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Abstract

We study the convergence of day-ahead prices and balancing prices for

the Italian power market. The zonal time-series of the prices are evaluated,

seasonally adjusted and tested to assess their long-run properties. We fo-

cus on the dynamic behavior of the four continental zones of Italy (North,

Central-North, Central-South and South). Using a sample of data that spans

the last decade and applying the fractional cointegration methodology, we

shows the existence of long-run relationships. This signals the existence

of convergence between prices in each zone but zone Central-South, where

prices are divergent. We also measure the average price di�erence, and anal-

yse how it evolves over time. Price di�erentials dynamically reduce for all

zones except for Central-South. We comment the results in terms of increas-

ing e�ciency, and provide an interpretation for the di�erences across zones.

We also discuss policy consequences for both Italian and other markets.
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1 Introduction

In liberalized power systems, power producers and users (suppliers and retailers)
exchange electricity at the wholesale level in markets that are close to real-time
delivery, the so-called Day-Ahead (DA) markets. However, in real time, it can
occur that the amount of electricity e�ectively injected (or withdrawn) di�ers form
the scheduled amount. Hence, an imbalance occurs. This happens whenever the
schedule that results from the DA market (and possibly adjusted in the Intraday
Markets) is modi�ed by the occurrence of some event that entails the need for
more (or less) power. In this case, the Transmission System Operator (TSO)1 must
intervene to maintain the stability of the system by calling additional electricity
generators to supply the electricity that was lacking, or curtailing the excess supply,
and charging the cost of the imbalance to the subject that created it.

Real-time prices are calculated in di�erent ways around the world. On the
one hand, they are obtained by the TSO solving an optimal power �ow problem
calculated on the basis of pre-received bids for given short time slots (generally
every �ve minutes), eventually taking into account transmission constraints. This
is the way real-time prices are �xed in all major ISOs in US, such as New England,
New York, the PJM Interconnection (in Pennsylvania, New Jersey, Maryland and
a number other eastern states), the Midwest, Texas, and California. In these
markets electricity prices are calculated at each node, both at the DA and real-
time level (and include the shadow cost of power transmission on congested power
transmission lines, called Locational Marginal Pricing). On the other hand, it is
possible to establish explicit markets in which power producers and load serving
entities trade with the TSO electricity for balancing needs. This is what happens in
the real-time German Balancing Power markets (Ocker and Ehrhart, 2017) and in
the Italian Ancillary Services markets (called Dispatching Services Market - MSD).
In the latter case, secondary and tertiary reserves and electricity for balancing are
exchanged between quali�ed sellers and the TSO through a set of explicit auctions
and priced with a dual pricing system. The price of negative imbalances (due to
excess load or lack of supply in real time) is not less than the system marginal
price that emerged at the DA level, while the price of positive imbalances (the
excess supply of electricity or the reduction in the real-time load) is not higher
than the system marginal price.

In this paper, we study the long-run relationship between DA and real-time
prices in a market where the latter are established through explicit auction ses-
sions, such as the Italian one. We want to establish if data con�rm the hypothesis
of price convergence, which should occur in mature markets where arbitrage oppor-

1In this paper we refer to the TSO as a general term, regardless of whether it is an Independent
System Operator - ISO - as in the USA or a proper Transmission System Operator as in Europe.
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tunities are already exploited. Indeed, several articles con�rm such a hypothesis,
focusing on the relationship between DA and real-time pricing in the US markets
(Borenstein et al., 2001, Arciniegas et al., 2003, Longsta� and Wang, 2004 and
Jha and Wolak, 2013). However, there are considerably fewer studies for European
markets. Boogert and Dupont (2005) study the pro�tability of trading strategies
across the DA and real-time (balancing) market in the Netherlands. Asan and
Tasaltin (2017) explicitly measure the impact of the introduction of dual pricing
rule on the convergence of DA and real-time prices in Turkey. A related stream of
literature focuses on balancing prices and the role that external factors can have
on them. Indeed, the price convergence can be in�uenced by the strategic behavior
of agents acting in the balancing market, that can exploit their market power by
strategically withholding capacity (Heim and Goetz, 2013). Market power can be
enhanced by the design of the balancing market, such as auction formats, settle-
ment rules, limited participation (Ocker et al., 2018a,b, Muesgens et al., 2014).
The market structure can also in�uence price convergence, and in particular the
role played by Renewable Energy Sources (RES). The impact of RES on DA prices
has received a vast attention (see, among others, Gelabert et al., 2011, Mauritzen,
2013, Mulder and Scholtens, 2013, Sapio, 2015, and Woo et al., 2011). A more
recent stream of literature has focused on the institutional design of balancing un-
der increasing RES penetration (Hirth and Ziegenhagen, 2015, Ocker and Ehrhart,
2017, and Brijs et al., 2015) and on the condition for RES to participate to bal-
ancing markets (Sorknæs et al., 2013, Fernandes et al., 2016, and Müsgens et al.,
2014). Closely related works have been undertaken by Gianfreda et al. (2016),
who study the impact of RES generation in the Italian DA, intraday and bal-
ancing prices and of Gianfreda et al. (2018), who evaluates the impact that RES
penetration has had on the balancing costs for the Italian TSO.2

Considering all hours of the day, we study the long-run relationship between
balancing prices and DA over a long time period in the four continental zones of the
Italian market.3 Such an approach allows us to capture the existence of a common
long run behavior between the series, if present. Indeed, even if RES penetra-
tion can impact both balancing and DA prices, this might not be the only relevant
factor, and the common long-run behavior can be related to other elements. For in-
stance, Bigerna et al. (2016) show that an increasing RES penetration can enhance
market power; this can turn into increasing prices in both markets. Furthermore,

2There are a number of relevant di�erences between these works and our contribution. In
Gianfreda et al. (2016, 2019) they focus on four hours of the day. In the Gianfreda et al. (2016)
work they consider two zones. In the Gianfreda et al. (2016) paper they consider the long-run
dynamics using weekly median prices of these four hours, while we use deseasonalized hourly
prices.

3As explained in the Section 3, our dataset does not allow us to test the long-run relationships
for the two islands of Sardinia and Sicily.
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de Menezes et al. (2016) and Gianfreda et al. (2019) assess the importance of fuel
prices on DA, intraday and balancing costs, for the European and Italian markets,
respectively. These are common elements that can in�uence both DA and bal-
ancing prices. However, before focusing on a single determinant of the price in a
given market, our purpose is to assess whether data con�rm the existence of price
convergence between DA and balancing, within a given market.

To carry out our study, we need to take into account the seasonal nature of
power prices. Electricity prices are subject to a complex seasonal structure, at
the daily, weekly and annual level. There is a large stream of literature focusing
on the seasonality of wholesale electricity prices (see Weron, 2007, Caporin et al.,
2012, Janczura et al., 2013, Nowotarski and Weron, 2016, Uniejewski et al., 2018,
among many others). We take seasonality into account in the empirical analysis
evaluating the characteristics of the deterministic patterns of electricity prices at
both the DA and the balancing level. We �rst compare, with a descriptive view,
the periodic patterns in the two markets in each zone, pointing out similarities
and di�erences. Then, we apply a �ltering methodology that allows to remove
the periodic components of the data and later focus on the analysis of seasonally
adjusted prices, to verify if they converge to a common long-run trend.

From an econometric perspective, price convergence calls for the presence of
cointegration. We proceed in steps and �rst discuss the integration properties of
the seasonally adjusted zonal prices. Our analysis shows that the prices are not
characterized by unit roots, thus excluding the possible presence of cointegration
in the classic sense, that is associated with the long-run equilibrium between non-
stationary stochastic processes characterized by unit roots. However, since all
the price series (�ltered from the periodic patterns) show evidence of long range
dependence, or long memory, we cannot exclude the possible presence of fractional
cointegration, see Robinson and Yajima (2002) and Johansen (2008) among others.
The latter feature allows for the presence of a long-run link among price series that
have long memory. Therefore, we �rst estimate the memory properties of the price
series and then determine if the latter are fractionally cointegrated.

The data allow us to focus on the four Italian continental zones, namely, North
(NO from now onward), Central-North (CN), Central-South (CS) and South (SO).
We show that the wholesale and the balancing markets are linked in the long-
run; however, each zone has its speci�c behavior. In particular, evidence of price
convergence is stronger for the NO zone, less so for CN and SO, while there is
evidence of divergence between the series in CS. The price di�erence between DA
and real-time is a measure of the di�erence in the electricity cost provision, thus
providing the magnitude of markets' ine�ciency. Price convergence implies that
such a di�erence should reduce over time. To further investigate the dynamics of
convergence over time, if any, we study how does the price di�erence between the
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series evolves in each zone throughout yearly rolling windows. We show that in
NO and CN zones, the average price di�erence converges to zero, even though in
an unstable way. In the SO zone it quickly converges to zero in the latest period,
while in zone CS it tends to diverge over time. Overall, the zone that shows higher
e�ciency in terms of price convergence is the NO zone, followed by CN and more
recently SO. In CS there are increasing arbitrage opportunities, which suggest that
a more careful assessment of the market e�ciency of this zone is needed. Overall,
our analysis shows that even in market that share the same regulation and common
institutional factors, local speci�c factors (that can be related to the structure of
the grid or of the power supply) are the key elements that a�ect market e�ciency.

The paper is structured as follows. In section 2, we present the main features
of the Italian DA and ancillary services markets. In Section 3 data is discussed and
analyzed. Section 4 introduces the methodological approach followed. Results are
presented in section 5. Policy implications are discussed in Section 6. References
follow. Furthermore, a supplementary document contains additional empirical
results.

2 The Italian Day-Ahead and ancillary service mar-

kets

The Italian Power Exchange (IPEX), managed by the Gestore del Mercato Elet-
trico (GME), is organized in several markets, depending on products delivered and
on the time horizon of the delivery. For the purpose of this analysis the relevant
markets are the following:

a) The DA Market (Italian acronym MGP, Mercato del Giorno Prima), where
producers, wholesalers, and eligible �nal customers may sell/purchase elec-
tricity for the next day;

b) The ancillary service market (Italian acronym MSD, Mercato del Servizio
di Dispacciamento - Dispatching Services Market), where the Italian TSO
(Terna s.p.a.) provides the dispatching services needed to manage, operate,
monitor and control the power system. The Italian MSD consists of the
scheduling stage (ex-ante MSD), and of the Balancing Market (BM). In the
ex-ante MSD, the TSO accepts demand bids and supply o�ers in order to
relieve residual congestion, and to create reserve margins. In the BM, the
TSO secondary and tertiary reserves are exchanged between generators and
the TSO, to perform secondary regulation and maintain the system balanced.

Both the MGP and the MSD have a zonal con�guration. There are 6 (physical)
market zones: North (NO, in Italian Nord), Central-North (CN, in Italian Centro-
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nord), Central-South (CS, in Italian Centro-sud), South (SO, in Italian Sud), Sicily
(SI, in Italian Sicilia) and Sardinia (SA, in Italian Sardegna).4 Unfortunately,
the patterns of the data, characterized by missing observations, instability in the
seasonal patterns, presence of structural breaks in the mean as well as in the
variance do not allow us to analyse the two zones of Sicily and Sardinia.5

At the DA level, generators participate making o�ers at plants level. With
the exception of plants with production larger than 10MW, the o�ers of RES-
sources are grouped by GSE (the Italian public company managing all activities
related to RES) and are submitted at zero prices to the market. These have
priority dispatching. Instead, only a subset of plants that participate to the DA
market are allowed to participate to the ancillary service markets, namely, the
large thermal and hydro and water plants with production above 10 MW, which
can o�er secondary and tertiary reserves. A relevant di�erence between the MGP
and the MSD is related to the equilibrium pricing rule in the auction. The DA
market, MGP, works with uniform auctions, that �x the system marginal price at
each hour. The winning bidders receive the system marginal price of the zones in
which they are located. The load pays a weighted average, namely, the average
of the (possibly) di�erent prices originated at the zonal level weighted by the
volume of e�ective exchanges (net of purchases for pumping and from virtual
foreign zones). This is called Single National Price (Italian acronym PUN Prezzo

Unico Nazionale).
The equilibrium pricing rule of the MSD is a pay-as-you-bid-rule. Firms receive

the price they have o�ered/demanded, if their o�er to sale/purchase ancillary
services to/from the TSO has been accepted. More precisely, power plants make
o�ers to rise or reduce the power they had already o�ered at the MGP. For instance,
a plant sells power to the TSO whenever the latter forecasts the need of more
power than the one bought at the DA Market to relieve a congestion or preserve
a su�cient reserve margin. These are called sales o�ers, or up-regulation o�ers.
Similarly, power plants sell to the TSO o�ers to reduce production (called purchase
o�ers or down-regulation o�ers) if the TSO faces, for instance, an imbalance due
to an excess supply of power for a given hour and zone. The TSO cashes in the
accepted down regulation o�ers, and pays accepted up regulation o�ers. The MSD

4There exists also limited production poles, which are production areas with null or negligeable
load that are constrained by relevant export congestions, and foreign and virtual zones.

5The zones of the two islands Sardinia and Sicily are scarcely interconnected with the con-
tinent. Furthermore, their interconnection capacity has been changing throughout the sample
period. Markets in these islands have their own peculiarities. In Sardinia there are no gas-�red
power plants since there are no natural gas pipelines. This is a sharp di�erence compared with
the rest of Italy, where natural gas �red plants are the majority of thermal power plants. In
Sicily, balancing prices have been administratively set under a special regime from 2016 onward,
due to the lack of su�cient thermal capacity in the MSD. Due to their peculiarities, we believe
that there is no lack of generality from not having these two zones analysed.
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includes two markets where bid and o�ers are structurally di�erent. In the �rst
market, the MSD ex-ante, there are o�ers to buy the power needed (ex-ante) to
reduce the predicted zonal congestion and therefore to create reserve margin. In
the second market, the Balancing Market, o�ers are made to provide secondary
and tertiary reserves.

The prices at MSD are given for every hour of the day and for every zone of
the Italian electricity market. Each sale (or purchase) o�er that is accepted in
the MSD is then priced at its own price (pay-as-you-bid). Therefore, no proper
single price arises at the MSD level. However, the market operator provides data
of weighted average of accepted up and down regulation o�ers, in which each price
is weighted by the amount of power that has been e�ectively purchased. In order
to calculate the net cost of balancing in a given hour and zone, we calculate the
weighted average of all the up and down regulation o�ers, for every hour and for
both MSD ex-ante and MB. The up regulation has a positive sign denoting that
this is a cost for the SO, while the negative sign of the down regulation signals
that the SO cashes in those o�ers. The algebraic sum of the (weighted average
of all accepted) o�ers represents the e�ective cost for the electricity system of the
provision of ancillary services that are needed because of aggregated imbalances
in a given hour and zone. This net imbalance price corresponds to the imbalances
cost due to the di�erences between the predicted DA quantities and the quantities
needed by the TSO to maintain the system balanced. In other words, it represents
the social costs (for the electricity system users) of having the electricity system
balanced by the TSO.

3 Data description and analysis

We use publicly available data provided by GME on its website. The prices are
hourly, zonal, ranging from 1st January 2010 to 31st August 2019, for a total of
84,720 observations for each zone in each market. The MGP prices are the system
marginal price of each zone and hour. For the ancillary service prices, we take the
weighted averages of accepted (non-revoked) o�ers of the ex-ante MSD and add
to each weighted average the price of the BM in that hour and zone, weighted by
the respective volume, if present. Then, we calculate the net di�erence between
prices of up and down regulation per each zone and hour. The resulting price,
which measures the net balancing costs in a given hour and zone, can be positive
or negative. In the former case, there would be an excess demand, that is a need
of power for balancing purposes since the amount exchanged at the DA level is
less than the actual quantity needed. The opposite for negative prices.
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Figure 1: Time series of MGP. The �gure reports the time series of the MGP prices for

the four zones, North (NO), Central-North (CN), Central-South (CS), South (SO).

Figures 1 and 2 report the time series of MGP and MSD for the four areas.
From a visual inspection of Figure 1, it appears that MGP and MSD have a mean-
reverting and stationary behavior, with MSD displaying larger dispersion around
the mean. Furthermore, by looking at the same price series in the four di�erent
areas, we notice common dynamic patterns, which will be studied in Section 4 in
terms of fractional cointegration. Table 1 reports descriptive statistics for MGP
and MSD prices by zone. There are clear di�erences between MGP and MSD.
Zones are quite di�erent in terms of price values, as well as with respect to the
presence of zeros or negative values. For what concerns the MGP prices, the
median values are around 55 in all cases. Instead, we observe larger di�erences
between zones for the MSD. First, the median values highly di�er across zones
and also in relation with the median MGP value. In the NO zone, the median is
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Figure 2: Time series of MSD. The �gure reports the time series of the MSD prices for

the four zones, North (NO), Central-North (CN), Central-South (CS), South (SO).

50% higher than the corresponding MGP value, while in the CN zone the MSD
price is only slightly higher than the MGP price. On the contrary, the MSD price
is almost twice as much as the MGP price in CS. This is due to the frequent need
of costly up regulation. For the SO zone, the median MSD price is zero, which is
associated with the large fraction of zeros included in the data on SO, except for
very recent periods.

It is worth recalling that these prices are e�ectively social costs paid by the
TSO, which are then transferred to the end consumers through a speci�c tari�
component. Negative �gures therefore are negative costs, namely, net gains for
the TSO, that arise whenever the willingness of generators to pay to reduce power
outweighs their willingness to be payed to generate. This occurs if the zone is long
on power, and generators cannot adjust quickly enough their production. Note that
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negative prices can also depend on the level of competition among producers, since
the higher the competition the more producers are forced to bid �ercely among
themselves in the market. Negative prices can be observed in a limited number of
cases, less than 2% for NO, while for CN and CS, the percentage of negative prices
reaches much larger frequencies, about 21% and about 12.5%, respectively. This
signals the fact that, in the observed period, these zones went long more frequently
than the others, and generators had di�culties to reduce their scheduled programs.
The fraction of zero prices is also a relevant quantity, as the distribution of zeros
across zones shows in which zones dispatching services were less used in the sample
period. NO is the only zone without zero prices in the sample. Recalling that a
zero price signals that ancillary services are not needed in that hour and zone
(and therefore have null value), it follows that NO needs a continuous balancing of
power. Di�erently, zeros are a relevant fraction for CN (about 19%), and a more
limited fraction of the sample for CS (about 6%).

Zone Min Q(5%) Q(25%) Median Q(75%) Q(95%) Max % of   0 % of 0 Range IQR
MGP

NO 0.00 31.16 45.46 57.29 69.27 89.76 224.00 0.00 0.00 224.00 23.81
CN 0.00 31.00 45.00 56.97 69.27 90.00 224.00 0.00 0.00 224.00 24.27
CS 0.00 30.13 44.01 55.61 68.54 89.85 224.00 0.00 0.00 224.00 24.53
SO 0.00 29.67 43.00 54.32 66.68 85.01 212.00 0.00 0.00 212.00 23.68

MSD
NO -52.70 44.15 59.23 74.21 97.07 155.29 2403.71 1.30 0.00 2456.41 37.84
CN -301.61 -39.00 0.00 57.93 95.00 169.07 1045.00 21.07 19.40 1346.61 95.00
CS -153.94 -26.61 58.35 104.16 194.50 372.80 2800.75 12.52 6.05 2954.69 136.14
SO -185.55 0.00 0.00 0.00 0.00 142.56 1003.00 3.51 82.10 1188.55 0.00

Table 1: Descriptive analysis of MGP and MSD prices. The table reports, by zone,

minimum and maximum values, the 5%, 25%, 50%, 75% and 95% quantiles, the fractions

of null and negative prices, the Max-Min range and the interquartile range.

3.1 Seasonality

The seasonality in the MGP and MSD prices might derive from the superposition
of several cyclical patterns: the diurnal ones, due to the di�erences in electric-
ity demand between day and night; the weekly pattern, with di�erent demands
during workdays and week-ends (with holidays usually behaving as Sunday); the
yearly one, due to the alternation of seasons and summer breaks in the industrial
activities. To study the level of temporal dependence in the time series of MGP
and MSD, we look at the the sample auto-correlation function (ACF). Figures 3-4
display the ACFs of the MGP and MSD prices for the four zones and highlights
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Figure 3: ACF of MGP. The �gure reports the ACF of the MGP prices for the four

zones, North (NO), Central-North (CN), Central-South (CS), South (SO).

their strong seasonal patterns.
To deal with the complex cyclical pattern we follow, among the various methods

proposed in the literature, the approach by Bernardi and Petrella (2015) that
introduce a �exible exponential smoothing method to capture seasonal cycles in
time series. Their model allows to deal with monthly, weekly and intra-daily
patterns. Note that by adopting the method of Bernardi and Petrella (2015) and
given the existence of a yearly cyclical pattern in the series, the �ltering procedure
leads to a reduction of the length of the series by one year (the year 2010 in our
case). We follow Bernardi and Petrella (2015) and estimate the following model
on the zonal prices. Let yt be the series of interest (like MGP or MSD prices for
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Figure 4: ACF of MSD. The �gure reports the ACF of the MSD prices for the four

zones, North (NO), Central-North (CN), Central-South (CS), South (SO).

a given zone), observed from t � 1, 2, . . . T at a hourly frequency, then

yt � µt�1 �
J̧

j�1

λjdj,t �
I̧

i�1

xi,tsi,t�24 � εt (1)

µt � µt�1 � αεt (2)

si,t � si,t�24 �

�
I̧

j�1

γi,jxj,t

�
εt, i � 1, 2, . . . I (3)

εt �
p̧

i�1

φiεt�i �
q̧

i�1

θiζt�i � ζt. (4)

The model includes several components. First, µt is the long-run evolution of
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the series, the trend component, following a random walk plus noise speci�cation.
The variables dj,t with j � 1, 2, . . . J are monthly dummies taking value 1 if a given
day belongs to month j, but note that we might set the monthly dummies such
that we have J ¤ 12 dummies, thus J di�erent monthly e�ects. The collection of
si,t, i � 1, 2, . . . I represents the cyclical component of the model. It captures the
di�erences in the daily patterns across days of the week, with 1 ¤ I ¤ 7 di�erent
patterns. Note that each si,t follows a daily seasonally integrated process with a
multiplicative error term. In the latter, the variables xl,t are dummies taking value
1 if the observation at time t falls within one of the I intra-weekly seasonal cycles.
The error term εt follows an ARMA process whose innovations are assumed to be
Normally distributed with mean zero and unit variance.

For details on the implementation and estimation of the model we refer to
Bernardi and Petrella (2015). In our analysis, we set I � 5 di�erent day types,
setting Tuesday, Wednesday and Thursday to share the common intra-daily sea-
sonal cycle. In terms of monthly dummies, we borrow them from the analysis of
Bernardi and Petrella (2015) that consider the electricity demand in Italy from
2004 to 2014, and consider �ve monthly patterns, J � 5, where the �rst group of
months include January, March, June, September and October, the second group
comprises November and December, April and May constitutes the third group
while February and July the fourth. Finally, August is separately considered given
its peculiar behavior. Similarly to Bernardi and Petrella (2015), we also separately
consider irregular days (holidays). For the innovation term, we specify a simple
autoregressive process of order 1. Once the parameters of the model are estimated,
the seasonally adjusted (�ltered) series are computed as

ỹt � yt �
J̧

j�1

λ̂jdj,t �
I̧

i�1

xi,tŝi,t�24, (5)

where we remove the cyclical behaviors only, while maintaining the long-term
component and the irregular component.

The empirical ACFs of the seasonally adjusted series, reported in Figures 5 and
6, show evidence of two phenomena. First of all, the �ltered prices of MSD (and
to a lesser extent also of MGP) appear still slightly contaminated by a seasonal
behavior, as highlighted by the mild periodic pattern of the correlograms, with
an oscillation with a period of 24 observations (one day). This suggests that
some residual stochastic periodic component is still present in the �ltered series.
Secondly, all series display long range dependence, as the ACF slowly decreases
toward zero and it is still highly signi�cant after 100 lags in all cases. This indicates
that the adjusted price series might follow a stationary and predictable process
with long memory and not, as usually expected for prices in �nancial markets, a
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Figure 5: ACF of the �ltered MGP. The �gure reports the ACF of the �ltered MGP

prices for the four zones, North (NO), Central-North (CN), Central-South (CS), South

(SO).The �ltering has been performed following the method of Bernardi and Petrella

(2015).

random walk process; see, among many others, (Fama, 1965).

3.2 Long memory

The existence of common trends in prices points at the existence of a long-run
relationship. In particular, the classic way to determine whether two or more
series are linked in the long-run and to verify if there is an equilibrium relation
between them (with non persistent deviations from it) is by means of the well
known concept of cointegration. Unfortunately, the concept of cointegration is
typically restricted to Ip1q time series, whose dynamic behavior resembles that
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Figure 6: ACF of the �ltered MSD. The �gure reports the ACF of the �ltered MSD

prices for the four zones, North (NO), Central-North (CN), Central-South (CS), South

(SO). The �ltering has been performed following the method of Bernardi and Petrella

(2015).

of a random walk. Thus, we �rst carry out the augmented Dickey-Fuller and
Philips-Perron tests to verify if the �ltered zonal MGP and MSD prices are unit
root processes. The results of the tests (not reported) are concordant in strongly
excluding that the dynamics of the two series are coherent with those of a unit root
process. Consequently, the prerequisite for the classic de�nition of cointegration is
missing, i.e. the series are not Ip1q. However, such a �nding does not completely
exclude the possible presence of long-run links among the variables of interest.
In fact, all series share a relevant feature; they are all characterized by strong
persistence. This suggest that a speci�c form of long-run relation might exist, the
one associated with the concept of fractional cointegration, which arises between
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series that are not Ip1q (or Ip2q), but are nevertheless characterized by long-range
dependence. The latter thus becomes a prerequisite for fractional cointegration.

md � T 0.5 md � T 0.6

MGP MSD MGP MSD
NO 0.56 0.49 0.42 0.38
CN 0.55 0.51 0.42 0.42
CS 0.53 0.52 0.40 0.35
SO 0.53 0.68 0.37 0.55

Table 2: Estimates of the memory parameters on the seasonally adjusted series following

the approach of Shimotsu and Phillips (2005) and Shimotsu (2010). md denotes the

bandwidth chosen for the estimation of the long memory (or fractional) parameter. md

is set proportional to T (the sample size); see Shimotsu and Phillips (2005).

As a �rst step, we proceed to the estimation of the degree of persistence (or
memory) of the series following the semiparametric approach of Shimotsu and
Phillips (2005) and Shimotsu (2010), which is robust to deterministic terms. Table
2 reports the estimated memory coe�cients, d. A signi�cantly positive coe�cient
indicates the presence of long memory (or long-range dependence). In particular,
if d   0.5, the series is long memory but stationary. The semiparametric estimator
of Shimotsu and Phillips (2005) and Shimotsu (2010) is de�ned in the frequency
domain so that its asymptotic properties (bias and variance) depend on the number
of frequencies used in the estimation, namely the bandwidth (md). Table 2 reports
the estimates for two di�erent bandwidth: in all cases the memory coe�cient is
positive, and in most of them, the memory coe�cient is lower than 0.5 when
md � T 0.6, and slightly above 0.5 when md � T 0.5. In general, the long memory
parameters of MGP and MSD are very close, thus suggesting that the two series
share the same level of long memory. Consequently, we state that all the zonal
prices, �ltered from the periodic patterns, display signi�cant long memory and are
stationary. As a �rst step, we proceed to the estimation of the degree of persistence
(or memory) of the series following the semiparametric approach of Shimotsu and
Phillips (2005) and Shimotsu (2010), which is robust to deterministic terms. Table
2 reports the estimated memory coe�cients, d. A signi�cantly positive coe�cient
indicates the presence of long memory (or long-range dependence). In particular,
if d   0.5, the series is long memory but stationary. The semiparametric estimator
of Shimotsu and Phillips (2005) and Shimotsu (2010) is de�ned in the frequency
domain so that its asymptotic properties (bias and variance) depend on the number
of frequencies used in the estimation, namely the bandwidth (md). Table 2 reports
the estimates for two di�erent bandwidth: in all cases the memory coe�cient is
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positive, and in most of them, the memory coe�cient is lower than 0.5 when
md � T 0.6, and slightly above 0.5 when md � T 0.5. In general, the long memory
parameters of MGP and MSD are very close, thus suggesting that the two series
share the same level of long memory. Consequently, we state that all the zonal
prices, �ltered from the periodic patterns, display signi�cant long memory and are
stationary. Given that the estimated long-memory parameters are very close to
each other we proceed with the estimation of a dynamic model coherent with both
the presence of long-memory and the possible converge between markets.

4 The model

On the basis of the statistical evidence outlined above, we considier a fully para-
metric model coherent with the presence of a common stochastic trend with long
memory, namely fractional cointegration. The goal is to shed further light on the
long-run dependence between MGP and MSD in each zone. We adopt a fractional
vector error correction model speci�cation to study if the series of de-seasonalized
hourly MGP and MSD prices are characterized by common trends in each con-
tinental Italian zone. The properties of a fully parametric speci�cation for the
analysis of fractionally cointegrated series have been studied by Johansen (2008)
and Johansen and Nielsen (2012). In particular, the asymptotic theory of the
maximum likelihood estimator for the model parameters has been fully derived
in Johansen and Nielsen (2012), thus allowing proper inference on the estimated
parameters. The model speci�cation of Johansen and Nielsen (2012) has been
adopted by Caporin et al. (2013) in the context of high-frequency �nancial data,
by Bollerslev et al. (2013) to characterize the dynamics of the �nancial risk premia
and by Dolatabadi et al. (2015) in the context of commodity prices. More recently,
Carlini and Santucci de Magistris (2019a) have illustrated a potential pitfall in the
speci�cation of Johansen (2008) and Johansen and Nielsen (2012), associated with
the choice of the number of lags in the short run dynamics. Therefore, Carlini and
Santucci de Magistris (2019b) proposed a slightly di�erent version of the fraction-
ally cointegrated model, namely the FVECMd,b, which is identi�ed for any choice
of number of lags and coitegration rank. The FVECMd,b model is

∆dXt � ξ � αβ1∆d�bLbXt �
ķ

i�1

Γi∆
dLiXt � εt εt � iidp0,Ωq, (6)
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where Xt is a p-dimensional vector,
6 α and β are p � r matrices, where r de�nes

the cointegration rank, while ξ denotes the unrestricted intercept. Ω is the positive
de�nite covariance matrix of the errors, and Γj, j � 1, . . . , k, are p � p matrices
loading the short-run dynamics. εt is the i.i.d. error term with �nite eight moment,
see Johansen and Nielsen (2012). The operator Lb :� 1� p1�Lqb � 1�∆b is the
so called fractional lag operator, which, as noted by Johansen (2008), is necessary
for characterizing the solutions of the system. The model in (6) has k lags and
θ � vecpd, b, ξ, α, β,Γ1, ...,Γk,Ωq is the parameter vector. The parameter space of
the model is

Θ � tξ P Rp, α P Rp�r, β P Rp�r, ξ P Rp,Γj P Rp�p, j � 1, . . . , k, d P R�, b P R�, d ¥ b ¡ 0,Ω ¡ 0u.

where r is the cointegration rank, such that p�r determines the number of common
stochastic trends between the series. We apply the model in (6) to zones (NO,
CN, CS, SO). We then consider several model speci�cations designed to verify
convergence between markets at the single zone level. The existence of convergence
is associated with the existence of a unique common trend, which requires the
existence of one cointegrating relation. In other words, under cointegration, there
is a unique long-run equilibrium (attractor) towards which the two series converge
to.

5 Estimation results

5.1 Full sample analysis

We estimate the following FVECMd,b model for each pair of (seasonally-adjusted)
MSD and MGP prices in each of the four zones for the full-sample of 75,960 hourly
prices from 1st January 2011 to 31st August 2019,

�
∆dMGP i

t

∆dMSDi
t

�
�

�
ξ1
ξ2

�
�

�
α1

α2

�
LbECt �

k�¸
j�1

Γj∆
dLjYt �

�
εMGP,i
t

εMSD,i
t

�
(7)

where Yt � rMGP i
t ,MSDi

ts
1 and the error correction term is ECt � ∆d�bMGP i

t �
β2∆

d�bMSDi
t, and i � NO,CN,CS, SO.

Table 3 reports the estimation results for fractional cointegration between MGP
and MSD, in each of the four zones. The estimates of the FVECMd,b signal that

6The structure of the FVECMd,b model is very similar to that of the FCVARd,b model,

∆dXt � ξ � αβ1∆d�bLbXt �
ķ

i�1

Γi∆
dLi

bXt � εt εt � iidp0,Ωq,
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NO CN CS SO
Est. S.E. Est. S.E. Est. S.E. Est. S.E.

d 0.445 (0.003) 0.418 (0.003) 0.412 (0.003) 0.384 (0.003)
b 0.445 (0.003) 0.418 (0.003) 0.412 (0.003) 0.384 (0.003)
β2 -0.830 � -0.703 � 1.461 � -0.810 �
α1 -0.002 (0.001) -0.002 (0.001) 0.001 (0.000) 0.002 (0.001)
α2 0.082 (0.007) 0.076 (0.009) -0.068 (0.005) -0.015 (0.006)
ξ1 0.237 (0.021) 0.395 (0.028) 0.479 (0.073) 0.345 (0.053)
ξ2 1.320 (0.144) -1.072 (0.284) 17.614 (1.100) 0.958 (0.291)
k� 2 � 2 � 2 � 4 �
LR 0.998 � 0.722 � 0.043 � 0.439

Table 3: FVECMd,b estimates for the pairs of MGP and MSD of the four main regions

(NO,CN,CS,SO). In parenthesis the standard errors. The optimal lag length (k�) has
been found by BIC. LR is the p-value for the test of cointegration rank, r � 1. The

estimation has been carried out with the MATLAB codes of Nielsen and Popiel (2018).

The parameters of the short-run matrices, Γi, are not reported due to space constraints.

the strength of the cointegration relation in terms of memory gap is maximal, as
d � b in all cases. This means that the EC term is short memory. In addition,
the Likelihood Ratio (LR) test for fractional cointegration identi�es the presence
of cointegration in three of the four zones. The only exception is the CS zone, for
which we reject the hypothesis of fractional cointegration. The estimated models
are similar in terms of lag length (k�), with NO, CN and CS zones characterized by
two lags and SO by four lags. We attribute this di�erence to the larger presence of
zeros in the SO time series. The intercepts, ξ1 and ξ2, are statistically signi�cant
for all zones. The parameter β2 of the NO zone is the closest to -1, while for
SO and CN zones it takes slightly lower values. Finally, it is positive and larger
than 1 for CS. Thus, the result shows that for the NO zone, a rise of one euro per
MWh in the MSD in the long-run is coupled with a rise of 0.83 euro per MWh in
the MGP. In other words, there is an average price di�erential between MSD and
MGP of almost twenty cent per MWh whenever price rises in both markets. This
di�erential, which signals the average di�erence in the cost of electricity exchanged
in the MSD vis-a-vis the one in MGP, is slightly higher in CS and SO. In zone
CS, data do not show evidence of fractional cointegration and the β2 coe�cient

as it only replaces the fractional lag operator, Li
b, with the standard lag operator, Li, in the

short run dynamics.
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cannot be meaningfully interpreted. However, the absence of cointegration might
signal the existence of divergent behaviors in the MGP and MSD prices (for the
CS zone), in the sense that a rise of one euro in the MSD implies a more than
proportional fall of MSD.
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Figure 7: EC term of the four zones. The �gure reports the time series for the EC

term of the MGP and MGP prices for the four zones, North (NO), Central-North (CN),

Central-South (CS), South (SO).

We also look at the estimates of the speed-of-adjustment parameters, α. De-
spite all parameters α are statistically signi�cant or marginally signi�cant, only
the MSD prices signi�cantly move to restore equilibrium. The adjustment is larger
for NO and CN while it is much weaker for SO. For CS, the absence of cointe-
gration does not allow interpreting the speed of adjustment parameters. Overall,
the evidence suggests that MGP and MSD have common dynamics within NO,
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CN and SO zones. This result is in favor of price convergence, although for CN
and CS the evidence is weaker than for NO. Finally, Figure 7 reports the error
correction terms ECi

t of equation (7) for i � NO,CN,CS, SO.7 We �nd evidence
of a reduction in the persistence over the EC terms compared to what observed
among the seasonally adjusted series. This is coherent with the model feature, the
presence of fractional cointegration and the associated convergence. In all cases
we note some periodic behavior of the residuals, which resembles the remaining
seasonality of the �ltered series. There are limited di�erences across zones in the
serial dependence of the EC terms, while their volatility is more heterogeneous.
The latter is not surprising as there are zonal structural features that also play a
role in the deviation from the zonal common trends.

5.2 Dynamic analysis

As a �nal empirical analysis, we study how the average di�erence of the two price
series, namely MGP and MSD, changes over time. In particular, we investigate if
the price di�erential between MGP and MSD is likely to shrink (or to widen) over
time. This allows us to shed further light on the behavior of the price converge.
We perform this analysis by means of a rolling estimation of the average price
di�erential based on the following linear time-series regression

Di
t � αi

j � uit, t � 1, 2, . . . , 8760 (8)

whereDi
t �MGP i

t�MSDi
t for i � NO,CN,CS, SO and αi

j represents the average
price di�erential in the j-th subperiod of 1-year length p24 � 365 � 8760q for the
i-th zone. The estimation of αj is carried out by rolling OLS regression with step
equal to 1 day (24 hours), leading to J � 2800 estimates, which are plotted in
Figure 8 together with the 95% con�dence interval.

We note that in the NO zone the average price di�erence tends to zero, i.e.,
the prices tend to converge over time. This trend is clearer from 2017 onward.
Overall, the analysis of rolling windows con�rm that in the NO zone markets are
becoming e�cient over time. A similar consideration applies for the CN zone, even
though the converging trend has been more unstable, with periods of converging
trends followed with diverging ones; yet, over time the price di�erence tends to
zero. Zone SO shows a clear indication of convergence over the last part of the
sample (from the beginning of 2019), that followed a �rst phase in which the price
di�erential was rather constant and high. Overall, evidence shows that in this
zone markets have recently moved substantially towards e�ciency. This can be
explained considering that in the SO zone, the limited production poles of Brindisi

7The supplementary material also includes the correlogram of the FVECM residuals and of
the error correction terms.
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and Foggia disappeared and were included into the SO zone from beginning of year
2019, after the elimination of relevant bottlenecks. Before this period, the capacity
that was located in the area of Brindisi and Foggia (which was the largest share
of thermal capacity of the Regions that pertain to the SO zone) was kept separate
from the SO zone. Thus, the SO zone has started exhibiting a relevant activity in
MSD after the incorporation of these limited production poles. The only diverging
trend is for CS, where the price di�erential tends to widen over time. The dynamic
analysis con�rms the �nding of the fractional cointegration analysis on the full
sample displayed before. We �nd a diverging trend between the MSD and the
MGP in the CS zone, which has been increasing over time, showing that market
ine�ciency in the CS zone has been rising throughout the sample.

6 Policy implications and conclusion

In this paper, we have been focusing on the convergence between DA and balancing
prices in the four continental zones of Italy. To shed light on this aspect, we �rst
construct a price index for ancillary services, which measures the net social cost
of those services for the TSO (and to �nal customers to which the TSO rebates
them). Then, in order to assess the possible long-run correlation hypotheses,
we investigate the statistical properties of the time-series and seasonally adjusted
them focusing on the statistical properties of the structural component of the
series. Afterward, we test the existence of common long-memory of DA prices and
balancing costs, and show that MGP and MSD have been subject to converging
dynamics within each zone, except for the CS zone, which has exhibited a price
diverging path between MSD and MGP prices. Markets are e�cient if there are
no arbitrage opportunities between DA and real-time markets, arising because of
signi�cant price di�erences. Our results of convergence indicate su�cient market
e�ciency, since prices in the two markets converge in the long-run and the average
price di�erential tends to reduce over time. This result is in line with previous
�nding of price convergence between DA and real-time markets (see Arciniegas
et al., 2003, Asan and Tasaltin, 2017, Boogert and Dupont, 2005, Jha and Wolak,
2013). However, the empirical evidence also highlights that there are relevant zonal
di�erences. Note that the zones of the Italian market have a common institutional
framework, but di�er from the structural point of view. Table 4 below shows the
installed capacity per type of generation (di�erent RES and thermal) in each of
the four continental zone (year 2018, MW in the upper panel, and percentage over
the total Italian installed capacity in the lower panel).

The NO zone is the largest zone in terms of installed capacity, while the share
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Figure 8: Average di�erence MGP-MSD for the four zones. The �gure reports the rolling

OLS estimate of the intercept of the regression of the di�erence of MGP-MSD prices on

an intercept. The length of the estimation window is one year (8760 observations). The

black-solid line is the point estimate, and red-dotted lines denote the 95% con�dence

interval obtained with Newey and West (1987) robust standard errors.

and type of RES for CN and CS is quite similar, even though each zone has its
own distribution. There is no clear signal that the CS zone di�ers from SO or
CN in terms of installed non-controllable RES capacity. Yet it is the only zone
that exhibit a diverging pattern. This signals that there are other peculiarities
that a�ect market e�ciency in each zone. A natural candidate would be the very
de�nition of the zones. They are de�ned on the basis of permanent congestion
on transmission lines, which limit transit across zones. However, there are also
relevant congestion within zones that are re�ected in the cost of balancing services
but that are not apparent since these congestion do not give rise to a separate zone.
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Zone Wind PV Hydro Thermal
MW

NO 116.9 8943.5 16789.8 29649.6
CN 145.1 2372.5 1153.3 3647.9
CS 1769.6 2889.4 2772.2 9829.4
SO 4126.4 4643.5 1228.4 12708.1

% of total inst. cap.
NO 1.28% 42.51% 72.56% 46.43%
CN 1.59% 11.28% 4.98% 5.71%
CS 19.43% 13.74% 11.98% 15.39%
SO 45.32% 22.07% 5.31% 19.90%

Table 4: Installed capacity in each zone in MW (upper panel) and as percentage of

total installed Italian capacity, including Sicily and Sardinia (lower panel).

The existence of local congestion within zones is a well-know characteristics of the
Italian system; an example is the area of Naples, which is located in the CS zone,
and that sees a limited number of producers that are deemed necessary by the
TSO to maintain system stability. This situation clearly increases market power
of local producers. In some cases, relevant local congestion were made apparent
by means of virtual zones, i.e., zones with production poles without (relevant)
load. This was the case of the virtual zones of Brindisi and Foggia, that were kept
separate from the SO zone even though this two production poles are physically
located within the SO region. These limited production poles disappeared and
were included into the SO zone at the beginning of year 2019 upon the resolution
of the local congestion, and from that period onward the the SO zone has shown a
quick tendency toward price convergence. On the contrary, local congestion in the
CS zone could not be solved with a di�erent market design since the area is too
big to give rise to a limited production pole yet too small to be considered as an
independent market zones (since there are too few producers). Therefore, it seems
that local congestion within the CS zone and the increased market power induced
by them is what causes the market ine�ciency of the CS zone.

Throughout the paper we have shown that there is a tendency towards price
convergence in each of the continental zone of Italy but the CS zone. We have also
evaluated the relative price di�erence of those zones where price are converging:
we measured the di�erence in real-time versus DA electricity price, and shown that
this average price di�erence is converging over time. Despite our study referred to
the Italian market, we believe that our approach, far from being just an analysis
of a given market, can be of interest for other markets as well. It shows a robust
methodology that can be applied to evaluate market e�ciency in terms of price
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convergence between DA and real time markets. It also enables us to measure
the ine�ciency due to the average di�erence between cost of provision of electric-
ity in real time and forecasted DA �gures. Finally, it shows that even under a
common institutional framework, the de�nition of the zone and the existence of
relevant congestion within a zone is the crucial parameter that can explain market
ine�ciency better than the di�erent structural composition of power supply. This
latter point can be of relevant importance for policy makers, and in particular for
market regulators and for the market surveillance activity. Regulators and policy
makers should focus their activity on tackling grids' bottlenecks as this seems to
be the crucial parameter a�ecting competitiveness and price convergence. Moni-
toring agencies could use the methodology we propose here to have an indication
about market price convergence (if any), possible local market power abuse and
be aware of which balancing markets they should focus on in order to enhance
market e�ciency.
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