
CANCER RESEARCH | CANCER IMMUNOLOGY

The Tumor Immune Microenvironment Architecture
Correlates with Risk of Recurrence in Head and Neck
Squamous Cell Carcinoma
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ABSTRACT
◥

Emerging evidence suggests that not only the frequency and
composition of tumor-infiltrating leukocytes but also their spatial
organization might be a major determinant of tumor progression
and response to therapy. Therefore, mapping and analyzing the fine
tumor immune architecture could potentially provide insights for
predicting cancer prognosis. Here, we performed an explorative,
prospective clinical study to assess whether structures within the
tumor microenvironment can predict recurrence after salvage
surgery in head and neck squamous cell carcinoma (HNSCC). The
major immune subsets were measured using flow cytometry and
co-detection by indexing (CODEX) multiparametric imaging.
Flow cytometry underestimated the number of PMN-MDSCs
and neutrophils in the tumor and overestimated the tumor-
infiltrating lymphocyte frequency. An ad hoc computational

framework was used to identify and analyze discrete cellular
neighborhoods. A high frequency of tertiary lymphoid structures
composed of CD31highCD38high plasma cells was associated with
reduced recurrence after surgery in HNSCC. These data support
the notion that the structural architecture of the tumor immune
microenvironment plays an essential role in tumor progression
and indicates that type 1 tertiary lymphoid structures and long-
lived CD31highCD38high plasma cells are associated with good
prognosis in HNSCC.

Significance: Imaging the spatial tumor immune microenviron-
ment and evaluating the presence of type 1 tertiary lymphoid
structures enables prediction of recurrence after surgery in patients
with head and neck squamous cell carcinoma.

Introduction
The tumor immune microenvironment plays an important role in

disease progression and response to therapy (1). For example, a higher
concentration of regulatory T cells (Treg; ref. 2) and CD33þIL4aþ

myeloid-derived suppressor cells (MDSC) correlate with the risk of
recurrence. In contrast, a higher number of CD8þ tumor-infiltrating
lymphocytes (TIL) increases recurrence-free survival in head and neck
squamous cell carcinoma (HNSCC), breast cancer, lung cancer, and
other human malignancies (3–7). Clinical staining of leukocytes is
routinely performed with conventional one- or two-color IHC. How-
ever, studying more than two markers requires a careful selection of

primary antibodies or the use of consecutive tissue sections. This is
problematic for studying samples with low tissue availability and
makes it extremely difficult to colocalize markers at the single-cell
level. Alternatively, the tumor microenvironment is assessed by flow
cytometry or single-cell (sc) RNA sequencing on single-cell suspen-
sions from the tumors. These techniques allow for the simultaneous
analysis of multiple markers and genes but require tissue dissociation.
Thus, they do not reveal the topographic location of the leukocyte
subsets and raise concerns about the possible underrepresentation of
some leukocyte subsets that may be lost during tissue processing (8, 9).
The emergence of multiplexed tissue imaging overcame these chal-
lenges. In particular, co-detection by indexing (CODEX) generates
detailed information on the distribution of different cellular pheno-
types while maintaining the morphologic context of healthy and
diseased tissues (10–12). Although this technology has been used
primarily on tumor tissues microarrays (11–15) that may exclude
functional structures distant from the neoplastic edge, it revealed a
complex organization of the tumor microenvironment into spatially
defined cellular structures whose composition and frequency could be
used to discriminate patients with HNSCC with lymph nodal metas-
tases from those with N0 tumors (10–15).

Here we performed a prospective clinical study of patients with
stage II to IV surgically resectable primary or recurrent HNSCC to (i)
characterize the tumor microenvironment by multicolor flow cyto-
metry and CODEX on large HNSCC sections; (ii) identify structures
distant from the tumor edge; and (iii) evaluate whether the tumor
architecture can be associated with prognosis. Compared with
CODEX, we found that flow cytometry underestimated the number
of neutrophils and polymorphonuclear (PMN) MDSCs and over-
estimated TILs frequency. Using CODEX data, we identified 20 cell
types (CT) and 11 cellular neighborhoods (CN) that portray the
HNSCC microenvironment. Moreover, we provided evidence that a
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“type 1” tertiary lymphoid structure (TLS1) and CD38þCD31þplasma
cells are associated with fewer recurrences after salvage surgery in
HNSCC.

Materials and Methods
Patients and ethical statement

Nine patients (median age 71, range 61–78) with stage II to IV
HNSCC undergoing surgical resection were enrolled in the study
under the University of Miami Institutional Review Board (IRB)–
approved protocol no. 20200268 after signing an IRB-approved writ-
ten informed consent. Seven patients had HNSCC in the oral cavity,
one in the hypopharynx, and one in the oropharynx. Twopatients were
female, 5 had a smoking history, 6 had a recurrent tumor, and 5 had
prior radiation to the field. No tumor was HPV related. Complete
clinical and pathologic parameters are reported in Table 1.

Murine tumor model and ethical statements
Eight weeks old Balb/c female mice (Taconic) were injected ortho-

topically with 105 4T1 (ATCC) cells in the fat pad of the right abdo-
minal mammary gland. Mice were euthanized when tumors reached
0.7 cm in diameter. All experimentswithmice were performed under the
Institutional Animal Care and Use Committee (IACUC) protocol no.
22051, approved by the ethical committee of the University of Miami.
Part of each tumor and spleen was processed for flow cytometry, and
part was snap frozen in OCT for subsequent CODEX analysis.

Tissue processing
Human tumors were harvested at surgery and processed within

1 hour. Mouse tissues were processed immediately after euthanasia.
Part of the tumor was flash-frozen in OCT compound for subsequent
CODEX staining, and part was mechanically dissociated into single-
cell suspension for multicolor flow cytometry analysis. Briefly, tumor
specimens were washed twice with PBS and incubated for 20 minutes
at 37�C with five volumes of PBS containing Clostridium histolyticum
collagenase type IV (10 mg/mL; Sigma), MgCl2 (100 mmol/L), and
CaCl2 (100 mmol/L). The solution was passed every 100 in a needleless
5 mL syringe. Cells were then passed through a 70 mm cell strainer,
washed with PBS, and resuspended for staining.

Flow cytometry
Single-cell suspensions (106 cells) from HNSCC tumors were

stained for 200 at 4�C with the Zombie Violet Fixable Viability Dye
(BioLegend), washed with PBS, and stained with the following anti-
body panels for 150 at 4�C. (i) Myeloid cell panel: Anti-human CD33-
FITC (clone HIM3–4; BD), anti-human Lox1-APC (clone 15C4;
BioLegend), anti-human CD124-PE (clone 25463; R&D Systems),
anti-human CD14-APC-H7 (clone MfP9; BD Biosciences), anti-
human CD15-BV711 (clone W6D3; BD Biosciences), anti-human
HLA-DR V500 (clone G46–6; BD Biosciences), and anti-human
CD11b-BV605 (clone ICRF44; BD Biosciences). (ii) Lymphoid cell
panel: Anti-human CD3-Alexa Fluor 700 (clone OKT3; eBioscience),
anti-humanCD247-PE (clone 6B10.2; eBioscience), anti-humanCD4-
BV711 (clone SK3; BD Biosciences), anti-human CD8-BV605 (clone
SK1; BD Biosciences), anti-human CD69-APC-Cy7 (clone FN50; BD
Biosciences), and anti-human CD154-PE/Dazzle 594 (clone24–31;
BioLegend). Cells in the lymphoid panel were then fixed and permea-
bilized using the Foxp3/Transcription Factor Staining Buffer Set
(eBioscience) as per the manufacturer’s instructions and with the anti-
human Foxp3-APC (clone 236A/E7; eBioscience). Mouse tumors and
spleens were stained with NIR live/dead dye (Thermo Fisher Scientific) Ta
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and with rat anti-mouse antibodies specific for CD45 (AF700,
clone AB_2572116; BioLegend), CD11b (bv711, clone AB_394002;
BD Biosciences), Ly6 g (Pac.Blue, clone AB_1727562; BD Biosciences),
Ly6c (FITC, clone AB_394628; BD Biosciences), CD3 (PE
clone AB_1834427; Thermo Fisher Scientific), CD4 (FITC, clone
AB_394585; BD Biosciences), and CD8 (Pac.Blue, clone AB_394571;
BD biosciences). Data were acquired within 2 hours on a BD LSRII
flow cytometer analyzer equipped with the following wavelengths
lasers: 405 nm (50 mW), 488 nm (50 mW), 532 nm (150 mW), and
640 nm (40 mW) or with the 5 lasers Cytoflex LX-19C (Beckman
Coulter). Analyses were performed in FCS Express 7 (DeNovo software).

CODEX and custom antibodies
The following oligonucleotides conjugated antibodies against

human epitopes were acquired from Akoya: CD45-BX001 (HI30),
CD19-BX003 (HIB19), CD8-BX004 (SK1), CD38-BX007 (HB-7),
CD279-BX014, (EH12.2H7), CD3-BX015 (UCHT1), pan-cytokera-
tin-BX019 (AE-1/AE-3), CD4-BX021 (SK3), CD90-BX022 (5E10),
HLA-DR-BX026 (L243), CD31-BX032 (WM59), CD34-BX035
(561), and CD69-BX041 (FN50). In addition, we generated the
following oligonucleotides-tagged antibodies against human epitopes
using the CODEX Conjugation Kit (Akoya) as per manufacturer
instructions: FOXP3-BX002 (AB_467556; Thermo Fisher Scientific),
PDL1-BX005 (AB_2687808; BioXcell), CD14-BX006 (AB_830675;
BioLegend), CD163-BX010 (AB_1088991; BioLegend), CD11b-BX013
(AB_314154; BioLegend), CD33-BX016 (AB_2562818; BioLegend),
CD56-BX017 (AB_314444; BioLegend), IL4Ra-BX020 (AB_2126871;
R&D Systems), CD45RA-BX024 (AB_314406; BioLegend), CD123-
BX027 (RRID: AB_467453; Thermo Fisher Scientific), CCR7-BX028
(AB_2563726; BioLegend), LOX1-BX029 (AB_2562272; BioLegend),
CD25-BX030 (AB_2561752; BioLegend), CD15-BX033 (AB_314194;
BioLegend), CD66b-BX036 (AB_2728422; BioLegend), CD68-BX037
(AB_1089058; BioLegend), and CD16-BX042 (AB_314202; BioLe-
gend). The following antibodies againstmouse epitopeswere purchased
from Akoya: CD45-BX007 (clone AKYP0005), CD3-BX021 (clone
AKYP0035), CD4-BX026 (clone AKYP0041), CD8a-BX029 (clone
53–6.7), CD11b-BX025 (cloneM1/17), and Ly6g-BX024 (clone
AKYP0039). The anti-mouse Ly6c antibody (clone HK1.4; BioLegend)
was conjugated with the BX027 barcode. Conjugation of anti-mouse
and anti-human antibodieswas verified byPAGE, andoptimal titration
was performed by single antibody staining on HNSCC tumor speci-
mens of mouse spleen.

CODEX staining, image acquisition, and segmentation
OCT embedded flash-frozen specimens were cut with a cryostat

microtome in 5 mm sections and placed on a poly-L-lysine-coated
coverslip. Sectionswere driedwith drierite beads for 20,fixed in acetone
for 100 at RT, rehydrated in hydration buffer (3 � 20 ; Akoya), and fixed
in prestain fix buffer (1.6% PFA in hydration buffer) for 100. Sections
were washed in hydration buffer and incubated for 200 in staining
buffer (Akoya). Tissues were then stained in a humidity chamber with
the cocktail of oligonucleotides tagged antibodies diluted in blocking
buffer (N, G, J, S, Akoya) for 3 hours at 4�C. Sections were then washed
three times for 20 in staining buffer and fixed by one incubation
poststain fixative buffer (1.6% PFA in staining buffer) for 100, three
washes with PBS, one incubation in ice-cold methanol for 50, three
washed in PBS, and a 200 incubation with the final fixative solution
(Akoya) at RT. Sections were washed nine times in PBS and kept in
storage buffer until image acquisition.

Fluorochrome conjugated reported oligonucleotides were hybrid-
ized on 12-cycle experiments with the Akoya PhenoCycler connected

to a BZ-X700 microscope (Keyence), following manufacturer instruc-
tions. Images were automatically acquired on 121 adjacent 20� fields
(5.6 mm � 4.2 mm, resolution 377.47 nm/pixel) with 7 z-slices (1.5
mm/z pitch) and 30% tile overlap, with 10, 250, 350, and 350 milli-
seconds acquisition time for DAPI, AF488, Cy3, and cy5 filters,
respectively. The resulting 40,656 images per specimenwere processed
with Akoya’s PhenoCycler Instrument Manager (version 1.3) and
CODEX Processor (version 1.7.2) for segmentation using the default
parameters.

Composite images were loaded in ImageJ (version 1.53) using the
CODEX MAV extension (version 1.5.0.8) to check image quality and
export single-cell fluorescence signals as CSV files.

Computational analysis of CODEX data
Data preprocessing and cell phenotyping

Data have been preprocessed using Seurat 4.2.1 functions to analyze
image-based spatial data (https://satijalab.org/seurat/articles/spatial_
vignette_2.html) in R 4.2.2. Briefly, CSV data files from CODEXMAV
have been loaded in R using Seurat LoadAkoya function, and protein
signals have been normalized with the centered log-ratio based
normalization. To detect the cell phenotypes in the HNSCC tissue
(i.e., malignant, stromal, immune, or vascular cells), we first performed
principal component analysis (PCA) for dimensionality reduction and
then cluster analysis in the low-dimensional space. Before applying
PCA, we scaled the data and determined the number of components
for downstream analysis. Then, we ran dimensional reduction for each
sample using the top 11 principal components and graph-based
clustering at different resolutions (ranging from 0.2 to 0.8; Supple-
mentary Table S1). Cell clusters have been visualized on a protein
intensity-based uniform manifold approximation and projection
(UMAP) and on their spatial location. To associate cell phenotypes
to clusters, levels of protein markers have been displayed as dot plots
for each cluster at any explored clustering resolution. For each sample,
the optimal number of clusters (i.e., the clustering resolution) was
determined based on visual inspection of cluster location and marker
expression (Supplementary Table S1). Clusters with a similar mor-
phological appearance in the tissue and similar marker expression
profiles were merged, and artifacts were removed. Next, we manually
assigned CT annotations to clusters at the selected resolution based on
the average expression of protein markers in each cluster. After
removing cells marked as artifacts, raw count and normalized data
matrices of all samples have been merged using the merge function of
the Seurat package. Supervised annotation and merging resulted in a
final list of 20 CTs used to annotate all cells in every sample (Sup-
plementary Table S1).

Neighborhood identification
To identify CNs that are regions with a characteristic local com-

position of cell phenotypes, we implemented in R the neighborhood
analysis presented in ref. 11. For each of the 792,349 cells from the nine
samples, we identified a window consisting of W nearest neighboring
cells (including the center cell) using the nn2 function of the RANN R
package (version 2.6.1). The nn2 function uses a k-dimensional tree to
find a given number of near neighbors (here, W) for each point
identified by the X and Y coordinates in the input dataset. These
windows were then clustered by their composition with respect to the
20 CTs previously identified by graph-based clustering and supervised
annotation. Specifically, each window was converted to a vector of
length 20 containing the frequency of each of the 20 CTs among theW
neighbors. Subsequently, windows have been clustered using the
MiniBatchKmeans function of the ClusterR package (version 1.2.9)

Weed et al.

Cancer Res; 83(23) December 1, 2023 CANCER RESEARCH3888

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/83/23/3886/3382562/3886.pdf by guest on 09 D

ecem
ber 2023

https://satijalab.org/seurat/articles/spatial_vignette_2.html
https://satijalab.org/seurat/articles/spatial_vignette_2.html
https://satijalab.org/seurat/articles/spatial_vignette_2.html


implementing the Mini-batch K-means clustering algorithm with a
given value of K. Each cell was then allocated to the CN of its
surrounding window using the predict_MBatchKMeans function of
the ClusterR package. We applied the entire procedure and identified
CNs for different combinations of W (ranging from 7 to 200) and K
(ranging from 7 to 14).

Quantification of pairwise cell–cell contacts
To quantify pairwise cell–cell contacts within CNs, we first deter-

mined the direct neighbors of each cell within each CN using the
Delaunay triangulation implemented in the triangulate function of the
RTriangle R package (version 1.6–0.11). First, we calculated the
number of contacts between cells of types i and j as the set of edges
Nijk between cells of type i and j in CN k returned by the triangulation.
Then, displayed pairwise contacts among different phenotype cells as
circle plots using the chordDiagram function of the circlize R package
(version 0.4.15).

To evaluate if cell–cell contacts of cells assigned to a given pheno-
type were influenced by the CN, we compared the relative cell–cell
contact frequencies (RF) for all phenotypes in each pair of CNs (e.g.,
TLS1 and TLS2) across all patients containing both CNs. We calcu-
lated the relative cell–cell contact frequency between cells of types i and
j in each CN k as Nijk/Nik where Nijk is the number of edges of the
triangulation between cells of type I and j and Nik is the number of
edges of type i in CN k. We compared the relative cell–cell contact
frequency in pairs of CNs using the ttest function of the R stats package.
We discarded cell–cell interactions between pairs of phenotypes
present in less than three samples. P values have been adjusted for
multiple comparisons with the p.adjust function of the R stats package
using the method of Benjamini and Hochberg (16).

Tensor decomposition analysis
Weused the procedure described in ref. 14 for tensor decomposition

analysis, adapting the Python code available at https://github.com/
nolanlab/NeighborhoodCoordination. For each patient, we con-
structed a joint composition matrix quantifying the frequency of each
CT in each CN and collected these matrices in tridimensional tensors
with dimensions given by patients by CTs by CNs. We generated
distinct tensors for groups of patients with different clinical character-
istics. Non-negative Tucker decomposition, as implemented in the
Tensorly Python package, was applied to each tensor (17). We selected
the ranks in each dimension equal to 3, 8, and 8 by visually inspecting
the decomposition error for different combinations of the ranks in
multiple decomposition runs. Modules for CT and CNs have been
generated from the factor matrices of the CT and CN spaces, respec-
tively. The interactions composing a tissuemodulewere obtained from
the 8 � 8 slices of the 3 � 8 � 8 core tensor linking the factor
matrices. In the graphical representation of tensor decomposition
analysis, the contribution of CTs and CNs to tissue modules was
quantified by their values in the corresponding slice of the core tensor,
and these values were used for color shading. Elements with a value
lower than 0.1 in the corresponding slice of the core tensor have been
greyed out.

Differential marker expression
The analysis of differential marker expression has been performed

using the FindMarkers function of SeuratRpackage (version 4.2.1). To
identify differentially expressed markers in the comparison of a given
phenotype (e.g., plasma cells) in a CN (e.g., TLS1) versus the same
phenotype in all other CNs, we set the fold change and FDR thresholds
at 1.2 and 0.05, respectively.

Analysis of gene expression profiles in patients with HNSCC
Raw data for The Cancer Genome Atlas (TCGA) HNSC collection

were downloaded as raw counts from the TCGA repository using the
TCGAbiolinks R package (v. 2.29; ref. 18). Data normalization was
performed using the edgeR R package (v. 3.30.2; ref. 18). Specifically,
raw counts were normalized to counts per million mapped reads
(CPM) and fragments per kilobase million (FPKM), and only genes
with a CPM greater than 1 in at least three samples were retained. To
identify two groups of tumors with either high or low TLS1 and
CD31þplasma cells, we used the classifier described in ref. 19, which is
a classification rule based on gene expression signature scores. Briefly,
the signature scores have been obtained summarizing the standardized
expression levels of CD38 and PECAM1 (CD31) genes into a com-
bined score with zero mean. Tumors were classified as CD38/CD31
signature “Low” if the combined score was smaller than the median
signature score and as CD38/CD31 signature “High” vice versa. This
classification was applied to expression values of the TCGA HNSC
samples with disease-specific survival information (n ¼ 493).

Plasma cell fractions have been quantified using CIBERSORT (20)
on the TCGA HNSC collection. Briefly, the FPMK expression matrix
was uploaded to the CIBERSORT R script (version 1.04) as a mixture
file, and CIBERSORT was run in absolute mode with the LM22
signature gene file, 100 permutations, and quantile normalization. In
absolute mode, CIBERSORT scales relative cellular fractions into a
score that reflects the absolute proportion of each CT in a mixture.
Although not expressed as a fraction, the absolute score can be directly
compared both between- and within-samples (21). Samples have been
divided into two groups based on the median of the absolute scores for
the plasma CT.

To evaluate the prognostic value of the CD38/CD31 signature
and the plasma cell fraction, we estimated the probabilities of
disease-specific survival using the Kaplan–Meier method. The
Kaplan–Meier curves were compared using the log-rank (Man-
tel–Cox) test to confirm these findings. The P value was calculated
according to the standard normal asymptotic distribution. Survival
analysis was performed using functions of survival (version 3.4–0)
and survminer (version 0.4.9) packages. Multivariate analysis of
the association of age, sex pathological stage, histologic grade,
plasma cell fraction, and CD38/CD31 signature classification fac-
tors with disease-free survival has been performed using the ana-
lyse_multivariate function of the survivalAnalysis R package (ver-
sion 0.3.0). Forest plot representation of the multivariate analysis
results has been obtained using the forest function of the forest-
plotter R package (version 0.2.3). To compare the multivariate
models, we subtracted the residual deviance of the multivariate
model with age, sex pathological stage, histologic grade, and plasma
cell fraction (Model 1) from the one with age, sex pathologic stage,
histological grade, plasma cell fraction, and CD38/CD31 signature
classification (Model 2) and tested this difference against a chi-
square distribution with one degree of freedom. All analyses have
been done in R 4.2.2.

Data and source availability
The single-cell data table of clustered, annotated CTs withmetadata

are publicly available in Mendeley (https://data.mendeley.com/data
sets/t2yvtwnjx7/1). R scripts created for this study are available at
https://github.com/bicciatolab/CODEX_HNSCC.

Additional data analyzed in this study were obtained from the
TCGA repository at https://portal.gdc.cancer.gov/. All other raw data
generated in this study are available upon request from the corre-
sponding author.
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Results
Unsupervised analysis of CODEX data identified 20 CTs in
HNSCC tumors

To analyze the immunologic landscape of the HNSCC microenvi-
ronment, we performed highlymultiplexedmicroscopy using CODEX
on nine surgical specimens of patients with stage II to IV HPV-
negative squamous cell carcinoma explants of the oral cavity and
oropharynx. We selected and validated a panel of 30 antibodies that
allows the discrimination of the main leukocyte subsets infiltrating the
tumor and auxiliary markers for tumor, vascular, and stromal cells on
OCT embedded flash-frozen sections. To minimize sampling errors,
we processed an area of 42.6 mm2 derived from 121 best-focused
stitched 20� fields using the Akoya software and default parameters
for quality control, image processing, and cell segmentation. We
evaluated the image quality, segmentation, and fluorescence signals
on CODEX MAV; we excluded staining artifacts and exported the
fluorescence signals, metadata, and spatial coordinates of all cells for
processing in R using an ad hoc computational framework. For
each specimen, we clustered cells at different resolutions (ranging
from 0.2. to 0.8) using the centered log-ratio normalized signals
and the graph-based clustering algorithm of the Seurat package (22),
andwe visualized cell clusters on low-dimensional embeddings (t-SNE
and UMAP) and on the spatial locations. We associated clusters to
CTs at any explored resolution and determined the optimal cluster
resolution by visual inspection of marker expression and spatial
localization (Supplementary Table S1). We removed staining artifacts
(n ¼ 945 cells) and merged clusters with similar marker expression
profiles and morphological appearance in the tissue. Finally, we
generated a merged dataset accounting for 792,349 cells from all nine
original specimens. This procedure allowed the definition of 20
phenotypes that, in a UMAP embedding, segregate cells according to
the type and not on the specimen of origin (Fig. 1A; Supplementary
Table S1). As expected, we identified cytokeratin-positive tumor cells,
CD31þepithelial (blood vessel) cells, themain lymphocyte subsets (NK
and NKT, CD8þcytotoxic and CD4þ T helper lymphocytes, Treg, B
cells, and plasma cells), various populations of myeloid cells (mono-
cytes, M1 and M2 macrophages, neutrophils, LoxþPMN-MDSCs;
ref. 23), and hematopoietic stem and progenitor cells (HSPC; ref. 24).
In addition, we observed the presence of CD11bþcells expressing the
transcription factor FOXP3, IL4Ra, and PDL1 (Fig. 1B; Supplemen-
tary Fig. S1A), of a heterogeneous group of myeloid cells expressing
PDL1 (PDL1þmyeloid), and of CD90þ mesenchymal stem-like stro-
mal cells (25) that surround the neoplastic islands (Fig. 1C; Supple-
mentary Figs. S1B–S1K). Interestingly, the unsupervised clustering
identified a population of cells that we named capsule, characterized by
low or negative expression of most markers and, when present,
contoring the neoplastic nests (Fig. 1C; Supplementary Figs. S1B–
S1K). Finally, we compared the frequencies of each cell phenotype in
all tumor specimens. Although some CTs were present in all or most
patients (e.g., tumor, CD90þ cells, vessel, PMN-MDSC), others (as
capsule, NKT, B cells, PDL1þmyeloid) were present only in a limited
number of samples (Fig. 1D; Supplementary Table S1).

In summary, the analysis of CODEX data revealed a complex tumor
microenvironment characterized by multiple cell subsets whose com-
position differs across tumor specimens.

Flow cytometry and CODEX differentially enumerate the
leukocyte subsets in the tumor microenvironment

Flow cytometry is considered the gold standard for enumerating
tumor-infiltrating leukocyte subsets. However, this technique requires

extensive tissue processing to obtain a single-cell suspension, which
may impact the proper representation of different cell subsets. In
contrast, CODEX allows the evaluation of the tumor microenviron-
ment using a limited amount of tissue and minimal specimen proces-
sing. Despite the limited sample processing, sampling errors may also
affect CODEX analyses. We divided each surgical specimen into two
parts to compare the performances of flow cytometry and CODEX in
enumerating cell subsets. One part was processed and analyzed by
multicolor flow cytometry; the other was frozen and evaluated by
multiparametric CODEX immunofluorescence microscopy. We iden-
tified the major lymphoid and myeloid subsets in FCS Express using
similar manual gating strategies on the data originated by the two
techniques (Fig. 2A andB). ComparedwithCODEX, we observed that
flow cytometry significantly overestimated the percentage of CD3þ

lymphocyte subsets and dramatically underestimated the PMN-
MDSC fraction (Fig. 2C and D). We reasoned that these differences
might derive from tissue processing that, in the case of tumors
preparation for flow cytometry, requires collagenase treatment, filtra-
tion, and multiple centrifugations, and we hypothesized that a tissue
requiring a simpler processing (i.e., a mouse spleen that requires only
mechanical dissociation, filtration, and RBC lysis) could minimize the
differences between the two technologies. To test this hypothesis, we
enumerated the leukocytes from the spleen and the tumor of mice
bearing the 4T1 mammary carcinoma using both flow cytometry and
CODEX. Briefly, spleens and tumors were harvested; half of each
specimenwas snap-frozen and analyzed byCODEX,whereas the other
half was processed and analyzed by flow cytometry (Fig. 2E). As
observed in human HNSCC, compared with CODEX, flow cytometry
overestimated the number of T cells andmMDSC and underestimated
the number of PMN-MDSC in the tumor. In contrast, no significant
differences were observed when splenic leukocytes were enumerated
by the two techniques (Fig. 2E). These results indicate that the low
frequency of PMN-MDSC usually found by flow cytometry and
scRNA sequencing in mouse and human tumors (26) and the lower
PMN-MDSC/m-MDSC ratio observed in tumors (compared with the
one observed in circulation or in the spleen) can be attributed to
technical artifacts of the tissue preparation.

The HNSCC tumor microenvironment is organized in
distinct CNs

Recent data from Nolan’s laboratory (10, 11, 14, 15, 27) show that
host and neoplastic cells are not randomly distributed in the tumor
microenvironment, but they are instead spatially organized in com-
munities called CNs, which may provide the topological and pheno-
typic architecture for optimal cell–cell interaction and function. An
example of a CN is the TLS, a spatial organization of infiltrating
immune cells that can positively or negatively modulate antitumor
immunity (28). To identify CNs in our samples, we quantified, for each
cell of the merged dataset, the phenotype frequencies of its W nearest
neighbors and clustered these topological and compositional vectors
into K groups with distinctive enrichments of the 20 original CTs (11).
To optimize the width of the capturing windowW and the number K
of CNs, we tested different combinations of neighboring cells (W range
7–200) and CNs (K range 7–14). Finally, we considered a window of
W ¼ 10 cells and opted for K ¼ 14 CNs as this combination (i)
maximized the number of CNs with a unique pattern of phenotype
frequencies (enrichment score), (ii) minimized the number of CNs
enriched in the most abundant CTs (i.e., tumor cells), and (iii) better
recapitulated the cellular composition of the extensively characterized
TLS neighborhood modeled around plasma cells, CD4þT cells, and
stromal cells (29).
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After evaluating the CT composition of each CN, we noticed that
some clusters were very similar in leukocyte composition (Supple-
mentary Fig. S2; Supplementary Table S1). We then merged the
original 14 CNs into 11 CNs with a distinctive phenotype stoichiom-
etry (Fig. 3A). We identified a “cold tumor” CN, mainly composed of
neoplastic cells; a “hot tumor” CN, characterized by the presence of

malignant cells and leukocytes; a “peritumoral”CNmade of neoplastic
and capsule cells; a “vascular” CN rich in vessel cells; and a “stromal
CN” composed of CD90þMSC-like cells (Fig. 3A). In addition,
the analysis revealed the presence of NK-rich, M1-rich, neutro-
phils-rich, and MDSC-rich CNs characterized by the high frequency
of NK, TAM-M1, LOX1�neutrophil, and LOX1þPMN-PMN-

Figure 1.

Unsupervised clustering identified 20 phenotypes in the tumor tissue of patients with HNSCC. CODEX immune fluorescence microscopy data were normalized with
the centered log ratio–based normalization and clustered with graph-based clustering to identify CTs. A, UMAP of the 792,349 cells from all nine original specimens.
Cells are color-coded according to the CT (top) and the specimen of origin (bottom). B, Heatmap of mean fluorescence intensities of individual markers across all
phenotypes of the 792,349 cells in the merged dataset. C, Representative of the spatial distribution of CTs identified in sample s12. The “Merged” panel reports all
different CTs together and highlights the presence of spatial tissue structures. D, Frequency of CTs across patients. Each dot represents a sample in which the given
phenotype has been detected.
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MDSCs, respectively. Finally, different leukocyte subsets characterized
two distinct CNs, that is, TLS1, rich in plasma cells and CD4þFoxp3�

lymphocytes, and TLS2, characterized by the presence of M2-like
macrophages and Tregs. We assessed the CN frequencies in the nine

tissue samples and noticed that cold tumor and TLS2 are the most
abundant CNs, followed by peritumoral (when present), hot tumor,
MDSC-rich, and stroma CNs (Fig. 3B; Supplementary Table S1). We
observed substantial variation in the frequency of the other CNs: five

Figure 2.

CODEX and flow cytometry differently estimate the frequency of TILs. Surgical specimens were processed within 2 hours of resection. Part of each specimen was
snapped frozen for subsequent CODEX analysis, and part was processed for immediate multicolor flow cytometry. A and B, Signals were acquired at a single-cell
level, and a similarmanual gating strategywas employed to identify the frequency of the indicated leukocyte subsets acquired byflowcytometry (A) andCODEX (B).
The percentage shows the frequencies within viable single cells in flow cytometry analysis or the frequencies of all cells in CODEX analysis. C, Phenotype frequencies
estimated by the two techniques (P values from paired t test).D,Volcano plot comparing the frequencies of the indicated leukocyte subsets measured bymulticolor
flow cytometry over CODEX on the same specimens. E, Splenic and tumor-associated leukocytes from mice (n ¼ 3) bearing the 4T1 mammary carcinoma were
enumerated by flow cytometry and CODEX using the shown gating strategy.
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samples lacked the peritumoral CN, and four were deficient in the
neutrophil-rich and the M1-rich CNs (Fig. 3B; Supplementary
Table S1).We then evaluated whether some correlation existed among
the CN frequencies. We found that the stroma CNs negatively and
positively correlated with the TLS1 (r ¼ �0.80; P ¼ 0.006) and the
peritumoral CNs (r ¼ 0.73; P ¼ 0.020), respectively. Similarly, we
observed a negative correlation (r ¼ �0.67; P ¼ 0.043) between the
frequency of NK and cold tumor CNs (Supplementary Fig. S2B). As
expected, the hot tumor and the peritumoral CNs separated the cold
tumor CN from all other CNs (Fig. 3C; Supplementary Figs. S2C–
S2T). Generally, the MDSC-rich CN and the stroma occupied the
space between the neoplastic nests and contained the other CNs. In

most samples, the NK-rich CNwas located distantly from the tumoral
CNs, whereas neutrophil-rich CN, when present, was in proximity
and interacted with the neoplastic cells (Fig. 3C; Supplementary
Figs. S2C–S2T).

Finally, we reasoned that the CNs could differ not only in the CT
composition but also in the interaction between CTs. Thus, we
quantified the pairwise cell–cell contacts for CTs within CNs (Fig. 4;
Supplementary Fig. S3). We observed a higher degree of homotypic
cell–cell contacts in some CNs (e.g., neoplastic cells with neoplastic
cells, CD90þcells with CD90þcells, etc.) whereas, in other neighbor-
hoods, cell–cell contacts were more heterotypic. For instance, in the
peritumoral CN, capsule cells interacted with other capsule cells but

Figure 3.

Discrete CNs canbe identified in theHNSCCmicroenvironment.A,CT composition of the 11mergedCNs. The size of the circles indicates the frequency of a givenCT in
a CN over the total cell number in the same CN. The color of the circles indicates the fraction of a given CT in a particular CN over the total number of that CT in all
samples. B, Frequencies of the CNs in the nine tissue samples (each color represents a patient). C, Representative of the spatial distribution of CN in an example
specimen (i.e., sample s11).
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also with tumor and leukocyte cells, forming a barrier between these
latter CTs (Supplementary Fig. S3). We found the largest number of
heterotypic interactions in the TLS1, TLS2, and hot tumor CNs (Fig. 4;
Supplementary Fig. S3). Plasma cells dominated the cellular interac-
tions in the TLS1 neighborhood. These cells interacted with other
plasma cells but also with CD90þMSC-like cells, vessel cells, and both
CD4þ and CD8þ T cells (Fig. 4). This finding is consistent with the
type of TLS described in many cancer types and is generally associated
with a good prognosis (30). M2 macrophages dominated the inter-
actions within the TLS2. These macrophages interacted with Treg,
PMN-MDSC, CD4, and CD8 T cells, suggesting a phenotype that
may inhibit antitumor immunity (Fig. 4).

Because the same CTs can be found (although at different frequen-
cies) in both TLS1 and TLS2, we evaluated whether cell–cell interac-
tions for a given CT were influenced by the cell neighborhood it
belonged to (i.e., did a plasma cell interact with different CTs if it
belongs to TLS1 or TLS2?). Thus, we compared the relative cell–cell
contact frequencies (11) for all phenotypes in different pairs of CNs
(e.g., TLS1 and TLS2; hot and cold tumor) across all patients.

We found that, in TLS1, plasma cells interacted mostly with other
plasma cells and were contacted by NK, CD90þstromal, and PNM-
MDSC cells (Fig. 5A; Supplementary Table S1). Instead, in TLS2, M2
macrophages, PMN-MDSC, CD8 T lymphocytes, Treg, vessel cells,
and CD90 cells interacted significantlymore withM2macrophages. In

Figure 4.

CNs can be differentiated according to cell-to-cell contacts. Representative of cell–cell interaction in CNs of sample s11. CT and CNs were imported in CODEX MAV,
and their locations overlaid to the multicolor picture. A �20 magnification is shown for TLS1, TLS2, hot tumor, and cold tumor CNs. Key makers associated with a
particular CT are shown, and different CTs are indicated by filled circles. The circle plots on the right indicate the contacts between CTs in the given CN. Circle plots of
cell–cell contacts within each CN for all cells of the merged dataset are reported in Supplementary Fig. S3.
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TLS2, additional significant contacts were those between Tregs with
other Tregs and capsule cells with Tregs (Fig. 5A; Supplementary
Table S1).

In the hot tumor CN, approximately one-third of the neoplastic cell
contacts were with leukocyte subsets such as neutrophils, CD4 and
CD8 T cells, but also with M2 macrophages and PMN-MDSC (Fig. 4;
Supplementary Fig. S3). In contrast, in the cold tumor CN, most
neoplastic cell interactions were homotypic (Fig. 4; Supplementary
Fig. S3). The differential analysis of relative contact frequencies
confirmed these observations and indicated that, in the cold tumor
CN, neoplastic cells form a significantly higher number of homotypic
interactions and that the few leukocytes interact primarily with tumor
cells (Fig. 5B; Supplementary Table S1). Conversely, in the hot tumor
neighborhood, CD8þ Tcells, vessels, Treg, M2 macrophages, and
stromal cells interact significantly more with M2 macrophages
(Fig. 5B; Supplementary Table S1).

These analyses revealed a complex tumor microenvironment in
which CTs are organized in spatially distinct units that are different in
cell composition, cell–cell interactions, and colocalization. These CNs
may be functionally important for tumor growth and immune escape
or the generation of effective antitumor immunity.

The architecture of the tumormicroenvironment correlateswith
clinical parameters and prognosis

The composition of the tumor microenvironment is a major
determinant of patients’ prognosis and tumor clinical and pathological
features. Hence, we would expect that patterns of CTs and CNs in
spatial regions are differently coupled and correlated, in patients, with
different clinical phenotypes (e.g., recurring or not after surgery,
presenting or not perineuronal invasion, or with and without primary
tumor at surgery). As demonstrated by Schurch and colleagues, tensor
decomposition can reveal how cell phenotypes and CNs are combined

into distinct tissuemodules in groups of patients with different clinical
characteristics (11). We, therefore, constructed a joint composition
matrix quantifying the frequency of each CT in each CN and collected
these matrices in tridimensional tensors. Of the 9 analyzed patients, 4
recurred within a year from surgery (median recurrence time
0.65 years, range 0.35–0.92 years), 4 did not recur during the obser-
vation time (median observation time 2 years, range 1.2–2.1 years),
and 1 patient was uncontactable after surgery. To determine whether
any characteristic of the tumormicroenvironment was associated with
early (<1 year) tumor recurrence after salvage surgery, we constructed
a 3D tensor for those patients that recurred after surgery and one for
those that did not recur (Fig. 6A). Then, we applied non-negative
Tucker tensor decomposition to the tensor of patients’ joint CT–CN
matrices in recurrent and non-recurrent patient groups separate-
ly (11, 31). Tensor decomposition analysis returned a set of eight CN
and eight CTmodules (dashed inner rectangles in Fig. 6B) that shaped
three different tissue modules in patients recurring and not recurring
after surgery (solid outer rectangles in Fig. 6B). Graphically, we
represented the contribution of each CT andCN to each tissuemodule
based on its value in the corresponding slice of the core tensor and used
this value for color shading. Elements with a value lower than 0.1 in the
corresponding slice of the core tensorwere not deemed to contribute to
a given tissue module and were greyed out (Fig. 6B). In both recurrent
and non-recurrent patients, the first tissue module was characterized
by neoplastic, protumoral leukocytes, and stroma CN and CT com-
ponents. Similarly, factors belonging to the stroma and stroma–tumor
interface contributed to defining the CN and CT components in the
second modules for both groups of patients, whereas the vasculature
CN weighed in the definition of the second tissue module in those
patients that recurred but did not contribute to the same module in
non-recurrent patients. Strikingly, the third tissue module was defined
by different CN and CT components in recurrent and non-recurrent

Figure 5.

Significant differences in cell–cell interactions across CNs. A, Comparison of the relative cell–cell contact frequency in TLS1 over TLS2. Cell–cell interactions with RF
absolute fold change ≥2 and adjusted P value ≤0.01 have been considered significant and are highlighted in blue (smaller relative contact frequency in TLS1) and red
(larger relative contact frequency in TLS1). B, Same as in A for comparing hot tumor over cold tumor CNs.
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patients: while in recurrent patients, NK CT weighed the most in the
CT and CN components, in non-recurrent patients, the NK, M1
macrophages, and TLS1 weighed in the definition of the CN compo-
nents whereas M1 macrophages, NK, CD4 T cells and plasma cells
defined the CT component (Fig. 6B). In accordance with this finding,
the TLS1 CNwasmore frequent in patients whose tumor did not recur
(Fig. 7A) and its presence significantly correlated with the absence of
recurrence (Supplementary Fig. S4A) and was predictive of recur-

rence-free survival (Fig. 7B). Similarly, plasma cells weighed in the
tissue module of no recurrent tumors (Fig. 6B), were associated with
the absence of recurrence (Supplementary Fig. S4B) and predicted
recurrence-free survival (Fig. 7C). Of note, besides perineuronal
invasion (P ¼ 0.0042), no other clinical or pathological parameters
(e.g., smoking history, age, sex, history of previous HNSCC) predicted
recurrence after surgery in univariate analysis. Because of the limited
amounts of patients, multivariate analysis could not be performed.

Figure 6.

Tensor decomposition analysis discriminates the tumor microenvironment of recurrent and nonrecurrent patients. A, Schematic of the tensor decomposition
analysis. B, Decomposition results for recurrent (recurrence within 365 days from surgery) and nonrecurrent patients (no recurrence in the first year). Tissue
modules containing interacting CN and CT components were named according to the CTs and CNs that weighed the most in each module. Components with
small weights are grayed out. The strength of the interaction between CN andCT components is proportional to thewidth of the connecting lines. The intensity of the
color is proportional to the weight with which a particular CN or CT contributes to the component.
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Figure 7.

TLS1 and CD31highCD38high plasma cells’ frequency correlates with a better prognosis in patients with HNSCC. A, TLS1 frequency in recurrent and nonrecurrent
patients (P value fromMann–Whitney rank sum test). B, Survival analysis according to TLS1 frequency. Patients were stratified according to themedian frequency of
cells belonging to the TLS1 CN. C, Survival analysis according to plasma cell (PC) frequency. Median was used to dichotomize the patient’s group. D, Differential
marker expression analysis of plasma cells in TLS1 compared with plasma cells in all other CNs (left). The contour plots on the right were generated from the merged
rawdata database containing the CN andCT identifiers. The expression of CD31 andCD38was plotted after gating on (i) PCbelonging to the TLS1 CN, (ii) plasma cells
not belonging to the TLS1 CN, or (iii) nonplasma cells. E, Example of plasma cells in TLS1 or in other CNs. F, Survival analysis of TCGA HNSC dataset. Samples were
stratified in high and low groups according to the CD38 and/or CD31 signature score obtained by summarizing the standardized expression levels of CD38 and
PECAM1 (CD31) genes into a combined score with zero mean. Log-rank P values are shown.
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Interestingly, we also found that the frequency of cells from the cold
tumor CNpositively correlated with the perineural invasion (PNI) and
the depth of invasion (DOI). In contrast, the peritumoral andMDSCs-
rich CNs correlated with the tumor size and previously irradiated
fields, respectively. We also observed a significant negative correlation
between patient smoking history and the frequency of cells from the
NK-rich CN (Supplementary Fig. S4A).

Given the small number of patients evaluated in this study, we
investigated whether we could identify distinctive markers of plasma
cells in TLS1 and used them to interrogate larger collections of patients
with HNSCC. Hence, we performed a differential protein expression
analysis between plasma cells in the TLS1 and those belonging to other
CNs.We found that plasma cells inTLS1 expressed significantly higher
levels of the CD38 and CD31 proteins (Fig. 7D and E). These markers
define a subset of long-lived IgG-secreting plasma cells (32) usually
found in primary and secondary lymphoid organs but not in
circulation (33–35).

To evaluate whether the expressions of CD38 and CD31 in the
tumor microenvironment had a prognostic value, we classified
HNSCC tumors from the TCGA dataset based on the single and
combined expression of these two genes. We found that higher
transcriptional levels of CD38 and CD31 significantly correlated with
better disease-specific survival (Fig. 7F), whereas the expression of
either CD38 or CD31 alone was not or only slightly predictive (P >
0.01). Of note, the expression level of the CD38/CD31 signature was
the only feature significantly (P ¼ 0.0006) associated with a better
prognosis in multivariate analysis with age, sex pathologic stage, and
histological grade (Supplementary Fig. S4C). A similar significant (P¼
0.0055) association was found when using as covariate the plasma cell
fraction inferred using CIBERSORT (20) deconvolution algorithm
(Supplementary Figs. S4D and S4E). Adding CD38/CD31 signature to
this multivariate analysis conferred additional predictive value (Sup-
plementary Fig. S4E). Similar correlations between the CD38/CD31
signature and a better prognosis were found using the Kaplan–Meier
Plotter resource (www.kmplot.com; ref. 36) in renal clear cell carci-
noma (HR, 0.42; P ¼ 5�10�9), lung adenocarcinoma (HR, 0.65; P ¼
0.0061), and thymoma (HR, 0; P ¼ 0.0001).

Taken together, these data support the notion that the spatial
organization of the tumor microenvironment is essential for cell
function and prognosis and points to TLS1 and CD31highCD38high-

plasma cells as important predictors of tumor recurrence.

Discussion
Previous studies analyzed the interaction between the tumor and

the immune system well and showed the pivotal role of different
leukocyte subsets in neoplastic cell growth, recurrence, and metas-
tases (37). However, only a few retrospective studies evaluated the
tumor microenvironment globally, considering cell-to-cell interac-
tions, spatial context, and relationships between CT phenotype and
surrounding cells (11, 12). These studies revealed that the tumor is a
highly organized tissue in which leukocytes interact within struc-
tures or CNs (11, 12). The presence, frequency, and composition (in
terms of cell phenotypes) of these micro-niches might be relevant in
shaping the optimal environment for leukocyte interaction and
function and, ultimately, in determining tumor characteristics.

We performed the first prospective study in patients with HNSCCs
to evaluate whether features of the fine architecture of the tumor
microenvironment are associated with the risk of recurrence after
salvage surgery. We analyzed the HNSCC samples using the CODEX-
based multiparametric immunofluorescence method with an opti-

mized 30 markers antibody panel and an ad hoc computational
framework. Using a manual gating strategy, we compared the perfor-
mances of CODEX in quantifying the frequency of the main leukocyte
subsets with those of multicolor flow cytometry. We found that,
compared with CODEX, flow cytometry overestimated the T-cell
frequency and dramatically underestimated the polymorphonucle-
ate populations and, in particular, the PMN-MDSCs. MDSCs
emerged as a crucial population that inhibits tumor immunity and
promotes tumor growth and metastases (38). Interestingly, different
studies showed that the PMN-MDSC/M-MDSC ratio differs in
tumors and in the periphery (26). These observations could indicate
a real biological property (i.e., a preferential migration of M-MDSC
to the tumor or their enhanced survival) or could derive from a
selective loss of PMN-MDSC during isolation. Because PMN-
MDSC and M-MDSC are functionally distinct (38), this conundrum
is clinically essential for developing effective immunotherapies. Our
data in mice and humans support the notion that the conventional
techniques significantly underestimate PMN-MDSC, suggesting
caution in determining the frequency of leukocyte subsets in the
tumor microenvironment following enzymatic and mechanical
processing of the tissue (Fig. 2).

Because cell phenotyping by hand-gating is subjective, sensitive
to segmentation noise, and cumbersome with high-dimensional
data (39, 40), we analyzed the normalized CODEX data with a
clustering-based approach followed by manual annotation and iden-
tified 20 distinct CTs (Fig. 1). Besides the expected lymphoid and
myeloid subsets present at various ratios across the analyzed tumors,
this analysis revealed the presence of CD90þstromal cells, a population
of cells lining around the neoplastic nests that we called capsule cells,
and a rare population of CD11bþFoxp3þ cells, positive for PDL1 and
IL4Ra, whose existence and biological relevance is however still
controversial (41–43). The abundance of CD90þcells between the
neoplastic island confirmed previous studies indicating CD90þme-
senchymal stem cells as a major contributor to HNSCC stroma (25).
CD90þmesenchymal stem cells drove glioma, colon carcinoma, breast
cancer, and HNSCC progression by increasing neoplastic cell prolif-
eration, migration, and adhesion (44).

The identification of the capsule cells was an unexpected finding
of this study. These cells were negative for all tested lineage markers
but delineated the neoplastic islets in 4 of the 9 patients and were
positive for PDL1, suggesting a possible protective role from the
immune response. Similar structures composed of PDL1þcancer
associated fibroblasts (CAF) have been reported in breast cancer
and shown to correlate with a better prognosis (45). Other studies,
however, indicate CAFs as promoters of tumor-induced tolerance,
neo-angiogenesis, and cancer stemness (46). Further studies are
needed for a finer characterization of the capsule cells, their
attribution to the CAF family, and the elucidation of their role in
HNSCC progression.

As mentioned above, one of the most important findings of this
paper is the identification of CNs as spatial entities accounting for the
complexity of the HNSCC tumor microenvironment. Although some
CNs were characterized by the homotypic interaction of a particular
CT (e.g., MDSC-rich, M1-rich, NK-rich CNs), others were defined by
the presence and interaction of different CTs. We focused on two CNs
that we named TLS1 and TLS2. The TLS2 CNwas characterized byM2
macrophages interacting with Treg, PMN-MDSC, stromal cells, vas-
culature, and different effector leukocytes such as CD4 and CD8 T
cells, NK, and neutrophils. To our knowledge, a similar structure has
been described only by a few reports and was shown to correlate with a
worse prognosis in patients with breast and pancreatic cancers (47, 48).
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In contrast, the TLS1 neighborhood was dominated by plasma cells
that interact with CD4þ and CD8þ effector T cells, monocytes,
neutrophils, and M1 macrophages. This structure is consistent with
a tertiary lymphoid organ mimicking the lymph nodal germinal
centers and correlating with a good prognosis in many human
malignancies (49). In agreement with previous studies in melano-
ma, colon carcinoma, and breast cancer (49), our data indicate that
frequency TLS1 and plasma cells are good prognostic factors in
HNSCC (Figs. 6 and 7). We hypothesize that phenotype and
possibly the function of a particular CT depend on the spatial
cellular context in which it resides. Indeed, differential protein
expression analysis on plasma cells from TLS1 compared with
plasma cells from other neighborhoods revealed the high expression
of the CD38 and CD31 markers (Fig. 7). Interestingly, the co-
expression of both CD38 and CD31 discriminates patients with a
better prognosis in the TCGA HNSC dataset and adds prognostic
value to deconvolution models using the plasma cells signature to
classify the patients. This finding supports the notion that cell
phenotype and function depend on the spatial context and high-
lights the power of spatial proteomic analysis. Of note, the expres-
sion of CD31 and CD38 is associated with a population of long-
lived plasma cells usually found in the bone marrow and the lymph
nodes (50). Long-lived plasma cells provide a lifelong production of
antibodies in mice and humans (51) and are suspected of driving
persistent inflammation in autoimmune diseases (51). Although
these cells have not yet been described in the tumor microenvi-
ronment, their presence might indicate the secretion of high-affinity
antibodies that facilitate antitumor immunity by antibody-mediated
cell cytotoxicity or by favoring antigen uptake and cross-
presentation by antigen-presenting cells (51).

In summary, our study highlights the power of CODEX immune
fluorescence in immuno-monitoring, reveals the extraordinary com-
plexity of the tumor microenvironment of HNSCC patients, and
supports the notion that TLS1 and long-lived plasma cells are essential
determinants of antitumor immunity and tumor progression. How-
ever, it is important to note that despite the large number of images

(�100,000) we evaluated, this explorative prospective study is limited
by the small number of patients. Thus, the key finding needs to be
further assessed in a larger group of patients, possibly using a smaller
number ofmarkers or technologies that reduce the data size to increase
the speed of computational analysis.
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