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Abstract

Pluronic-coated polylipoic acid-based nanoparticles (F127@PLA-NPs) have great potential as biodegradable nanovectors for delivering
active molecules to different organs in complex diseases. In this study we describe the in vivo biodistribution, safety and ability to deliver
molecules of F127@PLA-NPs in healthy rats following intravenous administration. Adult rats were injected with 10 mg/kg of rhodamine B-
labeled F127@PLA-NPs, and NPs fluorescence and MFI rate were measured by confocal microscopy in whole collected organs. The NPs
accumulation rate was maximal in the heart, compared to the other organs. At the cellular level, myocytes and kidney tubular cells showed the
highest NPs uptake. Neither histopathological lesion nor thrombogenicity were observed after NPs injection. Finally, F127@PLA-NPs were
tested in vitro as miRNAs delivery nanosystem, and they showed good ability in targeting cardiomyocytes.

These results demonstrated that our F127@PLA-NPs constitute a biological, minimally invasive and safe delivery tool targeting organs and
cells, such as heart and kidney.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Background

The treatment of many diseases and syndromes, despite the
enormous progress of therapies, remains disappointing.

The reason for that is, in many cases, the complex patho-
physiology and the impossibility of reaching multiple and spe-
cific targets, very often at the molecular level.

In recent years, nanoparticles have been increasingly
employed to reach specific targets and deliver drugs, macro-
molecules, and even sub-genomic molecules.1

Several conditions in the cardiovascular field may take
advantage of this innovative approach.2–6 In particular, its
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application to emerging gene therapies able to re-modulate
the molecular mechanisms responsible for the altered patho-
physiological pathways could have a tremendous therapeutic
impact.5,6 Upon the identification of miRNAs able to target the
involved genes, a crucial challenge in gene therapy is deliver
them into specific cells avoiding biological reactions and meta-
bolization.7,8

Nanoparticles can address this issue by hiding nucleic
acids in their interior avoiding adverse biological responses
and metabolization.9 In the past years, several types of
nanoparticles have been studied for the delivery of genetic
material, and solid lipid nanoparticles (SLN) were the most
used ones.10–13

The ultimate success of this methodology was reached in
these days with the production of Covid-19 vaccines.14

Of course, nanoparticle activity depends on their pharmaco-
kinetic characteristics, which in turn determine those of the
payload: tissue distribution, accumulation, degradation, and
clearance.15

Most of the nanoparticles accumulate in filtering organs
as liver and spleen. Coating with hydrophilic molecules as
polyethylene glycol (PEG) or zwitterionic species reduces the
activation of reticuloendothelial system (RES) and of com-
plement increasing circulation time. The enhanced permeation
and retention (EPR) effect favors accumulation in solid tu-
mors.16 While conjugation with targeting agent lead the
nanoparticle to selectively bind to the desired tissues.17,18

However, little is still known on the possibility of using the
coating features to passively target selected organs.19

We have recently reported a novel in vitro biocompat-
ible and biodegradable polymeric nanoparticle: the F127@
PLA-NPs.20 In particular, reduced protein absorption,
complement activation, capture from cells of the RES and
hemolytic activity were observed.20 On the other hand, the
highly crosslinked poly-lipoic core ensured stability against
spontaneous degradation, even upon prolonged storage in
water, but relatively fast cleavage in the presence of thiols, as
glutathione.20

As observed for other disulfide-based nanoparticles and
materials, this behavior should warrant the release of the loaded
drug/molecule only when the target is reached.21–23

In addition, the antioxidant properties of lipoic acid allowed
our NPs to demonstrate in vitro a potential protective activity
against post-ischemia reperfusion. This feature joined with the
great versatility in loading different kinds molecules, gives to
this approach a wide potential for application in the medical
field.20

However, the use of nanoparticles for medical applications
requires the fulfillment of several requirements. These include
favorable nanoparticle pharmacokinetics, safety, and the
ability to carry macromolecules, including gene products.

In this study, we investigated in vitro and in vivo, in
Sprague Dawley rats, the tissue distribution, accumulation,
persistence, and clearance of our new in house F127@1-
NPs nanoparticles, their safety in terms of tissue injury, ac-
tivation of inflammation and coagulation, and their potential
to carry and deliver new molecules to the heart and splanchnic
organs.
Material and methods

Synthesis and characterization of F127@PLA-NPs nanoparticles

In this paper, we use the convention for core-shell structure to
name our particles. Accordingly, the outer shell is indicated first,
followed by the @ symbol and the core materials. Hence, our
nanoparticles with an F127 shell and a polylipoic acid (PLA)
core are named F127@PLA-NPs or F127@n-NP, where n is the
number of the precursor used.

Compounds 1–3 were synthesized by standard procedures
and fully characterized.

The hydrodynamic particle size (Dynamic Light Scattering,
DLS), Z-potential, Transmission electron microscopy (TEM)
and Thermogravimetric analysis (TGA) were performed ac-
cording to the literature.20,24 RNA content in the solutions was
measured with the ThermoFisher Scientific spectrometer Nano-
drop following the company instruction (details in the Supple-
mental materials).

In vitro cell cultures and F127@1,2-NPs or F127@ 3-NPs
(mRNA loaded) identification

The murine atrial cardiomyocyte cell line HL1 was obtained
from the laboratory of William C. Claycomb (New Orleans,
USA)25 and following Lin et al.26 At 70–80 % of confluence,
HL1 cells were exposed to 3 h to 1 day with F127@1,2-NPs or to
1.5 h to 1 day with F127@3-NPs loaded with FAM-labeled
mRNA inside.

Samples were analyzed by a confocal microscope
DMI6000CS TCS SP8 (Leica Microsystem, Wetzlar, Germany)
using a DFC365FX camera and with a z-interval of 1.5 μm using
a 63×/0.60 dry objective magnification (image size 1024 ×
1024 pixel). Images were processed using the Leica Application
Suite (LAS-AF) 3.1.1. Software (Leica Microsystems, Wetzlar,
Germany) (more details in the Supplements).

In vivo animal study

Healthy male Sprague-Dawley rats, weighing 200 g, were
injected with 2 mg/rat of rhodamine red labeled F127@1,2-NPs
via tail vein and randomly killed at different time points (T0, 1 h,
3 h, 1 day, 3 days, 7 days, and 1 and 2 months) from the injection,
and blood and organs were collected from the injection. Exper-
iments were approved by the University of Padua Ethical
Committee and from Italian National Health Institute (511/2020-
PR and 72/2016 – PR). No animal were excluded in this study.

Immunohistochemistry for different cell types identification

Immunohistochemistry was performed according to standard
procedures using the following antibodies: anti-smooth muscle
cell actin (SMA, 1:100 Dako Cytomation, Milan, Italy), anti-von
Willebrand Factor (1:100 Abcam, Prodotti Gianni, Milan, Italy),
CD68 (a marker of macrophages and Kupffer cells) (1:100
Abcam, Prodotti Gianni, Milano, Italy), followed by goat anti-
rabbit or goat anti-mouse Alexa Fluor 488 secondary antibodies
(Abcam, Milano, Italy). Nuclei were counterstained with
TOPRO-3 (Invitrogen, Molecular Probes, Eugene, OR).27,28
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Confocal laser microscopy and image analysis for the uptake
quantification of F127@1,2-NPs in organs and different cell
types

Digital Image Analysis was performed using Leica Applica-
tion Suite (LAS-AF) 3.1.1. software.27

We studied two different kinetic parameters:

1) Tissue uptake: this value was expressed as the total mean
fluorescence intensity/stack profile (MFI/stack profile),
which represents the mean fluorescence intensity
(expressed as arbitrary unit) obtained by mean gray-scale
values measured across the entire image series for each
organ. Values reported as mean ± SD (standard devia-
tion)/stack profile. This parameter identifies the intensity
of concentration of fluorophores related to F127@1,2-
NPs and is considered as the burden of NPs.27

2) Tissue retention and clearance: this parameter expressed
the persistence of F127@1,2-NPs in each organ and was
calculated as the variation of MFI over time. ΔMFI/Δt is
the time derivative function representing the rate of change
of fluorescence.

Histology for tissue damage and safety evaluation

To examine tissue damage, sections from each organ were
stained with hematoxylin and eosin and observed under a light
microscope (Leica, DM4000B,Germany).

Immunohistochemistry was performed to27:

1- evaluate tissue inflammation using anti-CD45 (anti lym-
phocytes, Abcam, Prodotti Gianni, Milan, Italy);

2- evaluate F127@1,2-NPs thrombogenicity using anti-
Tissue Factor antibody (TF, 1:100)

Slides were analyzed by light microscopy or by confocal
microscope DMI6000CS TCS SP8 (Leica Microsystem,
Wetzlar, Germany).

Statistical analysis

All statistical analyses were performed using Graphpad Prism
8. All data were presented as mean ± S.D. Comparison between
two groups was done by two-tailed Student's t-test for unpaired
data and Mann-Whitney test. Comparison between more than
two groups was assessed by one-way ANOVA. A 5 % difference
was defined as statistically significant.29,30

Results

F127@1,2-NPs characteristics

In this paper, we use the convention for core-shell structure to
name our particles. Accordingly, the outer shell is indicated first,
followed by the @ symbol and the core materials. Hence, our
nanoparticles with an F127 shell and a polylipoic acid (PLA)
core are named F127@PLA-NPs or F127@n-NP, where n is the
number of the precursor used.

Based on our previous screening of biocompatible and
biodegradable poly(lipoic acid) NPs, we selected deriva-
tive 1, featuring a 1,8-octanediol spacer connecting two
lipoic acid molecules by ester linkages, and derivative 3,
featuring a tetraethylene glycol spacer, as precursors of the
nanoparticles polymeric core. In addition, Rhodamine B-
lipoic acid derivative 2 was used to label the nanoparticles to
study biodistribution in vivo with rat models. Compounds 1,
2, and 3 were prepared in good yields form commercially
available precursors by standard synthetic protocols, as de-
scribed in the Supplemental materials. Compound 1 is soluble
in acetone, while compound 3 is soluble in both acetone and
ethanol. Dynmic light scattering (DLS) analysis revealed
that the batches of F127@1,2-NP obtained had an average
hydrodynamic diameter of 138–162 nm, with size dispersions
in the 30 % range (PDI values between 0.06 and 0.10, see
Table S1).

TEM analyses confirmed the average sized and formation of
spherical nanoparticles. The Z-potential analysis provided values
close to zero (Table S2), ensuring the uncharged nature of these
nanoparticles. Characterization data of a representative sample
are reported in Fig. 1.

Tissue distribution detection and uptake in organs of
F127@1,2-NPs

NPs distribution and density in all organs were estimated by
fluorescence confocal microscopy image analyzer algorithms.
Immediately after injection, the fluorescence of NPs rapidly
spread in all organs (Figs. 2A and 3).

The fluorescent signal increased in the heart up to 3 h,
reaching a NPs retention of 30.63 ± 10.78 MFI, about 5 times
higher than that of the lung (6.81 ± 2.74 MFI) and kidney (6.57 ±
1.66 MFI), and two-fold higher than that observed in the liver
(13.93 ± 1.42 MFI) and in the spleen (17.58 ± 7.75 MFI) at the
same time point (Figs. 2A and 3).

The mean accumulation rate in the heart was 3.69 MFI/h in
the first 3 h, with a maximum rate of 5.29 MFI/h (Fig. 2B) after
1 h. Thereafter, the mean fluorescence intensity of NPs appeared
to decrease rapidly, reaching 7.93 ± 1.15 MFI at seven days after
injection with the highest rate of NPs clearance one day after
injection (−0.61 MFI/h, Fig. 2A and B).

The NPs accumulation rate in the lung was initially rapid,
with a value of 15.87 ± 1.13 MFI at 10 min after NPs injection
(Fig. 2A). Immediately afterward, this organ showed a fast
clearance with the highest clearance rate among the other ana-
lyzed organs equal to −9.26 MFI/h 1 h after NPs injection
(Fig. 2B).

In the liver, the NPs fluorescence intensity slowly in-
creased over time, reaching both the maximum mean
fluorescence value (26.6 ± 5.13 MFI) and the maximum
accumulation rate of 0.23 MFI/h 3 days after injection. A
similar trend was observed for the spleen, which showed a
continuous fluorescence accumulation with a maximum
rate of 3.07MFI/h after 1 h of NPs injection and up to
three days, with a significant decline thereafter (Fig. 2A
and B).

Lower mean fluorescence intensity values were observed in
the kidney associated with a maximum accumulation rate of
0.465 MFI/h 3 h after injection (Fig. 2A and B).



Fig. 1. F127@1,2 NPs rhodamina conjugated. A) on the left: F127@1,2-NP based on 1,8-octanediol derivative 1 and Rhodamine B derivative 2; on the right
electron microscopy (TEM) of F127@1,2-NPs. Scale bar indicates 500 nm; B) Nanoparticles size distribution determined by TEM (average size 139 ± 38 nm) of
F127@1,2-NPs; C) nanoparticle size distribution (number weighted) determined by DLS of F127@1,2-NPs (average size 138 ± 43 nm, PDI: 0,101);
D) representative confocal image of murine atrial cardiomyocytes (HL1) exposed to F127@1,2-NPs for 3 h. Picture highlights NPs in red into the cardio-
myocytes. Nuclei were counterstained with TO-PRO3 (in blue). Scale bar indicates 10μm; E) merge of image in D with differential interference contrast (DIC)
taken with xyz ortogonal section, which shows morphology of the underling cardiomyocytes. Note as NPs (in red) are located into the myocytes as shown in
ortogonal xz section. Scale bar indicates 10 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Quantification of F127@1,2-NPs uptake in different cells types

To understand the capability of different cell types in
the studied organs to retain F127@1,2-NPs, we used a
combination of morphological/immunohistochemistry con-
focal microscopy.

Image analysis of myocytes showed the highest values of
MFI/cell 3 h after injection (25.06 ± 5.126MFI/cell). At the same
time, the fluorescence detected one day and three days after
injection inside these cells decreased significantly (16.61 ± 1.266
and 13.06 ± 1.809 MFI/cell respectively, with a p < 0.0001
between each time point, Fig. 4A, B and C).

The renal tubular cells showed an opposite trend. NPs accu-
mulation increased during the time, starting with 14.87 ± 2.551
MFI/cell 3 h and after injection and reaching 19.14 ± 3.148 MFI/
Fig. 2. Tissue distribution and quantification of F127@1,2-NPs uptake in organ
confocal microscopy image analyzer algorithms. A) Graphs depicted the NPs-flu
mean ± SD; B) graphs show the tissue retention and clearance of NPs in different
fluorescent signal increased in the heart up to 3 h, about 5 times higher than that of
the spleen at the same time point. The mean accumulation rate in the heart was 3.6
liver, the NPs fluorescence intensity slowly increased over time, reaching both th
accumulation rate of 0.23 MFI/h 3 days after injection. A similar trend was obse
cell three days after injection (Fig. 4A, D and E). The values of
MFI/cell in kidney tubular cells were statistically significant
different only between 1d and 3 days after NPs injection (15.82 ±
3.985 and 19.14 ± 3.148 MFI/cell respectively, p = 0.0007)
(Fig. 4A, D and E).

Hepatocytes showed the lowest MFI/cell value 3 h after in-
jection (13.25 ± 3.354 MFI/cell). The NP fluorescence level
increased to a value comparable with tubular cells (18.94 ± 3.033
MFI/cell, p < 0.0001) at one day after injection, and continued to
grow significantly up to 20.12 ± 3.269 MFI/cell at three days
after injection (p = 0.032, Fig. 4A, F, and G).

The NP uptake for myocytes, kidney tubular cells and he-
patocytes showed an extremely significant difference for all the
considered time points and between cell types (p < 0.0001,
Fig. 4A).
s.NPs distribution and density in all organs were estimated by fluorescence
orescence trend for each organ as MFI/stack profile. Values are reported as
organs. This parameter expresses the variation of MFI over time. Note as the
the lung and kidney and two-fold higher than that observed in the liver and in
9 MFI/h in the first 3 h, with a maximum rate of 5.29 MFI/h after 1 h. In the
e maximum mean fluorescence value (26.6 ± 5.13 MFI) and the maximum
rved for the spleen.
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Fig. 3. Microscopic tissue F127@1,2-NPs distribution in different organs at 3 h after injection. NPs (in red) accumulation in different tissues, at 3 h after i.v.
injection. Nuclei are counterstained with TO-PRO3 (in blue). Rhodamine-labeled F127@1,2-NPs are more evident in the heart compared to the other organs. In
the kidney panel, the white dashed square highlights a glomerulus. Original magnification 40×/0.6. Scale bar indicates 10 μm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Additionally, we investigated the potential NPs accumulation
in other cell types localized in the analyzed organs. We com-
pared the fluorescence level detected in myocytes and vascular
cells in the heart, marked with SMA and vWfactor antibodies
(Fig. 5). The fluorescence levels between myocytes and vascular
cells at 3 h (25.06 ± 5.126 MFI/cell vs. 15.57 ± 1.611 MFI/cell,
respectively,) 1d (16.61 ± 1.266 vs 12.49 ± 1.486 MFI/cell re-
spectively) and 3 days (13.06 ± 1.809 vs 9.10 ± 1.135 MFI/cell
respectively) showed an extremely statistically significant dif-
ference distribution (p < 0.0001, Fig. 5B). The analysis revealed
that myocytes showed a NPs accumulation almost two-fold
higher than vascular cells at 3 h after injection (25.06 ±
5.126 MFI/cell vs. 15.57 ± 1.611 MFI/cell, respectively, p <
0.0001) (Fig. 5B). The analysis of fluorescence levels in vascular
cells highlighted very statistically significant differences over
time. In particular, the analysis of vascular cells distribution re-
ported p = 0.0047 between 3 h and 1 day, and p = 0.0006
between 1 day and 3 days after injection (Fig. 5B).



Fig. 4. Quantification of F127@1,2-NPs uptake in different cells types A) graph represents MFI/cell obtained by 3 h, 1 day and 3 days after NPs injection. Data
for each cell types are reported as mean ± SD (almost 100 cells/type); B) representative confocal image which highlights the distribution of F127@1,2-NPs
(red signal) in myocytes. Nuclei were counterstained with TO-PRO3 (in blue) and SMA for vessels were seen in green. Scale bar indicates 10 μm; C) merge of
image in B with differential interference contrast (DIC) taken with xyz orthogonal section, which shows morphology of the underling heart tissue. Note as NPs
(in red) are located into the myocytes as shown in white square in orthogonal section. Scale bar indicates 10 μm. Myocytes showed the highest values of MFI/cell
3 h after injection (25.06 ± 5.126 MFI/cell) and decreased significantly (p < 0.0001) at three days after injection; D and E) representative confocal laser
microscopy images of kidney and merge with DIC (in E) taken with xyz orthogonal section, which show the distribution of NPs in kidney tubular cells
(white areas). Scale bar indicates 10 μm; NPs accumulation in kidney tubular cells increased during the time, reaching the maximum value at three days after
injection (19.14 ± 3.148 MFI/cell). The values of MFI/cell in kidney tubular cells were significant different only between 1d and 3 days after NPs injection
(p = 0.007); F and G) representative confocal images highlight the distribution of NPs (in red) in the liver. Nuclei were counterstained with TO-PRO3
(in blue). In G) DIC shows the distribution of NPs into the liver. Scale bar indicates 10 μm. Hepatocytes showed a statistically significant continuous grow up to
3 days after injection (p = 0.032). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The kidney behaved very similarly to the heart for fluores-
cence cells distribution showing that the fluorescence of NPs was
1.6 higher in kidney tubular cells than vascular cells at 3 h after
injection (14.87 ± 2.55 vs 8.91 ± 2.63 MFI/cell respectively, p <
0.0001; Fig. 6A). At one day after injection, the analysis showed
that NPs fluorescence in vascular cells was similar to kidney
tubular cells (almost 15.21 ± 4.041 MFI/cell, p = ns; Fig. 6A). At
3 days the difference between tubular cells and vascular cells was
due to the increase of kidney tubular cells uptake (19.51 ± 2.910
MFI/cell, p = 0.009) (Fig. 6A–E).

Finally, we compared the NPs accumulation between hepa-
tocytes and Kupffer cells, marked with CD68, in the liver,
(Fig. 6F). Three hours after injection, NPs were detected mainly
in hepatocytes, where the signal was two-fold higher than in
Kupffer cells (13.25 ± 3.354 vs.7.366 ± 3.056 MFI/cell respec-
tively, p < 0.0001, Fig. 6F). One day after injection, the accu-
mulation trend reversed. The signal associated with NPs present
in Kupffer cells was 2-fold higher than that detected in hepato-
cytes (37.64 ± 19.14 MFI/cell vs 18.94 ± 3.033 MFI/cell
respectively, p = 0.0002, Fig. 6F). Three days after injection,
Kupffer cells still showed a significantly higher accumulation,
reaching 48.95 ± 13.10 MFI/cell vs. 20.11 ± 3.387 MFI/cell in
hepatocytes (p < 0.0001, Fig. 6F, G, H, I).

Histological analysis of tissues after F127@1,2-NPs injection

No mortality was observed in treated animals.
The body weight of the controls and NPs-injected rats ex-

hibited similar increasing trends suggesting that F127@1,2-NPs
did not interfere with the growth rate of the animals (data not
shown).

Histological assessment was performed to examine tissue
damage, inflammation and tissue injury from F127@1,2-NPs
exposure.



Fig. 5. F127@1,2-NPs localization and uptake in myocytes and vascular cells. A) Macroscopic epifluorescence image of NPs in heart tissue section at 3 h after
tail vein injection. The intensity of fluorescence of F127@1,2-NPs (rhodamine coniugated) is represented and normalized as pseudo-color scale bar; B) graph
represents the cells mean fluorescence intensity quantification expressed as MFI/cell. Data are reported as mean ± SD (mean of almost 100 cells/field). The
fluorescence levels between myocytes and vascular cells showed a statistically significant difference over time (almost p < 0.0001), with myocytes reaching the
highest value at 3 h after injection; C) representative confocal laser microscopy image of heart section that shows NPs distribution 3 h after injection. F127@1,2-
NPs (red signal). SMA positive cells in green highlights vessels in heart section. Nuclei were counterstained with TO-PRO3 (in blue). Scale bar indicates 10 μm;
D) merge of image in C with DIC which shows morphology of the underling heart tissue; Scale bar indicates 10 μm; E) zoom image of the black square in
D), which demonstrate as NPs (in red) are present in the heart interstitium and in the vessels and in the cytoplasm of the cardiomyocytes (black dashed lines).
Zoom from 40×/0.6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Representative hematoxylin and eosin (H&E) staining results
are shown in Fig. 7. Heart, lung, liver, kidney and spleen showed
normal morphology and no pathological changes both immedi-
ately and one week after NPs injection. In addition, although the
liver accumulates a significant proportion of NPs after three days
due to the accumulation of NPs in Kupffer cells, no morpho-
logical changes were observed even at two months after NPs
injection (Fig. 7).

Moreover, in situ detection of Tissue Factor (TF) in the liver
vascular endothelial cells showed no signs of over-expression of
this marker (Fig. S11).
Fig. 6. F127@1,2-NPs quantification in kidney and liver. A) graph represents the
kidney tubular cells are reported as mean ± SD (mean of almost 100 cells/field). No
cells was due to the increase of kidney tubular cells uptake (p = 0.009); B) 3D vi
vascular cells. Original magnification 40×; C, D and E) 2D zoom of the image in B
are red, nuclei were counterstained with TO-PRO3 (in blue) and vascular cells are i
over time after NPs injection. Data are reported as mean ± SD; G) 3D view of repre
the liver. Original magnification 40 X; H, I and F) 2D zoom of the image in G
hepatocytes (white ROI). NPs are in red, nuclei in blue and Kupffer cells (CD68 a
1d after NPs injection, the NPs fluorescence was more associate with Kupffer cel
color in this figure legend, the reader is referred to the web version of this article
Finally, heart, kidney, and liver did not show inflammatory
cell infiltration at any time after NPs injection (Fig. S12).

Poly(lipoic acid)-based nanoparticles and mRNA encapsulation

To understand if these new NPs can carry and deliver mole-
cules to different organs and cells, we studied F127@3-NPs
loaded with an mRNA-FAM tag.

F127@3,RNA-NP had an average hydrodynamic diameter of
100.0 nm with size dispersions in the 64 % range (0.41 PDI
value). Efficiency of RNA encapsulation was 63 % (Fig. S9).
MFI/cell obtained over time after NPs injection. Data of vascular cells and
te that in particular, at 3 days the difference between tubular cells and vascular
ew of representative confocal image depicting the presence of NPs also into
showing NPs both in vascular and in kidney tubular cells (white ROI). NPs

n green. Zoom from original magnification of 63×; F) graphMFI/cell obtained
sentative confocal image that depict the presence of NPs into Kupffer cells in
which underline that NPs (in red) are more associated to Kupffer cells than
ntibody) are shown in green (I). Zoom from original magnification of 63×. At
ls than with hepatocytes (p < 0.0002). (For interpretation of the references to
.)
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Fig. 7. Hematoxylin and Eosin (H&E) of major organs.H&E staining of heart, lung, kidney, liver and spleen showed normal morphology and no pathological
changes both immediately and one week after NPs injection. In addition, although the liver accumulates a significant proportion of NPs after three days due to the
accumulation of NPs in Kupffer cells, no morphological changes were observed even at two months after NPs injection. In particular, no signs of necrosis are
present. Original magnification 10×.
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Treatment of murine atrial cardiomyocytes cell line HL1 with
these NPs confirms their ability to enter the cells and likely
release their “cargo” into the cells (Fig. 8A–C). In addition, the
3D confocal analysis showed mRNA (in yellow) inside the cells
and localized near the cardiomyocytes nuclei (Fig. 8B–E).

Discussion

In this paper, we have demonstrated that F127@PLA-NPs
injected intravenously can be successfully delivered to various
organs.

Interestingly, the behavior observed is different from the
typical ones of PEGylated nanoparticles. In most of the cases,
these accumulate first in filtering organs, as liver and spleen, with
significantly higher concentrations than in other organs.3,31–35

Initial accumulation in highly vascularized organs, as lungs, is
also observed in a smaller number of cases. Accumulation in
kidneys occurs later, as well as, in a limited number of reported
cases, in the heart.36–41

By the contrary our NPs were rapidly and selectively incor-
porated in the heart, with a subsequent slow redistribution in
liver, spleen and kidneys.

Preferential accumulation in the hearts was reported previ-
ously only for PEGylated solid lipid nanoparticles (SLN), but
their kinetic uptake was not investigated.42–44 Noteworthy,
structure and general properties of PEGylated SLN and our NP
should be quite similar. In both of the cases, they feature a neutral
hydrophilic outer shell that encloses a lipophilic core made re-
spectively by cholesterol and polymerized lipoic acid deriva-
tives. This structure is likely responsible for the unusually low
adsorption of plasma proteins previously observed, and likely
also for the fast heart accumulation.

We observed that concentration of NPs in the heart reaches
their maximum in 3 h but declines relatively slowly with 30 % of
the total still present at seven days. The subsequent increasing
trend in NPs accumulation over time in liver and spleen, which
reaches a maximum at days 3–7, is probably due to a gradual
redistribution of NPs from other tissue as previously underlined
by Daems e coworkers.45

In the kidney, the maximal accumulation also was observed
after three days and persisted unchanged at day seven, in keeping
with the slow degradation of the nanoparticles, which were too
large to pass the renal filters. It is important to underline that the
whole kinetic behavior and organ retention of our NPs fully
supports the effective inclusion of dye 2 in the polymerized core
before tissue uptake, since in the case of early degradation oc-
currence renal clearance would be expected.

The data so far discussed are very important for identifying
therapeutic windows, when drugs or molecules acting on both
organs have to be used. In addition, since organ distribution does



Fig. 8. Evidence of NPs loaded with mRNA-FAM conjugated in vitro.A) Schematic representation of F127@3-NP based on 1,8-octanediol, monomer 1, and
mRNA-FAM conjugated; B) confocal microscopy 3D projection showing murine atrial cardiomyocytes cell line HL1 at 1 h after treatment with NPs loaded with
mRNA-FAM conjugated. Note as the mRNA (FAM in yellow) is present into the cardiomyocytes and near the nuclei counter-stained with TO-PRO3 (in blue).
Scale bar indicates 20 μm. Treatment of murine atrial cardiomyocytes with these NPs confirms their ability to enter the cells and likely release their “cargo” into
the cells; C) orthogonal yz section highlights mRNA molecules into the cardiomyocytes. D) representative 2D confocal image of cardiomyocytes with
differential interference contrast (DIC, in gray) which shows morphology of the underling cells. Nuclei were counterstained with TO-PRO3 (in blue) and mRNA
conjugated with FAM (in yellow). Scale bar indicates 10 μm; E) zoom of representative confocal image that shows mRNA (in yellow). Zoom from 63×.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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not necessarily reflect the accumulation in the different cell
populations that form the entire organ, we looked at single cells
types, especially those that could constitute the target of thera-
peutic interventions in cardiovascular syndromes.

We have found that NPs, beside in interstitial and
endothelial cells, were present and retained in cardiomyo-
cytes, kidney tubular cells and hepatocytes. In particular,
the distribution of NPs in cardiac vascular cells and car-
diomyocytes was almost identical at three days. Zhang and
coworkers46 also reported that cardiac cells were able to
internalize nanoparticles by endocytosis mediated by lipid raft
and actin more than by clathrin in FITC-PEG-SPIONs NPs
uptake.

Actually, the mechanism underlying the accumulation of our
in-house F127@PLA-NPs in the cardiomyocytes is not known
and studies aim to clarify the key pathway of the cardiac cells'
uptake are ongoing.

Our results may be of particular relevance for the
applicability NP as drug nanovectors in one of the most
complex syndromes in the cardiovascular field, namely, the
cardiorenal syndromes.

Cardiorenal syndromes are characterized by an intricate
cross-talk between the failing heart and the kidneys with alter-
ations in hemodynamic, neurohormonal, and inflammatory re-
sponses that lead to molecular derangement very often specific
for different phenotypes.47,48

We have recently found that in CRS type II, NGAL/MMP9
complexes play a significant role in perpetuating the vicious
cycle of heart and kidney morphologic adverse remodeling.28,49

So far, no pharmacological interventions have led to the
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interruption of this cycle, but genomic therapy delivering
miRNA utilizing NPs may open a new therapeutic avenue.

This has been already applied in myocardial infarction and
ischemic-reperfusion injury animal models in which miRNA
loaded in different types of nanoparticles were used to block
cardiomyocytes apoptosis, myocardial inflammation and to
promote cardiomyocytes proliferation.50–55

Another critical issue of the present paper is the safety
profile of NPs. We have shown with normal histology that
no tissue damage is present, especially in terms of in-
flammation or tissue necrosis. Furthermore, thrombogeni-
city, which is one of the most feared side effects with
therapies employing NPs, has not been observed in that no
tissue factor activation has been found in any of the
studied organs. Tissue factor (TF), the 47 kDa membrane-
bound glycoprotein, is always present on sub-endothelial
cells under normal physiological conditions. Endothelial
damage exposes TF to the bloodstream activating the co-
agulation protease cascades and promoting thrombotic ep-
isodes.56 We have shown that NPs injection did not induce
endothelial injury and the consequent activation of sub-
endothelial TF expression, indicating that our F127@PLA-
NPs did not promote thrombi formation.

These data are in keeping with our previous work20 in which
we have already demonstrated the in vitro cell compatibility of
these NPs using blood leukocytes and red blood cells. As well,
we showed lack of procoagulant activity in vitro in human
plasma. Moreover, NPs were already shown to have poor protein
adsorbing properties in human serum, plasma and other complex
protein matrix.

The data on NPs pharmacokinetic are undoubtedly essential,
but it can be argued that for granting a therapeutic effect, it has to
be demonstrated that drugs, molecules, or miRNAs have to be
delivered into cells once carried by the NPs.

This question has been partially answered in this paper
since we have shown that mRNAs are carried and delivered
into the cultured myocytes by NPs in vitro. Furthermore,
mRNAs are localized predominantly in the perinuclear area,
similar to that found for NPs in the in vivo experiments.
Ruiz-Esparza et al.57 also reported that cardiac cells are able to
internalize and traffic nanoparticles to the perinuclear cellular
regions. These preliminary data represent a proof of concept
that miRNA can be loaded on our F127@PLA-NPs and
delivered to intracellular space. In the future, the therapeutic
effect and the ability of the NPs to deliver mRNA to specific
organs needs to be demonstrated in vivo animal models of
disease and later on patients.

In conclusion, we think that this paper answers the main
questions we previously posed on NPs, in particular kinetic,
organs distribution and retention, safety, and ability to carry and
deliver miRNAs at the intracellular level.
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