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Abstract
Procedural knowledge space theory (PKST) was recently proposed by Stefanutti (British Journal of Mathematical and
Statistical Psychology, 72(2) 185–218, 2019) for the assessment of human problem-solving skills. In PKST, the problem
space formally represents how a family of problems can be solved and the knowledge space represents the skills required
for solving those problems. The Markov solution process model (MSPM) by Stefanutti et al. (Journal of Mathematical
Psychology, 103, 102552, 2021) provides a probabilistic framework for modeling the solution process of a task, via PKST.
In this article, three adaptive procedures for the assessment of problem-solving skills are proposed that are based on the
MSPM. Beside execution correctness, they also consider the sequence of moves observed in the solution of a problem with
the aim of increasing efficiency and accuracy of assessments. The three procedures differ from one another in the assumption
underlying the solution process, named pre-planning, interim-planning, and mixed-planning. In two simulation studies, the
three adaptive procedures have been compared to one another and to the continuous Markov procedure (CMP) by Doignon
and Falmagne (1988a). The last one accounts for dichotomous correct/wrong answers only. Results show that all the MSP-
based adaptive procedures outperform the CMP in both accuracy and efficiency. These results have been obtained in the
framework of the Tower of London test but the procedures can also be applied to all psychological and neuropsychological
tests that have a problem space. Thus, the adaptive procedures presented in this paper pave the way to the adaptive assessment
in the area of neuropsychological tests.

Keywords Procedural knowledge space theory · Problem space · Markov models · Adaptive assessment ·
Tower of London test

Introduction

In this article, a novel procedure for the adaptive assessment
of human problem-solving is presented, which is suitable
for performing the assessment with certain cognitive or
neuropsychological tests like, for instance, the Tower of
London (ToL) test. The theory on which the procedure
is based is named procedural knowledge space theory
(Stefanutti, 2019). It is a specialization of the knowledge
structures theory (KST; Doignon & Falmagne, 1985; 1999;
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Falmagne & Doignon, 2011) to the formal modeling and
the assessment of human problem-solving. In particular, the
procedures presented in this article are on well-structured,
finite problems and problem spaces.

Problem-solving is a prominent activity of humans. As
such, it arises in many areas of human life. Given its
importance, there is an abundance of literature having
problem-solving as the main or a secondary research topic.
For instance, (Jonassen, 2000) proposed a typology of 11
types of problems considered in problem-solving studies,
from well-structured logical problems to ill-structured
dilemmas. Moreover, (Funke, 2013) presented an extensive
bibliography of 263 studies related to human problem-
solving for further references. Those studies include several
fields, such as education, neuroscience, and artificial
intelligence.

Formal and probabilistic models of problem-solving have
been developed within KST (Falmagne, Albert, Doble,
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Eppstein, & Hu, 2013) and also in the area of the so-
called cognitive diagnostic models (CDM; Bolt, 2007; de la
Torre, 2009; DiBello & Stout, 2007; Tatsuoka, 1990). Such
theories are based on a problem-to-skills relationship which
provides the fundamental skeleton of the developed models.

PKST is built upon the notion of a “problem space” (Newell
& Simon, 1972), and it is applicable to all and only those
problem situations for which a problem space exists and can
be given. As such, PKST is at the meeting point between
the theory of problem spaces (Newell & Simon, 1972) and
that of knowledge spaces (Doignon & Falmagne, 1985).

In the original definition by Newell and Simon (1972), a
“problem space” is the internal representation that a problem
solver makes of a given task environment. Then, problem-
solving consists of exploring this internal representation,
in search of a solution. Very often, in the literature (see,
e.g., Langley, Magnani, Schunn, & Thagard, 2005; Zhang
& Norman, 1994), the term “problem space” also refers to
a conceptual structure that can be objectively constructed
and displayed (e.g., by a computer program) by repeatedly
applying a finite set of transformation rules, starting from
the initial configuration of the problem. In this article, the
term “problem space” refers to this objectively obtainable
structure. A classical example of such a construction is
offered by the problem space of the Tower of Hanoi,
described by Newell and Simon (1972). Another example,
which is extensively described and applied in this article,
is the problem space of the Tower of London test, a rather
well-known neuropsychological test of executive functions
(Shallice, 1982).

In PKST, the problem space represents complete
knowledge over the problem. It is all a perfect problem
solver needs to know for successfully solving a given set
of problems. Such an ideal representation is based on
properties that need not be satisfied by the knowledge state
of an imperfect problem solver (e.g., a human one). Indeed,
at least two sources of “imperfect” answers can occur in
practice. The former deals with a sort of intransitivity of
the human cognitive capability, in the sense that being
able of solving two distinctive sub-problems does not
necessary mean being able to solve the problem that
concatenates those two sub-problems. The latter deals with
the incomplete knowledge over the problem domain. In this
case, the knowledge state of a problem solver is a strict
subset of the whole problem space (a problem subspace).
PKST is about the knowledge states of both perfect and
imperfect problem solvers, the collection of which is named
the procedural knowledge space.

Both the problem space and the procedural knowledge
space are deterministic models. As such, they cannot
be empirically validated, for instance, by means of

standard goodness-of-fit statistics. A probabilistic model
that incorporates all the critical deterministic assumptions
of PKST has been recently developed by Stefanutti et al.
(2021). It is based on the notion of a Markov solution
process (MSP), a stochastic process that represents the
problem solution behavior of a problem solver.

The MSP model (henceforth MSPM) can be used for
uncovering (inferring) the knowledge state of an individual,
on the basis of the solution behavior observed in a given
subset of problems of the problem space. In this article, a
novel adaptive assessment procedure, based on the MSPM,
is described. The procedure features many interesting
aspects. In the first place, being an adaptive procedure,
it minimizes the number of questions and, at the same
time, it maximizes the information on the underlying state
of knowledge. Problem spaces may be large, containing
hundreds or even thousands of different problems and sub-
problems. To give an example, the problem space of the
ToL contains in the whole 1260 distinct problems, but the
test by Shallice (1982) only uses 12 of them. What type
of inference can be done from these fixed 12 problems
to the remaining 1248, for every single individual, is not
immediately obvious. The proposed procedure may be used
for making inferences over the whole problem domain on
the basis of a reasonably small subset of problems, which is
tailored to the individual.

In the second place, existing adaptive assessment
procedures in KST are not trivially applicable to response
data that, going beyond the correct/incorrect response
format, keep track of the whole trail of moves performed
in intermediate steps of the problem solution process. The
capability of exploiting this surplus of information, which
arises naturally in problem-solving, is the most critical and
important feature of the proposed procedure.

The third distinctive feature of the procedure is the
assessment paradigm on which it is based. In a problem
space, the order of difficulty of the problems could fail
to be linear (i.e., from the easiest to the most difficult).
There is a quite natural assumption for the problems in a
problem space that provides a reason for this: If a person
can solve a problem by following a specific solution path
along the problem space, then, excluding random error, that
person will be able to solve all the sub-problems that are
encountered along that path. In general, this assumption
induces an order of difficulty on the problems which is only
partial. In PKST, this assumption is named the “sub-path
assumption”. Therefore, PKST does not impose any strong
measurement requirements to data. Items do not need to be
all aligned along a unidimensional continuum, and there is
no need to throw away items that do not conform to this
requirement.
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The manuscript is organized as follows. Backgrounds
are given in “Background”, whereas the proposed adaptive
assessment procedures are presented in “Adaptive assess-
ment in a problem space”. In both “Background” and
“Adaptive assessment in a problem space” the theoreti-
cal explanations are illustrated with practical examples. In
“Simulation study” and “Simulation study based on real
data”, three MSPM-based procedures were compared in two
simulation studies. In “Simulation study”, a series of simu-
lation studies were carried out with the aim of testing how
different assumptions concerning human planning affect the
capability of the procedures to predict the actual planning
skills of an individual. In “Simulation study based on real
data”, some simulations were run by using a pre-existing
data set consisting of the responses of 154 participants to a
subset of Tower of London problems. A general discussion
concludes the article (“General discussion”).

Background

Different theoretical frameworks contribute to the state of
the art of the present research. A section for each of these
topics follows.

The Tower of London test

Throughout the article, the various concepts of PKST are
illustrated with the help of the example of the Tower of Lon-
don test (Shallice, 1982). In particular, “Simulation study”
and “Simulation study based on real data” describe exten-
sive applications of PKST to the ToL test. For these reasons,
the ToL is briefly described here.

The ToL was developed by Shallice (1982) for assessing
planning deficits in patients with lesions of the frontal lobe.
Today, it is used for assessing planning ability in the clinical
and non-clinical population (Berg & Byrd, 2002). The ToL
consists in three equally spaced pegs with different heights,
mounted on a wooden support. An example of the spatial
configuration of the ToL is illustrated in Fig. 1.

In total, there are 36 spatial configurations, each of
which forms a different problem state. The three balls of
different colors can be moved, one at the time, from one
peg to another. Each problem consists of transforming a
certain initial configuration, named initial state, into a final
configuration, called goal state. For instance, in Fig. 2,
where a portion of the ToL problem space is represented,
the pair of problem states s4, s9 can be seen respectively, as
the initial state and the goal state of a problem. The task
is correctly performed if the goal state is obtained with a
minimum number of moves. Thus, to avoid mistakes, the
problem solver must plan the sequence of moves in advance.

Fig. 1 Problem state 31 of the Tower of London test

In the original ToL test, developed by Shallice (1982), an
indirect measure of the difficulty of a problem is obtained
as the minimum number of moves necessary to solve it.
However, recent studies (e.g., Berg, Byrd, McNamara, &
Case, 2010; Kaller, Unterrainer, Rahm, & Halsband, 2004;
Kaller, Rahm, Köstering, & Unterrainer, 2011; McKinlay
et al., 2008; Newman & Pittman, 2007) found that other
factors affect the difficulty of a problem. Some of them
are the number of alternative solutions for the problem,
the initial configuration of the balls on the pegs (named
“start hierarchy”), and the final configuration (named “goal
hierarchy”). As it will be seen, the approach proposed in this
article goes much beyond the notion of minimum number of
moves.

As already mentioned, the problem space of the ToL
consists in 6 × 6 = 36 different problem states obtained
as the Cartesian product of the six different permutations
of the three colors times the six spatial arrangements of
the balls in the pegs. In the sequel, every single problem
state in the ToL problem space is uniquely referred to by
using a pair ab of numbers, where a stands for one of the
six spatial arrangements whereas b stands to one of the six
color permutations. The reader is referred to Stefanutti et al.
(2021) for the complete list of problem states codings.

Knowledge space theory

The theory of knowledge spaces (Doignon & Falmagne,
1985; 1999; Falmagne & Doignon, 2011) is a mathematical
approach to a non-numerical assessment of knowledge. In
KST, the domain of knowledge is the nonempty set Q

of all the problems in a given field of knowledge (e.g.,
mathematics, chemistry, statistics, etc.). The knowledge
state of a student is the set K ⊆ Q of all the problems
that she is able to solve. The knowledge structure is the
collection K of all the knowledge states. By definition, K
always contains both the empty set and Q. A knowledge
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Fig. 2 Portion of the problem space of the Tower of London test representing two solution paths of a five-moves problem
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structure is named knowledge space if, for any subfamily
F ⊆ K, the union of the subsets in F is still in K.

KST was initially developed as a behavioral theory, in
the sense that it provided no assumptions or descriptions
of cognitive processes, skills, or resources behind the
solution of a problem. Later, the theory was extended
to the assessment of skills (Doignon, 1994; Düntsch &
Gediga, 1995; Falmagne, Koppen, Villano, Doignon, &
Johanessen, 1990; Gediga & Düntsch, 2002; Stefanutti &
de Chiusole, 2017; Ünlü et al., 2013; Heller, Stefanutti,
Anselmi, & Robusto, 2015; Korossy, 1997; Korossy, 1999).
Such extension is known as competence-based knowledge
space theory (CbKST; Heller, Ünlü, & Albert, 2013;
Heller, Augustin, Hockemeyer, Stefanutti, & Albert, 2013;
Stefanutti & Albert, 2003). Given a set � of skills, the
competence state is the set C ⊆ � of skills mastered by an
individual. The collection C of all the competence states is
the competence structure. The problems and the skills are
related by a skill map (Doignon, 1994), which is a triple
(Q, �, τ) where τ : Q → 2� is a function assigning to
each problem in Q a non-empty subset of skills in �.

Procedural knowledge space theory

Procedural knowledge space theory (Stefanutti & Albert,
2003; Stefanutti, 2019) generalizes the application of KST
and CbKST to the area of human problem-solving and
procedural knowledge.

Let � be a set of operations. For example, in the ToL
there are six operations each of which move a ball from one
peg to another, and in particular, naming the three pegs as
left, center and right, one has: (a) left to center; (b) center
to right; (c) left to right;(ā) center to left; (b̄) right to center;
(c̄) right to left. Therefore, in the ToL, the set of operations
is �ToL = {a, b, c, ā, b̄, c̄}.

A sequence of operations in � is denoted as ω1ω2 · · · ωn.
Given two sequences of operations in �, α = ω1ω2 · · · ωm,
β = ωm+1ωm+2 · · · ωn their concatenation is the sequence
αβ = ω1ω2 · · · ωmωm+1ωm+2 · · · ωn. The collection of
all the sequences of operations of arbitrary finite length,
including the empty sequence ε is

�∗ =
⋃

n∈Z+
�n,

where Z
+ is the set of the non-negative integer numbers.

A problem space is formally defined as a triple P =
(S, �, ·), in which S is a nonempty set of problem states, �

is a non-empty set of operations, and · : S × �∗ → S is an
operator that satisfies the following properties:

(P1) s · ε = s,
(P2) (s · σ)π = s · σπ ,

where s ∈ S and σ, π ∈ �∗. The operator · is called
operation application.

Figure 2 shows the directed graph of a portion of the
problem space of the ToL test. Each vertex in the graph
corresponds to a problem state in the set SToL. This last
contains nine of the 36 problem states of the ToL. The
directed edges of the graph are labeled by the moves in
�ToL.

A directed edge in the figure links a problem state s

to another problem state t if there is a move in �ToL

transforming s into t .
A problem in a problem space is any pair (s, t) of

problem states, with s �= t , such that s · π = t for some
sequence π of operations in �∗. Stated differently, a pair
(s, t) is a problem if, by applying the sequence π to the
problem state s, the problem state t is obtained. State s is
named the initial state of the problem, whereas t is the goal
state.

In the running example of ToL, the pair (s2, s9) of
problem states in Fig. 2 is a problem because the sequence
of operations bāb̄ā transforms the initial problem state s2

into the goal problem state s9.
The set of all the problems in P is thus

Q = {(s, t) ∈ S ×S : s �= t and s ·π ∈ t for some π ∈ �∗}.
It is worth noticing that the set Q obtained in this way

is nothing else than what in KST is named the domain of
knowledge. Any pair sπ (without the dot in between) is
called a solution path. The solution path sπ solves problem
(s, t) ∈ Q if s · π = t . The set of all the solution paths turns
out to be � = S × (�∗ \ {ε}).

In the subsequent example, only a part of the whole
set of problems for the problem space in Fig. 2 is con-
sidered, namely QToL = {(s1, s9), (s3, s9), (s4, s9), (s7, s9),

(s8, s9)}. Since all the problems in QToL have form (si, s9),
for lightening the notation, each of them is just represented
by the initial state si . To solve a problem, one needs to
know at least one of the solution paths of that problem.
For instance, problem s1 has two possible solution paths,
namely s1abāb̄ā and s1bab̄āā. It is left to the reader to
check that the set of all solution paths that solve any one of
the problems in QToL is

�ToL = {s8ā, s7āā, s4āb̄ā, s3ab̄āā, s1abāb̄ā, s1bab̄āā}.
Solution paths are partially ordered. Precisely, a solution
path sπ is a subpath of another solution path tσ (denoted
by sπ � tσ ) if there are α, β ∈ �∗ such that σ = απβ and
t · α = s. For instance, in Fig. 2, consider the two solution
paths s4āb̄ā and s1abāb̄ā. It is easily seen that the former
is a subpath of the latter. In fact, by setting α = ab and
β = ε, it holds that abāb̄ā = αāb̄āβ, and s1 · α = s4. The
cognitive interpretation of the subpath relation is that if an
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individual knows a solution path, then she will also know all
of its solution subpaths.

A solutions path can be seen as a kind of “procedural
skill” required for solving a problem. Therefore, the
collection of all the solution paths solving a certain problem
(s, t) ∈ Q is denoted τ(s, t), where τ : Q → 2� is
a mapping having Q as the domain and the powerset of
� as the codomain. Using the Cb-KST notation, the triple
(Q, �, τ) is named the skill map derived from the problem
space P. In this example, for the sake of simplicity, the
mapping τToL for the subset �ToL is constructed instead
of deriving the mapping τ for the whole set � of solution
paths. The mapping τToL is defined as follows:

τToL(s1, s9) = {s1abāb̄ā, s1bab̄āā},
τToL(s3, s9) = {s3ab̄āā},
τToL(s4, s9) = {s4āb̄ā},
τToL(s7, s9) = {s7āā},
τToL(s8, s9) = {s8ā}.

A subset C ⊆ � is said to respect path inclusion if the
condition

sπ � tσ, tσ ∈ C =⇒ sπ ∈ C

is respected for all sπ, tσ ∈ �. A subset of solution paths
respecting path inclusion is named a competence state of
the problem space P. The collection C of all the competence
states is the competence space. In the running example of
ToL, the collection CToL of all the solution paths in �ToL

that respect the path inclusion is

CToL = {∅, {s8ā}, {s8ā, s7āā}, {s8ā, s4āb̄ā},
{s8ā, s7ā, s4āb̄ā}, {s8ā, s7āā, s3ab̄āā},
{s8ā, s4āb̄ā, s1abāb̄ā}, {s8ā, s7āā, s4āb̄ā, s1bab̄āā},
{s8ā, s7āā, s4āb̄ā, s3ab̄āā},
{s8ā, s7āā, s3ab̄āā, s1abāb̄ā},
{s8ā, s7āā, s4āb̄ā, s3ab̄āā, s1abāb̄ā}
{s8ā, s7āā, s4āb̄ā, s3ab̄āā, s1bab̄āā},
{s8ā, s7āā, s4āb̄ā, s3ab̄āā, s1bab̄āā, s1abāb̄ā}}.

The set of all the problems in Q that can be solved by an
individual whose competence state is C ∈ C is given by the
problem function, which is defined as

p(C) = {(s, t) ∈ Q : τ(s, t) ∩ C �= ∅}.
Thus, p(C) contains all and only those problems (s, t)

that can be solved by one or more solution paths, among
those contained in C. Each such problem satisfies the
condition τ(s, t) ∩ C �= ∅. The set p(C) is named the
knowledge state delineated by the competence state C. The
collection K = {p(C) : C ∈ C} of all the knowledge states
is the knowledge space derived from the problem space P.

For instance, in the running example of the ToL,
the knowledge state delineated by the competence state
{s8ā, s7āā, s4āb̄ā} is

p({s8ā, s7āā, s4āb̄ā}) = {s8, s7, s4}.
In the whole, if the problem function p is applied to each
of the competence states, the following knowledge space is
obtained:

KToL = {∅, {s8}, {s4, s8}, {s7, s8}, {s4, s7, s8}, {s1, s4, s8},
{s3, s7, s8}, {s1, s4, s7, s8},
{s3, s4, s7, s8}, {s1, s3, s7, s8}, {s1, s3, s4, s7, s8}}.

The continuous Markov procedure

Adaptive assessment is one of the most important applica-
tions in knowledge space theory. The aim of an adaptive
assessment is to uncover the individual knowledge state
with a minimal number of questions. Some examples of this
procedure are present in fields such as education (see, e.g.,
ALEKS, www.aleks.com, and Stat-Knowlab, de Chiusole,
Stefanutti, Anselmi, & Robusto, 2020), and psychological
assessment (Donadello et al., 2017; Granziol et al., 2020).
In KST, the standard procedure used for implementing the
adaptive assessment is the continuous Markov procedure
by Falmagne and Doignon (1988). It is an iterative proce-
dure which uses a likelihood distribution Lm : K → R

with the collection K as the domain and the R as codomain.
The likelihood distribution is updated at each step m of
the procedure on the basis of the incoming information.
Unless prior information is available, the initial likelihood
distribution L0 is the uniform one. At each step m, the pro-
cedure: (i) selects a new problem for the student; (ii) updates
the likelihood distribution on the knowledge states depend-
ing on the student’s response; (iii) establishes if enough
information has been collected and in that case, terminates.
Different rules were proposed by Falmagne and Doignon
(1988) and Doignon and Falmagne (1999) for each of these
three phases. The rules that are relevant with respect to this
article are described below.

The questioning rule selects a problem q ∈ Q in order to
minimize the total number of questions to be administered
before the assessment terminates. One such rule is the so-
called half-split (Falmagne & Doignon, 2011), in which any
one of the problems q ∈ Q is selected among those that
minimize the following quantity:

Qm = arg min
q∈Q

|2 · Lm(Kq) − 1|, (1)

where Kq = {K ∈ K : q ∈ K} and Lm(Kq) = ∑
K∈Kq

Lm(K) .
The updating rule updates the likelihood Lm on the basis

of the answer collected at the step m of the procedure.

www.aleks.com
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Whenever the student’s response is correct (incorrect), the
likelihood Lm(K) of all K ∈ K such that q ∈ K increases
(decreases), whereas the likelihood Lm(K ′) for all K ′ ∈ K
such that q /∈ K ′ decreases (increases). The likelihood
function is updated at each step m + 1 of the assessment
procedure by following a Bayesian updating rule:

Lm+1(K) = P(rq |K)Lm(K)∑
K ′∈K P(rq |K)Lm(K ′)

, (2)

where the parameter P(rq |K) represents the conditional
probability of the observed response rq for item q given
the knowledge state K . In the procedure by Falmagne and
Doignon (1988), two types of probabilities are defined
for each item q—a careless error probability βq and a
lucky guess probability ηq . Then, the P(rq |K) parameter
undergoes the following constraints:

P(rq |K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βq if rq = 0 and q ∈ K;
1 − ηq if rq = 0 and q /∈ K;
1 − βq if rq = 1 and q ∈ K;
ηq if rq = 1 and q /∈ K .

(3)

Equation 3 is known as the response rule.
The procedure continues to select questions and to

update the likelihood until a termination criterion is reached.
The most used termination criterion consists of fixing a
threshold p that has to be reached by the maximum of
the likelihood distribution Lm. The minimum value of such
a threshold is .50 because this is a sufficient condition
for have a unimodal likelihood distribution. In general, the
accuracy of the assessment improves when p approaches
1, and this occurs at the expense of efficiency. In fact, the
larger p, the larger the expected number of questions that
have to be administered.

An alternative representation of this updating rule, also
known as the multiplicative rule, is defined as follows:

Lm(K) = ζK
q,rq

Lm(K)
∑

K ′∈K ζK ′
q,rq

Lm(K ′)
, (4)

where the parameters ζK
q,rq

depends on the knowledge state
K ∈ K, the problem q ∈ Q, and the observed response rq .
In particular, ζK

q,rq
is defined as follows:

ζK
q,rq

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζq,1 if rq = 1 and q ∈ K;
1 if rq = 1 and q /∈ K;
1 if rq = 0 and q ∈ K;
ζq,0 if rq = 0 and q /∈ K .

(5)

where ζq,0 and ζq,1 > 1 are real parameters of the
assessment procedure.

Moreover, (Falmagne & Doignon, 1988) have shown that
the Bayesian updating rule is equivalent to the multiplicative
rule under the following equalities, for each q ∈ Q:

ζq,1 = 1 − βq

ηq

and ζq,0 = 1 − ηq

βq

. (6)

A latent knowledge state K0 ∈ K is said to be uncoverable
by the stochastic assessment procedure presented above if
Lm(K0) approaches 1 almost surely.

Several theoretical results were obtained for the mul-
tiplicative updating rule. One of them is important here
because it will be used in Section “Adaptive assessment in
a problem space”.

Proposition 1 A latent knowledge state is uncoverable by
a stochastic assessment procedure with an updating rule
which is multiplicative and a questioning rule which is
half-split.

TheMarkov solution process model

A Markov model of the solution process of a problem-
solving task was proposed in Stefanutti et al. (2021). The
model provides a stochastic framework for the deterministic
models described in Section “Procedural knowledge space
theory”. It has been empirically validated for the case of
the ToL test (Stefanutti et al., 2021), where it obtained a
satisfactory goodness-of-fit.

A central notion for the application of the Markov model
is that of a goal space where each step of the solution
process of a problem is classified as “correct” or “incorrect”.
A goal space is a problem space where there are two special
problem states f, g ∈ S that are labeled the failure and goal
states, respectively. Every problem in a goal space has the
form (s, g), with s ∈ S \ {f }. The formal definition of the
goal space is as follows.

Definition 1 A problem space (S, �, ·) is a goal space if
distinct states f, g ∈ S exist such that:

(GS1) for all ω ∈ �, f · ω = f and g · ω = g;
(GS2) for each s ∈ S \ {f } there is a string π ∈ �∗ such

that s · π = g.

A goal space is denoted by the 5-tuple (S, f, g, �, ·).

It follows from Condition (GS1) of Definition 1 that f

and g are final states. In particular, whenever the solution
process of a problem enters either g or f , the problem is
marked as “correct ” or “incorrect”, respectively, and the
solution process terminates. According to Condition (GS2),
each problem state different from f has a solution path
that terminates in g. The graph represented in Fig. 2 is an
example of a goal space, where s9 is the goal state. The
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failure state is omitted in the figure, but it could be easily
added as a state that can be reached by every non-goal state.

Let (Q,K) be the knowledge space derived from the goal
space (S, f, g, �, ·). The behavior of a problem solver in
knowledge state K ∈ K, who is attempting to solve problem
(s, g), is modeled as a random process S = {Sn : n ∈ Z

+}
that satisfies the following Markov property:

P(Sn = sn|Sn−1 = sn−1,Sn−2 = sn−2, . . . ,S0 = s; s, K)

= P(Sn = sn|Sn−1 = sn−1; s, K). (7)

Property 7 says that, given the last visited problem state
Sn−1, the knowledge state K of the problem solver, and the
initial state s, the next problem state Sn is independent of
the past history of the process. For the right-hand term of
Eq. 7 the shortcut notation P(sj |si, s, K) is used, which is
named the transition probability from state si to state sj .

Even with problem spaces and related knowledge spaces
of moderate size, the number of transition probabilities of
this type could be huge. The Markov solution process model
provides a reasonable assumption that allow to drastically
reduce the number of free parameters of the model by
introducing constraints on transition probabilities. Let E =
{(s, t) ∈ S2 : s · ω = t for some ω ∈ �} be the collection
of all the elementary problems (i.e., problems each of which
can be solved by a single operation). Then the assumption
is:
(MSP1) For every problem (s, g) ∈ Q, every pair (i, j) ∈ E

and every knowledge state K ∈ K,

P(j |i, s, K) =
{

βij if (s, g) ∈ K ,

ηij if (s, g) ∈ Q \ K ,
(8)

where βij and ηij are free parameters of the model.
In the MSP1 assumption, given any pair (i, j) ∈ E, the

value of the transition probability from i to j is either βij

or ηij , depending on whether the problem (s, g) belongs to
K or not. In particular, if i is a transient problem state, then
the parameter βif is the probability that a problem solver
which knows at least one solution path for (s, g) made a
careless error. Similarly, for j �= f , the parameter ηij is
the probability that a problem solver who does not know
any solution path for (s, g) guesses a correct move from i.
Further details of the MSPM are not presented here, since
they are not needed in the sequel. For a complete exposition
of the model, the reader is referred to Stefanutti et al. (2021).

Adaptive assessment in a problem space

In many psychological tests (e.g., the Tower of London test,
Tower of Hanoi, mental rotation task), the different tasks
are accomplished by performing a sequence of observable
moves. The CMP described in “The continuous Markov

procedure” is based on dichotomous answers (i.e., correct
or incorrect) and it has no mechanism for capitalizing
on the information provided by the observable solution
process. The following example shows the drawbacks of this
limitations.

Example 1 Consider the knowledge space KToL derived
in the running example in “Procedural knowledge space
theory”. Suppose that the state of a problem solver
is {s1, s3, s4, s7, s8}, and that the CMP is applied for
uncovering it. The beta parameters for the five problems are
assumed to be βs1 = .004, βs3 = .03, βs4 = .02, βs7 = .01,

and βs8 = .007, whereas the eta parameters are assumed to
be ηs1 = 10−6, ηs3 = 5 × 10−5, ηs4 = 4 × 10−5, ηs7 =
.007, and ηs8 = .08. At the beginning of the assessment
(m = 0), all of the knowledge states K ∈ KToL have the
same likelihood L0(K) = 1/|KToL| (see the second column
of Table 1).

At step m = 1, according to the half-split questioning
rule, problem s4 is selected because it minimizes the value
of Qm (see the second column of Table 2). Suppose that
a correct response is obtained for this problem. After an
application of the updating rule (Eq. 4), the likelihood of
every knowledge state K ∈ Ks4 that contains problem s4 is
L1(K) = .17 and that of a state K ′ ∈ Ks4 is L1(K

′) = .01
(see the third column of Table 1).

At step m = 2, the problem that minimizes the
half-split questioning rule is s1, as shown in the third
column of Table 2. Suppose that the correct solution
process (s1, s3, s5, s7, s8, s9) is observed for the problem.
An application of the updating rule yields the likelihood
distribution L2 which is shown in the fourth column of
Table 1. The knowledge states in the intersection Ks1 ∩ Ks4

have a larger likelihood (i.e., .32) than that of every other
knowledge state.

Table 1 Values of the likelihood distribution Lm at each step m of the
assessment procedure

K L0(K) L1(K) L2(K) L3(K)

{∅} .09 0 0 0

{s8} .09 0 0 0

{s7, s8} .09 0 0 0

{s4, s8} .09 .17 0 0

{s3, s7, s8} .09 0 0 0

{s4, s7, s8} .09 .17 0 0

{s1, s4, s8} .09 .17 .33 0

{s1, s3, s7, s8} .09 0 0 0

{s3, s4, s7, s8} .09 .17 0 0

{s1, s4, s7, s8} .09 .17 .33 0

{s1, s3, s4, s7, s8} .09 .17 .33 1
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Table 2 Values of Qm obtained during the Example 1 for each step m

q m = 1 m = 2 m = 3

s1 .273 .001 1.000

s3 .273 .333 .333

s4 .091 .998 .999

s7 .273 .333 .334

s8 .818 1.000 1.000

The minimal values for Qm at each step is in bold

It should be noticed that the observed solution path of
problem s1 contains those of both problems s3 and s7.
According to the sub-path assumption, if s1 is contained in
the knowledge state of the learner, both s3 and s7 must be
contained in it. According to this assumption, a knowledge
state containing all three problems s1, s3, and s7 should
have a higher likelihood than a knowledge state that misses
anyone of them. As can be seen from the fourth column
of Table 1, this does not happen in the CMP. For instance,
L2{s1, s4, s8} = .32 > .01 = L2{s1, s3, s7, s8}. This
shows that in the CMP there is no mechanism for exploiting
the surplus of information that is made available by the
observed solution process, and that a new updating rule is
needed for this.

To complete the example, one further question is required
at step m = 3. The half-split questioning rule selects
problem s3 (see the fourth column of Table 2). Suppose that
a correct response is obtained. After the last update of the
likelihood, the recovered knowledge state turns out to be
{s1, s3, s4, s7, s8)}.

Updating rules

The assessment procedures proposed in this article are
capable of exploiting the whole observable solution process
in updating the likelihood of the knowledge states. The
assessment procedures consist of two nested loops. The
outer loop starts with the presentation of a new problem
(sm,0, g) ∈ Q, where m ≥ 1, whereas the inner loop starts
with a new problem state sn ∈ S, with n ≥ 0, in the
solution process of (sm,0, g). For every new problem state sn
of the solution process of problem (sm,0, g) the likelihood
distribution Lm,n is updated as follows:

Lm,n+1(K) = P(sm,n+1|sm,n, sm,0, K)Lm,n(K)∑
K ′∈K P(sm,n+1|sm,n, sm,0, K)Lm,n(K ′)

,

(9)

where P(sm,n+1|sm,n, sm,0, K) is the conditional probabil-
ity of the transition from sm,n to sm,n+1, given knowledge
state K ∈ K and problem (sm,0, g). It should be noted that

Eq. 9 is nothing else than an adaptation of the Doignon and
Falmagne’s Bayesian updating rule described in Eq. 2.

As stated in Section “The Markov solution process
model”, specific assumptions can be introduced on the con-
ditional probability P(sm,n+1|sm,n, sm,0, K), for reducing
the number of the parameters. One of these assumptions is
(MSP1) described in Eq. 8. It is recalled that in this assump-
tion the transition probability from i to j depends on the
initial problem state s0 only. Two new assumptions denoted
by (MSP2) and (MSP3) are presented below.

Assumption (MSP2) differs from (MSP1) from the fact
that the transition probability from a problem state i to
another problem state j is independent of the initial problem
state s0. Under this assumption, for every problem (s0, g) ∈
Q, every pair (i, j) ∈ E and every knowledge state K ∈ K
the transition probability is

P(i|j, s0, K) =
{

βij if i ∈ K;
ηij if i /∈ K .

(10)

Such probability is a βij parameter if problem i ∈ K

belongs to the knowledge state K ∈ K, it is a ηij parameter
otherwise.

According to assumption (MSP3), the transition proba-
bility from a problem state i to another problem state j

depends on whether both problems s0 and i belong or not to
the knowledge state K ∈ K. For every problem (s0, g) ∈ Q,
every pair (i, j) ∈ E and every knowledge state K ∈ K the
transition probability is

P(i|j, s0, K) =
{

βij if s0 ∈ K and i ∈ K;
ηij if s0 /∈ K or i /∈ K .

(11)

In particular, the probability of the transition from i to j is
a βij parameter if the individual knows at least one solution
path for both problems s0 and i. Otherwise, the transition
probability is a ηij parameter.

The three different assumptions are plausible in different
situations. The MSP1 assumption is plausible when a
problem solver plans ahead the whole solution process of
the problem and every single move sticks to the initial plan.
For this reason, (MSP1) can be regarded as a pre-planning
assumption. On the other side, the MSP2 assumption allows
interim planning. It might well be that an initial plan is
built, however this last may change along the way. Thus,
the transition from a problem state i to another one depends
on problem state i only. For this reason, (MSP2) can
be regarded as an interim-planning assumption. Finally,
according to assumption MSP3, a correct solution to the
problem depends on both the initial (s0) and current (i)
problem states. In particular, any transition probability is a
β if and only if both s0 and i belong to the knowledge state.
In this sense, (MSP3) combines together MSP1 and MSP2
like an “AND” Boolean operator on the βij . Given this
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interpretation, (MSP3) can be named as a mixed planning
assumption.

Table 3 summarizes the parameters obtained by the
three assumptions in function of the initial and the current
problem states (columns 1 and 2 in the table). For instance,
if s0 ∈ K and i /∈ K (Row 3 in the table), under assumption
MSP1 the transition probability from i to j is a βij

parameter whereas under assumptions MSP2 and MSP3 the
same transition is an ηij parameter. It is worth mentioning
that other assumptions are possible like, for instance, one
that behaves like a Boolean operators “OR” on the βij .
However, such assumptions are not considered in this
research. When applied to the MSPM, the three different
assumptions MSP1, MSP2, and MSP3 gives rises to three
different models, henceforth named MSPM1, MSPM2, and
MSPM3, respectively.

Procedures based on theMarkov solution process
model

In this section, an MSP-based adaptive assessment proce-
dure is presented that is based on the updating rule shown in
Eq. 9. It is worth noticing that this procedure can be applied
with any of the MSP1, MSP2, and MSP3 assumptions (and
it is open to other assumptions).

Figure 3 illustrates the flowchart of the procedure. The
assessment procedure consists of two nested loops. The
outer loop starts with the presentation of a new problem
(sm,0, g) ∈ Q, where m ≥ 1, whereas the inner loop starts
with a new problem state sm,n ∈ S, with n ≥ 0, in the
solution process of the problem (sm,0, g).

At the beginning of the assessment (i.e., m = 0 and
n = 0), the likelihood L0,0 is set to be a uniform
distribution among the knowledge states. Starting from L0,0,
the assessment is carried out in an iterative way. At each
step m, the likelihood Lm,0 = Lm−1,n and a problem
(sm,0, g) ∈ Q is selected according to the questioning
rule. In this work, the half-split questioning rule presented
in Eq. 1 has been used. The updating rule described by
Eq. 9 obtains Lm,n+1 from the Lm,n given that the current

Table 3 Summary of the parameters obtained under the three
assumptions

(s0, g) ∈ K (i, g) ∈ K MSP1 MSP2 MSP3

yes yes β β β

yes no β η η

no yes η β η

no no η η η

Columns 1 and 2 display, respectively, if the initial problem and the
current problem belong to the considered knowledge state. Columns
3–5 display the resulting parameters under that assumption

Fig. 3 Diagram of the MSP-based procedure. See text for the details

problem is (sm,0, g) and the observed problem state in the
solution process is sm,n+1. The solution process for problem
(sm,0, g) terminates whenever the observed problem state
sm,n+1 is the goal state g or the failure state f . The
termination criterion decides whether an additional problem
should be presented or not. The assessment terminates as
soon as the likelihood Lm,n+1(K) of any knowledge state
K ∈ K is greater than a predefined value p ∈ (.5, 1].

Example 2 Consider the problem space depicted in Fig. 2
and the knowledge space KToL derived in the running exam-
ple in Section “Procedural knowledge space theory”. Sup-
pose that the MSP-based procedure, with the mixed-
planning assumption, is applied to uncover the knowledge
state {s1, s3, s4, s7, s8} of the same problem solver intro-
duced in Example 1.

Table 4 shows the βij (third column) and ηij (fourth
column) assumed in this example. In particular, each row
of the columns shows the transition probabilities from the
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Table 4 Values of the βij and ηij parameters used in the Example 2

i j βij ηij

s1 s2 0.36 0.01

s1 s3 0.62 0.03

s2 s4 0.99 0.06

s3 s5 0.99 0.08

s4 s6 0.99 0.01

s5 s7 0.99 0.09

s6 s8 0.99 0.09

s7 s8 0.99 0.09

s8 s9 0.99 0.08

s9 s9 1.00 1.00

problem state i (first column) to the problem state j (second
column). The transition probabilities to the failure state are
obtained as

βif =1−
∑

j∈SToL\{f }
βij and ηif =1−

∑

j∈SToL\{f }
ηij .

At the beginning of the assessment (i.e., m = 0 and n =
0), all of the knowledge states K ∈ KToL have the same
likelihood L0(K) = 1/|KToL| (see the second column of
Table 5).

According to the half-split questioning rule, at step m =
1 and n = 0 problem s4 is selected because it minimizes
the value of Qm (see the second column of Table 2).
Suppose that at step m = 1 and n = 3 the correct
solution process (s4, s6, s8, s9) is observed for problem s4.
After three updates of the likelihood distribution (one for
each move), the likelihood of every knowledge state K that
contains both problems s4, s8 is L1(K) = .17, whereas that

Table 5 Values of the likelihood distribution Lm at each step m of the
assessment procedure

K L0(K) L1(K) L2(K)

{∅} .09 0 0

{s8} .09 0 0

{s7, s8} .09 0 0

{s4, s8} .09 .17 0

{s3, s7, s8} .09 0 0

{s4, s7, s8} .09 .17 0

{s1, s4, s8} .09 .17 .01

{s1, s3, s7, s8} .09 0 0

{s3, s4, s7, s8} .09 .17 0

{s1, s4, s7, s8} .09 .17 .07

{s1, s3, s4, s7, s8} .09 .17 .92

of every knowledge state K ′ containing neither s4 nor s8 is
L1(K

′) = 0 (see the third column of Table 5).
At step m = 2 and n = 0, the half-split questioning

rule selects problem s1, as shown in the third column
of Table 2. Suppose that the correct solution process
(s1, s3, s5, s7, s8, s9) is observed for the problem. At the
last sub-step n = 5, the likelihood was updated five times
and the knowledge state {s1, s3, s4, s7, s8} obtained the
largest likelihood, as shown in the third column of Table 5.
This was also the last question asked by the procedure
because the maximum likelihood exceeded the termination
criterion of .5. Thus, the MSP-based procedure inferred the
knowledge state of the problem solver in two questions
out of five. Comparing this example with Example 1, it
can be noticed that the MSP-based procedure is more
efficient than the CMP, even in this trivial example. Indeed,
the CMP requires one more question to terminate. This
is because the proposed procedure exploits the fact that
according to the sup-paths assumption, if s1 is contained in
the knowledge state of the problem solver, both s3 and s5

must be contained.

To show that a latent knowledge state K0 ∈ K is
uncoverable by the MSP-based procedures, it suffices to
assure that the updating rule in Eq. 9 is multiplicative.

Theorem 1 The updating rule in Eq. 9 is multiplicative if
and only if for all the transitions (i, j) ∈ E, βij > ηij and
ηif > βif .
Proof Let ιK(s) be the indicator function of K , which is
defined on Q by

ιK(s) =
{

1 if (s, g) ∈ K

0 if (s, g) ∈ Q \ K .
(12)

Moreover, for i ∈ S, let E(i) = {j ∈ S : (i, j) ∈ E}, and
define the function R : E(i) → {0, 1} such that for each
j ∈ E(i)

R(j) =
{

1 if j �= f

0 if j = f .
(13)

We are aimed at showing that the following equality holds
true:

P(sm,n+1|sm,n, sm,0, K)Lm,n(K)∑
K ′∈K P(sm,n+1|sm,n, sm,0, K)Lm,n(K ′)

= ζK
q,rLm,n(K)

∑
K ′∈K ζK ′

q,rLm,n(K ′)
. (14)

For (i, j) ∈ E and s0 ∈ Qg let

ζs0,i,j = βij

ηij

and ζs0,i,f = ηif

βif

. (15)
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There are four cases. Case 1 is ιK(s0) = 1 and R(j) = 1. In
this case Eq. 14 becomes:

P(sm,n+1|sm,n, sm,0, K)Lm,n(K)∑
K ′∈K P(sm,n+1|sm,n, sm,0, K)Lm,n(K ′)

= ζs0,i,jLm,n(K)

ζs0,i,jLm,n(Ks0) + Lm,n(Ks0)

By applying Eq. 15, the right-hand side term of the equation
becomes:

βij /ηijLm,n(K)

βij /ηijLm,n(Ks0) + Lm,n(Ks0)
,

which then gives

βijLm,n(K)

βijLm,n(Ks0) + ηijLm,n(Ks0)
,

which turns out to be the MSP-based updating rule for Case
1. We omit the proof for each of the remaining three cases:
Case 2, ιK(s0) = 1 and R(j) = 0; Case 3, ιK(s0) = 0
and R(j) = 1; and Case 4, ιK(s0) = 0 and R(j) =
0, because they can be trivially obtained by applying the
obvious substitutions.

Simulation study

The aim of the study was to compare to one another the
three adaptive procedures based on MSP1, MSP2, and
MSP3 assumptions. Moreover, the performance of the three
procedures was compared with that of the more known and
used CMP. The comparison was made in terms of efficiency
and accuracy.

Goal spaces of the Tower of London

The assessment procedures described in this research are
for general purpose, as long as procedural assessment of
knowledge is concern. In the following studies, they are
applied to the case of the ToL test. Since the problem
is correctly solved only if the solution is obtained with
a minimum number of moves, the goal space of the ToL
happens to be a special case called shortest path space
(SP space; Stefanutti et al., 2021). Such a type of goal
spaces can often arise in applications like the ToL. Further
considerations and properties of the SP spaces as well as
the accurate description of the goal spaces and knowledge
spaces used in this application can be found in Stefanutti
et al. (2021).

The goal spaces considered in this study were obtained
by setting problem state 31 as the goal state (see Fig. 4).

The goal space P(1)
g is represented in Fig. 4 using

solid lines. Such goal space is composed by 12 problem
states plus the goal and the failure states. The number of
problems involved in such a goal space is 12. One of them

Fig. 4 The two goal spaces P(1)
g ,and P(2)

g used in both simulation
studies. It is recalled that both goal spaces are shortest paths spaces

was removed because of its easiness (only one move was
required to solve it). Thus, the domain Q

(1)
g of the goal

space P(1)
g contains 11 problems, three of them having two

alternative solutions. The other goal space P
(2)
g used in

this study was obtained from the problem space by setting
problem state 31 as the goal state (both dotted and solid
line in Fig. 4). The set of problems involved in this goal
space is 35, however all problems requiring only one move
were removed. Thus, the set of problems Q

(2)
g of this goal

space is 31, 11 of them having more than one solutions. The
two goal spaces delineate two knowledge spaces K1 with 61
knowledge states and K2 with 242,498 knowledge states.

Simulation design and data set generation

Table 6 shows the simulation design used for generating the
data sets.

The manipulated variables were: (i) the generative model,
that could be the MSPM1, the MSPM2, or the MSPM3; (ii)
the true knowledge structure, that could be K1 composed
by 61 states, or K2, composed by 242,498 states; (iii) the
amount of error in the data, that was at maximum .01 or .20;
and (iv) the sample size N , that could be 155 or 1000 when
the considered structure was K1 and 1000 and 100,000 when
the structure was K2.

Concerning with knowledge structures, the choice was
to use one feasible structure (K1) and one huge structure
(K2). The former was the structure derived from the goal
space P(1)

g . This structure has also been considered for
collecting real data that were used in the study presented in
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Table 6 Design of the simulation study used for generating the data

Cond. Model |K| Error N

1 MSPM1 61 .01 155

2 MSPM1 61 .01 1000

3 MSPM1 61 .20 155

4 MSPM1 61 .20 1000

5 MSPM2 61 .01 155

6 MSPM2 61 .01 1000

7 MSPM2 61 .20 155

8 MSPM2 61 .20 1000

9 MSPM3 61 .01 155

10 MSPM3 61 .01 1000

11 MSPM3 61 .20 155

12 MSPM3 61 .20 1000

13 MSPM1 242,498 .01 1000

14 MSPM1 242,498 .01 100,000

15 MSPM1 242,498 .20 1000

16 MSPM1 242,498 .20 100,000

17 MSPM2 242,498 .01 1000

18 MSPM2 242,498 .01 100,000

19 MSPM2 242,498 .20 1000

20 MSPM2 242,498 .20 100,000

21 MSPM3 242,498 .01 1000

22 MSPM3 242,498 .01 100,000

23 MSPM3 242,498 .20 1000

24 MSPM3 242,498 .20 100,000

Column 1 displays the condition number, column 2 displays the
assumption underlying the data generation. Column 3 displays which
knowledge space was used. Column 4 displays the maximum amount
of error used for generating the data and column 5 displays the sample
size

“Simulation study based on real data”. The latter structure
was derived from the goal space P(2)

g .
As for the “amount of error” in the data, it has been

manipulated through the two types of parameters βij and
ηij that are present in all three models. The values of
these parameters used for generating the data were exactly
the same for all models. They have been generated in the
following way. For i ∈ Sg \ {f, g}, first the probabilities
βif and ηif were extracted at random from a uniform
distribution in the interval (0; x] and (0; 1 − x], where
x ∈ {.01, .20}, respectively. These two intervals have been
chosen in order to have a situation of a very small error in
the data (the former case), and a situation of a large error
in the data (the latter case). We recall, in fact, that βif is
interpreted as a careless error probability, and, for i �= f ,
ηij is interpreted as a lucky guess probability. Then, the
probabilities βij and ηij , with i �= j , were generated at
random from a uniform distribution in the interval (0, 1),

and then normalized to sum up to 1 − βij and 1 − ηij ,
respectively.

In the whole, a 3 × 2 × 2 × 2 = 24 different conditions
have been considered and, in each of them, one sample was
generated. The procedure used for generating the samples is
described below.

Each simulated response pattern corresponded to a
collection of Jq jump matrices, one for each item q ∈ Qg .
Moreover, every single “simulated subject” is represented
by a pair (J, K), where K is a knowledge state and J is
a response pattern. In the sequel, the response pattern J is
referred to as the “response pattern generated by the true
state K”.

For generating the pair (J, K) the procedure started
with the extraction of K from the knowledge structure
K, with a certain probability. More precisely, for each
state K ′ ∈ K, a random number was extracted from a
uniform distribution in the (0, 1) interval. A set of values
was obtained that was normalized to sum up to 1. In this
way, a random probability distribution πK was generated,
which determined the extraction probability of each state.
The knowledge states extracted at each iteration and the
probability distribution πK were kept fixed across the
different conditions 1 to 12, when the true knowledge
structure was K1, and across 13 to 24 conditions, when the
true knowledge structure was K2.

Given knowledge state K , the response pattern J was
obtained as follows. For each item q ∈ Qg , a sequence of
moves

Jq = (s1, s2, . . . , si , . . . , sn)

was generated. Such sequence was obtained iteratively,
as explained below. For each i ∈ {1, 2 . . . , n − 1},
problem state si+1 was randomly generated under dif-
ferent rules, depending on the generative model. Under
model MSPM1, P(si+1|si, s1, K) = βsi ,si+1 when-
ever (s1, g) ∈ K , and P(si+1|si, q, K) = ηsi ,si+1

whenever (s1, g) ∈ Qg \ K . Under model MSPM2,
P(si+1|si, s1, K) = βsi ,si+1 whenever (si , g) ∈ K , and
P(si+1|si, q, K) = ηsi ,si+1 whenever (si , g) ∈ Qg \ K .
Under model MSPM3, P(si+1|si, s1, K) = βsi ,si+1 when-
ever {(s1, g), (si , g)} ⊆ K , and P(si+1|si, q, K) = ηsi ,si+1

whenever {(s1, g), (si , g)} �⊆ K .
For each item, the iterations terminated when one of the

two problem states f (failure) or g (goal) was entered. It
is worth noticing that the termination of each iteration was
assured by the fact that P(1)

g and P(2)
g were goal spaces.

This procedure was applied iteratively until N pairs
(J, K) were obtained for each generative model. In the end,
three types of data were obtained, that is D1, generated
under the MSPM1, D2, generated under the MSPM2, and
D3, generated under the MSPM3.
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With the aim of applying the CMP adaptive procedure,
the simulated response patterns belonging to D1, D2, and
D3 have been “dichotomized” obtaining data set D4. For
each problem, only the accuracy (correct vs. incorrect)
was considered. More in detail, if (s1, . . . , sn) represents
the observed sequence of moves for problem q, then the
“dichotomous” answer to q was marked as “correct” if sn =
g and as “incorrect” if sn = f .

Methods

The procedures based on MSP1, MSP2, and MSP3 were
applied to each of the 24 samples (one sample per
simulation condition). Moreover, the dichotomous version
of each sample was used with the CMP’s adaptive
procedure. Thus, each sample was used with four different
procedures.

All the four adaptive procedures were applied to the
simulated response patterns in the following way. Let w ∈
{1, 2, . . . , N}, and let Jw denote the w-th simulated subject.
For each Jw, each step m of the assessment, with m ∈
{1, 2, . . . , |Qg|}, consisted of m updating of the knowledge
states likelihood L(m). This updating depended on the
response to problem q selected by the procedure at that step.
Thus, m increased with the number of problems asked and
not with state transitions. The response to problem q was
stored in advance in the simulated samples D1, D2, D3, and
D4, respectively when the adaptive procedure based on the
MSP1, the MSP2, the MSP3, and the CMP were considered.

At each step m of a particular procedure, the modal
knowledge state K̂w

m of the simulated subject Jw was
estimated. The estimation procedure consisted of taking the
state K ∈ K for which the likelihood Lw

m was maximum.
When max(Lw

m) > .50, then a unique K̂w
m existed, otherwise

the modal knowledge state may be not unique. In such a
case, the only way for assigning a knowledge state to a
subject is a random choice among the modal states.

For each condition of the simulation design, the accuracy
and the efficiency of the procedures have been analyzed at
each step m of the assessment by using several performance
indexes.

Performance accuracy indexes

Concerning the accuracy, two performance indexes have
been considered for each procedure, that is:

1. The average Hamming distance D̄m(Kw, K̂w
m) com-

puted by

D̄m(Kw, K̂w
m) = 1

N

N∑

w=1

|Kw�K̂w
m |, (16)

where � represents the symmetric set difference.

2. The true-positive rate TPR computed at the end of the
assessment, that is the proportion of pairs (Jw, Kw) for
which Kw = K̂w

m , with m = |Qg|.

Performance efficiency indexes

The efficiency of each procedure was measured by three
indexes. For each participant w, the number of problems
asked mw until the termination criterion Lw

m(K̂w
m) > .50

is reached was registered. This index has a frequency
distribution in the simulated data set, having the set
{1, 2, · · · , |Qg|} as a support. Two of the three efficiency
indexes considered in this study were the mean m̄ of this
distribution and its cumulative distribution.

The last index was the Shannon’s entropy (Shannon, 1948).
This metric is used in information theory for quantifying
the “amount of information” contained in a variable, in
terms of the number of bits it takes to store the variable.
In the context of computing the efficiency of an adaptive
assessment procedure, this metric informs on how many
“bits of information” are missing for having the maximal
information on the whole test. Each bit of information is an
item of the test. It was computed as

Hw
m = −

∑

K∈K
Lw

m(K) log2 Lw
m(K).

The average H̄m of this quantity was computed across all
simulated subject for each number m of questions asked.

Results

Accuracy

Figure 5 shows the results obtained on the accuracy of the
procedures when the average Hamming distance is used as
the performance index, and K1 is the considered knowledge
structure. In the figure, panels to the left refer to conditions
in which the maximum amount of error in the data was
.01 (named, in the figure, low error conditions). Panels
to the right refer to simulation conditions in which the
maximum amount of error in the data was .20 (named
high error conditions). Row panels refer to the model used
for generating the data, which is MSPM1, MSPM2, and
MSPM3, respectively, from the top to the bottom of the
figure. In each panel, the number m of problems asked by
a procedure is along the x-axis, and the average Hamming
distance D̄m(Kw, K̂w

m) is along the y-axis. The smaller the
distance, the better the performance.

As expected by an adaptive assessment procedure, the
average Hamming distance decreases as the number of
questions asked increases. This is true for all procedures,
irrespective of the amount of error in the data, and of the
generative model. Another quite evident result is that among
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Fig. 5 Accuracy of the procedures in terms of average Hamming distance between the true and the estimated knowledge state. The results refer
to odds conditions from 1 to 12 of the simulation study

the four procedures, the CMP is the one most susceptible
to noise. Indeed, the difference in the performance between
conditions with low error in the data and conditions with
high error is the greatest for this model.

As for the other models, the effect of the amount of
error in the data can be seen in the values of D̄m(Kw, K̂w

m)

reached by the procedures at each step m of the assessment
and, mostly, at the end (m = 11). Indeed, for all procedures,
irrespective of the generative model, in conditions with low
error in the data (panels to the left), the average Hamming

distance is lower than that in conditions with a high error in
the data (panels to the right). It approaches 0 only when the
amount of error in the data is very low, but with a different
extent depending on the generative model.

Interestingly enough, when the generative model is
the MSPM1, in the low-error condition, both the MSP1
and the CMP procedures terminate with a distance
D̄11(K

w, K̂w
11) = 0, whereas the other two procedures had

a slightly worse performance. A different result is obtained
when the generative model is the MSPM2 or the MSPM3.
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Indeed, in these conditions, D̄11(K
w, K̂w

11) reaches zero
with the MSPM1, MSPM2, and MSPM3 models, whereas
it is higher for the CMP.

The effect of the sample size on the Hamming distance
is negligible (see Fig. 1 in the supplementary material of the
article).

The results on the Hamming distance between the true
state K and the estimated state K̂m are better understood if
considered along with the true-positive rate.

Figure 6 displays the results of the procedures’ accuracy
in terms of true-positive rate, when the knowledge structure
was K1. Panels to the top refer to conditions in which the
sample size was N = 155 and those to the bottom refer
to conditions with N = 1000. In each panel, the three

generative models are along the x-axis and the true-positive
rate is along the y-axis.

What clearly results is that the TPR of the CMP-
based procedure is almost always lower than that of the
MSP-based procedures. Its performances are equally good
compared to those of the MSP1 and higher than those of the
MSP2 and MSP3 only in two conditions of the simulation
design out of 24, that is when the generative model is the
MSPM1 and the amount of error in the data is low. Not
surprisingly, these two conditions are very favorable for the
CMP.

In conditions with low error in the data (panels to the
left in Fig. 6), MSP2- and MSP3-based procedures perform
equally well, reaching a TPR = 1.00 when they are the
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Fig. 6 Accuracy of the procedures in terms of TPR in all conditions 1 to 12 of the simulation study
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generative models. Instead, their performances are worse
than those of the other two procedures when the generative
model is the MSP1. In conditions with high error in the
data (panels to the right), the performances of all procedures
worsen. In these conditions, the CMP is able of finding the
true knowledge state of the patterns only in a number of
cases smaller than 50%.

Also for the TPR, it seems that the effect of the sample
size on the procedure’s accuracy is negligible. Indeed, the
bottom panels of Fig. 6 are almost the same as those to the
top.

Reading jointly the results on the Hamming distance
and the TPR, some interesting insights emerge about
the efficiency of procedures when they are applied in a
condition in which they are not the generative model. If
the generative model is the MSPM1, both the MSPM2
and the MSPM3 procedures perform very well in terms of
Hamming distances (their performances are very similar to
those of the MSP1) but they perform less well in terms
of TPR (they performances are about 20% worse than that
of the MSP1), whereas when the generative model is the
MSPM2 or the MSPM3, the performance of the MSP1 is
quite good in terms of TPR (its performance is about 10%
worse than the other two) but it is worse in terms of the
Hamming distance. Thus, it seems that although the MSP2
and MSP3 procedures have a lower TPR than the MSP1
(they fail more often) they estimate a knowledge state that
is closer to the true one in terms of Hamming distance.

Concerning Conditions 13 to 24, where the knowledge
structure K2 having 242,498 states was used, very similar
results of those described above (panels on the left of
Figs. 3 and 6 in the supplementary material). In these
conditions, the only obvious differences are in the values of
the performance indexes reached by the procedures. In fact,
the domain of K2 was composed by 31 problems (versus the
11 problems belonging to the domain of K1). The increasing
of the number of problems affects, necessarily, both the
accuracy and the efficiency of the procedures. Nevertheless,
in proportion, the results are almost the same for all the
performance indexes.

Efficiency

Figure 7 shows the results on the efficiency of the
procedures in terms of proportion of subjects pm (y-axis)
that reached the termination criterion Lw

m(K̂w
m) ≥ .50 at

a particular step m (x-axis) of the assessment. The results
refer to conditions with low error in the data (panels to the
left) and with high error in the data (panels to the right),
when the sample size is 155 and the structure is K1.

Interestingly enough, MSP2 and MSP3 perform better
than the MSP1 and the CMP in almost all conditions,

irrespective of the generative model and the amount of error
in the data. In conditions with low error in the data, a
proportion of simulated subjects greater than 80% reaches
the termination criterion with MSP2 and MSP3 only after
five questions, even when they are not the generative model.
For the other two models, at least one more question is
needed for arriving at the same proportion of the sample. It
is worth noticing that in conditions with high errors in the
data, the performance of the CMP is a lot worse. Indeed, less
than the 20% of the sample reaches the termination criterion
at the end of the assessment. At the end of the assessment,
the other three procedures approach 100% of the sample
when the amount of error is small, and a percentage greater
than 80% when it is high. The effect of the sample size
on this efficiency index is negligible (see Fig. 2 in the
supplementary material of the article).

Concluding, the efficiency in terms of average entropy
Hw

m of the adaptive procedures is displayed in Fig. 8. The
figure is read exactly like Fig. 5, with the only difference
that along the y-axis, the average entropy H̄m is displayed.

It can be seen that this index monotonically decreases
as the number of problems asked increases. This is true
irrespective of the generative model and the amount of error
in the data. What emerges very clearly is that when the
amount of error in the data was high (panels to the right),
the procedure based on the CMP performed worse than the
other three in all conditions. When the amount of error in
the data was low (panels to the left), the CMP and the MSP1
performed very similarly one to another but worse than the
MSP2 and the MSP3 procedures. Thus, also this statistic
suggests that the MSP2 and the MSP3 procedures are more
efficient than the other two.

Concerning Conditions 13 to 24, where the knowledge
structure K2 having 242,498 states was used, the entropy
show acceptable results (Figs. 4 and 7 of the supplementary
material), however the proportion of subject that react the
termination criteria (pm ≥ .5) is rather poor when the error
is high (right panel in Figs. 5 and 8 of the supplementary
material). This could be due to the interaction between
two factors, namely the huge size of the knowledge space
and the high error level used in the simulation. In these
conditions, a likelihood as large as .5 would hardly be
reached by any assessment procedure. Maybe in a situation
like this, such criterion is too strong and could be replaced
by a weaker one, like the following: stop whenever a single
modal state is obtained.

Discussion

Compared with the performance of the CMP, those of the
MSP1, MSP2, and MSP3 are sharply superior, mostly when
the amount of error in the data increases. Indeed, the results
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Fig. 7 Efficiency of the procedures in terms of proportion of subjects that reached the termination criterion p ≥ .50 at step m. The results refer to
odds conditions from 1 to 12 of the simulation study

on both the accuracy and the efficiency showed that the
adaptive assessment procedure based on the CMP is more
susceptible to noise than the other three.

As for the comparison among the three MSP-based
procedures, a clear superiority of one of them did not
emerge. Nevertheless, it can be stated that the MSP2 and
MSP3 are less affected by the assumptions behind the data.
In fact, they perform quite well, both in terms of accuracy
and efficiency, even when the generative model was the
MSPM1.

Simulation study based on real data

The aim of this study was to test the three (MSP1,
MSP2, and MSP3) adaptive procedures with real data.
To this aim, a pre-existing data set (Stefanutti et al.,
2021) was used that consisted of the responses of 154
subjects to the set Qg of 31 ToL problems collected
via a computerized version of the ToL. Among the 31
problems, only 11 were used, namely those problems
belonging to the domain Q

(1)
g . Thus, only the goal space
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Fig. 8 Efficiency of the adaptive procedures in terms of average entropy H̄m at each step m of the assessment. The results refer to odds conditions
from 1 to 12 of the simulation study

P(1)
g , and the knowledge structure K1 delineated by it,

were here considered (see “Goal spaces of the Tower of
London” for more details). Goal space P(2)

g and the
corresponding knowledge space K2 were not considered
in this study because the cardinality of K2 was too large
(242,498) to be used with a sample of size 154 (as resulted
by the previous simulation study).

Material and Data

The description of the administration of the ToL is briefly
summarized here. Only the most important features of the

administration phase are described here. For details, the
reader is referred to Stefanutti et al. (2021).

To each participant, the ToL problems were administered
in a randomized order via the computerized version of
the ToL developed by the authors. Participants were given
the following instructions: (a) solving the problems with
a minimum number of moves; (b) planning in advance;
(c) being as fast as possible. For every problem, the
computerized ToL recorded each move until the participant
made an error or correctly solved the problem. A move
was considered an error whenever it reached a problem
state laying outside a minimum length solution path. No

section*.9
section*.9
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time restrictions were imposed for the solution of the
problems. Each participant performed an initial practice trial
consisting of four problems having a different goal state
from the one used for the actual test.

Methods

The procedure used for applying each of the three MSP-
based adaptive procedures was the same as that used in
the previous study (see “Methods”). The only difference
was that the three procedures were applied to real response
patterns rather than simulated patterns. Given a subject
w in the data set, at each step m ∈ {1, 2, · · · , |Qg|} of
the assessment, the knowledge states likelihood Lw

m was
updated on the basis of the responses stored in the real
pattern for the problem q selected by the procedure at that
step. Then, the modal knowledge state K̂w

m at step m of the
subject w was estimated. After having “dichotomized” the
real data set, exactly the same steps were followed with the
CMP.

The performances of the three MSP-based and of the
CMP procedures were compared to one another in terms of
efficiency achieved at each step m of the assessment. The
same indexes used in the previous study were computed
at each step m of the assessment, that is the average
entropy H̄ (m) and the proportion pm of subjects exceeding
a termination criterion of .50.

In case of real data, the accuracy of an adaptive
assessment procedure cannot be evaluated because the true
state of a subject is unknown. Nevertheless, it is possible to
compare the estimated modal state K̂w

m obtained at each step
m of the assessment for subject w with the one estimated
in the last step. In practice, the average Hamming distance
D̄m(K̂w

11, K̂
w
m) between the two estimated modal states was

computed across all subjects of the sample.

Results

Results concerning the efficiency of the procedures are
depicted in Fig. 9. The upper panels of Fig. 9 show the
trend of the entropy H̄ (m) as the number of questions asked
increases.

The results are quite similar to those obtained in the
simulation study when the generative models were the
MSPM3 (bottom panels of Fig. 8) or the MSPM2 (middle
panels of Fig. 8). Indeed, with low error in the data, MSP2
and MSP3 perform in a very similar way, reaching the
smallest entropy (about 0) with the smallest number of
problems asked (six problems out of 11). With a higher
amount of error in the data, the best performances are
obtained by the MSP3 and the MSP1, whereas the MSP2
and the CMP obtained worse performances. In particular,

the entropy reached by the CMP is two times worse than
that of the MSP3 and MSP1.

The lower panels of Fig. 9 show the trend of the
proportion pm of subjects reaching the termination criterion
as the number of questions asked increases. Even for this
performance index about the efficiency of the procedures,
similar results as those obtained in the simulation study
can be drawn. With low error in the data, almost the
whole sample reaches the termination criterion in five
questions with the MSP2 and MSP3. For the other two
procedures, the same result is obtained with at least two
questions more. With the high amount of error in the
data, the performance of the CMP drastically reduces.
Nevertheless, it is interesting to note that in these conditions,
the performance of the CMP reached by using real data
is about twice the one obtained by the same model in the
simulation study (see Fig. 7, bottom right panel). This last
results could suggest that the amount of noise in the data
set could be in between the “low error” and “high error”
conditions examined in the simulation study illustrated in
“Simulation study”.

General discussion

In the present research, three adaptive procedures for the
assessment of procedural skills have been proposed. These
procedures are based on the Markov solution processes
model (Stefanutti et al., 2021), and they use the sequence
of moves observed in the solution of a problem to
increase the assessment efficiency and accuracy. The three
adaptive assessment procedures differ from one another in
the assumption underlying the solution process. The pre-
planning assumption states that the solution to the problem
is entirely planned before the first move. According to
the interim-planning assumption, planning can occur during
the execution of the problem. Finally, the mixed-planning
assumption allows both pre-planning and interim planning.

The aforementioned assessment procedures were imple-
mented in MATLAB and they were used for running two
simulation studies. In the first simulation study, the data sets
were generated under the three different assumptions with
the aim of comparing the capability of the three procedures
to recover the true knowledge state of the individual. The
performances of three procedures were compared to one
another and with that of a baseline procedure represented
by the CMP (Falmagne & Doignon, 1988). Results showed
that all of them outperformed the CMP. Regarding the accu-
racy, the performance of the CMP was as good as that of
the MSP1-based procedure (and better than the other two)
only in the conditions in which the generative model was the
MSPM1, and the amount of error was low. In all the other
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Fig. 9 Efficiency of the adaptive procedures applied to real data. In the upper panels, the efficiency is given in terms of average entropy H̄m (y-
axis), at each step m of the assessment (x-axis). In the lower panels, the efficiency is given in terms of the proportion pm of subjects reaching the
termination criterion (y-axis), at each step m of the assessment (x-axis). See text for more details

conditions, the MSP-based procedures outperform the CMP.
Regarding the efficiency, the MSP2- and MSP3-based pro-
cedures performed better than the other two in almost all the
conditions.

In the second simulation study, the procedures were
applied to a real data set of 154 individuals to whom a
set of the ToL problems was administered. The results
were coherent with those obtained in the first simulation
study. An exception is the case of the condition of high
error, where for the MSP1- and MSP3-based procedures
the entropy of the knowledge states likelihood distribution
was almost the same and the lowest. This may seem as
an incoherence with the first simulation study. A tentative

explanation is that the participants were instructed to
plan in advance the whole solution paths. However, some
participants could have applied a different strategy.

The main peculiarity of the procedures presented in this
article is that the dependencies among problems reflect
their structural relations in the problem space rather than
inferred through the application of statistical procedures to
the data. Such a relationship is based on the assumption
that, if a solution path includes another solution path, then
an individual who knows how to apply the former also
knows how to apply the latter. Referring to Example 1 in
“Adaptive assessment in a problem space”, an individual
who knows how to solve problem s1 by applying abāb̄ā
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will also be able to solve s3 by applying bāb̄ā. The validity
of this assumption seems reasonable, although it needs to
be empirically tested in every single context where such
procedures are applied. For instance, in the context of the
ToL test, empirical validation of the MSPM by (Stefanutti
et al., 2021) showed promising results.

The outcome of a PKST-based assessment procedure
is a knowledge state rather than a numerical score.
The knowledge state is an “estimated” representation of
the portion of the problem space that is known to the
problem solver, or the portion where this last can operate
successfully. This kind of representation cannot by achieved
through a simple numerical score. This seems to be a clear
advantage of the proposed approach, in the attempt of better
capturing and explaining individual differences.

In the clinical context, many advantages of this
representation may be pointed out. In KST, a knowledge
state has two well-known properties that are named the
“inner fringe” and the “outer fringe”. Both of these have
very clear and theoretically well-founded interpretation in
the educational context (Falmagne et al., 2013). The inner
fringe represents the points of strength of the student,
whereas the outer fringe represents what a student is ready
to learn. Such interpretations can be easily transferred to
the clinical and psychological contexts. The inner fringe
represents the maximum performance of the individual,
which is not the same thing as number of problems solved
correctly. The outer fringe contains the problems that are
one step ahead for the individual. In a rehabilitation context,
they may be used as training exercises, which are at the
appropriate difficulty level for the patient.

This work was focused on comparing the updating rule
of CMP and MSP-based procedures. However, other aspects
of the assessment procedure can be varied to increase
the efficiency of an assessment. For instance, (Heller &
Repitsch, 2012) has shown that using an informative initial
likelihood distribution on the knowledge states can improve
the performance of an assessment procedure. However, an
incorrect initial distribution can impair the performance of
the procedure. In this application, the uniform distribution
was used to avoid those issues. However, future applications
should further investigate these aspects to further improve
the assessment performance.

From a practical perspective, a field of application
for the adaptive procedures proposed in this research is
neuropsychological testing. In the last years, the attention of
neuropsychology researchers has focused on how modern
psychometric theories and advances in technology should
be incorporated in neuropsychological assessment (see, e.g.,
Costa, Dogan, Schulz, & Reetz, 2019; Howieson, 2019;
Kessels, 2019; Marcopulos & Łojek, 2019). Some attempts
and innovations were made, such as a recent work by
D’Alessandro et al. (2020) which used a computational

model approach to assess perseverant behavior with healthy
and substance-dependent individuals on the Wisconsin Card
Sorting Task. Although based on a different approach,
the assessment procedures proposed in this article have a
similar objective.

Another promising field of application is serious games.
The procedures developed in this article can be used as
a base for the definition of educational games and virtual
training environments. This sets up an agenda for future
research work.
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Ünlü, A., Schrepp, M., Heller, J., Hockemeyer, C., Wesiak, G., &
Albert, D. (2013). Recent developments in performance-based
knowledge space theory. In Knowledge Spaces, (pp. 147–192):
Springer.

Zhang, J., & Norman, D. A. (1994). Representations in distributed
cognitive tasks. Cognitive Science, 18(1), 87–122.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/13854046.2018.1560502
https://www.sciencedirect.com/science/article/pii/S0022249621000377
https://www.sciencedirect.com/science/article/pii/S0022249621000377

	Algorithms for the adaptive assessment of procedural knowledge and skills
	Abstract
	Introduction
	Background
	The Tower of London test
	Knowledge space theory
	Procedural knowledge space theory
	The continuous Markov procedure
	The Markov solution process model

	Adaptive assessment in a problem space
	Updating rules
	Procedures based on the Markov solution process model

	Simulation study
	Goal spaces of the Tower of London
	Simulation design and data set generation
	Methods
	Performance accuracy indexes
	Performance efficiency indexes

	Results
	Accuracy
	Efficiency

	Discussion

	Simulation study based on real data
	Material and Data
	Methods
	Results

	General discussion
	Open Practices Statement
	References


