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Real-Time Feasibility of Data-Driven Predictive
Control for Synchronous Motor Drives

Paolo Gherardo Carlet, Andrea Favato, Riccardo Torchio, Francesco Toso, Saverio Bolognani, Florian Dörfler

Abstract—The data-driven control paradigm allows overcom-
ing conventional troubles in the controller design related to model
identifications procedures. Raw data are directly exploited in
the control input selection by forcing the future plant dynamics
to be coherent with previously collected samples. This paper
focuses, in particular, on the data-enabled predictive control
algorithm. A relevant disadvantage of this algorithm is the fact
that the complexity of the online control program grows with
the dimension of the data-set. This issue becomes particularly
relevant when considering embedded applications such as the con-
trol of synchronous motor drives, characterized by challenging
real-time constraints. This work proposes a systematic approach
for dramatically reducing the complexity of such algorithms.
Such methodology enables real-time feasibility of the constrained
version of this control structure, which was previously precluded.
Simulations and experimental results are provided to validate the
method, considering the current control of an interior permanent
magnet motor as test-case.

Index Terms—Data-enabled predictive control (DeePC), model
predictive control (MPC), permanent magnet synchronous motor
(PMSM), proper orthogonal decomposition (POD)

I. INTRODUCTION

Digitalization of industrial processes is generating huge
amount of data day by day. This revolution provides unprece-
dented opportunities for engineers and practitioners [1], since
devices and plants can be monitored and analyzed in every
moment of their life-cycle.

In the control engineering community, a fresh data-based
perspective on control is emerging [2], parallel to the most
conventional model-based approaches. In particular, given the
richness of information about dynamics, data-driven control
design procedures appear convenient.

Among data-driven controllers, the data-enabled predictive
control (DeePC) is considered in this work [3]. Being a
predictive controller, the idea behind DeePC is to optimize
future plant inputs to minimize a defined cost function, e.g.,
a tracking control problem, in a similar manner as a model
predictive control (MPC). Most importantly, input and output
constraints can be included in the optimization. However,
the plant output prediction is performed by means of data
previously collected from the plant, instead of conventional
state-space models.

DeePC has already found applications in different areas,
including aerial robotics, automotive, power electronics and
power systems [4], characterized by different timescales. In this
work, the power electronics area is considered, one of the most
challenging because of a very tight timescale. Considering
such area, predictive controllers are categorized into finite-
control-set methods and continuous-control-set methods [5].

DeePC refers to latter category. Thus, DeePC computes the
equivalent voltage vectors feeding the motor windings. Then,
a pulse width modulation algorithm finds the duty cycles of
the power converter switches. Differences and comparisons
between finite-control-set and continuous-control-set predictive
controller are discussed in [6].

The transition from model-based to data-driven design of
predictive regulator for the current control of synchronous
motor drives is described in [7]. This case study revealed
a practical issue of such control strategy. In fact, the real-
time constraints precluded the implementation of a constrained
version of the algorithm. In particular, the optimal voltage to
drive the machine was computed while neglecting the feasible
voltage region of the power converter because of computation
time limits.

The computation time issue was due to two main reasons:

• the lack of a customized solver for the control problem;
• data samples appear explicitly in the online program,

and therefore its complexity grows with the amount of
data used to replace the state-space model in the output
prediction.

This paper aims to address both issues exploiting recent
advances in customized solvers for embedded real-time opti-
mization and well-know reduction techniques to handle the pre-
collected data. As interesting feature of the proposed controller,
no models are introduced to describe the dynamic, remaining
faithful to the data-driven paradigm.

Many solvers recently have been proposed for embedded
predictive control of power electronics. Geyer et al. have been
developing efficient solvers for medium-high power electronics
for one decade [8]. However, these methods find application
only for finite-set predictive controllers [9] and cannot be
generalized to MPC coupled with pulse-width-modulation [10],
[11]. Bemporad et al. proposed an active set method for the
current control of surface-mounted motors, certificating also
the real-time feasibility [12]. Alternatively, a customized solver
was proposed in [13], specifically designed for synchronous
motors driven by three-phase two-levels converters. The latter
method is considered here, since it shows promising real-
time performances with respect to general purpose solver,
such as qpOASES [14]. This method finds first the optimal
unconstrained solution. If the solution is feasible, the algorithm
stops. If not, the method start iterating among the violated
constraints by considering them individually and exploiting the
peculiarities of the specific control problem. This solver turns
out to be particularly suitable for the application of standard
reduction methods that allow for dramatically reducing the
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problem dimension and therefore the overall computational
cost for solving the control problem.

The adopted reduction method is based on a classical proper
orthogonal decomposition (POD) scheme [15], where the
solution space is spanned in order to construct a proper basis
that is used to project the problem according to a Galerkin
scheme [16]. The problem reduction is implemented in the
offline stage. Particular attention is also given to the stopping
criterion adopted in the reduction algorithm in order to keep the
reduced control problem small and well conditioned for both
the unconstrained and constrained cases. The coupling between
the considered solver and the problem reduction technique may
result similar also to the explicit MPC approach [17].

In conclusion, this work proposes an effective methodology
to reduce the computation time of the DeePC controller, applied
to the current control of electric motor drives. The contributions
of this work are manifold, and they can be summarized as:

• the computation burden of the DeePC is reduced by
applying a POD technique directly to the control problem,
without identifying any model;

• the reduction methodology is coupled to a customized
MPC solver for electric motor drives application;

• the constrained DeePC is implemented for the first time
on a dSPACE hardware at a rate of 10 kHz, demonstrating
its real-time feasibility;

• the accuracy between the reduced DeePC problem solution
and the original problem is studied;

• the differences between the constrained DeePC solution
and the unconstrained program are analyzed.

We believe that our contributions ultimately enable to transfer a
cutting-edge (albeit academic) data-driven control algorithm to
practice. Moreover, the proposed methodology represents a key
milestone towards adaptive DeePC, i.e. a controller capable to
recursively self-adapt to the plant operating condition. In fact,
a fast and effective procedure to handle raw data and build up a
control law becomes essential for a recursive implementations
with a continuous stream of data.

II. THEORETICAL BACKGROUND

A. PMSM model

Before introducing the DeePC, a brief description is pro-
vided about the equations that model the permanent magnet
synchronous motor (PMSM) currents dynamic. The most
widespread model used to represent PMSM currents is based
on the voltage balance equations, represented in the direct-
quadrature (dq) reference frame, synchronous with the rotor
flux. Since a digital controller is often implemented to drive
the motor, the continuous time equations are discretized using
the Euler method. The resulting model is reported below

idq(k + 1) = Aidq(k) + Budq(k) + Bh(k)

A =

1−Rs
Ts

Ld
ωe

Lq

Ld
Ts

−ωe
Ld

Lq
Ts 1−Rs

Ts

Lq

 , B =

 Ts

Ld
0

0
Ts

Lq

, (1)

where Rs is the stator resistance, Ts represents the sampling
period, ωe is the electric angular speed and Ld and Lq are the

uunc

uα

uβ

uopt

J(uopt)

proj(uunc)

r2

Fig. 1: Difference between constrained solution of the control problem
and a phase-preserving projection (proj) of the unconstrained solution.
Ellipses represent the cost function level sets.

dq inductances. h(k) = [0, ωeΛpm]T is the back electro-motive
force induced by the permanent magnet flux linkage Λpm. The
input of the plant are the dq voltages udq, while the state
variables are the dq current idq.

B. The Data-Enabled predictive control problem

The DeePC is a purely data-driven control technique, whose
design consists of two main steps. First, a data collection
experiment is conduced on the motor under test. An input
voltage excitation is applied to the motor windings. The
excitation voltage signal and the resulting stator currents are
stored. We refer to [7] for more details about the data collection
stage, since it is out of the scope of this work.

Once data are available, the desired control problem needs
to be defined. The distinguishing feature of DeePC is the
overcoming of system identification procedures on the data-set.
Raw data appears reshaped in the form of Hankel matrices. If
yl is a l-long vector of currents samples, the related Hankel
matrix is built:

H (yd) :=


y1 y2 · · · yl−Tini−N+1

y2 y3 · · · yl−Tini−N+2

...
...

...
yTini+N yTini+N+1 · · · yl

 , (2)

where Tini and N are two tuning parameters, accounting for
lower bounds of the lag and the order of the unknown model,
respectively. Incremental Hankel matrices are built to add an
integral action to the controller, as in [7]. In particular, such
integral action rejects all the speed-dependent time-variant
disturbances that characterize the PMSM currents dynamic (1).

The online problem is defined accordingly to the MPC
framework. Considering the current control of PMSM, the pro-
gram consists into optimizing the sequence of future voltages
u = [udq(k), udq(k+ 1), . . . , udq(k+N − 1)]T such that the
future currents y = [idq(k+ 1), idq(k+ 2), . . . , idq(k+N)]T

are steered to a desired reference r = [i∗dq(k + 1), i∗dq(k +



2), . . . , i∗dq(k +N)]T. Thus, the optimization program is:

min
g,u,y

||y − r||2Q + ||u||2R + λg||g||2 (3a)

s.t.


UP
YP
UF
YF

 g =


uini
yini
u
y

 , (3b)

udq(k) ∈ U , k = 0, ..., N − 1. (3c)

UP, YP, UF and YF are block-Hankel matrices (see definition
in Sec. II of [18]) of the pre-collected voltage/current data.
The vectors uini and yini are the dq voltages and dq currents,
respectively, sampled the previous control period. Moreover,
the vector g ∈ Rl×1 is the auxiliary variable for which the
optimization needs to be solved. A regularization on g is
included in the problem by the weight λg. Q and R are
two additional weighting matrices. Finally, U is the feasible
set for the input voltage. The set has an hexagonal shape
for PMSMs fed by two-levels inverters [14], which is the
topology considered hereinafter in this work. Nevertheless, the
same controller can be implemented on other power converters
topologies, provided that the feasible voltage set is defined
accordingly.

After some manipulations, problem (3) is rearranged as a
standard QP in the unknown g:

min
g

1

2
gTHg + cTg (4a)

subject to Aeqg = beq (4b)
Aing ≤ bin (4c)

where H = 2
(
YT

FQYF + UT
FRUF + λgId

)
, c = 2YT

F Qr,
Aeq = [UP,YP]T, beq = [uini,yini]

T, Ain = MT−1
P UF and

bin = 2uDC/
√

3 [1, 0.5, 1, 1, 0.5, 1]T. Moreover, uDC is the
inverter DC bus voltage, TP is the Park transformation matrix,
Il is the l-wide identity matrix and

M =

[
1 1 1 −1 −1 −1√
3 0 −

√
3 −

√
3 0

√
3

]T

.

The latter describes the hexagon voltage constraint as in [19].
Being a physic limitation of the adopted power converter
topology, the hexagonal constraints hold at any point in time.
Among all the just defined matrices and vectors, H and Aeq
are constant in the quadratic program (QP), thus they can be
pre-processed offline. On the opposite, c, beq, Ain and bin are
influenced by new measured streaming data and they need to
be partially recomputed each control period.

The unconstrained solution uunc of (4), i.e., the solution
neglecting (4c), was previously presented in [7]. Infeasible
input voltages were projected within the feasible set preserving
the voltage vector phase, as shown in Fig. 1. Other projections
strategies may be considered, i.e. orthogonal projections on the
constraints. The projected solution may represent a good ap-
proximation of the optimum in some conditions. However, the
same figure highlights the relevance of finding the constrained
solution of the problem. In fact, the optimal solution uopt

which minimizes the cost (3) could be far from the projected
unconstrained solution, depending on the contour of the cost
level-sets [14].
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Fig. 2: Time for solving 1000 DeePC instances versus length of g.

A constrained form of the DeePC is hard to implement in
embedded applications, such as the control of PMSM currents.
In fact, the computation time bottleneck is tight, while the
problem size blows up quickly when increasing the amount of
available data. Fig. 2 represents the time required to solve 1000
instances of the DeePC constrained problem using qpOASES
[20] as solver, while increasing the dimension of g, which
depends on the amount of data pre-collected for building the
DeePC (Sec. III. A of [7]). The specific scenario giving rise to
Fig.1 is described in Section IV. The computational complexity
grows as O(d3). Thus, a different approach is proposed to
unlock the real-time feasibility of constrained DeePC.

III. REAL-TIME FEASIBLE DATA-DRIVEN CONTROL

In order to enable the real-time feasibility of the constrained
DeePC, this paper proposes the implementation of a customized
solver for the online optimization and a problem reduction
method based on the POD. Fig. 3 resumes the proposed
methodology. Once input/output voltage/current samples are
collected from the PMSM (Section III A [7]), the DeePC
optimization problem is formulated. Then, such a problem is
reduced by means of a POD. The problem reduction is de-
scribed in Section III-B, distinguishing between the constrained
and unconstrained case. Finally, the reduced problem is solved
online in real-time by using the customized solver described
in Section III-A. The adopted solver is described first, to ease
the comprehension of the interaction between itself and the
DeePC problem reduction.

A. Solver for the constrained DeePC problem

The optimization behind the constrained DeePC is solved
by using a customized version of the method proposed in [14].
The solver is briefly described in order to highlight where the
main improvements are added.

First, the solver computes the unconstrained solution, gunc,
of (4a) including the equality constraints (4b). However, this
computation presents troubles related to the fact that the
dimension of g depends on the amount of data stored in the
Hankel matrix Aeq. Sec. III-B proposes a problem reduction
technique to handle this issue.

Then, the solver performs a feasibility check of the input
solution uunc = UFg

unc. Since the feasible voltage set is
symmetric Fig.1, four possible cases can occur:

• the unconstrained solution is feasible;
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Fig. 4: Flow-chart of the adopted QP solver.

• uunc violates one constraint of the hexagon;
• uunc violates two consecutive constraints of the hexagon;
• uunc violates three consecutive constraints of the hexagon.

In the first case, the DeePC optimum coincides with the
unconstrained solution (iteration 0 in Fig. 4). In all the other
cases typically encountered in practice, the solver needs to
compute at most two fundamental iterations. A bounded
number of iterations is the key features of the adopted solver
and it is described in [21]. In a nutshell, this feature is mainly
related to the fact the selected control horizon for the DeePC
is equal to one, regardless the prediction horizon length.

In case of unfeasible unconstrained solutions, the solver pro-
ceeds considering one violated constraint at a time, penalizing
such constraint in the cost function. Assuming that the j-th
constraint is violated, the solver searches the best solution lying
on the jth line. Since the optimization variable is still g, the
same issue of the unconstrained problem occurs. Sec. III-B
describes the proposed reduction method adopted to speed up
the fundamental iteration.

The new solution may be feasible or not again, thus a new

feasibility check is performed. If the solution is feasible, then
it is optimal also for (4). This is the case shown in Fig. 1.
uunc (associated to gunc) violates the line r2, while the solution
computed on r2 lies on the hexagon segment, thus it is feasible
and optimal. Depending on the number of violated constraints,
this iteration is repeated or the solution is searched among the
hexagon vertices. Thanks to the geometry of the problem, no
more than two fundamental iterations are needed [14]. Fig. 4
provides a picture of all the iterations that could occur. The
feasibility checks on the solutions are denoted by reddish
blocks. Greenish blocks indicate the nodes where the solution
computed on a segment is feasible. Thus, the solver stops
exploring the decision tree. On the contrary, grayish blocks
denote nodes where there are still violated hexagon constraints.

B. Control Problem Reduction

Unconstrained DeePC — The equality constrained DeePC
is obtained by neglecting all the inequality constraints in (4).
The Karush-Kuhn-Tucker (KKT) system associated to the
problem is[

H AT
eq

Aeq 0

](
g
µeq

)
=

(
−c
beq

)
→ Keqγ = ρ. (5)

Inspecting the expressions of the Hessian and the linear term
of the QP, the solution of the KKT system can be parametrized
in an affine manner as:

Keq γ = c1 r + c2

[
uini
yini

]
, (6)

where r,uini, and yini are considered as parameters of the
control problem. It is worth noting that matrix Keq has
dimensions that depend on the number of collected data that
can be arbitrarily large (e.g., even more than some hundreds).
Thus, solving (6) is prohibitive for real-time applications.

The reduction of the unconstrained DeePC is achieved by
applying a parametric POD [16]. The algorithm spans the
solution space in order to construct a proper basis, and then
it implements the Galerkin projection to find out a reduced
order control problem. In particular, the auxiliary variable
γ̂ is introduced, and the reduction algorithm (described in
Algorithm 1 [22]) iteratively constructs the projection matrix

V =

[
Vg

Vµ

]
,

such that g̃ = Vgγ̂ and µ̃eq = Vµγ̂, i.e., γ̃ = Vγ̂, where
the symbol˜indicates approximated quantities. For the specific



application discussed in this paper, the size of γ̂ is much
smaller than the size of γ (i.e., the number of columns of V
is much less than its rows). Thus, by projecting the original
full control problem by using V, the size (and therefore the
computational cost) of the problem is significantly reduced.

Therefore, once V is constructed, the reduced control
problem can be obtained by applying a Galerkin projection of
(6) by using V, i.e.,

K̂eq = VTKeqV, (7)

ĉ1 = VTc1, (8)

ĉ2 = VTc2, (9)

thus leading to

K̂eq γ̂ = ĉ1 r + ĉ2 [uini, yini]
T. (10)

The solution of the reduced control problem is achieved by
solving (10) and then an approximate solution g̃ of the full
order control problem is obtained as g̃ = Vgĝ.

It is desirable that the approximate solution of the KKT
system grants a minimal relative error

ε =
|g − g̃|
|g|

=
|g −Vgγ̂|
|g|

(11)

with respect to the solution of the original full order problem
(5). It is worth noting that, the error ε is evaluated only with
respect to g, while the accuracy on the re-construction of µeq
is ignored. Indeed, the optimal input voltage uopt (which is the
final quantity to compute) only depends on g as uopt = UFg.
The choice of considering the error ε as in (11) and not with
respect to the solution γ (i.e., including also µeq) allows
for obtaining a small and well conditioned reduced control
problem.

For this reason, the construction of V by means of Algo-
rithm 1 is performed iteratively by adopting a pseudo-random
POD method [23]. At each iteration of Algorithm 1, the
tentative basis V is used to reduce the dimension of the problem
(i.e., constructing (6)) and the accuracy of the reduced problem
with respect to the full order one is tested against several
random choices of parameters r,uini, and yini. If for each
selection of the random parameters the error ε is lower than
the required tolerance η, then the Algorithm stops. Otherwise,
the parameter selection which gave the maximum error is
selected and the algorithm performs a new iteration by solving
the full order problem with respect to this parameter selection
and the related solution is added to the basis V and then
orthogonalized, i.e.,

V← GSO([V,γ]). (12)

where GSO is the Gram-Schmidt orthogonalization. It is worth
noting that the equation above should be intended in an
algorithmic sense, i.e. the new projection matrix V (left-hand-
side of (12)) is updated by adding to the old V (right-hand-side
of (12)) a new column (i.e. γ) and applying the GSO to the
resulting matrix. At iteration one of the Algorithm, since V
has not been created yet, V at the right-hand-side of (12) is
obviously taken as the empty matrix. Other stopping criteria

Algorithm 1 Unconstrained problem reduction

Input: Matrices Keq, beq and c, parametric in uini,yini
and r. The parameters ranges are [umin, umax], [ymin, ymax],
[rmin, rmax] for uini, yini, and r elements, respectively.
Step {0} Set initial values for parameters, for instance the
mean values of all the parameters, i.e., umin+umax

2 , ymin+ymax
2 ,

rmin+rmax
2

Set ε? = +∞
Set Nrand (e.g. Nrand = 20)
Set a desired value of η (e.g. η = 10−4)
while ε? > η do

Step {1} Find the solution γ = [g, µe]
T of (6)

Step {2} Update the orthonormal basis V, i.e. (12)
Step {3} Generate/Update the reduced order problem,
i.e., (7)-(9)
Step {4} Generate Nrand random values of uini, yini and
r
for h = 1, · · · , Nrand do

Select the h-th random set of parameters,
Step {5} Find the solution [ĝ, µ̂e]

T of the reduced
order problem (10)
Step {6} Evaluate the residual ε (11), with respect to
the full order problem

end for
Step {7} Find the set of parameters generated at step
4 which maximizes the residual and assign the corre-
sponding maximum residual to ε?. The new parameter
set is used for solving step 1

end while
Output: Reduced order model and the projection matrix,
i.e., K̂eq = VTKeqV; ĉ1 = VTc1; ĉ2 = VTc2

may be used when generating the ortho-normal basis V. For
instance, bounds on the problem dimension can be imposed
in case of more complicated applications. In this work we
adopted a stopping criterion based on the problem reduction
error, which is by far the most widespread.

Finally, the online controller implements only a simple linear
feedback rule to compute the approximate optimal input voltage
ũopt:

ũopt = UFVgK̂
−1
eq

(
ĉ1r + ĉ2

[
uini
yini

] )
, (13)

where UFVgK̂
−1
eq ĉ1 and UFVgK̂

−1
eq ĉ2 are both computed

offline. Results will show that the accuracy of the approximated
solution ũopt is actually very high and almost identical to the
exact one uopt.

Constrained DeePC — When the unconstrained solution is
not feasible, the solver performs at most two fundamental
iterations, as in [14]. The reduction method needs to be
readjusted for these iterations, since the parametrization (6) is
no more usable.

Recall that the solver consider always one constraint at
a time, penalizing that constraint in the cost function. The
methodology adopted to reduce the constrained program is



Fig. 5: Test-bed layout.

similar to the one adopted for the unconstrained one. First, the
KKT system associated to the j-th constraint is introduced: H AT

eq Ain(j, :)T

Aeq 0 0
Ain(j, :) 0 0

 g
µeq
µin

 =

 −cbeq
bin (j)

 . (14)

It is worth mentioning that the parametrization of this system is
much richer than the one of the unconstrained program. In fact,
Ain encapsulates the Park transformation, i.e., the rotor position
information and the DC bus voltage magnitude. Furthermore,
with the proposed solver, the violated constraint j becomes an
additional parameter of the problem.

Then, the KKT system is rewritten, highlighting the affine
relationships with parameters. In particular, the KKT inequality
matrix Kin is parametrized as

Kin =H1 + H2M(j, 1) cos θe + H3M(j, 2) cos θe

+ H4M(j, 1) sin θe + H5M(j, 2) sin θe,
(15)

where θe is the electric motor position, while the KKT right-
hand side ρin is parametrized as

ρin = c3 r + c3 [uini, yini]
T + c5 uDC. (16)

As for the unconstrained DeePC, the problem is reduced
using the same random POD algorithm, whose outputs are the
projection matrix Vin, K̂in(θe, j) = VT

inKinVin, ĉ3 = VT
inc3,

ĉ4 = VT
inc4, and ĉ5 = VT

inc5. The only difference between the
reduction techniques are due to an enlarged set of parameters.
Thus, the optimal solution of (4) lying on the violated constraint
j is

uj
r = K̂in(θe, j)

−1
(
ĉ3r + ĉ4[uini, yini]

T + ĉ5uDC
)
. (17)

This computation is repeated at most two times when imple-
menting the selected QP solver.

IV. RESULTS

The proposed constrained DeePC algorithm has been vali-
dated by means of both simulations and experiments.

On one hand, all the simulations were run on an Intel(R)
Core(TM) i7-8700 CPU 3.20GHz. On the other hand, exper-
imental tests were performed by using the test-bench whose
layout is reported in Fig. 5. In particular, a back-to-back
configuration is adopted. The load motor is controlled in
speed control mode, whereas the tested motor is operated

TABLE I: Overview of the drive parameters.

Parameter Symbol Value

Pole pairs p 3
Phase resistance Rs 1 Ω
d-axis inductance Ld 0.010 H
q-axis inductance Lq 0.014 H
PM flux-linkage Λpm 0.26 V s
Nominal current IN 6.2 Arms
Nominal d current IN,d −1.1 A
Nominal q current IN,q 8.7 A
Nominal speed ΩN 1000 rpm
DC bus voltage UDC 200 V
Sampling period Ts 100µs

(a) Unconstrained problem

(b) Constrained problem

Fig. 6: Typical convergence curve of the QP problem reduction.

in current control mode. An interior permanent magnet motor
is considered for the validation, whose parameters are resumed
in Table I. Control algorithms are real-time implemented
on a dSPACE MicroLabBox platform, at a sample rate of
Ts = 100 µs, in accordance with the nominal switching
frequency of the inverter. The data-driven control finds the
optimal voltage references feeding the motor. Then, a space
vector modulation algorithm computes the duty-cycles for the
inverter switches. Finally, switching pulses are generated by
means of the dSPACE libraries. All the reported currents are
normalized with respect to the nominal value IN , while the
voltages are normalized with respect to the DC bus voltage
UDC , both specified in Table I.

A. Problem reduction

The dimensionality reduction of the DeePC problem is here
analyzed in a MATLAB Simulink environment. A set of 103
input/output voltage/current samples was collected form the
IPM machine, following the guidelines described in [7]. In
particular, the data-collection stage was performed at standstill
with a magnitude of the excitation voltage signal equal to the
10% of the bus DC voltage.

Following the data-driven design procedure [7], the DeePC
horizon lengths Tini and N were set respectively to 1 and 3.
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Fig. 7: Comparison between optimal solution of the QP problem and
the projected unconstrained solution. Voltages are normalized with
respect to UDC.

Since 103 samples were taken, the dimension of the decision
variable g, i.e., d, results to be d = T − Tini−N + 1 = 103−
1− 3 + 1 = 100. However, this problem size is unaffordable
for real-time applications, especially at high sampling rating
and with limited computation resources.

The problem reduction algorithm (Algorithm 1) is run on the
data-set to compress both the unconstrained and constrained
QP problem. Fig. 6 shows the convergence curve of the POD
method, given the selected tolerance η = 10−3. Both the
constrained and the unconstrained programs are reduced of a
factor higher than one order of magnitude. In fact, it is reminded
that g is a 100-long vector. In addition, the dimension of the
reduced problem is not influenced by the dimension of the
data-set. In fact, the POD converges with equal iterations even
if longer snapshots are elaborated. This feature is coherent
with the fact that the dimension of the problem should be
determined by the DeePC design, i.e., the value of N , Tini,
and the considered plant. Indeed, this method acts as a rank
revealing technique of the problem without making any a-priori
assumptions.

B. Difference between constrained and unconstrained DeePC

A common practice introduced by engineers when imple-
menting MPC controllers in the power electronic area is the use
of the unconstrained version to limit the computation burden.
However, this practice leads to the application of sub-optimal
input voltages to the motor. This consideration is valid for all
the predictive controllers, including the DeePC.

Difference between constrained and constrained solutions
of a QP problem occurs when the unconstrained solution is
not feasible, as shown in Fig. 7. In fact, infeasible solutions
need to be handled somehow, when the DeePC is applied in
the unconstrained fashion. A common practice consists into
projecting unconstrained infeasible solutions on the hexagonal
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Fig. 8: Current tracking performance at the boundaries of the feasible
voltage set.
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Fig. 9: Mean error committed by the approximated solutions with
respect to the exact ones as function of the motor saliency, i.e. Lq/Ld.

feasible voltage domain. However, such solution may be
far from the true optimum. The latter is computed by the
constrained DeePC by searching the optimal solutions lying
on the boundaries.

The error between the two solutions depends on the operating
point. Fig. 7(a) and Fig. 7(b) illustrate two significant cases
characterized by a small and large discrepancy, respectively. It
is relevant that the Euclidean distance between true optima and
the projected solutions can be larger than 30% of the DC bus
voltage, as observed by running several instances (Fig. 7(c)).
The benefits achieved by implementing the constrained solution
are experimentally validated, too. The motor under test was
controlled in current mode, while the load machine imposed an
operating speed equal to the nominal one. The inverter DC link
voltage was reduced of a 10% factor to let the DeePC controller
compute often voltages on the hexagonal set boundaries. Results
are shown in Fig.8 in terms of dq currents. In the first half of
the test the constrained DeePC solutions fed the motor, while
the projected unconstrained ones in the second half. Both
algorithms did no allow to track the desired current reference,
since the inverter ran out of voltage. However, the constrained
solutions a lower bias error and lower oscillations with respect
to the unconstrained ones. Thus, the constrained controller
exploits more effectively the available voltage set.

A second parameter that influence the accuracy of the
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number of iterations (Fig. 4).

projected solution is the saliency of the adopted PMSM, i.e.,
the Lq/Ld ratio. The set of simulations performed to build
Fig.7 are repeated for several values of Lq, keeping constant
Ld. A reduction of the motor saliency is experienced by interior
permanent magnet motors in presence of iron-saturation, which
implies in turns a reduction of Lq. The mean error between
projected and optimal solutions is evaluated and reported in
Fig. 9. The mean error grows clearly with the saliency. This is
due to the fact that the DeePC cost function (3) contour lines
of Fig. 1 become more and more elliptical and the projection
technique becomes more and more inaccurate. This observation
suggests that the implementation of the constrained DeePC
program results of particular relevance for highly anisotropic
machines.

C. Accuracy of the approximated DeePC problem solution

As a further step in the validation, the controller matrices
are plugged in the solver (Fig.4). The most relevant feature
desired from a problem reduction routine is that the solutions
of the approximated control problem and the ones of the large
original problem are similar. For this reason, thousand of DeePC
problem instances (4) were launched. The DeePC instances are
generated randomly choosing the PMSM current references
r, the initial voltage and current conditions uini, yini and the
electric motor position and speed. The number of instances

are selected in order to cover all the possible solver cases,
previously resumed in Fig.4. Fig. 10 resumes the accuracy of
the approximated problem solution. In particular, Fig. 10(a)
confirms that the analyzed instances cover all the possible cases
in terms of number of violated constraints.

The large original DeePC problem is solved by means of
qpOASES, an efficient QP solver proposed by Ferrau et al. [24].
The comparison of the euclidean distance between the auxiliary
variables could be used as an alternative. Fig. 10(b) shows
that the error committed when solving the reduced problem is
practically null for all the instances.

D. Real-time feasibility

The proposed constrained DeePC is then implemented in
real-time on a dSPACE MicroLabBox, which is equipped with
a 2 GHz NXP QorIQ P5020 microprocessor. The motor under
test is dragged at 110% ΩN by the load machine. In the while,
the motor under test is controlled in current mode and the
nominal currents are set as reference. This allows the solver to
find many infeasible working points and, ultimately, to explore
all the case of infeasibility presented in Fig. 4.

Fig. 11 shows the average turnaround time of the algorithm
as a function of the number of iterations of the solver. Currents
measurements, position sensing and the Park transformation
require about 8µs. Thus, the net turnaround time of the
constrained DeePC is retrieved by removing 8µs to the results
of Fig. 11. In any case, the overall computation time is well
below the sampling time of 100µs. This result is particularly
relevant when compared to the data-driven controller described
in [7], which was not implementable at such rates.

When the unconstrained DeePC solution is feasible, no
further iteration is needed. The computation time grows with
the iterations, since the fundamental iterations is repeated. Every
iteration involves the computations described in Sec. III-B. The
cases when the solutions are found on the vertices, i.e., iteration
1.5 and 2.5, are merged to the iteration 1 and 2, respectively.
In fact, no additional computations are required for these cases
[14], meaning that it is not needed to solve problem (14)
another time.

E. Controller dynamic performance

This section aims to prove that the proposed data-driven
methodology is also capable of achieving very favorable
dynamic performances. It is remarked that the work does not
focus into optimizing the dynamic of the PMSM drive. Instead,
it aims at demonstrating that the problem reduction method
allows for enabling the real-time implementation of data-driven
controllers, such as the DeePC.

The IPM machine is controlled in current mode, and
it is dragged at its nominal speed by means of the load
machine. Then, a step-wise change of the current references
is commanded, from zero to the nominal maximum-torque-
per-ampere value, i.e. i∗dq = (IN,d, IN,q)T (see Table I). The
d and q current responses are reported in Fig. 12(a) and
Fig. 12(b), respectively. As shown in figures, the desired set-
point is achieved with just a reduced undershoot on the d-axis.
The q-current reference reaches the steady-state in the last
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Fig. 12: Step response analysis at nominal speed.
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Fig. 13: Step response analysis at 10% of the nominal speed.

part of the test because of a instantaneous reduction of the
available inverter DC bus voltage. This fact is proven also by the
computation of the closed loop cost, reported in Fig. 12(c). This
cost is obtained by evaluating ‖i∗dq−idq(k)‖Q+‖udq(k−1)‖R
(3) every control period. In the beginning of the cost is slightly
higher because of the step-wise change in the current references.
Fig. 12(d) further confirms that the solver in the beginning
of the test is finding either feasible unconstrained solution or
solution that violates one of the hexagon constraints. Thus,
the motor is operating near the bounds of the feasible voltage
region. Fig. 12(e) reports the inverter voltages in the stator
reference frame αβ. In particular, the trajectory walks along the
voltage hexagon edges, until the current reaches its reference.

The step response was repeated also at 10% of the nominal
speed, and the results are summarized in Fig. 13. Current
responses are quite similar to the nominal speed case in terms
of rising time. The steady-state solutions of the DeePC problem
do never touch the hexagonal set, as shown in Fig.13(c). This
is due to the fact that a low voltage vector is sufficient at
such low speed to track the desired current reference. If faster
transients are required, designers can adjust the control response
by reducing R in (3a). Higher voltage demands are expected
is such scenario.

For the sake of completeness, the proposed controller
performance is investigated during speed transients, too. In
particular, the load motor performs a speed inversion from
+50% to −50% of the rated value (Fig. 14(a)), while nominal
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Fig. 14: DeePC performance during a speed transient.

currents are commanded to the motor under test. Results in
terms of phase current wave-forms are shown in Fig. 14(b).
The DeePC demonstrate a robust behavior during the transient
regardless the working speed. This behavior is due to the
integral action included in the controller (see Section III C of
[7]). Future research activities may investigate the possibility
to provide an integral action by recursively updating the data
set carried by the DeePC.

V. CONCLUSION

A methodology to reduce the computational burden of
constrained data-enabled predictive control of synchronous
motor drives is discussed in this work. The proposed solution
couples a solver for the specific embedded application and a
customized problem reduction technique, based on the proper
orthogonal decomposition. Thanks to the proposed method,
the constrained data-enabled predictive control has been real-
time implemented in a R&D hardware for the first time. The
effectiveness of the proposed reduction method is proven by
means of simulations. In addition, the problem size reduction
is significant and the problem size is no more influenced by
the amount of available data. The accuracy of the reduced
problem is validated, taking into consideration all the solver
iterations. Results are provided to illustrate the benefits of
solving the constrained data-enabled control problem, instead of
using computationally efficient approximations of the problem.
Future works may investigate the possibility to generalize the
proposed reduction method for other applications. Moreover,
the choice of the parametrization of the control problem could
be deeply explored and motivated, e.g. the operating speed may
be included as a parameter in the problem reduction procedure.
In addition, future activities will address the possibility of
building adaptive data-driven controllers. In the area of electric
drives, nonlinearties are often found, due to the iron saturation
in the electric machines or the presence of dead-times in
the power converters. Thus, a data-driven controller will be

expected to self-adapt its behavior according to the working
condition.

REFERENCES
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