (2011) disintegration test specifications, the time limit 
for the formulation to completely disintegrate is 5 min; therefore, we set 
± 1 min as the admissible tolerance with respect to the target value of 
the disintegration time. 

The dissolution profile is monitored through the prediction of %LC. 
%LC = 80% at t = 25 min is a possible specification value for an im-
mediate release tablet; however, the actual specification will depend on 
the specific product. We set − 15 %LC as the admissible tolerance with 
respect to the target value; no overestimation is accepted for a conser-
vative analysis. 

Table 1 
Nominal and initial guess values of model parameters.  

Parameter Units Nominal Initial guess 

Tablet press unit 
operation    

a1 MPa  11.04  12.01 
a2 –  1.091  1.363 
asf –  0.463  0.533 
b1 –  − 8.202  − 9.005 
b2 –  0.326  0.419 
bsf MPa− 1  2.460 × 10− 2  1.990 × 10− 2 

γ dm− 1  1.211 × 10− 3  1.685 × 10− 3 

Tablet disintegration test 
unit    

C2 MPa  1.000 × 102  1.500 × 102 

C3 MPa  1.000 × 102  1.500 × 102 

∊̇ m/s  1.000 × 10− 3  8.125 × 10− 4 

n –  0.900  0.978 
SP –  0.524  0.598 
In vitro dissolution test 

unit    
kAPI (m3 kg− 1)nAPI 

s− 1  
2.300 × 10− 12  2.615 × 10− 12 

nAPI –  1.00  1.00  

Table 2 
Tablet press unit operation. Diagnostics of the PCA model: eigenvalues and 
explained variance per principal component.  

PC Eigenvalues Explained Variance (%) Cumulative Variance (%) 

1  1.845  26.37 26.37 
2  1.062  15.17 41.54 
3  1.025  14.65 56.19 
4  1.009  14.42 70.61 
5  0.993  14.18 84.79 
6  0.990  14.14 98.93 
7  7.494 × 10− 2  1.07 100  

(a) (b) (c)

1

2

2

1

2 2 2
2

1

Fig. 6. Results of PCA applied to the Tablet press unit operation: plot of loadings for (a) PC1 vs. PC2, (b) PC2 vs. PC3 and (c) PC1 vs. PC3. The most influential 
parameters are in boldface. 

Table 3 
Tablet press unit operation. Comparison of different PCA models with respect to 
the reference case i (Pi = 241 MPa, Ki = 1090 dm) through the similarity factor 
Sλ

i,j.  

Operating conditions j  
Pj[MPa] Kj[dm] Sλ

i,j 

150 800  0.990 
250 2000  0.986 
350 900  0.976 
400 1500  0.974  

Table 4 
Tablet disintegration test unit. Diagnostics of the PCA model: eigenvalues and 
explained variance per principal component.  

PC Eigenvalues Explained Variance (%) Cumulative Variance (%) 

1  2.227  18.56 18.56 
2  1.306  10.88 29.44 
3  1.081  9.01 38.45 
4  1.043  8.69 47.14 
5  1.029  8.58 55.72 
6  1.009  8.41 64.13 
7  0.999  8.33 72.46 
8  0.985  8.21 80.67 
9  0.964  8.03 88.70 
10  0.923  7.70 96.40 
11  0.372  3.09 99.49 
12  6.149 × 10− 2  0.51 100  
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5. Results 

The framework is assessed by means of an in-silico case study. The 
process is represented by the systems model with parameters at nominal 
values (Table 1) as retrieved from the literature (Peppas and Colombo, 
1989; Nassar et al., 2021). The model is represented by the systems 
model with initial guesses for the parameters as in Table 1. We assume 
that the initial parameter uncertainty is equal to ± 50% of their guess 
values (uniform distribution). 

5.1. Model identifiability and parameters ranking 

5.1.1. Tablet press unit operation 
We first focus on the tablet press unit operation, where the KI of 

interest is the tensile strength TS. Assuming that the initial parameter 
uncertainty is equal to ± 50% of their initial values (Table 1), we 
generate a set of 1 × 104 parameters combinations using the MC method. 
Control variables (i.e., the tablet press model inputs P and K, which are 
time-invariant variables) are fixed so that the predicted TS based on 
current parameter values is equal to the target value (i.e., P = 241 MPa 
and K = 1090 dm). 

We set A = 4 (Table 2); however, note that also PC5 and PC6 capture 
a significant amount of information, i.e., explained variance. The model 
parameters are plotted as points using their loadings on the PC co-
ordinates; results are shown for PC1 vs. PC2 (Fig. 6a), PC2 vs. PC3 
(Fig. 6b), and PC1 vs. PC3 (Fig. 6c). The case PC3 vs. PC4 is reported in 
the Supplementary Material (Section S.3.1). Parameter asf can be 
recognized as the most influential one by simply observing the length of 
its projected loading along PC1 (Fig. 6a), which is the component 
capturing the highest percentage of variance (Table 2). Following the 
same rationale, parameters b1 and bsf are very influential too, whereas 
a2 and γ are barely affecting TS. It can be also noted that a2, b2, and γ are 
correlated, and are anticorrelated to a1, (i.e., inversely correlated). 
Difficulties in their estimation are expected – particularly for the less 
influential parameters (e.g., a2 may not attain a statistically satisfactory 
precision). 

The influence of the operating variables on the correlation structure 
of model parameters is assessed using the similarity factor: the current 
PCA model (whose control variables are referred to as reference oper-
ating conditions i) is compared to other four PCA models (whose oper-
ating conditions j are reported in Table 3). In all cases, Sλ

i,j values are very 
close to 1, suggesting that the correlation structure and the ranking of 
model parameters is scarcely dependent on the operating conditions. 
Therefore, in this case study, it is unnecessary to perform the PCA pro-
cedure again when operating conditions change along subsequent iter-
ations of the procedure in Fig. 3, as they barely affect the interaction 
between parameters and their relative ranking. 

5.1.2. Tablet disintegration test unit 
The prediction fidelity of the disintegration time not only depends on 

the parameters of the model for the tablet disintegration test unit, but 
also on the parameters of the model for the tablet press unit operation; 
therefore, all the parameters of the models of the two units should be 

(a)  (b) (c)
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Fig. 7. Results of PCA applied to the tablet disintegration test unit: plot of loadings for (a) PC1 vs. PC2, (b) PC2 vs. PC3, and (c) PC1 vs. PC3. The most influential 
parameters are in boldface. 

Table 5 
Tablet disintegration test unit. Comparison of different PCA models with respect 
to the reference case i (Pi = 223 MPa, Ki = 990 dm) through the similarity factor 
Sλ

i,j.  

Operating conditions j  
P[MPa] K[dm] Sλ

i,j 

150 800  0.998 
250 2000  0.999 
350 900  0.997 
400 1500  0.998  

Table 6 
In vitro dissolution test unit. Diagnostics of the PCA model: eigenvalues and 
explained variance per principal component.  

PC Eigenvalues Explained Variance (%) Cumulative Variance (%) 

1  1.784  12.74 12.74 
2  1.235  8.82 21.56 
3  1.174  8.39 29.95 
4  1.116  7.97 37.92 
5  1.095  7.82 45.74 
6  1.064  7.60 53.34 
7  1.036  7.40 60.74 
8  0.972  6.94 67.68 
9  0.963  6.88 74.56 
10  0.869  6.21 80.77 
11  0.814  5.81 86.58 
12  0.771  5.51 92.09 
13  0.751  5.37 97.46 
14  0.355  2.54 100  
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considered when the PCA procedure is performed. Given the initial 
parameter guesses (Table 1) and assuming that their uncertainty is equal 
to ± 50% of their initial values, we generate a set of 1 × 104 parameters 
combinations and we find the control variables (i.e., the tablet press 
model inputs P and K) so that the predicted disintegration time is equal 
to 4 min (i.e., P = 223 MPa and K = 990 dm). According to the eigen-
value greater than one rule, at least A = 6 PCs are required to capture 
enough variance of data (Table 4). For the sake of clarity, plots of 
loadings are shown for PC1 vs. PC2 (Fig. 7a), PC2 vs. PC3 (Fig. 7b), and 
PC1 vs. PC3 (Fig. 7c). Plots of loadings for PC3 vs. PC4, PC4 vs. PC5, and 
PC5 vs. PC6 are reported in the Supplementary Material (Section S.3.2). 
Several influential parameters can be noticed: n, asf , b1, bsf , and SP. The 
variance of n, asf , and b1 is mainly captured by PC1, while the variance of 
bsf and SP is better explained by PC2. Note that asf , b1 and bsf belong to 
the tablet press model. As far as the correlation of model parameters is 
concerned, the parameters related to the tablet press unit operation 
behave similarly to the case in Section 5.1.1; parameters n and SP appear 
to be anticorrelated. 

As done for the model for the tablet press unit operation, the influ-
ence of the operating variables on the correlation structure of model 
parameters is assessed using the similarity factor (different operating 

conditions are reported in Table 5). The resulting Sλ
i,j values are close to 

1, implying that it is unnecessary to perform the PCA procedure again 
when operating conditions change. 

5.1.3. In vitro dissolution test unit 
The prediction fidelity of the API dissolution profile depends not only 

on the parameters of the model for the in vitro dissolution test unit, but 
also on the parameters of the models for the tablet press unit operation 
and the tablet disintegration test unit; therefore, all parameters of the 
three-unit models should be considered when the PCA procedure is 
performed. Given the initial parameter guesses (Table 1) and assuming 
that their uncertainty is equal to ± 50% of their initial values, we 
generate a set of 1 × 104 parameters combinations and we find the 
control variables (i.e., the tablet press model inputs P and K) so that the 
predicted dissolution of API attained in 25 min is equal to 80 %LC (i.e., P 
= 223 MPa andK = 990 dm). In this case, at least A = 7 PCs are required 
to capture enough variance in the data (Table 6). Plots of loadings are 
shown for PC1 vs. PC2 (Fig. 8a), PC2 vs. PC3 (Fig. 8b), and PC1 vs. PC3 
(Fig. 8c). Plots of loadings for PC3 vs. PC4, PC4 vs. PC5, PC5 vs. PC6, and 
PC6 vs. PC7 are reported in the Supplementary Material (Section S.3.3). 
It can be observed that parameters with the greatest loadings are asf , bsf , 
a1,b1 (tablet press model), n, SP (tablet disintegration model), and kAPI 
(in vitro dissolution model). The correlation structure among the pa-
rameters of previous units does not change; kAPI is anticorrelated with 
parameter bsf . 

We finally assess the influence of the operating conditions (Table 7) 
on the correlation structure of model parameters. In this case, too, 
resulting Sλ

i,j values are very close to 1, and therefore, we do not need to 
repeat the PCA procedure for different operating conditions. 

5.2. Assessment of parameter uncertainty on the fidelity of model 
predictions 

Both the modular and global approaches were implemented and 
discussed in the following sections. 

5.2.1. Modular approach 
All the KIs are targeted sequentially, while model parameters are 

estimated on a unit operation basis. 
We first focus on the model for the tablet press unit operation, where 

the KI of interest is TS (NK = 1). The relationship between model pa-
rameters and the predicted TS is assessed by building a PLS model, ac-
cording to Section 3.2. We verified that two LVs (B = 2) are sufficient to 
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Fig. 8. Results of PCA applied to the In vitro dissolution test unit: plot of loadings for (a) PC1 vs. PC2, (b) PC2 vs. PC3, and (c) PC1 vs. PC3. The most influential 
parameters are in boldface. 

Table 7 
In vitro dissolution test unit. Comparison of different PCA models with respect to 
the reference case i (Pi = 223 MPa, Ki = 990 dm) through the similarity factor 
Sλ

i,j.  

Operating conditions j  

P[MPa] K[dm] Sλ
i,j 

150 800  0.983 
250 2000  0.987 
350 900  0.986 
400 1500  0.981  

Table 8 
Tablet press unit operation. Diagnostics of the PLS model: explained variance 
per latent variable.  

LV Explained Variance (%) Cumulative Variance (%) 

1  66.76  66.76 
2  29.11  95.86 
3  0.33  96.19  
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capture enough variance of the data in K (Table 8). As B >NK, multiple 
solutions of the model inversion problem exist and are identified by the 
null space, that has dimension B − NK = 1, i.e., a straight line. More 
precisely, since the quality target is described by inequality constraints, 
three null spaces can be computed to define the KI acceptability region, 
i.e., one for the upper bound, one for the target, and one for the lower 
bound. By assessing the effect of the initial model parameter uncertainty 
on the KI, it can be observed that the prediction fidelity requirement for 
the TS cannot be satisfied, as many projections lie outside of the KI 
acceptability region (Fig. 9a). 

MBDoE is applied to increase the precision of the three most relevant 
parameters only, namely asf , b1, and bsf , by acting on design variable P 
and K. Data of TS are used to estimate all parameters for the current unit. 
Eight iterations are needed to reach the required model fidelity with 
respect to the TS prediction, i.e., eight experiments need to be performed 
for the tablet press unit operation. The available tablet press equipment 

may allow the operator to set more compression levels. This occurs for 
example when a compaction simulator is used that can collate multiple 
data for solid fraction for a tablet compressed from a single powder 
blend with lubrication extent K. In this case, the MBDoE procedure 
proposed by Cenci et al. (2022) can be exploited. 

Results after the final iteration are shown in Fig. 9b: all projected 
uncertainties of parameter estimates fall inside the KI acceptability re-
gion. Table 9 reports the estimated values of model parameters with 
their 95% CIs and t-values. It can be observed that parameter a2 does not 
require precise estimation – the corresponding t-value is smaller than the 
reference value and is associated to a large CI. Namely, there is no need 
of precisely estimating parameter a2 to meet the TS specification, and 
therefore additional experimental effort can be saved. The result agrees 
with the outcome from the PCA analysis, where parameter a2 was 
ranked as having little influence. 

The next unit is the tablet disintegration test. It is assumed that the 
parametric precision attained for the tablet press model does not need 
any further improvement. A new PLS model is built with B = 2 LVs 
(Table 10). As a consequence, multiple solutions of the model inversion 
problem exist and are identified by the null space, that has dimension 
B − NK = 1. Since the quality target is described by inequality con-
straints, three null spaces can be computed to define the acceptability 
region for the disintegration time, i.e., one for the upper bound, one for 
the target, and one for the lower bound. Given the initial model 
parameter uncertainty, we can observe that the prediction fidelity 

(a) (b)
Fig. 9. Modular approach. Application of the proposed methodology to the tablet press unit operation for the assessment of the tensile strength: (a) initial iteration, 
(b) final iteration where all projected uncertainties (red points) fall inside the KI acceptability region (grey area). 

Table 9 
Tablet press unit operation. Estimated values of model parameters with their 95% CIs and t-values. * = precision is not statistically satisfactory.  

Parameter Units Nominal Estimated 95% CI t-value 

a1 MPa  11.04  12.09  0.516  23.45 
a2 –  1.091  0.545  0.406  1.35* 
asf –  0.463  0.427  5.296 × 10− 3  80.63 
b1 –  − 8.202  − 8.363  0.221  37.85 
b2 –  0.326  0.121  5.561 × 10− 2  2.18 
bsf MPa− 1  2.460 × 10− 2  2.010 × 10− 2  2.209 × 10− 4  1.255 × 102 

γ dm− 1  1.211 × 10− 3  1.140 × 10− 3  5.527 × 10− 4  2.75       
tref = 1.690  

Table 10 
Tablet disintegration test unit. Diagnostics of the PLS model: explained variance 
per latent variable.  

LV Explained Variance (%) Cumulative Variance (%) 

1  59.05  59.05 
2  9.03  68.08 
3  0.41  68.49  
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requirement for the disintegration time is not satisfied, as many pro-
jections lie outside of the KI acceptability region (Fig. 10a). 

MBDoE is applied to increase the precision of the two relevant pa-
rameters n and SP (see Section 5.1.2), by acting on the design variables K 
and P. Disintegration data are used to estimate all the parameters of the 
model for current unit. Five iterations (i.e., five experiments for the 
current unit) are necessary to reach the required model fidelity with 
respect to the KI prediction. Results after the final iteration are collected 
in Table 11. It can be observed that we need to precisely estimate only 
the influential model parameters SP and n, whereas satisfactory statis-
tical precision is not required for parameters C2, C3 and ∊̇ – the corre-
sponding t-values are smaller than the reference value, and the 
corresponding CIs exceed ± 50% of the parameter estimates. Fig. 10b 

shows that after the final iteration all projected uncertainties fall inside 
the KI acceptability region. 

We finally move to the in vitro dissolution test unit. It is assumed that 
parameters concerning previous units need no improvement. A new PLS 
model is built with B = 2 LVs, as it is found that after the second LV there 
is no improvement in the total amount of explained variance of data in 
K (Table 12). The null space has dimension B − NK = 1. Recalling that 
we set − 15 %LC as the admissible tolerance with respect to the target 
value, with no overestimation accepted, two null spaces can be 
computed to define the boundaries of the acceptability region for the % 
LC attained after 25 min, i.e., one for the lower bound, and one for the 
target. Given the initial model parameter uncertainty, the prediction 
fidelity requirement for the %LC at t = 25 min is not satisfied, as many 
projections lie outside of the KI acceptability region (Fig. 11a). 

MBDoE is applied to increase the precision of the most influential 
parameter kAPI (see Section 5.1.3), by acting on design variables P and K, 
and exploiting API dissolution data as measured output variable to es-
timate both kAPI and nAPI. One single iteration (i.e., one experiment for 
the current unit) is necessary to reach the required model fidelity with 
respect to the KI prediction, which is found to depend only on the value 
of kAPI. Results in Table 13 show that we need to precisely estimate 
parameter kAPI, while nAPI is not precisly estimated from experimental 
measurements. This confirms that model identifiability may be unnec-
essary for the purpose of achieving model fidelity, as large uncertainty 
on parameter nAPI does not lead to large uncertainty on the prediction of 
the API dissolution profile. Its value can be fixed based on similar sys-
tems in the literature (e.g., Bano et al., 2022). Fig. 11b shows that all 
projected uncertainties fall inside the KI acceptability region. 

5.2.2. Global approach focusing on all KIs simultaneously 
In the global approach, all KIs are targeted simultaneously, and the 

parameters of all unit operation models are considered at the same time. 
The relationship between model parameters and all KIs predictions (NK 
= 3) is assessed by building a PLS model, according to Section 3.2. 

Four LVs capture a reasonable amount of variance of the data in K – 
from LV5 onwards there is no significant improvement (Table 14), i.e., B 
= 4 can be suitable to represent the variability of predicted KIs (i.e., TS, 
disintegration time, and %LC at t = 25 min). Since the final product 
quality is defined by the independent control of each KI of interest, no 

Fig. 10. Modular approach. Application of the proposed methodology to the tablet disintegration test unit for the assessment of the disintegration time: (a) initial 
iteration, (b) final iteration where all projected uncertainties (red points) fall inside the KI acceptability region (grey area). 

Table 11 
Tablet disintegration test unit. Estimated values of model parameters with their 
95% CIs and t-values. † = 95% CI larger than ± 50% the parameter nominal 
value. * = precision is not statistically satisfactory.  

Parameter Units Nominal Estimated 95% CI t-value 

C2 MPa 1.000 × 102 1.487 × 102 2.968 ×
104 †

5.009 ×
10− 3 * 

C3 MPa 1.000 × 102 80.48 4.195 ×
103 †

1.919 ×
10− 2 * 

∊̇ m/s 1.000 ×
10− 3 

8.599 ×
10− 4 

0.147 † 5.291 ×
10− 3 * 

n – 0.900 0.935 2.738 ×
10− 2 

34.16 

SP – 0.524 0.675 0.108 6.25      
tref = 1.647  

Table 12 
In vitro dissolution test unit. Diagnostics of the PLS model: explained variance 
per latent variable.  

LV Explained Variance (%) Cumulative Variance (%) 

1  65.66  65.66 
2  10.42  76.08 
3  1.37  77.45  
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correlation among the outputs is considered in the PLS model inversion 
activity. Multiple solutions of the model inversion problem exist and are 
identified by the null space, that has dimension B − NK = 1. Projected 
uncertainties of model parameters are shown on LV1 vs. LV2 (Fig. 12). 
Null spaces are computed considering the extreme values of the toler-
ance range for each KI; i.e., two null spaces are identified: one for the 
lower bounds and one for the upper bounds. Given the initial model 
parameter uncertainty, we can observe that the prediction fidelity 
requirement for the three model KIs is not met, as many projections lie 
outside the acceptability region (Fig. 12a). Therefore, MBDoE is applied 
to increase the precision of the most influential parameters towards the 
prediction of all model KIs, i.e.,a1, asf , b1, bsf (tablet press model), n, SP 

(tablet disintegration model), and kAPI (in vitro dissolution model). 
Design variables K and P are again used in the MBDoE problem. For each 
iteration, three different experiments for the three model units need to 
be performed simultaneously. Measured output variables are TS, disin-
tegration data, and API dissolution data. 

Eight iterations are needed to reach the required fidelity of the KIs, i. 
e., eight experimental iterations would need to be performed for each 
unit simultaneously, i.e., 24 experiments altogether. Results after the 
final iteration are shown in Fig. 12b, where all projected uncertainties of 
parameter estimates fall inside the KI acceptability region. Table 15 
reports the estimated values of model parameters with their 95% CIs and 
t-values. Observations regarding values of estimates and their precision 
are similar to the case discussed in Section 5.2.1. Parameters a2 and nAPI 
cannot be estimated from experimental measurements – their value is set 
to the lower and upper bounds of their estimation ranges, respectively. 
However, since they have little influence towards the considered KI 
predictions, there is no need to identify them. Parameters C2, C3 and ∊̇, 
too, do not require precise estimation. All KI specifications are met, and 
no further experimental effort is required. 

An additional case was analysed, where only one final KI, related to 
the in vitro dissolution unit (i.e., %LC at t = 25 min), was considered. 
Seven iterations are needed to reach the required model fidelity with 
respect to the %LC, i.e., seven experiments would need to be performed 
for each unit simultaneously, with a total of 21 experiments. The pre-
cision of model parameters is similar to results of the previous case 
studies. Details are reported in Section S.4 of the Supplementary 
material. 

5.2.3. Computational details 
All activities were performed on an Intel Core I7- 11850H 

CPU@2.50 GHz processor with 64.0 GB RAM. We used MATLAB® 
R2021b to perform MC simulations, and to construct PCA and PLS 
models. We used gPROMS v. 7.0.7 for process simulation, to implement 
MBDoE, and for parameter estimation. 

Performance of MC simulations is the most time-demanding step of 
the entire procedure, and depends on the model complexity and on the 
number of parameters to be considered. The required time to perform 
104 MC simulations was: (i) few seconds for the model for the tablet 
press unit operation, (ii) ~ 30 min for the model for the tablet disinte-
gration test unit, (iii) ~ 90 min for the model for the in vitro dissolution 
test unit. Therefore, even if the modular approach consists of more it-
erations than the global one (14 vs. 8), its computational time is 
considerably shorter (~4h vs. ~ 12 h). 

All other activities require little computational time. PCA and PLS 
derive from MC results, and only some seconds are needed for their 
construction. Implementation of MBDoE and parameter estimation both 

Fig. 11. Modular approach. Application of the proposed methodology to the in vitro dissolution test unit for the assessment of %LC attained in 25 min: (a) initial 
iteration, (b) final iteration where all projected uncertainties (red points) fall inside the KI acceptability region (grey area). 

Table 13 
In vitro dissolution test unit. Estimated values of model parameters with their 
95% CIs and t-values. †† = parameter estimate equal to the upper bound (UB) of 
its estimation range.  

Parameter Units Nominal Estimated 95% CI t-value 

kAPI (m3 

kg− 1)nAPI 
s− 1 

2.300 ×
10− 12 

1.950 ×
10− 12 

6.189 ×
10− 17 

3.150 ×
104 

nAPI – 1.00 UB ††
(=1.50) 

– –      

tref =

1.646  

Table 14 
Comprehensive approach focusing on all KIs simultaneously. Diagnostics of the 
PLS model: explained variance per latent variable.  

LV Explained Variance (%) Cumulative Variance (%) 

1  19.79  19.79 
2  14.32  34.11 
3  14.33  48.44 
4  8.62  57.06 
5  1.93  58.99  
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require short time, in between seconds and few minutes (1–2 min) for all 
sub-models. Process simulation demands only few seconds for all 
submodels. 

5.3. Discussion 

The case study demonstrated the effectiveness of the proposed 
approach for systematic evaluation of pharmaceutical process systems 
models. Here are some additional comments:  

• In this case study, the modular approach appears to be more efficient 
than the global one as the overall number of experimental runs is less 
(14 vs. 24). However, a greater number of iterations – i.e., sequences 
of design of experiments, experimental runs and parameter estima-
tion tasks – is needed (14 vs. 8), although with a lower computational 
burden. However, note that in the modular approach, in case a KI 

cannot be predicted with the required fidelity, it is more difficult to 
assess whether more experiments are needed on the unit being 
investigated (i.e., the unit outputting the KI) or, conversely, more 
experiments should be carried out in one or more of the previous 
units in order to achieve better estimates of the parameters in those 
units; uninformative experiments may be carried out before one re-
alizes that higher precision is required elsewhere;  

• The management of the experimental campaign is generally easier in 
the modular approach since experiments can be organized unit by 
unit, thus facilitating a more efficient scheduling;  

• Although not shown here, we verified that a tighter tolerance on the 
KIs can increase the required experimental effort dramatically; in 
such a case, reducing the experimental cost can be the priority 
requirement, and optimizing the experimental effort in a modular 
approach may be a difficult task. Also, note that if a larger parameter 
uncertainty is present (e.g., more than 50% of the nominal value), 

Fig. 12. Global approach. Application of the proposed methodology to the DC systems model for the assessment of all model KIs: (a) initial iteration, (b) final 
iteration where all projected uncertainties (red points) fall inside the KI acceptability region (grey area). 

Table 15 
Global approach focusing on all KIs simultaneously. Estimated values of model parameters with their 95% CIs and t-values. † = 95% CI larger than ± 50% the 
parameter nominal value. ††= parameter estimate equal to the lower bound (LB) or upper bound (UB) of its estimation range. * = precision is not statistically 
satisfactory.  

Parameter Units Nominal Estimated 95% CI t-value 

a1 MPa  11.04  10.04  0.499  20.12 
a2 –  1.091  LB†† (=0.500)  –  – 
asf –  0.463  0.458  2.029 × 10− 3  2.259 × 102 

b1 –  − 8.202  − 8.238  6.062 × 10− 2  1.359 × 102 

b2 –  0.326  0.320  7.991 × 10− 3  40.09 
bsf MPa− 1  2.460 × 10− 2  2.537 × 10− 2  2.491 × 10− 4  1.018 × 102 

γ dm− 1  1.211 × 10− 3  1.106 × 10− 3  4.934 × 10− 4  22.42       
tref = 1.690 

C2 MPa  1.000 × 102  1.499 × 102  6.553 × 104 † 2.289 × 10− 3 * 
C3 MPa  1.000 × 102  1.497 × 102  1.471 × 102 † 0.102 * 
∊̇ m/s  1.000 × 10− 3  9.973 × 10− 3  3.084 × 10− 2 † 2.271 × 10− 2 * 
n –  0.900  0.901  3.443 × 10− 2  26.17 
SP –  0.524  0.491  9.818 × 10− 2  5.00       

tref = 1.647 
kAPI (m3 kg− 1)nAPI s− 1  2.300 × 10− 12  1.982 × 10− 12  3.797 × 10− 17  5.217 × 104 

nAPI –  1.00  UB †† (=1.50)  –  –       
tref = 1.646  
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the required number of iterations and the computational burden may 
considerably increase. The experimental effort will increase 
accordingly;  

• Graphical approaches were developed to assess the importance of 
different parameters in the prediction of KIs, and to quantify the 
impact of estimation uncertainty on model fidelity. We believe they 
are particularly effective in making the outcomes of some required 
theoretical steps clear and comprehensible to everyone. On the other 
hand, we recognize that in complex models with large number of 
parameters, their implementation may become cumbersome and 
computationally demanding; other techniques may be adopted 
within the proposed framework;  

• Our methodology relies on the assumption that the only mismatch 
between model and process depends on the parameter values 
(parametric mismatch). In a real-life situation, a structural mismatch 
between the model and the process often exists. However, the pres-
ence of relevant discrepancies between model and process would 
require changes on model equations or the introduction of correction 
approaches (e.g., via hybrid modeling). How structural mismatch 
can be handled effectively is a subject of further investigation. 

• Both PCA and PLS models are built by considering the relation be-
tween model parameters and outputs, while there is no linearization 
of the input–output map. However, if the model is strongly nonlinear 
with respect to the relationship between parameters and KIs, the 
uncertainty region may be represented ineffectively. 

6. Conclusions 

A systematic procedure for the assessment of the prediction fidelity 
of quantitative (systems) models has been proposed and efficiently 
implemented. Our study paves the way to the systematic use of stan-
dardized approaches for model evaluation, and aims at enhancing 
model-based development for pharmaceutical manufacturing processes. 
Referring to the three questions considered in the introduction, it can be 
stated:  

(i) A methodology has been proposed to evaluate uncertainty in 
model predictions (model fidelity) by quantifying the impact of 
parameter precision; it can be exploited to ensure pre-set re-
quirements on parameters in the prediction of model KIs;  

(ii) It has been verified that it is generally unnecessary to estimate all 
model parameters in a statistically satisfactory way to satisfy the 

KI requirements; focusing only on the parameters that are ranked 
as (highly) influential is typically sufficient;  

(iii) No clear rule could be postulated on whether a calibration on a 
unit basis or a global calibration approach is the most effective 
strategy for systems models; pros and cons should be evaluated 
on a case by case basis. 

Future work will aim at testing the procedure experimentally, and at 
investigating model-process structural mismatch thoroughly. 
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Appendix A 

A.1 Model-based design of experiments (MBDoE) 

MBDoE techniques are used to reduce the parameter uncertainty region with the minimum experimental effort through the optimization of the 
experiment design vector φ (Franceschini and Macchietto, 2008): 

φ = [y0,u(t), tsp, τ ]T (A.1)  

where y0 is the set of initial conditions for the measured variables, tsp is the vector of the output variables sampling times, and τ is the total duration of 
the experiment. 

The optimization problem is conventionally formulated as: 

φopt = argmin
φ

{ψ[Vθ(θ,φ) ] } (A.2)  

where Vθ is the the expected variance–covariance matrix of the model parameters θ, while ψ is a selected metric of Vθ that represents the criterion for 
the experimental design. In this work, we used the A-optimal criterion, i.e.,ψ = Vθ(θ,φ), which minimizes the dimensions of the enclosing box around 
the joint confidence region. Optimal values of design variables are obtained through a nonlinear sequential quadratic programming optimization. 

Note that different approaches can be used to solve the MBDoE optimization problem, such as worst-case (Nagy and Braatz, 2004) or chance 
constraint (Ostrovsky et al., 2013) formulations. 

Vθ([03B8],φ) is evaluated as: 
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Vθ(θ,φ) =

{
(
Vθ

0)− 1
+
∑Nsp

k=1

∑Ny

i=1

∑Ny

j=1
si,j

[
∂ŷi(tk)

∂θl

∂ŷj(tk)

∂θm

]

l,m=1:1:Nθ

}− 1

, (A.3) 

where si,j is the i, j th element of the inverse of the measurement error covariance matrix, Nsp is the number of sampling intervals, Ny is the number of 
measured variables, and Nθ is the length of θ. Vθ

0 is the preliminary parameter variance/covariance matrix, which accounts for the initial parameter 
uncertainty. 

A.2 Parameter estimation 

Assuming that measurements errors are normally distributed, a maximum likelihood function ϕML can be expressed as according to Bard (1974), 
and model parameters are computed as to maximize its value: 

ϕML( y,Σ1,⋯,ΣN
)
= 2π

Ny
2
∏N

i=1
|Σi|

− 1
2exp

{

−
1
2
∑N

i=1

[
(yi − ŷi)

T Σi
− 1(yi − ŷi)

]
}

(A.4)  

where Σi is the variance–covariance matrix of measurements errors in the ith experiments, with N equal to the total number of samples. y is the vector 
of measured variables of length Ny, and ŷ is the vector of correspondent model predictions. 

The t-value test is used for assessing the precision in parameter θi estimation at (1 − α)% confidence level: 

t1− α
θi

=
θi

t(1 − α/2,N − Nθ)
̅̅̅̅̅vii

√ , (A.5)  

where tat the denominator is the critical value of a t-distribution with (1 − α/2) % confidence level and (N − Nθ) degrees of freedom (N = number of 
samples; Nθ= number of model parameters); vii is the iith term of the variance–covariance matrix. A statistically satisfactory parameter estimation is 
reached when t1− α

θi 
is greater than the reference t-value tref with (1 − α)% confidence level and (N − Nθ) degrees of freedom 

tref = t(1 − α,N − Nθ). (A.6) 

Confidence intervals (CIs) correspond to the denominator of Eq. (A.5). 
In this work, we set the significance level α% equal to 5%. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ces.2023.118972. 
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