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Quantum correlations between measurements of separated observers are crucial for applications
like randomness generation and key distribution. Although device-independent security can be
certified with minimal assumptions, current protocols have limited performance. Here, we exploit
sequential measurements, defined with a precise temporal order, to enhance performance by
reusing quantum states. We provide a geometric perspective and a general mathematical
framework, analytically proving a Tsirelson-like boundary for sequential quantum correlations,
which represents a trade-off in nonlocality shared by sequential users. This boundary is
advantageous for secure quantum randomness generation, certifying maximum bits per state with
one remote and two sequential parties, even if one sequential user shares no nonlocality. Our simple
qubit protocol reaches this boundary, and numerical analysis shows improved robustness under
realistic noise. A photonic implementation confirms feasibility and robustness. This study advances
the understanding of sequential quantum correlations and offers insights for efficient device-
independent protocols.

The effectiveness of information security protocols, whether quantum or
classical, relies on specific assumptions. Classical protocols typically make
considerations about the computational capabilities of adversaries. On the
contrary, the security of quantum protocols is based solely on the validity of
quantum theory. However, to leverage this validity in practice, certain
assumptions about the implementation are necessary, making the protocol
device-dependent. Efforts towards minimizing assumptions for enhanced
security evaluation give rise to the device-independent approach in quan-
tum information. A protocol is deemed device-independent when its
security remains guaranteed without assumptions about the internal
workings of the devices used in its implementation. In these schemes, a
physical system prepared in an entangled state is shared and measured by
different users, who choose theirmeasurements randomly. Entanglement is
necessary to produce correlations that are not reproducible by any local
hidden variable theory and are hence referred to as nonlocal. The outcomes
serve the dual purpose of manifesting nonlocality and providing a useful
classical resource, such as a key or random bit. In principle, the security of
this resource is guaranteed by nonlocality even if the devices implementing
the protocols are entirely untrusted or controlled by adversaries.

A major drawback of these schemes is the low rate of resource
extraction. This is mainly due to the challenges of creating and preserving
entanglement, which is degraded by the coupling of the system with the

environment. Instead of relying on faster entanglement generation, which
may be feasible in the future, we study how to optimize the extraction of
useful resources from each single entangled system. A way of doing so
proposed in the scientific literature uses weak measurements to realize
sequential protocols, in which each quantum system is measured more
times1–9. Often, they are direct extensions of schemes that use projective
measurements, adding further intermediate measurements, and improving
the performance in terms of resources extracted from the same quantum
system.With the strategy proposed in ref. 4, it is even possible, in principle,
to produce an unlimited amount of device-independent randomness for
each generated bipartite entangled state.However, the robustness to noise of
this protocol is limited and therefore requires great accuracy of realization9.

At the same time, the appeal of sequential protocols lies in the corre-
lations they can create, for instance, for the possibility of sharing nonlocality
amongmultiple users10–12. A geometric approach is useful for characterizing
quantum correlations. However, although the geometry of quantum cor-
relations has been the subject of several studies13–15, its extension to the
sequential setting is little known. Most previous analyses focus only on the
correlations between each sequential user and the remote one, finding a
monogamy trade-off: stronger correlations for one user imply weaker ones
for the others1,4,7,8. A detailed investigation of the trade-off, its geometry, and
its implications could help formulate better quantum protocols that could
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overcome this compromise16,17. Moreover, the literature lacks a general
mathematical framework that is useful for characterizing sequential quan-
tum correlations.

In this paper, we characterize sequential quantum correlations with a
geometric approach. First, we provide a general mathematical framework
useful for describing any sequential quantum scenario. Then, we extend the
common two-user, two-measurement, two-outcome scenario with a
sequential user on one side and study the geometry of the obtainable cor-
relations, identifying a Tsirelson-like quantum boundary that also serves as
monogamy trade-off. This trade-off provides further insights about the
sharing of nonlocality between sequential users.

Furthermore, we show that the correlations on the boundary can be
used tocertify themaximumamountof local randomness obtainable for our
scenario, that is, two bits. This is possible regardless of how nonlocality,
quantified as violation of a given Bell inequality, is divided between the
sequential pairs, meaning that the trade-off for nonlocality is not a trade-off
for randomness. Contrary to intuition, the maximal number of bits is
attained even if the correlations generated by one of the pairs are entirely
local. This is in contrast to previous results in which randomness was
generated from nonlocal pairwise correlations4, and offers a perspective for
future works. We also propose an explicit protocol that can generate
boundary correlations using states and measurements similar to those that
maximally violate the CHSH inequality. Compared to the protocol of ref. 4,
which can also achieve two bits of randomness with two dichotomic mea-
surements, ours is simpler as it requires fewer different settings. Further-
more, we show numerically through semidefinite programming techniques
that it is more robust to noise, because it is insensitive to the nonlocality
trade-off. Our protocol is also simpler than the two proposals of ref. 18,
which can also certify two bits of randomness, since it requires fewer
measurements, allowing for easier experimental implementation.

Finally, to demonstrate the feasibility and noise resilience of our pro-
tocol, we performed a proof-of-concept experimental test based on
polarization-entangled photon pairs that generate the correlations required
by the protocol. From these correlations,we could certify 39%more random
bits than those obtainable with standard non-sequential CHSHprotocols in
the same noise conditions.

The paper is structured as follows. In the sequential scenario, we
introduce a convenient formalism to describe the sequential quantum
scenario. In Bounds on the sequential quantum correlations, we show some
inequalities in the values of the correlations. In Sequential-CHSH protocol,
we propose a protocol to saturate these inequalities: This will lead us to
identify part of the boundary of the sequential quantum correlation. In
Randomness from correlations, we show how the saturation of the
inequalities can be used to certify randomness, supporting the discussion
with numerical simulations for some non-ideal cases. Finally, in Experi-
ment,wedescribe aproof-of-concept sequential quantumexperiment based
on quantum optics.

Methods
The sequential scenario
We work in the sequential scenario defined in ref. 16, and specifically in a
scenario that includes three users: Alice, Bob1, Bob2. A scheme is depicted in
Fig. 1. A common source prepares an unknown physical system that is
shared and then measured by the untrusted devices operated by the three
users. Each user randomly chooses a measurement identified by a binary
input x, y1, y2∈ {0, 1} and obtains as a result a binary output a, b1, b2∈ { ± 1}.
We assume all inputs to be independent of one another, and forbid any
communication during data collection between Alice and the Bobs, but we
allow unidirectional communication from Bob1 to Bob2 between the pro-
duction of their respective outputs: This characterizes the sequential cor-
relation scenario that we formally define below.

Themain goal of this work is to study the properties of the correlations
between inputs and outputs p(a, b∣x, y) = p(a, b1, b2∣x, y1, y2) that can be
generated in this scenario and to seehow they canbeused toproducedevice-
independent randomnumbers from theBobs outputs.We assume that after

sufficiently many independent and identically distributed runs, the corre-
lations are known perfectly, neglecting the effects of finite statistics. More-
over, we do not have requirements on the probabilities of the inputs, as long
as they allow for the entire reconstruction of the correlations p(a, b∣x, y).

The absence of communication means that Alice’s marginal prob-
abilities are independent of Bobs’ inputs and vice versa. Formally, the cor-
relations must satisfy the no-signaling conditions13:

P

a
pða; bjx; yÞ ¼ P

a
pða; bjx0; yÞ 8b; x; x0; y

P

b
pða; bjx; yÞ ¼ P

b
pða; bjx; y0Þ 8a; x; y; y0 ð1Þ

Furthermore, sequentiality implies that Bob2’s input cannot influence
Bob1

16:

X

b2

pða; b1; b2jx; y1; y2Þ ¼
X

b2

pða; b1; b2jx; y1; y02Þ 8a; b1; x; y1; y2; y02

ð2Þ

As is common in the context of device-independent protocols, we focus on
the set of sequential quantum correlations QSEQ, i.e. those sequential
correlations that can be written using Born rule as

pða; bjx; yÞ ¼
X

μ;μ1;μ2

Tr ðKx
a;μ � Ky2

b2 ;μ2
Ky1

b1;μ1
ÞρðKx

a;μ � Ky2
b2 ;μ2

Ky1
b1 ;μ1

Þy
h i

ð3Þ
where we have imposed the standard tensor product form to separate Alice
and the Bobs19, and the measurements are described in terms of Kraus

operators such that
P

a;μK
x
a;μ

yKx
a;μ ¼

P
b1;μ1

Ky1
b1;μ1

y
Ky1

b1 ;μ1
¼ P

b2 ;μ2
Ky2

b2 ;μ2
yKy2

b2;μ2
¼ 1 for any input17.We note that the sequentiality is reflected in the

order of the Kraus operators.

Expression (3) considers that a real implementation of a protocol can
be generally described in terms of mixed states and non-projective mea-
surements. However, the shared state can be assumed to be pure because
even if the actual is not, it is always possible to consider its purification in a
larger Hilbert space without changing the correlations. Similarly, through
the Stinespring20 dilation, the right-hand side of (3) canbe rewritten in terms
of orthogonal projective measurements satisfying additional constraints in
order to guarantee (2) (see Supplementary Methods A and refs. 17,21 for
details).

Fig. 1 | Schematic of the sequential scenario. Above, the framework with Kraus
operators. Bottom, the projective framework with the operators introduced in the
sequential scenario.
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The description in terms of pure states and projective measure-
ments is more convenient for studying the geometry of sequential
quantum correlations and we will adopt it in the following. Moreover,
as shown in Supplementary Methods A, it can also be rephrased in
terms of unitary and hermitian operators (namely measurement
operators with only ± 1 eigenvalues) By1

and By1 ;y2
that satisfy the

following constraints:

½By1
;By1 ;y2

� ¼ 0

By
y1
¼ By1

; By
y1 ;y2

¼ By1 ;y2
8y1; y2

By
y1
By1

¼ By
y1;y2

By1;y2
¼ 1 :

ð4Þ

They can be understood as the observables measured by Bob1 and Bob2.
Indeed, the operators By1

reproduce the statistics of Bob1, while the
operators By1;y2

reproduce the statistics of Bob2 given that Bob1 has chosen
the input y1. See Fig. 1 for a schematic of the scenario. Similar considerations
can be applied to Alice’s side to define two unitary and hermitian operators
Ax. Without the sequentiality requirement, Alice has no commutation
relation analogue to that of (4).

With these definitions, the correlations in the sequential scenario can
always be written as

pða; bjx; yÞ ¼ ψ
�

∣Λx
a � Π

y1
b1
Π

y1 ;y2
b2

∣ψ
�

ð5Þ

whereΛx
a,Π

y1
b1
andΠy1 ;y2

b2
are the projectors on the eigenspaces of hermitian

operatorsAx,By1
andBy1 ;y2

respectively (i.e.,By1
¼ Π

y1þ �Πy1� and similarly

for Alice and Bob2). The commutation relation in (4) guarantees that the
product of the Bobs’ projectors can be used to compute a well-defined
probability.

Results
Bounds on the sequential quantum correlations
Having introduced the notation, we now present a Tsirelson-like bound
satisfied by the sequential quantum correlations.

In our specific case, we are not interested in the operations of
Bob2 after Bob1 has chosen the input y1 = 1. This means that we will only
consider the marginal probability distribution pða; b1jx; y1 ¼ 1Þ ¼P

b2
pða; b1; b2jx; y1 ¼ 1; y2Þ. We are allowed to do this because of

sequentiality: Bob2 cannot influenceBob1 andhence p(a, b1∣x, y1 = 1) iswell-
defined and does not depend on y2. Our results are valid regardless of what
Bob2 does in this case, we can even think that he does not perform any
measurement at all. With this simplification, the association of inputs and
measurements is as follows:

Input sequence Measurements

y1; y2 ¼ 0; 0 B0 and B0;0

y1; y2 ¼ 0; 1 B0 and B0;1

y1; y2 ¼ 1; 0 or 1; 1 B1 :

ð6Þ

Consequently, we consider the following operators:

S1 � ðA0 þ A1ÞB0 þ ðA0 � A1ÞB1

S2 � ðA0 þ A1ÞB0;0 þ ðA0 � A1ÞB0;1 :
ð7Þ

These are two CHSH-like operators relative to Alice-Bob1 and Alice-Bob2,
respectively, and their mean values can be measured in our scenario from
the correlations p(a, b∣x, y) by selecting the values of the inputs that
correspond to the relevant observables. Hence, the usual results about
CHSH operators also apply, so that in a quantum setting hSii≤ 2

ffiffiffi
2

p
.

Moreover, from conceptually similar results in the literature1,4,8, one can
expect a trade-off between 〈S1〉 and 〈S2〉, therefore it is meaningful to

consider an expression that combines the two:

Sθ � cos 2θðS1 �
ffiffiffi
2

p
1Þ þ sin 2θðS2 �

ffiffiffi
2

p
1Þ : ð8Þ

Furthermore, we introduce the operator

Sc � ðA0 þ A1ÞB0;0 þ ðA0 � A1ÞB1 ð9Þ

whose expected value is a function of part of the statistic of Alice-Bob1 and
part of the statistic ofAlice-Bob2. This is awell-definedCHSH-like operator,
as the relevant observables on the Bobs’ side are measured with different
inputs: y1, y2 = 1, 0 or 1, 1 for B1 and y1, y2 = 0, 0 for B0,0. Therefore, in a
quantum experiment hSci≤ 2

ffiffiffi
2

p
.

We can express now our main result (proven in Supplementary
MethodsB) on the geometry of the sequential correlations,which is a bound
on 〈S1〉 and 〈S2〉 in the specific case in which 〈Sc〉 takes its maximum
value 2

ffiffiffi
2

p
.

Result 1. For any sequential quantum correlation in our scenario, it holds
that

hSci ¼ 2
ffiffiffi
2

p
) hSθi≤

ffiffiffi
2

p
; 8θ ; ð10Þ

and there exist correlations that saturate the inequality.
This upper bound on 〈Sθ〉 can be interpreted as a monogamy relation

between the correlations of Alice-Bob1 and Alice-Bob2. This is different
from the trade-offs already present in the literature because S2 considers
Bob1’s input, sinceB0,0 andB0,1 aremeasured only if y1 = 0. Instead, in ref. 1,
the quantity similar to S2 is calculated ignoring the actions of Bob1, while the
protocols of refs. 4,8 calculate separate CHSH quantities for each of Bob1’s
outputs, adapting Alice’s measurements to obtain the highest values.

Sequential-CHSH protocol
In the following,wewill provide state andoperators that generate correlations
forwhich hSci ¼ 2

ffiffiffi
2

p
and Sθ ¼

ffiffiffi
2

p
for any given value of θ, proving that the

inequality (10) is tight and identifies a boundary of QSEQ in our scenario.
In the scheme, Alice and Bob1 share themaximally entangledBell state

∣ϕþ
�
AB ¼ ð∣00i þ ∣11iÞ= ffiffiffi

2
p

, where ∣0i and ∣1i are the eigenstates of the σz
Pauli matrix.

Alice randomly chooses between two inputs x ∈ {0, 1}, corresponding
to the two observables

A0 ¼
σz þ σxffiffiffi

2
p ; A1 ¼

σz � σxffiffiffi
2

p : ð11Þ

Bob1 randomly chooses between two inputs y1 ∈ {0, 1}, the latter corre-
sponding to a projective measurement of σx and the former to the non-
projective measurement realized by the two Kraus operators depending on
the parameter θ:

KþðθÞ ¼ cos θ∣0i 0h ∣þ sin θ∣1i 1h ∣ ;
K�ðθÞ ¼ cos θ∣1i 1h ∣þ sin θ∣0i 0h ∣ :

ð12Þ

In this expression, the parameter θ is taken to be the same as the one
appearing in (8) in order to achieve correlations that saturate the inequality
in (10). Its value has a clear physical meaning: it controls the strength of the

measurement, in the sense that θ ¼ n π
2 leads to a projectivemeasurement of

±σz, while for θ ¼ π
4 þ nπ correspond to anon-interactivemeasurement.At

θ ¼ π
4 þ n π

2 the two Kraus operators are equal, up to a sign.

After these operations, if y1 = 1, theprotocol ends.Otherwise, for y1 = 0,
Bob1 sends the post-measurement state to Bob2, who randomly chooses
between the projectivemeasurements of σz or σx, each corresponding to one
of the two inputs y2 ∈ {0, 1}.
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As discussed in Supplementary Methods D, in terms of projective
operators, this protocol can be formulated by leaving unchangedA0 andA1,
while introducing the operators

B0 ¼ σz � σz
B1 ¼ σx � 1B00

B0;0 ¼ σz � 1B00

B0;1 ¼ σx � σx

ð13Þ

on the Bobs’ side. These act on an Hilbert space HB0 �HB00 ¼ C2 �C2.
The shared state is now

∣ψ
� ¼ ∣ϕþ

�
AB0 cos θ∣0iB00 þ sin θ∣1iB00

� � ð14Þ

One can verify, using Eqs. (3) and (5), that the sequential and projective
formulations give the same correlations, and that the operators By1

and
By1 ;y2

respect all the constraints in Eq. (4). Moreover the relations hSci ¼
2

ffiffiffi
2

p
and hSθi ¼

ffiffiffi
2

p
hold with the above defined state and operators,

proving that the inequality on Sθ is tight and define a boundary, as claimed.

A geometric depiction of this boundary is shown in Fig. 2 and can be
deduced by Eq. (8): For each θ, when hSθi ¼

ffiffiffi
2

p
, this equation describe the

tangent to a circumference in the 〈S1〉〈S2〉 plane, centered at ð
ffiffiffi
2

p
;

ffiffiffi
2

p Þ and
of radius

ffiffiffi
2

p
. The points on the circumference are spanned by the protocol

just discussed, while the interior of the circle is filled with sequential
quantum correlations satisfying hSci ¼ 2

ffiffiffi
2

p
and hSθi<

ffiffiffi
2

p
.

Randomness from correlations
We can now move to our second main result, which is a statement on the
randomness that can be obtained from correlations on the aforementioned
boundary of QSEQ. In this work, we consider only local randomness, ori-
ginating solely from the side of the Bobs. Given a sequential probability
distribution that is observed experimentally Pexp(a, b∣x, y), the quantity of
device-independent random numbers that can be extracted from the out-
comes corresponding to a specific input sequence yr can bemeasured by the
(quantum conditional) min-entropy Hmin ¼ �log2G

22, where G is the
maximum guessing probability that an adversary Eve has on the Bobs’

outcomes when the input sequence is yr:

G ¼ max
pABE

X

b

pBEðb; bjyrÞ ð15Þ

s:t:
P

e pABEða; b; ejx; yÞ ¼ Pexpða; bjx; yÞ ;
pABEða; b; ejx; yÞ 2 QSEQ :

ð16Þ

The first condition of Eq. (16) compels Eve to use a strategy pABE that is
compatible with the experimental correlations Pexpða; bjx; yÞ. The second
means that the strategy is also quantum in the sense explained in the
sequential scenario and the sequentiality requirement applies only to
the Bobs.

With this definition,we canexpress the secondmain result of ourwork:

Result 2. For any sequential quantum correlation in our scenario such that
hSci ¼ 2

ffiffiffi
2

p
and hSθi ¼

ffiffiffi
2

p
for a given θ ≠ n π

4, the min-entropy is

Hmin ¼ 2 bits ð17Þ

when evaluated with the input sequence yr = (0, 1). If hSθi ¼
ffiffiffi
2

p
for some

θ ¼ n π
4, it reduces to Hmin ¼ 1 bit.

The proof, provided in SupplementaryMethodsC, is based on the self-
testing properties of the CHSH inequality23, which are valid because
hSci ¼ 2

ffiffiffi
2

p
, and on the additional necessary conditions that the quantum

state and measurements must satisfy in order to saturate also Eq. (10). We
emphasize that the demonstration is conducted in a device-independent
scenario, and it remains valid regardless of thedimensionand specificdetails
of the sequential quantum realization. Examples of states and operators
capable of producing 2bits of randomness are thosedescribed in Sequential-
CHSH protocol.

Twodichotomicmeasurements can provide, atmost, two randombits.
The fact that they achieve this bound, certifies the complete unpredictability
of their outcomes. This descends from the features of the entire correlation
Pexp(a, b∣x, y) and not just from the pairwise ones. Indeed 〈S1〉 and 〈S2〉
cannot be maximized simultaneously, and the situations in which one is
maximized are exactly those for which the randomness drops to one bit. By
compromising on their respective nonlocality, Bob1 and Bob2 achieve the
best results in terms of randomness. There are even regions on the boundary
in which either the correlations between Alice and Bob1 or those between
Alice and Bob2 are entirely local, as can be checked by verifying that all
CHSH inequalities involving their paired results are respected. Yet, thanks
to the three-party correlations, the min-entropy is still maximal at two bits.

However, due to unavoidable experimental imperfections, a real
implementation cannot generate ideal correlations that sit exactly at the
boundary, therefore it is important to study the amount of device-
independent randomness in the interior of QSEQ. We address this problem
numerically using theNavascués-Pironio-Acín (NPA) hierarchy24,25, and its
sequential generalization17. This tool replaces the usually difficult-to-verify
second condition in (16) with an ordered series of increasingly stringent
necessary conditions on linear combinations of the probabilities pABE(a, b,
e∣x, y). The constraint pABEða; b; ejx; yÞ 2 QSEQ is retrieved when all con-
ditions are satisfied, but stopping to a finite order k of the series allows
casting the problem to a practical semi-definite program (SDP)26 and
restricts pABE to belong to a set Qk

SEQ � QSEQ
17. This means that the opti-

mization is performed over a larger set of correlations than what is allowed
byquantummechanics andgivesEvemorepower than she actually has.The
solution of the program is then an upper bound of the actual guessing
probability: Finding a value G through the SDP certifies in a device-
independent way that the min-entropy of the two outcomes is at
least �log2G bits.

Numerical issues could in principle overestimate themin-entropy, but
this can be prevented by giving tolerances to the constraints of Eq. (16).
These tolerances always benefit Eve and, if chosen much larger than the
machine precision, overwhelm its the potentially dangerous effect27.

Fig. 2 | Cross-section of the set of sequential quantum correlations, QSEQ, at
hSci ¼ 2

ffiffiffi
2

p
. The dashed lines denote the maximum values achievable by 〈S1〉 and

〈S2〉 in the local and non-sequential quantum scenarios, without restrictions on 〈Sc〉.
The red dots mark the geometric location of the correlations achievable with the
protocol explained in Sequential-CHSH protocol.
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Rather than computing the min-entropy for all possible values of 〈Sc〉
and 〈Sθ〉, we do it in the context of the protocol explained in Sequential-
CHSH protocol, so as to study also its noise robustness. We numerically
generate the experimental correlations using the maximally entangled state
∣ϕþ

�
mixed with random noise, namely ρAB ¼ ð1� pÞ∣ϕþ� ϕþ

�
∣þ p1=4,

and the measurements required by the protocol. We then set these corre-
lations as constraint in the optimization problem (15). We perform such
computation for different values of the strength parameter θ, since, for noisy
states, different values of θ could influence the performance of the protocol
by imposing different limitations on Eve’s strategies. Because of the sym-
metry of the protocol, it is sufficient to restrict the analysis to θ 2 ½0; π4�. For
suchnumerical computationswe adoptNcpol2sdpa28 and the solver SDPA-
DD29, setting a minimal solver precision of 10−12 for all the theoretical
simulations. The NPA order is 1+AB17, which is enough for retrieving the
analytical result in the ideal case scenario.

In Fig. 3 we plot the simulation result, which confirms that, in the ideal
case (p=0), themin-entropy of themeasurements of the protocol is two bits
for each value of θ 2 ð0; π4Þ. When the strength parameter θ is at one of the
two extremes, the min-entropy drops to one bit, in agreement with our
theoretical result. With the help of the sequential protocol, it is straight-
forward to understand the drop by observing the state after the measure-
ment of Bob1. For θ = 0, Bob1 measures projectively, hence the state sent to
Bob2 is separable and Eve can easily guess the second bit. For θ ¼ π

4, the
measurements of Bob1 produce no useful correlations and their outcomes
are also easily predictable by Eve. Yet, because the measurement is non-
interactive, Bob2 still receives a portion of a maximally entangled pair and
generateswithAlice the perfect correlations that allowhim to certify that his
outcomes are unpredictable. In both cases, one outcome (and hence one bit)
is securely random, and the other is known to Eve.

Figure 3 also shows the impact that the noise quantified by p has on the
performance. Intermediate values of θ are optimal, as they are farthest from
the extremal points that reduce the randomness even in the ideal case. The
approximate flatness of the curve alsomeans that inaccuracies in the setting
of θ reduce performance only slightly, simplifying the requirements for the
experimental implementation. This descends from the fact that the per-
formance of the noiseless protocol is independent of θ (except for the
extremal points). This is in contrast with all other protocols present in the
literature, whose optimal performance is obtained for specific values of θ
which are close to pathological points4,9,17.

In Fig. 4, we show the best min-entropy achievable with the
sequential protocol as a function of the parameter p. It indicates that it is
possible to generate more than one random bit per state even if p ≈

1.8 × 10−2. This value is fairly typical for sources of polarization-entangled
photonpairs basedon spontaneousparametric down-conversion, and can
be reduced with state-of-the-art equipment30–34. For comparison, we also
plot the min-entropy achievable with a non-sequential protocol that
works in the CHSH scenario and uses the NPA hierarchy35. We find that
the threshold value of p at which the two curves begin to split is
approximately 8.5 × 10−2, meaning that for any smaller value, the
sequential protocol performs better than its non-sequential counterpart.
The equivalent threshold for the protocol of ref. 4 is a much smaller
3.7 × 10−3 9.

We point out that this value is in general affected by the finite orders of
the NPA hierarchy set in themaximization (15) of the two protocols, which
are 1 + AB and 4 respectively.

In a realistic implementation of the sequential scheme (which still
neglects finite-size effects), Alice and the Bobs would generate random
inputs to select the measurements to be performed on each state. Their
choices should be unbalanced, favoring y = yr = (0, 1) for the Bobs, and
arbitrarily one of the two observables for Alice. This is to reduce the
randomness cost to select the inputs, which, in the asymptotic limit,
can be made arbitrarily close to zero bits per state. Alice and the Bobs’
devices should receive the inputs and produce the outputs while out-
side of one another’s light cones, to avoid the locality loophole. From
the complete list of inputs and outputs gathered in a time interval, Alice
and the Bobs should calculate the experimental correlations
Pexpða; bjx; yÞ to use in the SDP (15) with the help of theNPAhierarchy.
The string of outputs of the Bobs corresponding to y = yr should be
considered as consisting of pairs of bits (one from Bob1 and one from
Bob2). The average min-entropy corresponding to each pair would be
calculated from the guessing probability G resulting from the problem.
Finally, the Bobs should reduce the string using a randomness extractor
and the knowledge of the min-entropy, producing a shorter but uni-
form and secure sequence of random bits36. The post-processing,
consisting of the SDP and the extraction, could be executed during the
acquisition of further outputs for a subsequent experimental run, thus
reducing its impact on performance. However, the SDP for this pro-
tocol can typically be solved in seconds on average personal computers
if tackled at level 1 + AB of the NPA hierarchy. This holds indepen-
dently of the number of samples, as only probabilities are used. The
extraction scales at worst quadratically with the length of the raw key,
but can be efficiently parallelized37.

Fig. 3 | Min-entropy from the sequential protocol proposed in Sequential-CHSH
protocol as a function of the strength θ for several values of the noise p. Simu-
lations achieved with the NPA order 1 + AB. For p = 0 we retrieve the results
obtained analytically.

Fig. 4 | Best min-entropy achievable with three different protocols as a function
of the depolarization parameter. Our proposal, explained in Sequential-CHSH
protocol, the standard CHSH protocol based on numerical optimization (NPA at
order 4)35, and the sequential protocol proposed by ref. 4. The experimental data are
subjected to additional type of noise not considered by the curves simulations, such
as the c parameter discussed in Experiment.
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Experiment
We evaluated the protocol presented above with a proof-of-concept
experiment, with the goal of verifying the feasibility of meeting the required
quality for the entangled state and measurements. For this purpose, we did
not create an actual random number generator, but only a setup that
reproduces all the quantum operations needed by the protocol, to observe
the correlations. Furthermore, we did not include the random inputs but
only scanned all themeasurement settings one by one. Hence, our setup did
not require any randomness source, which would be needed by a true
generator. As mentioned before, we can only infer probabilities from our
experiment by assuming that the results for each quantum state are inde-
pendent and identically distributed and neglecting the effects of a finite
dataset.Wedidnot close either the detection or the locality loophole, relying
instead on fair sampling and on the assumption that Alice and the Bobs do
not communicate while producing outcomes (although Bob1 is allowed to
send information to Bob2). All of this can only be valid at the proof-of-
concept level of our experiment and should be improved for a true imple-
mentation of the scheme. Yet, our observations are critical to show the
feasibility and experimental robustness of the proposed protocol.

The experimental setup is the same as our previous works and uses
polarization-entangled photon pairs andMach-Zehnder interferometers to
implement the Kraus operators (12)8,9 (see also Supplementary Methods E
for a detailed description). Most of the imperfections in this setup can be
modeled by a bipartite state of the form

ρAB ¼ ð1� p� cÞ∣ϕþ� ϕþ
�

∣þp
1
4
þ c

∣00i 00h ∣þ ∣11i 11h ∣
2

; ð18Þ

where p∈ [0, 1], as above, accounts for the depolarization caused bymixing
with random noise, whereas c∈ [0, 1] induces decoherence by reducing the
extreme antidiagonal terms of the density matrix with respect to the diag-
onal ones. In optical experiments, this is caused by alignment inaccuracies
that increase the distinguishability between the two photons in each pair.
The two parameters p and c can be easily estimated experimentally by
measuring the visibilities in the Z and X bases, indeed p ¼ 1� VZ
and c ¼ VZ � VX

9.
We performed three experiments, labeled by an ID ∈ {1, 2, 3}. Each of

them attempts to reproduce the correlations required by the sequential-
CHSH protocol described in Sequential-CHSH protocol and by the stan-
dard CHSH protocol. For each experiment, we measured the correlations
between Alice and the Bobs and we used them as constraints in an NPA
hierarchy but instead of setting the whole statistic Pexpða; bjx; yÞ, we con-
strained only the single-observablemean values 〈Ax〉, hBy1

i and hBy1;y2
i, and

the two-observable mean values hAxBy1
i and hAxBy1;y2

i, which are all
obtainable from the experiment. Doing so allowed us to get around the fact
that our simplified experiment can produce results that do not strictly meet
the requirements of the protocol. Indeed, during the experiment, the state
produced by the source changes slightly. This is mainly due to temperature
variations that lead to themovement of the optical components. This affects

the interferometers and fiber couplings and, eventually, the experimental
probability distribution. Since we are scanning the measurements one by
one, we are effectively using different states for each measurement, in
contrast with Eq. (3). Constraining all correlations would have prevented
the SDP from finding a proper solution, whereas our relaxed constraints
allowedus tofindonewith a small solver tolerance of 10−12 29. In general, this
approach does not introduce security issues, since having a smaller number
of constraints only givesmore power to Eve and finds amin-entropy that is
lower than what could be achieved by considering all the correlations. The
execution of the SDP was carried out on a personal computer and took less
than 10 s.

We also compared the results with those predicted by ourmodel using
the same constraints, with the values of p, c, and θ that best fit the experi-
mental data. We calculated the statistical errors on the experimental results
as standard deviations of a sample of 300 simulated experiments. In each of
these, the photon counts descend from a Poisson distribution whose mean
value is the experimental datum.

Tables 1 and2 summarize the results of all threeexperiments, reporting
the min-entropies and the mean values of the CHSH quantities 〈S1〉, 〈S2〉,
〈Sc〉, and 〈S〉 (which ismeasured in the non-sequential scenario). They show
that our protocol not only is feasible but can overcome the rate of the
standard CHSH scheme in real world implementations. Indeed, we found
min-entropies between 0.82 and 0.90 bits, or between 23% and 39% higher
than those obtained in the non-sequential scenario with the same states,
evenwith visibilitiesVZ≈98% andVX≈97%, whichare readily accessible to
entangled-photon sources built with commercial components.

In addition, the comparison between our results and the predictions of
the model show that the latter can be used to evaluate the performance of
this type of schemes. The discrepancies can be attributed to other static
imperfections in the setupwhich are not considered by themodel and to the
aforementioned changes of the state from one measurement to the next.

Discussion
In thiswork,we studied the set of sequential quantumcorrelations througha
geometric perspective. Initially, we presented a general mathematical fra-
mework applicable to describing any sequential quantum scenario. Using
this framework in the context of one party on one side and two sequential

Table 2 | Experimental results of the CHSH experiment

ID 〈S〉 (Experiment) Hmin
(Model) (bits)

Hmin (Experiment) (bits)

1 2.761 ± 0.003 0.60 0.61 ± 0.01

2 2.772 ± 0.003 0.63 0.64 ± 0.01

3 2.797 ± 0.002 0.64 0.73 ± 0.01

〈S〉 is the CHSH value and for themin-entropy the analytical bound is used39. Data retrieved with an
exposure time of 100 s (~3 × 105 coincidences).

Table 1 | Experimental results of the sequential CHSH experiment

ID p c θ (rad) Hmin
(Model)
(bits)

Hmin
(Experiment)
(bits)

1 0.019 0.017 0.412 0.82 0.85 ± 0.02

2 0.016 0.012 0.436 0.89 0.86 ± 0.01

3 0.015 0.012 0.357 0.90 0.90 ± 0.01

ID 〈S1〉 (Model) 〈S1〉 (Experiment) 〈S2〉 (Model) 〈S2〉 (Experiment) 〈Sc〉 (Model) 〈Sc〉 (Experiment)

1 2.305 2.292 ± 0.002 2.388 2.421 ± 0.003 2.751 2.738 ± 0.003

2 2.270 2.268 ± 0.002 2.444 2.433 ± 0.003 2.766 2.760 ± 0.002

3 2.272 2.432 ± 0.002 2.446 2.250 ± 0.003 2.770 2.778 ± 0.002

Level 1+AB of the NPA hierarchy is used. Data retrieved with an exposure time of 100 s (~3 × 105 coincidences).
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parties on the other, we identified a Tsirelson-like quantum boundary. This
boundary can be interpreted as amonogamy trade-off between the amounts
of nonlocality of the sequential users shared with the remote one. Despite
this trade-off, we proved analytically that the correlations on the boundary
certify the maximal amount of randomness in our device-independent
scenario, specifically, two bits (excluding exceptional cases). This result
introduces a fundamental perspective: a trade-off for nonlocality does not
necessarily translate into one for randomness. In simpler terms, even if the
correlations of one sequential user with the spatially separated one are
explicable through local hidden variable theories, they can contribute to the
generation of secure randomness when considered jointly with the corre-
lations of the other users.

We also proposed an explicit simple qubit-based protocol to generate
the correlations on the boundary in the ideal case, and we numerically
studied its noise robustness, finding that it can beat the non-sequential
CHSH protocol for depolarization p ≲ 8.5 × 10−2 and produce more than
one random bit for p≲ 1.8 × 10−2, values that are feasible to achieve with
current technologies.

Finally,we implemented aproof-of-concept experiment, demonstrating
not only the feasibility of our protocol, but also that it canperformbetter than
thenon-sequentialCHSH-based schemewith real-world systems. Indeed,we
overcame the min-entropy of the latter by 23% to 39%, and produced
0.90 ± 0.01 bits in our best run. To the best of our knowledge, this is the first
experimental observation of the advantage of a sequential protocol with
respect to its one-step counterpart in terms of randomness generation.

On the basis of this work, we envisage further steps as follows. When
correlations lie on a quantumboundary, itmay happen that they identify, or
self-test, a unique (up to local isometries) quantum representation that
realizes them23,38. It would be interesting to understand if this can happen
also in the sequential case and whether the correlations of our protocol can
self-test the state and measurements that produce them.

In addition, other portions of the boundary in this scenario might
prove useful. A possible avenue is to relax the condition hSci ¼ 2

ffiffiffi
2

p
and

study the bounds for 〈Sθ〉. Our formalization of quantum sequential cor-
relations in terms of commuting projectivemeasurementsmight be helpful,
but if boundary features cannot be analytically probed, the sequential
extension of theNPAhierarchy can be used17. It could also bemeaningful to
consider other parameterizations of the boundary. For example, the upper
bound of Eq. (10) can equivalently be written in terms of

S0α � cos α Sþ þ sin α S� ð19Þ

as

hS0αi≤ 2 ; ð20Þ

with S± = (A0 + A1)B0 ± (A0 − A1)B0,1. This expression, detailed in Sup-
plementary Methods B, gives the boundary represented in Fig. 5. Without
constraining hSci ¼ 2

ffiffiffi
2

p
and without the commutation relations of Eq. (4)

(derived from sequentiality), the Tsirelson-like bound of hS0i is relaxed to
2

ffiffiffi
2

p
, leading to a relation similar to the one in14. Due to this greater

similarity with the existing literature, S0α might be easier to investigate
than Sθ.

Our protocol could also be more thoroughly investigated in its
robustness to losses. The standard way to treat losses in device-independent
schemes is to assign the no-output events to one of the legitimate outputs. In
our case, thiswould cause the correlations to fall from theboundary and into
the interior ofQSEQ. Could this be partially compensated for with a different
set of states and measurements?

It would also be interesting to study whether the protocol can be
extended tomoreBobs. This stems from the intuition that the independence
of the min-entropy from the strength parameter is due to the sequence of
two mutually unbiased measurements, σz and σx. This opens up the possi-
bility of adding a third sequential party measuring σy: In this case, the bits
would be extracted from a sequence of threemutually unbiased observables.

Is it then possible to achieve three bits regardless of the strength parameters
under ideal conditions? Could the noise robustness of such a protocol be
enough for real-world implementations? A limitation might be the com-
plexity of the SDP, which grows considerably with the number of Bobs.

In conclusion, this work offers tools and results that can improve our
understanding of sequential quantum correlations and the performance of
randomness generation protocols. The formulation in terms of products of
commuting measurements might provide a more intuitive description and
suggest interesting points of view from which to analyze a given scenario.
For example, it can be used for the investigation of the sharing of
nonlocality10–12. The boundary correlations we studied highlight that the
greatest quantum advantage is reached using the entire set of experimental
probabilities, and not just the pairwise ones. This paves the way for further
studies on the complex relationship between nonlocality and randomness
and can improve the performance of device-independent random number
generators with present-day technologies.

Data availability
Data is available from the corresponding author upon reasonable request.

Code availability
The codes used for the simulations for this paper are available from the
corresponding author upon reasonable request.
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