
Graph Representation Learning for Multi-Task
Settings: a Meta-Learning Approach

Davide Buffelli
Department of Information Engineering

University of Padova
Padova, Italy

davide.buffelli@unipd.it

Fabio Vandin
Department of Information Engineering

University of Padova
Padova, Italy

fabio.vandin@unipd.it

Abstract—Graph Neural Networks (GNNs) have become the
state-of-the-art method for many applications on graph struc-
tured data. GNNs are a model for graph representation learning,
which aims at learning to generate low dimensional node embed-
dings that encapsulate structural and feature-related information.
GNNs are usually trained in an end-to-end fashion, leading
to highly specialized node embeddings. While this approach
achieves great results in the single-task setting, the generation
of node embeddings that can be used to perform multiple
tasks (with performance comparable to single-task models) is
still an open problem. We propose the use of meta-learning to
allow the training of a GNN model capable of producing multi-
task node embeddings. In particular, we exploit the properties
of optimization-based meta-learning to learn GNNs that can
produce general node representations by learning parameters
that can quickly (i.e. with a few steps of gradient descent) adapt
to multiple tasks. Our experiments show that the embeddings
produced by a model trained with our purposely designed meta-
learning procedure can be used to perform multiple tasks with
comparable or, surprisingly, even higher performance than both
single-task and multi-task end-to-end models.

Index Terms—Machine Learning, Representation Learning,
Artificial Neural Networks, Graph Neural Networks, Graph
Representation Learning

I. INTRODUCTION

Graph Neural Networks (GNNs) are deep learning models
for graph structured data, and have become one of the main
topics of the deep learning research community. The interest
in GNNs is due, in part, to their great empirical performance
on many graph-related tasks. Three tasks in particular, with
many practical applications, have received the most attention:
graph classification, node classification, and link prediction.

GNNs are centered around the concept of node represen-
tation learning, and typically follow the same architectural
pattern with an encoder-decoder structure [5, 12, 38]. The
encoder produces node embeddings (low-dimensional vectors
capturing relevant structural and feature-related information
about each node), while the decoder uses the embeddings to
carry out the desired downstream task. The model is then
trained in an end-to-end manner, leading to highly specialized
node embeddings. While this approach can achieve state-of-
the-art performance, it also affects the generality and reusabil-
ity of the embeddings. In fact, taking the node embeddings
generated by an encoder trained for a given task, and using

them to train a decoder for a different task leads to substantial
performance loss (see Fig. 1).

Original Embeddings Transferred Embeddings

NC GC->NC LP->NC0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

- 13.21% - 14.52%

Node Classification

(a)

GC NC->GC LP->GC0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

- 21.29%

- 10.82%

Graph Classification

(b)

LP NC->LP GC->LP0.55

0.60

0.65

0.70

0.75

0.80

RO
C

AU
C - 5.89%

- 4.43%

Link Prediction

(c)

Fig. 1: Performance drop when transferring node embeddings
on the ENZYMES dataset to perform the tasks: (a) Node
Classification (NC), (b) Graph Classification (GC), and (c)
Link Prediction (LP). “x ->y” indicates that the embeddings
obtained from a model trained on task x are used to train a
network for task y.

The low transferability of node embeddings requires the use
of one specialized encoder and one specialized decoder for
each considered task. However, there are many practical sce-
narios in which multiple tasks must be performed on the same
graph(s). For example, in a social network, both classification
tasks (e.g., classify users as spammer or nonspammer) and
link prediction tasks (e.g., suggest new connections between
users) must be performed. While a trivial solution might be to
deploy a specific model (generating specific node embeddings)
for each task, this inevitably leads to significant overhead.

This paper studies the problem of generating node
embeddings that can be used for multiple tasks, which is a
scenario with many practical applications that, nonetheless,
has received little attention from the GNN community. In
more detail, we propose a multi-task representation learning
procedure, based on optimization-based meta-learning [9],
that learns a GNN encoder producing node embeddings that
generalize across multiple tasks. Our focus is on the most
studied tasks in the GNN literature: graph classification, node
classification, and link prediction.

The proposed meta-learning procedure is targeted towards
multi-task representation learning and takes advantage of
MAML [9] and ANIL [29] to reach a setting of the parameters

where a few steps of gradient descent on a given task lead to
good performance on that task. This procedure leads to an
encoder-decoder model that can easily be adapted to perform
each of the tasks singularly, and hence encourages the encoder
to learn representations that can be reused across tasks. At the
end of the training procedure, the decoder is discarded, and
the encoder GNN is used to generate embeddings.

We summarize our contributions as follows:
• We consider the under-studied problem of learning GNN

models generating node representations that can be used
to perform multiple tasks. In this regard, we design a
meta-learning strategy for training GNN models with
such capabilities.

• To the best of our knowledge, we are the first to pro-
pose a GNN model generating a single set of node
embeddings that can be used to perform the three most
common graph-related tasks (i.e., graph classification,
node classification, and link prediction). In particular, the
generated embeddings lead to comparable or even higher
performance with respect to separate end-to-end trained
single-task models.

• We show that the episodic training strategy at the base of
our meta-learning procedure leads to a model generating
node embeddings that are more effective for downstream
tasks, even in single-task settings. This unexpected find-
ing is of interest in itself, and may provide fruitful
directions for future research.

II. PRELIMINARIES

This section introduces GNNs (Section II-A), multi-head
models (Section II-B), and optimization-based meta-learning
techniques (Section II-C), which are at the core of our method.
Throughout the paper we use the term “task” as in the multi-
task learning (MTL) literature, i.e. to refer to a downstream
application (e.g. graph classification, node classification, etc.).

A. Graph Neural Networks

Many popular state-of-the-art GNN models follow the
message-passing paradigm [11], which we now briefly de-
scribe. We represent a graph G = (A,X) with an adjacency
matrix A ∈ {0, 1}n×n, such that Aij = 1 if and only
if there is an edge between the i-th vertex and the j-th
vertex, and a node feature matrix X ∈ Rn×d, where the
v-th row Xv represents the d dimensional feature vector of
node v. Let H(ℓ) ∈ Rn×d′

be the matrix containing the node
representations at layer ℓ. A message passing layer updates
the representation of every node v as follows:

msg(ℓ)
v = AGGREGATE({H(ℓ)

u ∀u ∈ Nv})
H(ℓ+1)

v = UPDATE(H(ℓ)
v ,msg(ℓ)

v)

where H(0) = X, Nv is the set of neighbours of node v,
AGGREGATE is a permutation invariant function (as it takes
a set as input), and UPDATE is usually a neural network. After
L message-passing layers, the final node embeddings H(L) are
the representations used to perform a given task (e.g., they are

the input to a neural component that performs the given task),
and the network is trained end-to-end.

B. Multi-Head Models

In deep learning, the standard approach for performing
multiple tasks [35] with the same model is to employ a multi-
head architecture (see Fig. 2 (a)). A multi-head model is
composed of a backbone and multiple heads (one for each
task). The backbone is a neural network which processes
the input to extract features. The features extracted by the
backbone are then used by the heads (which are also neural
networks) to perform the desired tasks (each head performs
one task). The whole model is then trained end-to-end to
minimize a combination of the single-task losses (e.g. the sum
of the losses on each task). We refer to this strategy as the
classical training procedure for multi-task models.

C. Model-Agnostic Meta-Learning and ANIL

MAML (Model-Agnostic Meta-Learning) is an
optimization-based meta-learning strategy proposed by
Finn et al. [9]. Let fθ be a deep learning model, where θ
represents its parameters. Let p(E) be a distribution over
episodes1, with an episode Ei ∼ p(E) being defined as a
tuple containing a loss function LEi(·), a support set SEi ,
and a target set TEi : Ei = (LEi(·),SEi , TEi), where support
and target sets are simply sets of labelled examples. MAML’s
goal is to find a value of θ that can quickly, i.e. in a few
steps of gradient descent, be adapted to new episodes. This
is done with a nested loop optimization procedure: an inner
loop adapts the parameters to the support set of an episode by
performing some steps of gradient descent, and an outer loop
updates the initial parameters aiming at a setting that allows
fast adaptation. Formally, by defining θ′i(t) as the parameters
after t adaptation steps on the support set of episode Ei, we
can express the computations in the inner loop as

θ′i(t) = θ′i(t− 1)− α∇θ′
i(t−1)LEi

(fθ′
i(t−1),SEi

) (1)

where θ′i(0) = θ, L(fθ′
i(t−1),SEi) indicates the loss over

the support set SEi for the model fθ′
i(t−1) with parameters

θ′i(t − 1), and α is the learning rate. The meta-objective
that the outer loop tries to minimize is defined as Lmeta =∑

Ei∼p(E) LEi
(fθ′

i(t)
, TEi

), which leads to the following pa-
rameter update2 performed in the outer loop:

θ = θ − β∇θLmeta = θ − β∇θ

∑
Ei∼p(E)

LEi
(fθ′

i(t)
, TEi

). (2)

Raghu et al. [29] showed that feature reuse is the dominant
factor in MAML: in the adaptation loop, only the last layer(s)
in the network are updated, while the first layer(s) remain
almost unchanged. The authors then propose ANIL (Almost
No Inner Loop) where they split the parameters in two sets:

1The meta-learning literature usually derives episodes from tasks (i.e.,
tuples containing a dataset and a loss function). We focus on episodes to
avoid using the term task for both a MTL task, and a meta-learning task.

2We limit ourself to one step of gradient descent for clarity, but any
optimization strategy could be used.

one that is used for adaptation in the inner loop, and one that
is only updated in the outer loop. This simplification leads to
computational improvements while maintaining performance.

III. SAME: SINGLE-TASK ADAPTATION FOR MULTI-TASK
EMBEDDINGS

We design a meta-learning approach targeted towards rep-
resentation learning, by building on three insights:

(i) optimization-based meta-learning is implicitly learn-
ing robust representations. The findings by Raghu et al.
[29] suggest that, in a model trained with MAML, the first
layers learn features that are reusable across episodes, while
the last layers are set up for fast adaptation. MAML is then
implicitly learning a model with two components: an encoder
(the first layers), focusing on learning reusable representations
that generalize across episodes, and a decoder (the last layers)
that can be quickly adapted for different episodes.

(ii) meta-learning episodes can be designed to encour-
age generalization. By designing support and target sets to
mimic the training and validation sets of a classical training
procedure, then the meta-learning procedure is effectively
optimizing for generalization.

(iii) meta-learning can learn to quickly adapt to multiple
tasks singularly, without having to learn to solve multiple
tasks concurrently. The meta-learning procedure can be deis-
gned so that, for each considered task, the inner loop adapts
the parameters to a task-specific support set, and tests the
adaptation on a task-specific target set. The outer loop then
updates the parameters to allow this fast multiple single-task
adaptation.

Based on (ii) and (iii), we design the meta-learning proce-
dure such that the inner loop adapts to multiple tasks singu-
larly, each time with the goal of single-task generalization.
Using an encoder-decoder architecture, (i) suggests that this
procedure leads to an encoder that learns features reusable
across episodes. As, in each episode, the learner is adapting to
multiple tasks, the encoder is learning features that generalize
across multiple tasks. After training with our meta-learning
strategy, the decoder is discarded, and only the encoder is
kept and used to generate representations. Contrary to many
applications of meta-learning, there is no adaptation performed
at test time, as meta-learning is used only for training the
model from which an encoder is exracted.

In the rest of this section, we formally present our meta-
learning procedure for training multi-task graph representation
learning models. There are three aspects that need to be
defined: (1) Episode Design: how is a an episode composed,
(2) Model Architecture Design: what is the architecture
of our model, (3) Meta-Training Design: how, and which,
parameters are adapted/updated.

A. Episode Design

In our case, an episode becomes a multi-task episode (Fig.
2 (b)). To formally introduce the concept, let us consider
the case where the tasks are graph classification (GC), node
classification (NC), and link prediction (LP). We define a

multi-task episode E(m)
i ∼ p(E(m)) as a tuple E(m)

i =

(L(m)
Ei

,S(m)
Ei

, T (m)
Ei

) where

L(m)
Ei

= {L(GC)
Ei

,L(NC)
Ei

,L(LP)
Ei
},

S(m)
Ei

= {S(GC)
Ei

,S(NC)
Ei

,S(LP)
Ei
},

T (m)
Ei

= {T (GC)
Ei

, T (NC)
Ei

, T (LP)
Ei
}.

The meta-objective L(m)
meta of our method is then defined as:

L(m)
meta =

∑
E(m)
i ∼p(E(m))

λ(GC)L(GC)
Ei

+ λ(NC)L(NC)
Ei

+ λ(LP)L(LP)
Ei

.

(3)

where λ(·) are balancing coefficients.
Support and target sets are set up to resemble training and

validation sets. This way the outer loop’s objective becomes to
maximize the performance on a validation set, given a training
set, hence encouraging generalization. In more detail, given a
batch of graphs, we divide it in equally sized splits (one per
task), and create support and target sets as follows:
Graph Classification: S(GC)

Ei
and T (GC)

Ei
contain labeled

graphs, obtained with a random split.
Node Classification: S(NC)

Ei
and T (NC)

Ei
are composed of the

same graphs, with different labelled nodes. We mimic
the common semi-supervised setting [19] where feature
vectors are available for all nodes, and only a small subset
of nodes is labelled.

Link Prediction: S(LP)
Ei

and T (LP)
Ei

are composed of the same
graphs, with different query edges. In every graph we
randomly remove some edges, used as positive examples
together with non-removed edges, and randomly sample
pairs of non-adjacent nodes as negative examples.

Notice how we only need labels for one task for each graph.
The full algorithm for the creation of multi-task episodes is
provided in Appendix3 A.

B. Model Architecture Design

We use an encoder-decoder model with a multi-head ar-
chitecture. The backbone (which represents the encoder) is
composed of 3 GCN [19] layers with ReLU non-linearities and
residual connections [14]. The decoder is composed of three
heads. The node classification head is a single layer neural
network with a Softmax activation that is shared across nodes
and maps node embeddings to class predictions. In the graph
classification head, first a single layer neural network (shared
across nodes) performs a linear transformation (followed by
a ReLU activation) of the node embeddings. The transformed
node embeddings are then averaged and a final single layer
neural network with Softmax activation outputs the class
predictions. The link prediction head is composed of a single
layer neural network with ReLU non-linearity that transforms
node embeddings, and a single layer neural network that given
concatenation of two embeddings outputs the probability of a
link between them. We remark that after training the full model

3Appendix available at: https://arxiv.org/abs/2201.03326.

https://arxiv.org/abs/2201.03326

Layer 1

Layer 2

Layer n

Head 1 Head 2 Head k

Task 1 Task 2 Task k

Backbone

(a)

Support Set Target Set

GC

NC

LP

GCN

Node
Embeddings

GC

NC

LP

Multi-head
Output Layer

Train in outer loop
Adapt in  

inner loop

GCN

Node
Embeddings

GC

NC

LP

Multi-head
Output Layer

Train in outer loop

Adapt in inner loop

GC

NC

LP

(b)

Support Set Target Set

GC

NC

LP

GCN

Node
Embeddings

GC

NC

LP

Multi-head
Output Layer

Update in outer loop
Adapt in  

inner loop

GCN

Node
Embeddings

GC

NC

LP

Multi-head
Output Layer

Update in outer loop

Adapt in inner loop

GC

NC

LP

(c)

Support Set Target Set

GC

NC

LP

GCN

Node
Embeddings

GC

NC

LP

Multi-head
Output Layer

Update in outer loop
Adapt in  

inner loop

GCN

Node
Embeddings

GC

NC

LP

Multi-head
Output Layer

Update in outer loop

Adapt in inner loop

GC

NC

LP

(d)

Fig. 2: Main ingredients of our meta-learning procedure SAME. (a) Multi-head architecture. (b) Schematic representation
of a multi-task episode. For each task, support and target set are designed to be as the training and validation sets for single-task
training. (c-d) Overview of the parameter updates in SAME’s meta-learning procedure. In the inner loop, the model is adapted
separately to each task in the support set; the outer loop then tests the performance of each adaptation on the corresponding
task in the target set, and updates the initial parameters of the network to allow it to rapidly be adapted to each task, by
minimizing the meta-objective. In iSAME (c) all parameters are adapted in the inner loop. In eSAME (d) only the task-specific
output layers are adapted in the inner loop. Both in iSAME and eSAME, after training the model, only the backbone GCN is
kept, and used to generate embeddings.

Algorithm 1 Proposed (meta-learning based) procedure.

Input: Model fθ; Episodes E = {E1, .., En}; Meta-
Objective Coefficients λ(GC), λ(NC), λ(LP).
init(θ)
for Ei in E do
o_loss← 0
for τ in (GC, NC, LP) do
θ′(τ) ← θ
θ′(τ) ← ADAPT(fθ,S(τ)Ei

,L(τ)
Ei

)

o_loss← o_loss+ λ(τ)TEST(fθ′(τ) , T (τ)
Ei

,L(τ)
Ei

)
end for
θ ← UPDATE(θ,o_loss, θ′(GC), θ′(NC), θ′(LP))

end for

with the proposed meta-learning procedure, only the encoder
is kept, and is used to generate node embeddings which can
be fed to any machine learning model for downstream tasks.

C. Meta-Training Design

We first present the meta-learning training procedure, and
successively describe which parameters are adapted/updated
in the inner and outer loops.

Meta-Learning Training Procedure. The meta-learning
procedure is designed such that the inner loop adaptation
involves a single task at a time. Only the parameter update
performed to minimize the meta-objective involves multiple
tasks, but, crucially, it does not aim at a setting of parameters
that can solve, or quickly adapt to, multiple tasks concurrently,
but to a setting allowing multiple fast single-task adaptation.

The pseudocode of our procedure is in Algorithm 1. init
is a method that initializes the weights of the GNN. ADAPT
performs a few steps of gradient descent on a task-specific
loss function and support set (as in eq. 1), TEST computes the
value of the meta-objective component on a task-specific loss
function and target set for a model with parameters adapted

on that task, and UPDATE optimizes the parameters θ by
minimizing the meta-objective in eq. 3 (which is contained
in o_loss in the pseudocode). Notice the multiple heads of
the decoder are never used concurrently.

Parameter Update in Inner/Outer Loop. Let us par-
tition the parameters of our model in four sets: θ =
[θGCN, θNC, θGC, θLP] representing the parameters of the back-
bone (θGCN), node classification head (θNC), graph classifi-
cation head (θGC), and link prediction head (θLP). We name
our meta-learning strategy SAME (Single-Task Adaptation for
Multi-Task Embeddings), and present two variants (Fig. 2 c-d):
Implicit SAME (iSAME): all the parameters θ are used

for adaptation. This strategy makes use of the implicit
feature-reuse factor of MAML, leading to parameters
θGCN that are general across multi-task episodes.

Explicit SAME (eSAME): only the head parameters
θNC, θGC, θLP are used for adaptation (as done by ANIL).
Contrary to iSAME, this strategy explicitly aims at learn-
ing the parameters θGCN to be general across multi-task
episodes by only updating them in the outer loop.

The pseudocode in Algorithm 1 is the same for both iSAME
and eSAME. The difference between the methods is in which
subset of the parameters θ is updated by the ADAPT function.
In iSAME the ADAPT function will update the head and the
backbone parameters (θGCN, θNC, θGC, θLP), while for eSAME
only the head parameters (θNC, θGC, θLP) will be updated.

D. Connection between SAME and other Optimization-based
Meta-Learning Methods

SAME is an instantiation of optimization-based meta-
learning (in particular iSAME is an instantiation of MAML
[9], while eSAME of ANIL [29]) specially designed for learn-
ing multi-task representations. In particular SAME employs
the following design choices: (1) In SAME each episode is
composed of multiple tasks (i.e. downstream applications). (2)
In SAME each task (both in the inner and in the outer loop)

can involve only a subset of the parameters of the model. (3)
In SAME’s inner loop, separate adaptations are performed
for each task in the episode. In the outer loop, the meta-
objective defines how these multiple adaptations are combined
for updating the initial representations of the parameters.

After training a model with SAME, an encoder is extracted
and used to generate representations of the input that can then
be fed to any machine learning model. As SAME is only used
for training, no adaptation is performed at test time, and hence
support and target sets are not required at test time.

IV. EXPERIMENTS

Our goal is to assess the quality of the representations
learned by models trained with SAME, and to study the impact
of SAME’s underlying components. In more detail, we aim to
answer the following questions:
Q1: Do iSAME and eSAME lead to node embeddings that

can be used to perform multiple downstream tasks with
comparable (or better) performance than end-to-end
single-task models?

Q2: Can node embeddings learned by a model trained with
iSAME and eSAME be used for multiple tasks with com-
parable or better performance than classically trained
(i.e., see Section II-B) multi-task models?

Q3: Do iSAME and eSAME extract information that is not
captured by the classical training procedure (i.e., see
Section II-B)?

Q4 (Ablation Study): What are the contributions of the dif-
ferent components of SAME’s meta-learning procedure?

Unless otherwise stated, accuracy (%) is used for NC and
GC, while ROC AUC (%) is used for LP. (As a reminder,
we use GC to refer to graph classification, NC for node
classification, and LP for link prediction.)

Datasets. To perform multiple tasks, we consider datasets
with graph labels, node attributes, and node labels from the
TUDataset library [27]: ENZYMES [32], PROTEINS [8],
DHFR and COX2 [34]. ENZYMES is a dataset of protein
structures belonging to six classes. PROTEINS is a dataset
of chemical compounds with two classes (enzyme and non-
enzyme). DHFR, and COX2 are datasets of chemical inhibitors
which can be active or inactive.

Experimental Setup. We perform a 10-fold cross vali-
dation, and average results across folds. To ensure a fair
comparison, the same architecture is used for all training
strategies. We set λ(GC) = λ(NC) = λ(LP) = 1 as we
noticed that weighting the losses did not provide significant
benefits. Loss balancing techniques (e.g. uncertainty weights
[17], and gradnorm [6]) were tested, both with SAME and
with the classical training procedure, but they did not result
effective. This is in accordance with recent works [20, 35]
which observe that, when appropriate tuning is done, no
method is significantly better than minimizing the sum of the
task losses. For more information we refer to Appendix B, and
we publicly release source code4.

4https://github.com/DavideBuffelli/SAME

TABLE I: Results for a single-task model trained in a classical
supervised manner, a fine-tuned model (trained on all, and fine-
tuned on two tasks), and a linear classifier trained on node
embeddings generated by a model trained with our strategies
(iSAME, eSAME) in a multi-task setting.

Task Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2

GC NC LP GC NC LP GC NC LP GC NC LP
Classical End-to-End Training

✓ 51.6 73.3 71.5 76.7
✓ 87.5 72.3 97.3 96.4

✓ 75.5 85.6 98.8 98.3
Fine-Tuning

✓ ✓ 48.3 85.3 73.6 72.0 66.4 92.4 80.0 92.3
✓ ✓ 49.3 71.6 69.6 80.7 65.3 58.9 80.2 50.9

✓ ✓ 87.7 73.9 80.4 81.5 80.7 56.6 87.4 52.3
iSAME (ours)

✓ ✓ 50.1 86.1 73.1 76.6 71.6 94.8 75.2 95.4
✓ ✓ 50.7 83.1 73.4 85.2 71.6 99.2 77.5 98.9

✓ ✓ 86.3 83.4 79.4 87.7 96.5 99.3 95.5 99.0
✓ ✓ ✓ 50.0 86.5 82.3 71.4 76.6 87.3 71.2 95.5 99.5 75.4 95.2 99.2

eSAME (ours)
✓ ✓ 51.7 86.1 71.5 79.2 70.1 95.7 75.6 95.5
✓ ✓ 51.9 80.1 71.7 85.4 70.1 99.1 77.5 98.8

✓ ✓ 86.7 82.2 80.7 86.3 96.6 99.4 95.6 99.1
✓ ✓ ✓ 51.5 86.3 81.1 71.3 79.6 86.8 70.2 95.3 99.5 77.7 95.7 98.8

Q1: We train a model with SAME, on all multi-task
combinations, and use the embeddings produced by the learned
encoder as the input for a linear classifier. We compare
against models with the same task-specific architecture trained
in a classical supervised manner on a single task, and with a
fine-tuning baseline. The latter is a model that has been trained
on all three tasks, and then fine-tuned on two specific tasks.
The idea is that the initial training on all tasks should lead
the model towards the extraction of features that it would
otherwise not consider (by only seeing 2 tasks). The fine-
tuning process should then allow the model to use these
features to target the specific tasks of interest. Results are
shown in Table I. The embeddings produced by the model
learned with SAME in a multi-task setting achieve perfor-
mance comparable to, and frequently even better than, end-to-
end single-task models. In fact, the embeddings from SAME
are never outperformed by more than 3%, and in 50% of
the cases actually achieve higher performance. Moreover, the
fine-tuning baseline is almost always outperformed by both
single-task models, and our proposed methods. These results
confirm that meta-learning is a powerful solution for multi-
task representation learning on graphs.

Q2: We train the same multi-task model, both in the
classical supervised manner (see Section II-B), and with our
proposed approaches, on all multi-task combinations. For our
approaches, a linear classifier is then trained on top of
the node embeddings produced by the learned encoder. We
further consider the fine-tuning baseline introduced in Q1.
The multi-task performance (∆m) metric [25] is used, defined
as the average per-task drop with respect to the single-task
baseline: ∆m = 1

T

∑T
i=1 (Mm,i −Mb,i) /Mb,i, where Mm,i

is the value of a task’s metric for the multi-task model, and
Mb,i is the value for the baseline. Results are shown in
Table II. Multi-task models usually achieve lower performance
than specialized single-task ones. Moreover, linear classifiers
trained on the embeddings generated by a model trained
with SAME are not only comparable, but in many cases

https://github.com/DavideBuffelli/SAME

TABLE II: ∆m (%) results for a classically trained multi-task
model (Cl), a fine-tuned model (FT; trained on all three tasks
and fine-tuned on two) and a linear classifier trained on the
node embeddings generated by a model trained with our meta-
learning strategies (iSAME, eSAME) in a multi-task setting.

Task Model Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2

✓ ✓

Cl −0.1± 0.5 4.0± 1.0 −0.3± 0.2 0.5± 0.1
FT −4.5± 1.2 0.1± 0.5 −7.4± 1.4 0.1± 0.4

iSAME −2.3± 0.9 2.7± 1.5 −1.2± 0.4 −1.6± 0.2
eSAME −0.8± 0.8 3.2± 1.4 −1.8± 0.3 −1.2± 0.3

✓ ✓

Cl −25.3± 3.2 −5.3± 1.2 −28.3± 4.3 −21.4± 3.4
FT −5.1± 1.9 −5.4± 1.5 −24.5± 3.7 −22.6± 3.8

iSAME 4.1± 0.5 −0.2± 0.9 0.2± 3.2 0.2± 0.5
eSAME 3.2± 0.4 −1.2± 1.1 −0.7± 3.4 −0.8± 0.7

✓ ✓

Cl 7.2± 2.7 6.8± 0.9 −29.1± 7.7 −28.2± 4.5
FT −1.0± 0.3 3.1± 1.2 −28.9± 6.4 −28.3± 4.2

iSAME 4.4± 1.1 6.1± 1.0 −0.1± 6.2 −0.6± 2.5
eSAME 3.9± 1.3 6.1± 1.1 0.1± 6.4 −0.6± 2.6

✓ ✓ ✓
Cl 1.6± 1.3 2.9± 0.3 −18.9± 2.3 −16.9± 3.1

iSAME 1.5± 1.0 2.2± 0.2 −0.5± 1.4 −0.9± 1.3
eSAME 1.8± 0.9 2.8± 0.2 −1.0± 1.7 −0.4± 1.2

significantly superior to classically trained multi-task models.
In fact, a multi-task model trained in a classical manner is
highly sensible to the tasks that are being learned (e.g. GC
and LP negatively interfere with each other in every dataset),
while our methods are much less sensible. For instance, the
former has a worst-case average drop in performance of 29%,
while our method has a worst-case average drop of less than
3%. Finally, the fine-tuning baseline generally performs worse
than classically trained models, confirming that transferring
knowledge in multi-task settings is not easy.

Q3: We train a multi-task model, and then train a new
simple network (with the same architecture as the heads
described in Section III-B), which is refer to as classifier, on
the embeddings generated by the multi-task model to perform
a task that was not seen during training. We compare the
performance of the classifier on the embeddings generated
by a model trained in a classical manner, and with SAME.
Intuitively, this tests gives us a way to analyse if the embed-
dings generated by a model trained with SAME contain “more
information” than embeddings generated by a model trained
in a classical manner. Results on the ENZYMES dataset are
shown in Fig. 3. Interestingly, the embeddings generated by
a model trained with SAME lead to at least 10% higher
performance. We observe an analogous trend on the other
datasets (full results are in Appendix C).

Q4 (Ablation Study): SAME’s meta-learning procedure has
two main ingredients:

(1) the design of support and target sets, to encourage
generalization by mimicking training and validation sets
(see Section III-A).

(2) the separate multiple single-task adaptations performed in
the inner loop, which relieve the model from having to
learn to solve all the tasks concurrently (Section III-C).

To better understand the importance and contribution of each
component we perform two experiments, for which results are
presented below (the full results can be found in Appendix E).

First, we isolate the contribution of (1) by applying iSAME
and eSAME in a single-task setting (i.e., the same single task

Classical iSAME eSAME

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

GC,NC -> LP

(a)

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

GC,LP -> NC

(b)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

RO
C

AU
C

NC,LP -> GC

(c)

Fig. 3: Results for model, trained on the embeddings generated
by a multi-task model, performing a task that was not seen
during training. “x, y->z” indicates that x, y are the tasks used
for training the multi-task model, and z is the new task.

is performed in both inner and outer loops), with episodes
following the generalization-encouraging design proposed in
Section III-A. Notice that this is like applying the original
MAML and ANIL training procedures with our design of
support and target sets. In this experiment, for every task, we
train a linear classifier on top of the embeddings produced by
a model trained with “single-task” iSAME and eSAME, and
compare against a network with the same architecture trained
in a classical end-to-end manner. Results are shown in Fig.
4. For all three tasks, a linear classifier on the embeddings
produced by a model trained with our methods achieves
comparable, if not superior, performance to an end-to-end
model. In fact, the linear classifier is never outperformed by
more than 2%, and it can outperform the classical end-to-end
model by up to 12%. We believe this unexpected outcome
is particularly interesting, and hints that episodic training
procedures can be used to learn better representations.

Second, we investigate the benefits of (2) by removing
the separate multiple single-task adaptations of SAME and
performing all tasks (i.e., GC, NC, and LP) concurrently both
in the inner and outer loop. This leads to a simple concurrent
multi-task version of the conventional training procedure of
MAML and ANIL, but with our support and target set design.
For this experiment, we evaluate the ablated versions of SAME
on the same procedure of Q2 and Q3, and compare against
the results of iSAME and eSAME. The results from the
ablated version are not significantly different from those of
non-ablated iSAME and eSAME (see Appendix D).

From these experiments we draw two conclusions. (i) The
generalization-encouraging design of support and target sets
is what allows SAME to reach performance on multiple tasks
that are comparable to specialised single-task models trained
in a classical manner. (ii) The separate multiple single-task
adaptations that are performed in the inner loop of iSAME and
eSAME allow the models to reach the same performance of a
version of SAME where all tasks are performed concurrently
on all graphs, hence increasing the learning efficiency by not
requiring labels for each task on every graph.

Classical Single-Task Single-Task iSAME Single-Task eSAME

ST GNN with classical training ST GNN trained with iSAME ST GNN trained with eSAME

ENZYMES PROTEINS DHFR COX2

70

80

90

100

Ac
cu

ra
cy

 (%
) Node Classification

(a)

ENZYMES PROTEINS DHFR COX2

50

60

70

80

Ac
cu

ra
cy

 (%
) Graph Classification

(b)

ENZYMES PROTEINS DHFR COX2
70

80

90

100

RO
C

AU
C

(%
) Link Prediction

(c)

Fig. 4: Results for a Single-Task GNN model (ST GNN) trained with the classical procedure, and a linear classifier trained
on the embeddings generated by a model trained with an ablated “single-task” version of SAME.

V. RELATED WORK

GNNs, MTL, and meta-learning are very active areas of
research. We highlight works that are at the intersection of
these subjects, and point the interested reader to comprehen-
sive reviews of each field. To the best of our knowledge there
is no work using meta-learning to train a model for graph
MTL, or proposing a GNN performing graph classification,
node classification, and link prediction concurrently.

Graph Neural Networks. GNNs have a long history [31],
but in the past few years the field has grown exponentially
[5, 38]. The first popular GNN approaches were based on
filters in the graph spectral domain [4], and presented many
challenges including high computational complexity. Deffer-
rard et al. [7] introduced ChebNet, which uses Chebyshev
polynomials to produce localized and efficient filters in the
graph spectral domain. Graph Convolutional Networks [19]
introduced a localized first-order approximation of spectral
graph convolutions which was then extended to include at-
tention mechanisms [36]. Recently, Xu et al. [40] provided
theoretical ground for the expressivity of GNNs.

Multi-Task Learning. Works at the intersection of MTL
and GNNs have mostly focused on multi-head architectures.
These models are composed of a series of GNN layers
followed by multiple heads (i.e. independent neural network
layers) that perform the desired downstream tasks. In this
category, Montanari et al. [26] propose a model for the
prediction of physico-chemical properties. Holtz et al. [15]
and Xie et al. [39] propose multi-task models for concurrently
performing node and graph classification. Finally, Avelar et al.
[2] introduce a multi-head GNN for learning multiple graph
centrality measures, and Li and Ji [21] propose a MTL method
for the extraction of multiple biomedical relations. Other
related work includes [13] which introduces a model that
can be trained for several tasks singularly, hence, unlike the
previously mentioned approaches and our proposed method,
it can not perform multiple tasks concurrently. There are also
some works that use GNNs as a tool for MTL: Liu et al.
[23] use GNNs to allow communication between tasks, while
Zhang et al. [42] use GNNs to estimate the test error of a MTL
model. In summary, the current literature on graph MTL has
focused on multi-head architectures that are trained end-to-
end. In this work we tackle the graph representation learning
scenario in which the node embeddings are used for multiple

tasks, and propose the use of meta-learning for training a
GNN for this setting. We further mention the work by Wang
et al. [37] that considers the task of generating “general” node
embeddings, however their method is not based on GNNs,
does not consider node attributes (unlike our method), and is
not focused on the three most common graph related tasks.
For an exhaustive review of deep MTL techniques we refer
the reader to Vandenhende et al. [35].

Meta-Learning. Meta-Learning consists in learning to
learn. Many methods have been proposed (see the review
by Hospedales et al. [16]), specially in the area of few-shot
learning. Garcia and Bruna [10] frame the few-shot learning
problem with a partially observed graphical model and use
GNNs as an inference algorithm. Liu et al. [22] use GNNs
to propagate messages between class prototypes and improve
existing few-shot learning methods, while Suo et al. [33] use
GNNs to introduce domain-knowledge in the form of graphs.
There are also several works that use meta-learning to train
GNNs in few-shot learning scenarios with applications to node
classification [41, 43], edge labelling [18], link prediction
[1, 3], and graph regression [28]. Finally, other combinations
of meta-learning and GNNs involve adversarial attacks [44]
and active learning [24].

VI. CONCLUSIONS

This work introduces the use of meta-learning as a training
strategy for graph representation learning in multi-task set-
tings. We find that our method leads to models that produce
“more general” node embeddings. In fact, our results show
that the embeddings produced by a model trained with our
technique can be used to perform graph classification, node
classification, and link prediction, with comparable or better
performance than separate single-task end-to-end supervised
models. Furthermore, we find that the embeddings generated
by a model trained with our procedure lead to higher per-
formance on downstream tasks that were not seen during
training, and that the episodic training procedure leads to
better embeddings even in the single-task setting. We believe
this work can be of interest to the community as it explores
the under-studied area of multi-task representation learning on
graphs, and further introduces a method built on optimization-
based meta-learning (inheriting the properties of being model-
agnostic), which can be adapted to other domains as future

work. Another interesting direction is to incorporate more
advanced meta-learning strategies like [30].

ACKNOWLEDGMENT

This work is supported, in part, by the Italian Ministry of Ed-
ucation, University and Research (MIUR), under PRIN Project n.
20174LF3T8 “AHeAD” and the initiative “Departments of Excel-
lence” (Law 232/2016), and by University of Padova under project
“SID 2020: RATED-X”.

REFERENCES

[1] F. Alet, E. Weng, T. Lozano-Perez, and L. Kaelbling. Neural re-
lational inference with fast modular meta-learning. In NeurIPS,
2019.

[2] P. Avelar, H. Lemos, M. Prates, and L. Lamb. Multitask learning
on graph neural networks: Learning multiple graph centrality
measures with a unified network. In ICANN Workshop and
Special Sessions. 2019.

[3] A. J. Bose, A. Jain, P. Molino, and W. L. Hamilton. Meta-graph:
Few shot link prediction via meta learning. arXiv, 2019.

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: Going beyond euclidean
data. IEEE Signal Processing Magazine, 2017.

[5] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy.
Machine learning on graphs: A model and comprehensive
taxonomy. arXiv, 2020.

[6] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich.
Gradnorm: Gradient normalization for adaptive loss balancing
in deep multitask networks. In ICML, 2018.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering.
In NeurIPS, 2016.

[8] P. D. Dobson and A. J. Doig. Distinguishing enzyme structures
from non-enzymes without alignments. J. of Mol. Bio., 2003.

[9] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML, 2017.

[10] V. Garcia and J. Bruna. Few-shot learning with graph neural
networks. In ICLR, 2018.

[11] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl. Neural message passing for quantum chemistry. In ICML,
2017.

[12] W. L. Hamilton, R. Ying, and J. Leskovec. Representation
learning on graphs: Methods and applications. IEEE Data
Engineering Bulletin, 2017.

[13] L. Haonan, S. H. Huang, T. Ye, and G. Xiuyan. Graph star net
for generalized multi-task learning. arXiv, 2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[15] C. Holtz, O. Atan, R. Carey, and T. Jain. Multi-task learning on
graphs with node and graph level labels. In NeurIPS Workshop
on Graph Representation Learning, 2019.

[16] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-
learning in neural networks: A survey. arXiv, 2020.

[17] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics.
In CVPR, 2018.

[18] J. Kim, T. Kim, S. Kim, and C. Yoo. Edge-labeling graph neural
network for few-shot learning. In CVPR, 2019.

[19] T. N. Kipf and M. Welling. Semi-supervised classification with
graph convolutional networks. In ICLR, 2017.

[20] V. Kurin, A. D. Palma, I. Kostrikov, S. Whiteson, and M. P.
Kumar. In defense of the unitary scalarization for deep multi-
task learning, 2022.

[21] D. Li and H. Ji. Syntax-aware multi-task graph convolutional
networks for biomedical relation extraction. In LOUHI, 2019.

[22] L. Liu, T. Zhou, G. Long, J. Jiang, and C. Zhang. Learning to
propagate for graph meta-learning. In NeurIPS, 2019.

[23] P. Liu, J. Fu, Y. Dong, X. Qiu, and J. Cheung. Learning
multi-task communication with message passing for sequence
learning. In AAAI, 2019.

[24] K. Madhawa and T. Murata. Active learning on graphs via meta
learning. In ICML Workshop on Graph Representation Learning
and Beyond, ICML, 2020.

[25] K.-K. Maninis, I. Radosavovic, and I. Kokkinos. Attentive
single-tasking of multiple tasks. In CVPR, 2019.

[26] F. Montanari, L. Kuhnke, A. T. Laak, and D.-A. Clevert.
Modeling physico-chemical ADMET endpoints with multitask
graph convolutional networks. Molecules, 2019.

[27] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel,
and M. Neumann. Tudataset: A collection of benchmark
datasets for learning with graphs. In ICML Workshop on Graph
Representation Learning and Beyond, 2020.

[28] C. Q. Nguyen, C. Kreatsoulas, and B. K. M. Meta-learning gnn
initializations for low-resource molecular property prediction.
In ICML Workshop on Graph Representation Learning and
Beyond, ICML, 2020.

[29] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning
or feature reuse? towards understanding the effectiveness of
maml. In ICLR, 2020.

[30] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-
learning with implicit gradients. NeurIPS, 2019.

[31] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 2009.

[32] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt,
G. Huhn, and D. Schomburg. Brenda, the enzyme database:
updates and major new developments. Nucleic acids res., 2004.

[33] Q. Suo, J. Chou, W. Zhong, and A. Zhang. Tadanet: Task-
adaptive network for graph-enriched meta-learning. In ACM
SIGKDD, 2020.

[34] J. J. Sutherland, L. A. O’Brien, and D. F. Weaver. Spline-fitting
with a genetic algorithm: A method for developing classification
structure-activity relationships. Journal of Chemical Informa-
tion and Computer Sciences, 2003.

[35] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proes-
mans, D. Dai, and L. Van Gool. Multi-task learning for dense
prediction tasks: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2021. doi:
10.1109/TPAMI.2021.3054719.

[36] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio. Graph Attention Networks. In ICLR, 2018.

[37] S. Wang, Q. Wang, and M. Gong. Multi-task learning based
network embedding. Frontiers in Neuroscience, 2020.

[38] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu.
A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[39] Y. Xie, M. Gong, Y. Gao, A. K. Qin, and X. Fan. A multi-
task representation learning architecture for enhanced graph
classification. Frontiers in Neuroscience, 2020.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are
graph neural networks? In ICLR, 2019.

[41] H. Yao, C. Zhang, Y. Wei, M. Jiang, S. Wang, J. Huang, N. V.
Chawla, and Z. Li. Graph few-shot learning via knowledge
transfer. In AAAI, 2020.

[42] Y. Zhang, Y. Wei, and Q. Yang. Learning to multitask. In
NeurIPS, 2018.

[43] F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and
J. Geng. Meta-gnn: On few-shot node classification in graph
meta-learning. In CIKM, 2019.

[44] D. Zügner and S. Günnemann. Adversarial attacks on graph
neural networks via meta learning. In ICLR, 2019.

	Introduction
	Preliminaries
	Graph Neural Networks
	Multi-Head Models
	Model-Agnostic Meta-Learning and ANIL

	SAME: Single-Task Adaptation for Multi-Task Embeddings
	Episode Design
	Model Architecture Design
	Meta-Training Design
	Connection between SAME and other Optimization-based Meta-Learning Methods

	Experiments
	Related Work
	Conclusions

