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Abstract: Currently, risk stratification for pediatric Hodgkin lymphoma is based on clinical factors
such as stage, bulk, and systemic symptoms. Novel minimally invasive biomarkers could enhance
both prognosis and treatment strategies. Therefore, the plasma extracellular vesicles’ microRNA
profile was characterized by small RNA sequencing in 36 classical Hodgkin lymphoma cases and
these findings were confirmed in an extended cohort of 86 patients by RT-qPCR. It was found that the
levels of miR-122-5p at diagnosis were significantly higher (p-value: 0.0002) in patients who relapsed
compared to patients in remission. The 5-year event-free survival of cases with high and low levels of
miR-122-5p was 65 ± 7% and 93 ± 4%, respectively. MiR-122-5p levels were significantly associated
with clinical events in both univariate (p-value: 0.0009) and multivariate (p-value: 0.0037) analysis
(hazard ratio 5.8). Target prediction analysis suggests an involvement in the polarization of immune
cells. The phenotypic characterization of peripheral blood mononuclear cells in 12 patients showed
significantly increased levels of CD4+ T-cells in cases with high miR-122-5p levels as compared
to low levels (p-value: 0.048). Moreover, CCL17 (TARC) and IL-6 plasma levels at diagnosis were
significantly higher as compared to healthy donors (p-value: ≤0.0001). MiR-122-5p could complement
current prognostic assays to identify patients at high risk of relapse.

Keywords: Hodgkin lymphoma; extracellular vesicles; miRNA; relapse; biomarkers; liquid biopsy;
inflammation; T-cells; immune escape; diagnostics
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1. Introduction

Classical Hodgkin lymphoma (cHL) accounts for approximately 5–6% of all childhood
cancers and is by far the most common malignancy in adolescents [1]. Histologically,
cHL is characterized by a small number of neoplastic cells, referred to as Hodgkin and
Reed–Sternberg cells, scattered throughout a rich and heterogeneous inflammatory back-
ground consisting of plasma cells, histiocytes, eosinophils, and neutrophils [2]. Intense
chemotherapy, autologous stem cell transplants (ASCT) [3,4], and (more recently) the anti-
CD30 antibody–drug conjugate brentuximab vedotin and the PD-1 inhibitors nivolumab
and pembrolizumab are regarded as front-line treatment in cHL [5,6], leading to 5-year
event-free survival (EFS) rates as high as 85% [7]. Patient outcome is still unsatisfactory
for patients with relapse (REL) or who are not eligible for ASCT [4,8]. As such, the early
prediction of REL could help develop patient-tailored treatments to control disease pro-
gression and to improve disease outcome. Despite this, a uniform risk stratification for
pediatric cHL is lacking, although several clinical parameters have been associated with
poorer prognosis (i.e., the presence of B symptoms, mediastinal and/or peripheral lymph
node bulky lesions, the presence of extranodal disease, a high number of involved nodal
stations, Ann Arbor stage, high serum markers for inflammation, male gender, and poor
response to initial chemotherapy) [9].

MicroRNAs (miRNAs) play key biological roles as tumor suppressors or oncogenes,
and plasmatic circulating miRNAs were described as promising disease biomarkers in
adult cHL [10]. Therefore, we hypothesized that they could yield comparable prognostic
potential in pediatric patients. Blood liquid biopsies can be obtained easily, in relatively
large amounts, yielding an abundance of clinically relevant information. Among peripheral
blood biomarkers, small extracellular vesicles (sEVs) are present at high levels. Due to
their biogenesis through the endosomal pathway, they reflect closely the status of their
secreting cells, containing parts of the membrane and cytoplasm together with all the
soluble contents such as proteins, lipids, and nucleic acids [11]. Activated cells, especially
tumor cells, produce significantly more sEVs than normal cells due to the activation of proto-
oncogenes and contribute to the remodeling of the tumor microenvironment and tumor
progression [12,13]. Therefore, we decided to investigate the small RNA (sRNA) content of
plasma circulating sEV to identify new disease biomarkers for diagnosis, monitoring, and
prognostic stratification.

Thus, the primary objective of this study is to identify novel liquid biopsy markers
to minimally invasively predict pediatric cHL outcomes. sRNA sequencing analysis and
RT-qPCR revealed an upregulation of miR-122-5p in plasma sEVs of pediatric cHL at the
day of diagnosis (DIA) in REL compared to patients achieving complete remission (CR).
In univariate analysis, it was found that there is a significant correlation of 5-year EFS
with Ann Arbor stage, Erythrosedimentation rate (ESR) bulky disease, treatment level, and
miR-122-5p levels at DIA. In multivariate analysis, the prognostic potential of miR-122-5p
was confirmed.

In a prior study from our group [14], it was reported that miR-122-5p levels in circu-
lating sEVs at the DIA were elevated in pediatric anaplastic lymphoma kinase-positive
(ALK+) anaplastic large cell lymphoma (ALCL) as compared to healthy donors (HDs) and
that this miRNA was barely detectable in ALK+ ALCL-involved lymph nodes, in reactive
lymph nodes, and extranodal skin biopsies. Indeed, miR-122-5p is expressed in a variety
of neoplasms, including breast, lung, ovarian, esophageal, colorectal, liver, and urothelial
carcinomas as well as in various hematological malignancies. In such tumors, miR-122-5p
acts as both an oncogene and a tumor suppressor [15–18]. MiR-122-5p deregulation and
aberrant expression in carcinogenesis and tumor development also suggests a potential
role for this miRNA as a diagnostic and/or prognostic marker.
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2. Results
2.1. Relapsed Patients Display a Distinct Small Extracellular Vesicle microRNA Cargo Compared
to Patients in Complete Remission

sRNA sequencing on total RNA isolated from the plasma sEVs of thirty-six pediatric
cHL patients and seven pediatric HDs was performed. The principal component analysis
revealed a slightly different miRNA cargo between HDs and cHL (Supplementary Figure
S1A). In total, 25 miRNAs were found to be more and 21 to be less enriched in cHL
compared to HDs (Supplementary Figure S1B). Then, the sRNA profiles of cHL cases based
on clinical factors, including PET 2, low intermediate risk and high risk, B symptoms,
extranodal lesions (E lesions), Ann Arbor stage, bulky disease, and disease progression
(Supplementary Figure S2) were compared. A comparative analysis of disease progression
revealed the deregulation of sEV miRNAs in REL patients compared to patients in CR
(Figure 1). The downregulated miRNA in REL patients, miR-758-3p has functional roles
as tumor suppressors [19] while the upregulated miR-122-5p and miR-424-3p have been
linked to tumor-supporting functions [14,20].
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Figure 1. cHL patients that later relapsed (REL) have a specific microRNA (miRNA) signature in
plasma-derived small extracellular vesicles (EVs) at diagnosis. Heatmap representing differentially
abundant miRNAs at diagnosis between REL and complete remission (CR) cHL patients with miR-
122-5p is the most upregulated miRNA in the cHL cohort compared between REL and CR. Total RNA
from plasma sEVs of 36 cHL patients (CR = 25, REL = 11) was sequenced.

The miR-122-5p levels in plasma sEVs by RT-qPCR were assessed in an extended
cohort of 86 pediatric cHL patients and 27 HDs and outliers were removed by the ROUT (Q
= 1%) method. Before outlier removal, miR-122-5p levels in HD and cHL patients differed
significantly (Mann–Whitney test, p-value: 0.0098, **) (Supplementary Figure S3). After
outlier removal (1 HD and 14 cHL), a trend of increased levels in cHL as compared to HDs
(p-value: 0.0840, Figure 2A,B) and a significant increase in miR-122-5p in REL as compared
to CR patients (p-value: 0.0002, ***, Figure 2C,D) was observed. Next, the miR-122-5p levels
in fifteen primary tumor biopsies of cHL patients and in three HL cell lines (KM-H2, L-428
and L-540) were measured. MiR-122-5p was undetectable in almost all primary tumor
samples and in all cell line-derived sEVs. These findings are in line with a previous study
on ALK+ ALCL from our group, showing that miR-122-5p was undetectable in tumor
samples, the skin, and reactive lymph nodes of ALK+ ALCL patients, with the notable
exception of liver biopsies [14] (Figure 2E). This observation is supported by miR-122-5p
being a liver tissue-specific miRNA [21], suggesting that it is not tumor tissue derived but
most likely originates from the liver tissue. Of note, liver involvement at presentation is
very rare in cHL [22]. Interestingly, the miR-122-5p levels at follow-up (FUP) compared to
DIA were increased significantly (p-value: ≤0.0001, ****, Supplementary Table S1).
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Figure 2. RT-qPCR analysis of miR-122-5p in 86 pediatric cHL plasma samples, 27 pediatric healthy
donor (HD) plasma samples, 15 primary tumor biopsies from pediatric cHL patients and 3 cHL cell
lines. (A,B) Outliers (1 HD and 14 cHL) were removed by the ROUT (Q = 1%) method. At DIA
miR-122-5p expression is not significantly different in plasma small extracellular vesicles (sEVs) of
cHL patients compared to HDs. Unpaired student’s two-tailed t-test analysis of cHL vs. HD: not
significant (p-value: 0.0836, ROC = 0.6149, 95% CI: 0.502–0.7277). (C,D) Outliers (14 CR and 3 REL)
were removed by the ROUT (Q = 1%) method. At DIA miR-122-5p expression is significantly different
in plasma sEVs of CR compared to relapsed (REL) patients. Unpaired student’s two-tailed t-test
analysis of CR vs. REL: significant (p-value: 0.0002, ROC = 0.8065, 95% CI: 0.6495–0.9635). (E) In
the cHL cell lines KM-H2, L-428, and L-540 (green) and primary tumor biopsies (red) at DIA the
miR-122-5p is barely or not detectable. Data are expressed in triplicates as cycle threshold (CT) with
CT 40 being the limit of detection.

2.2. MiR-122-5p Levels at Diagnosis Predict 5-Year Event-Free Survival

The stratification of 86 cHL patients into 43 miR-122 low and 43 miR-122 high cohorts
based on the median expression levels as the fold of HDs predicts a 93 + 4% 5-year EFS for
patients with miR-122 low and 65 + 7% with miR-122 high (p-value: 0.0016, **, AUC 0.679)
(Figure 3A–C). An extended statistical analysis of 5-year EFS with all available clinical
parameters, including B symptoms, mediastinal and/or peripheral lymph node bulk, extra-
nodal disease, number of nodal sites, Ann Arbor stage, serum markers for inflammation,
gender, and response to initial chemotherapy, and the miR-122-5p stratification at DIA
was performed. In the univariate analysis, a significant correlation of 5-year EFS and the
stage at presentation (p-value: 0.0014), the ESR (p-value: 0.026), bulky disease (p-value:
0.007), treatment level (p-value: 0.0037), and the miR-122-5p stratification at DIA (p-value:
0.0009) was found. In multivariate analysis, however, only the miR-122-5p stratification at
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DIA remained significant (p-value: 0.0037) (Table 1). Additionally, a positive correlation
between miR-122-5p levels and the body mass index (BMI) (Supplementary Table S1) was
found.
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To elucidate the mechanisms of miR-122-5p, the MiRTarBase [23] was entered and all 
the functional miRNA–target interactions from the list of validated miR-122-5p targets 
were selected. Based on these targets, a REACTOME [24] analysis was conducted and the 
signaling by receptor tyrosine kinases was found to be the most enriched with targets of 
miR-122-5p. Among them there is SOCS1, which acts as a negative regulator of the 
JAK/STAT signaling pathway which regulates the polarization of CD4+ T-cells [25,26].  
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Figure 3. miR-122-5p has prognostic potential based on the stratification into miR-122 low and
miR-122 high according to the median expression values. (A) The 5-year event-free survival (EFS)
according to patient stratification into miR-122 low and miR-122 high. The miR-122 low and miR-122
high cohorts contain 43 patients, respectively. In the miR-122 low cohort, 3 patients experienced
an event with a 5-year EFS of 93%. The miR-122 high cohort experienced 15 events with one death
with a 5-year EFS of 65%. (B) Dot plot representing EFS with a 5-year cut-off of 86 cHL patients
(CR = 68, REL = 18) stratified into miR-122 high and miR-122 low in plasma small extracellular
vesicles (sEVs) at DIA. Events are marked in red; death is marked in blue. The 5-year event-free
survival was significantly different between the miR-122 high and miR-122 low groups (p-value:
0.0016, **). (C) ROC curves of miR-122 low and miR-122 high as a control (AUC 0.679, p-value 0.0043,
95% CI: 0.5649–0.7931).

Table 1. Univariate and multivariate analysis of clinical parameters and the miR-122-5p expression
levels using miR-26a-5p as endogenous control and expressed as the fold of healthy donors (HDs).
ESR: erythrosedimentation rate. EFS: event-free survival. SE: standard error. HR: hazard ratio.

Univariate Multivariate

Characteristics Patients (n) Events 5-Year EFS % SE% p-Value p-Value HR (95% CI)

Ann Arbor
stage

1-2-3 63 8 87 4 0.0014 ns

4 23 10 56 10

ESR
(≤30 mm/h)

No 23 1 96 4 0.026 ns

Yes 63 17 73 6

Bulky disease
(>10 cm)

No 48 5 89 5 0.007 ns

Yes 38 13 66 8

Treatment level 1 + 2 45 4 91 4 0.0037 ns

3 41 14 66 7

miR-122-5p at
diagnosis

High 43 15 65 7 0.0009 0.0037 5.8 (1.8–19.9)

Low 43 3 93 4

2.3. cHL Patients Show a Different Peripheral Immune Environment Based on Small Extracellular
Vesicle Packed miR-122-5p Abundance

To elucidate the mechanisms of miR-122-5p, the MiRTarBase [23] was entered and
all the functional miRNA–target interactions from the list of validated miR-122-5p targets
were selected. Based on these targets, a REACTOME [24] analysis was conducted and
the signaling by receptor tyrosine kinases was found to be the most enriched with targets
of miR-122-5p. Among them there is SOCS1, which acts as a negative regulator of the
JAK/STAT signaling pathway which regulates the polarization of CD4+ T-cells [25,26].
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Next, miR-122-5p levels were measured and peripheral blood mononuclear cells
(PBMCs) were characterized in 12 paired cHL plasma and peripheral blood samples ob-
tained at diagnosis. Patients stratified as miR-122 high showed a specific peripheral
immune environment characterized by significantly higher levels of B-cells (Figure 4B)
and CD4+ T-cells (Figure 4D). The population of myeloid cells, however, was significantly
reduced in miR-122 high patients (Figure 4C).
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12 pediatric cHL patients stratified into miR-122 high and miR-122 low based on the median ex-
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cells characterized by CD33 + CD45+, (p-value: 0.1061). (D) Percentage of CD4+ T-cells characterized
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2.4. Plasma Levels of CCL17 (TARC) and IL-6 Are Elevated in cHL Compared to Healthy Donors
at the Time of Diagnosis

Following our observation of increased CD4+ T-cells in miR-122 high patients, the
circulating plasma levels of the chemokine CCL17 (TARC) and the cytokine IL-6 were
measured as both are known to be part of the immune–tumor interaction and contribute to
the cancer-promoting effects of inflammation and immune modulation. Moreover, CCL17
(TARC) was reported to be a highly sensitive diagnostic marker in pediatric cHL [27].
CCL17 (TARC) levels in 53 cHL patients at DIA and 5 HDs were measured, and a significant
increase in CCL17 (TARC) (p-value: ≤0.0001) was found (Figure 5A). At FUP, 51 cHL
patients and 5 HDs were measured. However, TARC levels have normalized and do not
differ significantly from HDs (Figure 5B). IL-6 plasma levels were measured in the plasma
of 43 cHL patients and 11 HDs and were also significantly elevated (p-value: ≤0.0001) at
DIA compared to HDs (Figure 5C).
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Figure 5. Plasma CCL17 (TARC) and IL-6 levels measured by ELISA. Data were analyzed with
GraphPad Prism (Version 8.0.2., GraphPad Software, Boston, MA, USA) using a Mann–Whitney test
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levels at follow-up in HDs and cHL are not significantly different (p-value: 0.1253, ns). (C) IL-6
plasma levels at DIA in cHL are significantly higher than in HDs (p-value: ≤0.0001, ****).

3. Discussion

In conclusion, the major novel finding of this study is the identification of miR-122-5p
as a strong prognostic biomarker in pediatric cHL. Significantly (p-value: 0.0002) elevated
levels of miR-122-5p in plasma small extracellular vesicles at DIA were associated with an
increased risk of REL and inferior 5-year event-free survival. Remarkably, in multivariate
analysis, miR-122-5p stratification remained the only significant (p-value: 0.0037) predictor
of outcomes when accounting for other clinical risk factors such as Ann Arbor stage, ESR,
bulky disease, and treatment level. The stratification of patients into miR-122-5p high- and
low-level subgroups based on the median expression value demonstrated a clear predictive
value, with high levels of miR-122-5p being associating with a significantly higher risk of
REL, while lower levels were linked to a better 5-year event-free outcome. Our findings
show that miR-122-5p could serve as a minimally invasive, robust, and early predictor of
REL risk and thus could complement current clinical prognostic stratification strategies.

Despite the increase in miR-122-5p levels observed at FUP as compared to DIA, there
is no significant difference between REL and CR patients at FUP. We hypothesize that the
miR-122-5p increase at FUP may be related to chemotherapy-induced liver stress, as it is
predominantly expressed in the liver [17]. This transient increase suggests that miR-122-5p
is not only a marker of REL but may also reflect broader systemic stress responses. The
fact that miR-122-5p was barely detectable in cHL primary tumor samples and cell lines
supports the hypothesis that it is released from non-tumor tissues—possibly the liver—
like in pediatric ALK+ ALCL [14]. This could hint toward a mechanism in which the
tumor progression is driven not by the tumor cells themselves. Furthermore, the positive
correlation between miR-122-5p levels and the body mass index (BMI) (Supplementary
Table S1) could indicate that miR-122-5p may also serve as a marker for metabolic status in
cHL patients.

In addition to its prognostic significance, miR-122-5p appears to have a functional
role in promoting REL through its interaction with the SOCS1/JAK/STAT pathway. Target
prediction analysis suggests that miR-122-5p suppresses SOCS1, a negative key regulator
of the JAK/STAT signaling cascade [28]. However, in cases where miR-122-5p is elevated,
SOCS1 suppression may lead to a constant activation of the JAK/STAT pathway, which is
implicated in the pathogenesis of various cancers, including cHL, as it promotes cellular
survival, proliferation, immune evasion, and inflammation [29–34]. The dysregulation of
this signaling axis, driven by high miR-122-5p levels might contribute to REL, making this
pathway an important focus for further investigations.
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A unique characteristic of cHL is the formation of CD4+ T-cell rosettes, surrounding
and protecting the tumor cells, aiding in immune evasion [35–38]. Our findings in a small
cohort of 12 patients revealed that pediatric cHL patients with high levels of miR-122-5p
exhibited significantly increased numbers of circulating CD4+ T-cells. The correlation
between elevated miR-122-5p levels and increased CD4+ T-cell populations suggests that
miR-122-5p might play a role in the recruitment of these T-cells, promoting immune escape
and REL in cHL patients.

Moreover, our study found significantly elevated levels of the chemokine CCL17
(TARC) and the cytokine IL-6 in cHL patients at DIA, both of which are known to play
crucial roles in modulating the tumor microenvironment [39,40]. CCL17 (TARC) is highly
secreted by Reed–Sternberg cells [41] and is involved in recruiting CD4 + T-cells to the
tumor site where they suppress local immune responses by inhibiting the function of
cytotoxic CD8+ T-cells [42]. Similarly, elevated IL-6 levels in cHL patients at DIA suggest
a significant role in cHL. IL-6 is known as a central mediator of inflammatory response
and a critical activator of the JAK/STAT pathway by the IL-6 classical or trans-signaling
pathway [43]. Elevated IL-6 levels contribute to a pro-tumorigenic microenvironment,
promoting the differentiation of CD4+ T-cells [44]. Thus, both CCL17 and IL-6 not only
serve as markers of immune dysregulation in cHL but also represent potential diagnostic
factors that could be used to monitor disease progression.

We must highlight that we primarily report miR-122-5p as a new prognostic marker.
An extended cohort for the PBMC characterization and additional markers for the flow
cytometric analysis of the PBMCs would give deeper insights into the disease mechanisms.
Moreover, the link between CCL17 (TARC), IL-6, and the miR-122-5p levels should be
explored. Functional and in vitro experiments are crucial to understand the mechanism
of action of this miRNA and could open new therapeutic strategies for high-risk pediatric
cHL patients by, e.g., repurposing the anti-miR-122-5p drug Miravirsen, which was being
used to treat hepatitis C virus (HCV) infections [18,45]. It was well tolerated and showed
prolonged anti-viral activity [46]. Due to the rise in small-molecule treatments for HCV in
this context, its application was discontinued but it could be a potential candidate for drug
repurposing. However, since miR-122-5p dysregulation impacts key immune pathways and
promotes immune evasion, modulating its expression, alongside inhibiting the JAK/STAT
pathway, might help to restore immune balance within the tumor microenvironment and
improve the effectiveness of current treatment strategies.

4. Materials and Methods
4.1. Patients and Case Selection

Eighty-six patients were enrolled in the EuroNet-PHL C2 trial, currently adopted for
pediatric cHL treatment by AIEOP. The clinical characteristics of pediatric cHL patients
are described in Table 2. Peripheral blood samples in sodium citrate (5 mL) were collected
before treatment initiation and/or after 2 OEPA cycles and processed in the laboratory
within 24 h. Briefly, the samples were centrifuged at 820× g for 10 min and supernatants
were carefully removed and then re-centrifuged at 2500× g for 10 min to avoid contamina-
tion by platelets. Plasma aliquots were stored in the Pediatric Oncology Biobank (BBOP)
at −80 ◦C until used. The study was approved by the ethics committee or by the internal
review board of each participating institution, and informed consent was obtained from
parents or legal guardians before patient enrolment.
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Table 2. Patient clinical data. NS: nodular sclerosis. ERA: early response assessment. LRA: late
response assessment. AR: adequate response. IR: inadequate response. NA: not applicable. PD:
progressive disease.

Characteristics Number of Patients

Sex
Female 47

Male 39

Median age
≤15 years 42

>15 years 44

Histology *
NS 62

Other 20

ERA
AR 55

IR 31

LRA

AR 21

IR 4

NA 56

PD 5
* Data not available for all patients.

4.2. Total Extracellular Vesicle RNA Isolation and Quantitative Real-Time PCR

EVs were isolated from 0.5 mL plasma obtained at DIA using a 0.22 µm syringe filter
and further processed using the exoRNeasy midi kit (#77144, Qiagen, Hilden, Germany). In
brief, this kit uses membrane affinity spin columns to capture EVs from various biofluids
and subsequently employs spin columns to isolate RNA from the EVs. Total RNA from cell
lysates was isolated using a total RNA Purification Kit (Norgen Biotek Corp., Thorold, ON,
Canada). Reverse transcription was performed using the TaqMan™ Advanced miRNA
cDNA Synthesis Kit (ThermoFisher Scientific, Waltham, MA, USA) and quantitative PCR
(qPCR) of hsa-miR-122-5p (UGGAGUGUGACAAUGGUGUUUG; assay ID 477855_mir,
ThermoFisher Scientific, Waltham, MA, USA) was performed in triplicates using TaqMan™
Fast Advanced Master Mix (ThermoFisher Scientific) and TaqMan™ Advanced miRNA
Assays. Hsa-miR-26a-5p (UUCAAGUAAUCCAGGAUAGGCU; assay ID: 477995_mir,
ThermoFisher Scientific, Waltham, MA, USA) was used as the reference miRNA to normal-
ize sEVs samples [47,48].

4.3. Nanoparticle Tracking Analysis

Nanoparticle tracking analysis was conducted on the Nanosight NS300 instrument
(Malvern Panalytical, Malvern, UK). The instrument was equipped with a 488 nm laser, a
high sensitivity sCMOS camera, and a syringe pump. The plasma sEV samples were mixed
and subsequently diluted at 1:1000 in 0.22 µm filtered 1 × PBS. A standard operational
procedure of 3 videos of 60 sec per measurement, syringe pump speed of 30 s and a total of
1500 frames were used. The instrument control and data analysis were performed using
the NanoSight software (Malvern Panalytical, Malvern, UK, v. 3.1).

4.4. Small RNA Sequencing and Bioinformatics Analysis

Small RNA sequencing libraries were prepared as previously reported [14]. Libraries
were prepared using the NEBNext Multiplex Small RNA Library Prep Kit for Illumina (New
England Biolabs, Ipswich, MA, USA) and sequenced single end on an Illumina HiSeq 4000
platform (Illumina, San Diego, CA, USA) with an average sequencing depth of 15 million
reads per sample. Small RNAs were identified and quantified with miR&moRe2 v0.2.375,
as previously reported [49]. DESeq2 [47] v1.24.0 was used to normalize read count data
and test for differential expression [50]. A Benjamini–Hochberg adjusted p-value ≤ 0.05
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was considered statistically significant. The sva v3.26.0 package was applied to remove
batch effects.

4.5. Peripheral Blood Mononuclear Cell Isolation and Flow Cytometric Analysis

Whole peripheral blood samples of 12 cHL patients in sodium citrate (5 mL) were
collected before treatment initiation and processed in the laboratory within 24 h. PBMCs
were isolated by using the Ficoll-Paque gradient method according to the manufacturer’s
instructions. The cells were supplemented with DMSO and stored at −80 ◦C until further
use. The antibodies were used according to the manufacturer’s recommendations in a total
volume of 100 µL 1 × PBS. Per staining panel (Table 3), 0.5 × 106 PBMCs, respectively,
were stained for 20 min on ice and in darkness. The cells were washed in 1 mL of 1 × PBS
and suspended in 500 µL of 1 × PBS. Flow cytometry was performed using the CytoFLEX
(Beckman Coulter, Brea, CA, USA) and the instrument control was carried out by using the
software Kaluza (Beckman Coulter, Brea, CA, USA, v. 2.2.1). Flow cytometric analysis was
performed using FlowJo (Version 10.4, BD Biosciences, Franklin Lakes, NJ, USA).

Table 3. Staining panels of peripheral blood mononuclear cells for flow cytometric analysis. The
antibodies listed were employed for cell surface full stains. The dilutions were chosen according to
the manufacturer’s recommendations.

Antibody/Isotype * Fluorochrome Clone REF#

Panel 1

CD3/IgG1 Mouse PC7 UCHT1 6607100

CD4/IgG1 Mouse FITC SFCI12T4D11 345768

CD8/IgG1 Mouse PE B9.11 A07757

CD45/IgG1 Mouse ECD J33 A07784

Panel 2

CD3/IgG1 Mouse APC-AF750 UCHT1 A94680

CD19/IgG1 Mouse PC7 J3-119 IM3628

CD33/IgG1 Mouse PC5 D3HL60.251 IM2647

CD45/IgG1 Mouse ECD J33 A07784
* All antibodies were purchased from Beckman Coulter, CA, USA.

An optical gating strategy was followed by setting the first gate in FSC-A/SSC-A
on the lymphocytes, and then single cells were selected in SSC-A/SSC-H. In the single
lymphocytes gate, T-cells were gated in CD3/SSC. Then CD8+ T cytotoxic cells were gated
in CD3/CD8 and CD4+ T helper cells in CD3 + CD4+. The naive T-cells were gated in the
CD4+ T helper cell gate using the CD4 + CD45RA+. B-cells were gated in CD3/CD19.

4.6. Enzyme-Linked Immunosorbent Assay

CCL17 (TARC) and IL-6 were measured using the kits (ThermoFisher Scientific™,
Invitrogen™, MA, USA, #EHCCL17, diluted 1:10–1:100, human plasma, and Abcam plc,
Cambridge, UK, #ab46042, undiluted, human plasma) according to the manufacturer’s
instructions. Briefly, samples were immobilized on respective capture antibodies and
labeled with a biotinylated detection antibody. After washing, the streptavidin-HRP
complex was added and incubated at RT. The wells were washed again and TMB was
added and incubated in darkness. The colorimetric reaction was stopped, and the plate
was measured on a Perkin Elmer Victor 3 1420-012 Multilabel Counter Microplate Reader
at 450 nm.
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4.7. Statistical Analysis

MiRNA expression levels were analyzed using the comparative Delta CT method
with miR-26a-5p as the endogenous control, and data were expressed as a fold of HD.
The statistical analysis was performed using GraphPad Prism (Version 8.0.2, GraphPad
Software, Boston, MA, USA) with ROUT (Q = 1%) for outlier detection, followed by Mann–
Whitney tests (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001) and ROC curve plots (confidence interval
95%, poor: 0.6 ≤ ROC ≤ 0.7, acceptable: 0.7 ≤ ROC ≤ 0.8, excellent: 0.8 ≤ ROC ≤ 0.9), or
a log-rank Mantel–Cox survival curve analysis.

5. Conclusions

Here, we described, for the first time, the miRNA cargo of sEVs in pediatric cHL
patients. Noteworthy, all REL patients displayed high levels of miR-122-5p at DIA. In multi-
variate analysis, the negative prognostic power of high miR-122-5p could be considered to
identify high-risk patients that could be treated with an intensification of current therapies.
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