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Let 1 < t < n be integers, where t is a divisor of n. An R- qt-
partially scattered polynomial is a q-polynomial f in Fqn [X]
that satisfies the condition that for all x, y ∈ F∗

qn such that 
x/y ∈ Fqt , if f(x)/x = f(y)/y, then x/y ∈ Fq; f is called 
scattered if this implication holds for all x, y ∈ F∗

qn . Two 
polynomials in Fqn [X] are said to be equivalent if their graphs 
are in the same orbit under the action of the group ΓL(2, qn). 
For n > 8 only three families of scattered polynomials in 
Fqn [X] are known: (i) monomials of pseudoregulus type, 
(ii) binomials of Lunardon-Polverino type, and (iii) a family 
of quadrinomials defined in [1,10] and extended in [8,13]. In 
this paper we prove that the polynomial ϕm,qJ = XqJ(t−1) +
XqJ(2t−1) +m(XqJ −XqJ(t+1) ) ∈ Fq2t [X], q odd, t ≥ 3 is R- qt-
partially scattered for every value of m ∈ F∗

qt and J coprime 
with 2t. Moreover, for every t > 4 and q > 5 there exist values 
of m for which ϕm,q is scattered and new with respect to the 
polynomials mentioned in (i), (ii) and (iii) above. The related 
linear sets are of ΓL-class at least two.
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1. Introduction

In this paper q = pε denotes a power of a prime p. Let n be a positive integer. A 
q-polynomial, or Fq-linearized polynomial, in Fqn [X] is of type

f =
d∑

i=0
aiX

qi , ai ∈ Fqn , i = 0, 1, . . . , d. (1)

If ad �= 0, then the q-polynomial f has q-degree d. The set of q-polynomials over Fqn

is denoted by Ln,q. Such a set, equipped with the operations of sum, multiplication by 
elements of Fq, and the composition, results to be an Fq-algebra. The quotient algebra 
Ln,q = Ln,q/(Xqn−X) is isomorphic to the Fq-algebra of the Fq-linear endomorphisms of 
Fqn . Hence, for every Fq-linear endomorphism Φ of Fqn there exists a unique q-polynomial 
f of q-degree less than n such that f(x) = Φ(x) for any x ∈ Fqn . By abuse of notation, 
any f ∈ Ln,q is identified with the class f + (Xqn −X) ∈ Ln,q.

q-polynomials have found many applications in various areas of combinatorics, cod-
ing theory and cryptography. Special attention has been paid to scattered polynomials, 
introduced by Sheekey in [16], in the context of optimal codes in the rank metric, as we 
will see later. A scattered polynomial is an f ∈ Ln,q such that for any x, y ∈ F∗

qn ,

f(x)
x

= f(y)
y

=⇒ x

y
∈ Fq. (2)

A generalization of the notion of scattered polynomials was recently introduced in 
[9]. Let f be a q-polynomial in Ln,q, and t a nontrivial divisor of n; so, n = tt′, and 
1 < t, t′ < n. We say that f is L- qt-partially scattered if for any x, y ∈ F∗

qn ,

f(x)
x

= f(y)
y

=⇒ x

y
∈ Fqt , (3)

and that f is R- qt-partially scattered if for any x, y ∈ F∗
qn ,

f(x)
x

= f(y)
y

and x

y
∈ Fqt =⇒ x

y
∈ Fq. (4)

A q-polynomial is scattered if and only if it is both L- qt- and R- qt-partially scattered.
The graph of f ∈ Fqn [X] is Uf = {(x, f(x)) : x ∈ Fqn}. If f ∈ Ln,q, then Uf is an 

Fq-subspace of F2
qn . We say that two polynomials f and g in Ln,q are ΓL-equivalent, or 

simply equivalent, if their graphs are in the same orbit under the action of the group 
ΓL(2, qn). Up to such a notion of equivalence, only three families of scattered polynomials 
in Ln,q are known for n > 8:

(i) Xqs , with gcd(s, n) = 1, known as pseudoregulus type;
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(ii) Xqn−s +δXqs , with gcd(s, n) = 1 and Nqn/q(δ) = δ
qn−1
q−1 �= 0, 1, known as Lunardon-

Polverino type [12,16];
(iii) ψs,h = Xqs +Xqs(t−1) +h1+qsXqs(t+1) +h1−qs(2t−1)

Xqs(2t−1) ∈ L2t,q, where q is odd, 
gcd(s, 2t) = 1, h ∈ Fq2t and hqt+1 = −1 [1,8,10,13].

It is convenient to split the family (iii) into two separate families (iii-a) of all polynomials 
ψs,h such that h ∈ Fqt , and (iii-b), where h /∈ Fqt .

One of the reasons that scattered polynomials and their generalizations have attracted 
so much attention is their connection to optimal codes in the theory of rank-metric codes. 
See [15,16] for a general overview of this topic. Rank-metric codes are sets of n × m

matrices over a finite field Fq, endowed with the rank metric. When n = m, the rank-
metric codes can be represented in terms of q-polynomials, since the Fq-algebra Fn×n

q is 
isomorphic to Ln,q. Of particular interest is the family of maximum rank distance (MRD)
codes, which are of maximum size for given n and given minimum rank distance. The 
first construction of a family of MRD codes was due to Delsarte [3] and independently to 
Gabidulin [4]. The codes of this family are now known as the Gabidulin codes. Sheekey in 
[16] pointed out a way to construct special classes of MRD codes: if f ∈ Ln,q is a scattered 
polynomial then Cf = 〈X, f〉Fqn

is an MRD code of size q2n and minimum distance n −1. 
In the same paper, he also proved that the equivalence of q-polynomials corresponds to 
the equivalence of rank-metric codes. Therefore, the scattered polynomials (i), (ii) and 
(iii) give rise to three disjoint families of MRD codes.

The adjoint of a q-polynomial f =
∑n−1

i=0 aiX
σi with respect to the trace form is the 

polynomial f� which satisfies Trqn/q(f(x)y) = Trqn/q(xf�(y)) for every x, y ∈ Fqn (1). 
It holds

f� =
n−1∑
i=0

aσ
n−i

i Xσn−i

.

Such f� is scattered if and only if f is. Even, f and f� determine the same linear 
set Lf = Lf� [2]. However, the polynomials f and f� need not to be equivalent. The 
classes (i), (ii), and (iii-b) described above contain their own adjoints up to equivalence. 
Furthermore, every polynomial in the collection (iii-b) is equivalent to its adjoint [8, 
Theorem 4.6], [13, Proposition 4.17].

The scattered polynomials can also be used to construct scattered linear sets. We 
refer the reader to [6,14,15] for generalities on this topic. Any linear set of rank n in the 
projective line PG(1, qn) can be defined, up to the action of GL(2, qn), by a q-polynomial 
f as follows

Lf = {〈(x, f(x))〉Fqn
: x ∈ F∗

qn},

1 Trqn/q(x) = x + xq + · · · + xqn−1
for x ∈ Fqn .
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and we say that it is scattered if |Lf | = (qn−1)/(q−1). It is a straightforward check that 
f is scattered if and only if Lf is scattered. Scattered linear sets on the projective line 
have been related to various objects in Galois geometries, such as linear minimal blocking 
sets of largest order, translation planes and many more; see for example [6,10,14].

In this paper, we study the q-polynomials

ϕm,σ = Xσt−1
+ Xσ2t−1

+ m(Xσ −Xσt+1
) ∈ L2t,q,

where t ≥ 3, m ∈ F∗
qt , x �→ xσ is a generator of Gal(Fqn/Fq), i.e. σ = qJ , 

J ∈ {1, 2, . . . , 2t − 1}, gcd(J, 2t) = 1, and q is odd. In Section 2, we will first prove 
that any such ϕm,σ is R-qt-partially scattered, and then we will show some conditions 
on m that ensure that ϕm,σ is scattered. In Section 3, we find the stabilizer of the graph 
of ϕm,σ under the action of the group GL(2, qn), which turns out to be an invariant for 
equivalence. In the last section we consider the question of equivalence between ϕm,q and 
the known families of scattered polynomials. The adjoint ϕ�

m,q of a scattered polynomial 
ϕm,q is not equivalent to ϕk,q for any k ∈ Fqt ; hence, ϕm,q does not belong to the family 
(iii-b) (Proposition 4.4). The main result of this paper is Theorem 4.7. It states that for 
t > 4, if t is even and q > 3 or t is odd and q > 5, there exists at least one scattered 
polynomial of type ϕm,q that is not equivalent to any known scattered polynomial.

In [2] the notion of ΓL-class of a linear set L has been introduced, which is the number 
of nonequivalent polynomials f such that Lf = L. As a consequence of Proposition 4.4, 
the ΓL-class of any scattered linear set of type Lϕm,q

is at least two.

2. A family of R- qt-partially scattered polynomials

From now on we will assume that q is an odd prime power, t ≥ 3 is an integer, and 
n = 2t. We will show a family of R- qt-partially scattered polynomials in Ln,q.

For m ∈ Fqn and σ = qJ , J ∈ {1, . . . , n − 1}, gcd(J, n) = 1, consider the following 
q-polynomials in Ln,q:

α = ασ = Xσt−1
+ Xσ2t−1

and β = βm,σ = m(Xσ −Xσt+1
).

Define

W = {x ∈ Fqn : xqt + x = 0},

which is a one-dimensional Fqt-subspace of Fqn . Note that x−1, xq, xσ ∈ W for any 
x ∈ W , x �= 0. Some results in the sequel, such as the next ones, are based on the fact 
that the kernel of a non-trivial Fq-linear map of type Φ(x) =

∑d
i=0 aix

σi has dimension 
at most d over Fq (see e.g. [5, Theorem 5]).

Lemma 2.1. The following hold:
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1. if A ∈ Fqt and B ∈ W then AB ∈ W ;
2. if A, B ∈ W then AB ∈ Fqt ;
3. Fq2t = Fqt ⊕W ;
4. ker(α) = W ;
5. Im(α) = Fqt ;
6. ker(β) = Fqt ;
7. Im(β) = W

Proof. We only prove 4. and 5. Raising to the σ one obtains

ker(α) = {xσt

+ x = 0}.

Furthermore, if x ∈ W , then xσt = (((xqt)qt) · · · )qt , an odd number of powers, 
hence xσt = −x, that is x ∈ ker(α). This implies W ⊆ ker(α), and 4. follows from 
dimFq

ker(α) ≤ t.
Next, noting that Fqt = {y ∈ Fqn : yσt − y = 0}; if y = α(x), then

yσ
t − y = (xσt−1

+ xσ2t−1
)σ

t − (xσt−1
+ xσ2t−1

) = 0. �
Theorem 2.2. Let t ≥ 3 be an integer. Assume m ∈ F∗

qt and σ = qJ , J ∈ {1, . . . , 2t − 1}, 
gcd(J, 2t) = 1. Then the polynomial

ϕm,σ = Xσt−1
+ Xσ2t−1

+ m(Xσ −Xσt+1
) ∈ L2t,q (5)

is R- qt-partially scattered.

Proof. The polynomial ϕm,σ = α + β is R- qt-partially scattered if and only if ϕm,σ

satisfies the condition that for any ρ ∈ Fqt and x ∈ Fqn such that x �= 0, if

ϕm,σ(ρx) = ρϕm,σ(x), (6)

then ρ ∈ Fq. So, suppose that (6) holds and, because of 3. of Lemma 2.1, we can write 
x = x1 +x2, where x1 ∈ Fqt and x2 ∈ W . Using 1., 2., 4. and 5. of Lemma 2.1 we obtain

ϕm,σ(ρx) = α(ρx1) + β(ρx2)

and

ρϕm,σ(x) = ρα(x1) + ρβ(x2).

Since Fq2t = Fqt ⊕W , by 5. and 7. of Lemma 2.1 we have
{

α(ρx1) = ρα(x1),
β(ρx2) = ρβ(x2),

(7)
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which can be rewritten as {
(ρσt−1 − ρ)xσt−1

1 = 0,
m(ρσ − ρ)xσ

2 = 0,

and since m �= 0 and at least one among x1 and x2 is nonzero, then ρσ
t−1 − ρ = 0 or 

ρσ − ρ = 0. In each case we get ρ ∈ Fq. �
In the following we show that for certain values of m the polynomial ϕm,σ is also 

L- qt-partially scattered.

Theorem 2.3. Let t ≥ 3 be an integer, and W = {x : x ∈ Fq2t , xqt + x = 0}. Assume 
σ = qJ , J ∈ {1, . . . , 2t − 1}, gcd(J, 2t) = 1. If m ∈ Fqt is neither a (q − 1)-th power nor 
a (q + 1)-th power of any element of W then the polynomial ϕm,σ = Xσt−1 + Xσ2t−1 +
m(Xσ −Xσt+1) ∈ L2t,q is scattered.

Proof. By Theorem 2.2, it is enough to prove that ϕm,σ is L- qt-partially scattered; that 
is, it satisfies the condition that for any ρ, x ∈ Fqn such that x �= 0, if

ϕm,σ(ρx) = ρϕm,σ(x), (8)

then ρ ∈ Fqt . So, suppose that (8) holds. Because of 3. of Lemma 2.1, we can write

ρ = h + r and x = x1 + x2,

where h, x1 ∈ Fqt and r, x2 ∈ W . Using 1., 2., 4. and 5. of Lemma 2.1 we obtain

ϕm,σ(ρx) = α(hx1) + α(rx2) + β(hx2) + β(rx1)

and

ρϕm,σ(x) = hα(x1) + hβ(x2) + rα(x1) + rβ(x2).

Since Fq2t = Fqt ⊕W , by 5. and 7. of Lemma 2.1 we have
{

α(hx1) + α(rx2) = hα(x1) + rβ(x2),
β(hx2) + β(rx1) = hβ(x2) + rα(x1),

(9)

which can be rewritten as{
mxσ

2 r − xσt−1

2 rσ
t−1 = (hσt−1 − h)xσt−1

1 ,

xσt−1

1 r −mxσ
1 r

σ = −m(h− hσ)xσ
2 ,

and raising the first equation to the σ we obtain
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{
−x2r + mσxσ2

2 rσ = (h− hσ)x1,

−xσt−1

1 r + mxσ
1 r

σ = m(h− hσ)xσ
2 .

(10)

Suppose by contradiction that r �= 0. We divide the proof in four cases. Since J is odd, 
every (σ − 1)-th power (resp. (σ + 1)-th power) of an element of W is also a (q − 1)-th 
power (resp. (q + 1)-th power) of an element of W .
Case 1: x1 = 0.

In this case x2 �= 0, and from the first equation of (10) we obtain

mσ = x1−σ2

2 r1−σ =
(
x−1−σ

2 r−1)σ−1
,

that is m = δq−1 for some δ ∈ W , a contradiction to our assumptions.
Case 2: x2 = 0.

We have x1 �= 0. From the second equation of (10) we obtain

m = xσt−1−σ
1 r1−σ =

(
x
σ(1+σ+···+σt−3)
1 /r

)σ−1
,

again a contradiction.
Case 3: h − hσ = 0.

Argue as in Case 1. or 2, depending on whether x2 �= 0 or x1 �= 0.
Case 4: x1x2(h − hσ) �= 0.

We start by proving that

D = det
(

−x2 mσxσ2

2
−xσt−1

1 mxσ
1

)

is non zero. Indeed, if D = 0 then, since (10) admits solutions for r and rσ, we have

rk
(

−x2 mσxσ2

2 (h− hσ)x1

−xσt−1

1 mxσ
1 m(h− hσ)xσ

2

)
= 1,

and in particular

det
(
mσxσ2

2 (h− hσ)x1
mxσ

1 m(h− hσ)xσ
2

)
= 0,

that is

mσxσ2+σ
2 − xσ+1

1 = 0 ⇒ m = uσ+1,

where

u = xσt−1

1 ∈ W,

x2



150 V. Smaldore et al. / Linear Algebra and its Applications 702 (2024) 143–160
a contradiction. Therefore D �= 0. From (10) we obtain

r =
det

(
(h− hσ)x1 mσxσ2

2
m(h− hσ)xσ

2 mxσ
1

)

D
= mxσ+1

1 −mσ+1xσ2+σ
2

D
(h− hσ)

and

rσ =
det

(
−x2 (h− hσ)x1

−xσt−1

1 m(h− hσ)xσ
2

)

D
= −mxσ+1

2 + xσt−1+1
1

D
(h− hσ).

Therefore,

rσ−1 = −mxσ+1
2 + xσt−1+1

1

mxσ+1
1 −mσ+1xσ2+σ

2
= 1

m
(−mxσ+1

2 + xσt−1+1
1 )1−σ,

that is m is a (σ − 1)-th power of an element in W , again a contradiction.
In each of the cases analyzed, the condition r �= 0 leads to a contradiction. It follows 

that ρ ∈ Fqt . �
By the following result at least one of the assumptions above cannot be removed.

Proposition 2.4. Let t ≥ 3. If m is a (σ + 1)-th power of an element of W , then ϕm,σ is 
not scattered.

Proof. By assumption m = wσ+1 where w ∈ W . Define x1 = 1, x2 = w−1. Under these 
assumptions the equations in (10) coincide up to a factor with

−r + wσ+1rσ = w(h− hσ).

The images of the Fq-linear maps r ∈ W �→ −r+wσ+1rσ ∈ W and h ∈ Fqt �→ w(h −hσ) ∈
W both are of Fq-dimension at least t −1; this implies that their intersection is not trivial, 
and r ∈ W , h ∈ Fqt exist such that r �= 0 and (10) is satisfied. �
Proposition 2.5.

(i) For any t ≥ 3 there are precisely (qt−1)/(q−1) elements of F∗
qt which are (q−1)-th 

powers of elements in W ; more precisely, they are the solutions of

x
qt−1
q−1 = −1, x ∈ Fqn .

(ii) If t is even, then there are precisely (qt − 1)/(q + 1) elements of F∗
qt which are 

(q + 1)-th powers of elements in W ; more precisely, they are the solutions of
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x
qt−1
q+1 = −1, x ∈ Fqn .

(iii) If t is odd, then there are precisely (qt − 1)/2 elements of F∗
qt which are (q + 1)-th 

powers of elements in W ; more precisely, they are the solutions of

x
qt−1

2 = (−1)
q+1
2 , x ∈ Fqn .

Proof. Let W ∗ = W \ {0}. For any positive integer D define the set SD of all D-powers 
of elements of W ∗. Let δ = gcd(D, qt−1). The D-powers of elements of F∗

qt are precisely 
the solutions of the equation

x
qt−1

δ = 1, x ∈ Fqn .

Let w0 ∈ W ∗. It holds (wD
0 ) qt−1

δ = (wqt−1
0 )D/δ = (−1)D/δ. We have

SD = {wD
0 yD : y ∈ F∗

qt} = {wD
0 x : x

qt−1
δ = 1, x ∈ Fqn}.

Therefore, SD has equation

x
qt−1

δ = (−1)D/δ. (11)

Taking into account that

gcd(q + 1, qt − 1) =
{

q + 1 for t even,
2 for t odd,

the statements (i), (ii), and (iii) follow from (11). �
Corollary 2.6. There is at least one scattered polynomial of type ϕm,σ for any t ≥ 4 even 
and q ≥ 3, or t ≥ 3 and q > 3.

Proof. The sum of the sizes of Sq−1 and Sq+1 is less than qt − 1, hence there exist in 
F∗
qt elements which are neither (q − 1)- nor (q + 1)-powers of elements of W . Therefore, 

Theorem 2.3 can be applied for at least one value of m. �
Remark 2.7. By Theorem 2.3 and Proposition 2.5, if t is even, or t is odd and q ≡ 1
(mod 4), then ϕ1,q is scattered. On the other hand, by Proposition 2.4, if t is odd and 
q ≡ 3 (mod 4), then ϕ1,q is not scattered. This is consistent with [10, Theorem 2.4] for 
k = 1. It follows that the family we are studying contains examples of R-qt-partially 
scattered polynomials that are not scattered.
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3. Matrices stabilizing the graph of ϕm,σ

Here we investigate the matrices in F2×2
qn that stabilize the graph Um,σ of ϕm,σ. More 

precisely, we will compute the set Sm,σ of matrices A such that AUm,σ ⊆ Um,σ. Such 
Sm,σ has been studied in [17], where in particular it has been proved that it is isomorphic 
to the right idealizer of Cϕm,σ

. As a consequence, Sm,σ is invariant up to equivalence of 
polynomials.

For use in the Theorem 3.2 we prove the following

Proposition 3.1. Let t be even. The set S of all x ∈ F∗
qt which are (σ + 1)-powers of 

elements in W coincides with 
{
x : x ∈ Fqt , x

σt−1
σ+1 = −1

}
.

Proof. If x0 = ξσ+1 and y = ησ+1 for ξ, η ∈ W \ {0}, then x0y
−1 = (ξη−1)σ+1 is a 

(σ + 1)-power of an element of F∗
qt ; that is, y = �σ+1x0 for some � ∈ F∗

qt . Conversely, 
hσ+1x0 ∈ S for any h ∈ F∗

qt . So,

S = {hσ+1x0 : h ∈ F∗
qt}.

The assertion follows by combining (i) x
σt−1
σ+1

0 = ξσ
t−1 = −1, and (ii) since t is even 

and σ + 1 divides σt − 1, the set of all (σ + 1)-powers of elements of F∗
qt has equation 

x
σt−1
σ+1 = 1. �

Theorem 3.2. Suppose that t > 4. Then the set Sm,σ of matrices A ∈ F2×2
qn such that 

AUm,σ ⊆ Um,σ is equal to

{(
a b

4mbσ aσ

)
: a ∈ Fqgcd(t,2) , b ∈ Fqn , b = −bσ

t

= mσ−1bσ
2
}
. (12)

For t even, Sm,σ contains non-diagonal matrices if and only if m is a (σ + 1)-power of 
an element of W ; in this case, b takes q2 distinct values.

For t odd, b takes always q distinct values.

Proof. Let A =
(
a b
c d

)
∈ F2×2

qn , and

A

(
x

ϕm,σ(x)

)
=

(
y

ϕm,σ(y)

)
;

that is, cx + dϕm,σ(x) = ϕm,σ(ax + bϕm,σ(x)) for all x ∈ Fqn . This leads, after reducing 
modulo Xσ2t −X, to the following polynomial identity

cX+d(Xσt−1
+ Xσ2t−1

+ m(Xσ −Xσt+1
)) =
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aσ
t−1

Xσt−1
+ bσ

t−1
(Xσ2t−2

+ Xσt−2
+ mσt−1

(Xσt −X))

+ aσ
2t−1

Xσ2t−1
+ bσ

2t−1
(Xσt−2

+ Xσ2t−2
+ mσ2t−1

(X −Xσt

))

+ maσXσ + mbσ(Xσt

+ X + mσ(Xσ2 −Xσt+2
))

−maσ
t+1

Xσt+1 −mbσ
t+1

(X + Xσt

+ mσt+1
(Xσt+2 −Xσ2

)). (13)

Taking into account the coefficients of monomials of the same degree one obtains the ten 
equations

c = −mσt−1
bσ

t−1
+ mσ2t−1

bσ
2t−1

+ mbσ −mbσ
t+1

(e:0)

md = maσ (e:1)

0 = mσ+1bσ + m1+σt+1
bσ

t+1
(e:2)

0 = bσ
t−1

+ bσ
2t−1

(e:t-2)

d = aσ
t−1

(e:t-1)

0 = mσt−1
bσ

t−1 −mσ2t−1
bσ

2t−1
+ mbσ −mbσ

t+1
(e:t)

−md = −maσ
t+1

(e:t+1)

0 = −mσ+1bσ −m1+σt+1
bσ

t+1
(e:t+2)

0 = bσ
t−1

+ bσ
2t−1

(e:2t-2)

d = aσ
2t−1

(e:2t-1)

The equations (e:1), (e:t-1), (e:t+1), (e:2t-1) are equivalent to a ∈ Fqgcd(t,2) , d = aq. 
The equations (e:2), (e:t-2), (e:t+2), and (e:2t-2) are equivalent to b ∈ W . Then (e:t) is 
equivalent to mσt−1

bσ
t−1 + mbσ = 0, or

bσ
2

= m1−σb. (14)

Equations (e:t) and (e:0) imply c = 2(mbσ −mbσ
t+1) = 4mbσ, leading to (12).

The equation (14) in the unknown b determines the kernel of an Fq2-linear map, and 
has one or q2 solutions. Since W is an Fqt-linear subspace, the number of allowable values 
b in (12) is either one or qgcd(t,2).

Assume t even. It holds

−b = bσ
t

= m−σt−1+σt−2−···−σ+1b.

Assume that (14) has at least one nonzero solution (and hence q2 solutions). Then

m(σ−1)(1+σ2+···+σt−2) = −1,
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equivalent to m
σt−1
σ+1 = −1, that is, by Proposition 3.1, m is a (σ+1)-power of an element 

of W . Conversely if m = β−(σ+1) for β ∈ W , then (14) has the nonzero solution b = β, 
hence q2 solutions in W .

Assume t odd. Define R = −σt+1−1
σ2−1 which is an integer. Furthermore, a z ∈ F∗

qn exists 
satisfying zσ + z = 0, and z ∈ W . Then by a direct check the solutions in W to (14) are 
b = λzmR for λ ∈ Fq. �
Remark 3.3. If t is even (including now the case t = 4) and ϕm,σ is scattered, then ϕm,σ

is in standard form with respect to the subfield Fq2; that is, L = 2 is the greatest integer 
such that ϕm,σ = F (Xqs) where F is a qL-polynomial, and gcd(s, L) = 1. This implies 
that the set of matrices stabilizing Um,σ is isomorphic to Fq2 [11,17].

In particular: (i) if m = 1 and t is even, the matrices are all diagonal; (ii) if m = 1
and t is odd, then the conditions on b are equivalent to bq + b = 0.

Remark 3.4. For the case t ≥ 3 is odd, m = 1 and q ≡ 3 (mod 4), it can be shown that 
in this case the kernel and the image of any matrix of rank one in S1,σ are points of 
PG(1, qn) of weight n/2, i.e., such that their intersection with the graph is an Fq-subspace 
of dimension n/2. Polynomials of this type have been studied in [17].

4. Nonequivalence with previously known scattered polynomials

Our main goal is to show that there are new scattered polynomials in the family we 
introduce. For this purpose it will be sufficient to consider the case where σ = q, n = 2t, 
t ≥ 3. We compare our construction with the known examples of scattered polynomials.

The first nonequivalence is a simple consequence of the fact that the right idealizer of 
the MRD code associated with a polynomial of pseudoregulus type in Ln,q is isomorphic 
to Fqn , combined with Theorem 3.2. Analogously we proceed with the second nonequiv-
alence if t is odd, since the right idealizer of the MRD code associated with a polynomial 
of Lunardon-Polverino type in Ln,q is isomorphic to Fq2 .

Proposition 4.1. Let f = Xqs ∈ Ln,q be a scattered polynomial of pseudoregulus type. 
Then ϕm,q and f are not equivalent.

Proposition 4.2. Let g = Xq2t−s + δXqs be a Lunardon-Polverino scattered polynomial, 
t > 4. Then ϕm,q and g are not equivalent.

Proof. The subspaces Uϕm,q
and Ug are in the same orbit under the action of ΓL(2, qn)

if and only if an integer k and a matrix

M =
(
a b
c d

)
∈ GL(2, q2t)

exist such that for any x ∈ Fq2t there is y ∈ Fq2t satisfying
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M

(
xpk

ϕm,q(x)pk

)
=

(
y

g(y)

)
.

Let e = mpk and z = xpk . The condition above is equivalent to

az + b(zq
t−1

+ zq
2t−1

) + be(zq − zq
t+1

) = y,

cz + d(zq
t−1

+ zq
2t−1

) + de(zq − zq
t+1

) = yq
2t−s

+ δyq
s

,

from which after reducing modulo Zσ2t − Z we derive the polynomial identity

aq
2t−s

Zq2t−s

+ bq
2t−s

(Zqt−s−1
+ Zq2t−s−1

) + bq
2t−s

eq
2t−s

(Zq2t−s+1 − Zqt−s+1
)+

+δaq
s

Zqs + δbq
s

(Zqt+s−1
+ Zqs−1

) + δbq
s

eq
s

(Zqs+1 − Zqt+s+1
) =

= cZ + d(Zqt−1
+ Zq2t−1

) + de(Zq − Zqt+1
).

Let t be even. We consider the cases s ∈ {1, t − 1, t + 1, 2t − 1}.
Let s = 1. When t > 4, we have the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bq
2t−1

eq
2t−1 + δbq = c

δaq = de

δbqeq = 0
bq

2t−1 = 0
0 = d

−bq
2t−1

eq
2t−1 + δbq = 0

0 = −de

−δbqeq = 0
bq

2t−1 = 0
aq

2t−1 = d.

(15)

Which implies a = b = c = d = 0. For s ∈ {t −1, t +1, 2t −1} we get analogous conditions 
that yield to a = b = c = d = 0.

Finally, for s /∈ {1, t −1, t +1, 2t −1} the analogous system as in (15) leads to the same 
conclusion. In fact, the exponents of the indeterminate Z depending on s equal some of 
the exponents of Z in the right side of the polynomial identity (1, q, qt+1, qt−1, q2t−1) if 
and only if s ∈ {1, t + 1, t − 1, 2t − 1, t + 2, t − 2}. Since t is even we exclude t − 2 and 
t +2, and then, apart from the already considered cases, we get the condition c = d = 0. 
The case t odd arises from similar calculations while s ∈ {1, t − 2, t + 2}, while in this 
case we can exclude t = ±1 and t = 2t − 1. �

The fact that ϕ1,σ belongs to the family (iii-a) motivates our interest in the next 
result.
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Proposition 4.3. Let t ∈ N, t > 4. Then ϕm,q and ϕ1,σ are equivalent only if Nqt/q(m) =
1.

Proof. Assume that ϕm,q and ϕ1,σ are equivalent. Then there exist an integer k and a 
matrix

M =
(
a b
c d

)
∈ GL(2, qn)

such that for any x ∈ Fq2t there is y ∈ Fq2t satisfying

M

(
xpk

ϕm,q(x)pk

)
=

(
y

ϕ1,σ(y)

)
.

Let e = mpk and z = xpk . The condition above is equivalent to

az + b(zq
t−1

+ zq
2t−1

) + be(zq − zq
t+1

) = y,

cz + d(zq
t−1

+ zq
2t−1

) + de(zq − zq
t+1

) = yσ − yσ
t+1

+ yσ
t−1

+ yσ
2t−1

,

and, taking into account eσt = e and that J is odd, we get the following identity in Ln,q:

cZ + d(Zqt−1
+ Zq2t−1

) + de(Zq − Zqt+1
) =

= aσZqJ + bσ(Zqt+J−1
+ ZqJ−1

) + bσeσ(ZqJ+1 − Zqt+J+1
)

−aσ
t+1

Zqt+J − bσ
t+1

(ZqJ−1
+ Zqt+J−1

) − bσ
t+1

eσ(Zqt+J+1 − ZqJ+1
)

+aσ
t−1

Zqt−J

+ bσ
t−1

(Zq2t−J−1
+ Zqt−J−1

) + bσ
t−1

eσ
t−1

(Zqt−J+1 − Zq2t−J+1
)

+aσ
2t−1

Zq2t−J

+ bσ
2t−1

(Zqt−J−1
+ Zq2t−J−1

) + bσ
2t−1

eσ
2t−1

(Zq2t−J+1 − Zqt−J+1
). (16)

By comparing the monomials having the same degree, if J /∈ {±1, t ± 1}, one obtains 
without any assumption on Nqt/q(m) that M has a zero row.

If J = 1, by (16),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c = bq − bq
t+1 − bq

t−1
eq

t−1 + bq
2t−1

eq
t−1

de = aq

0 = bq + bq
t+1

0 = bq
t−1 + bq

2t−1

d = aq
t−1

0 = bq − bq
t+1 + bq

t−1
eq

t−1 − bq
2t−1

eq
t−1

de = aq
t+1

0 = −bqeq − bq
t+1

eq

0 = bq
t−1 + bq

2t−1

d = aq
2t−1

.

(17)



V. Smaldore et al. / Linear Algebra and its Applications 702 (2024) 143–160 157
If a �= 0, then d �= 0. By comparing the seventh and the second equation, one obtains 
a ∈ Fqt . From the second and the fifth equation, aq−qt−1 = e that implies Nqt/q(m) = 1. 
If a = 0, then cb �= 0, bqt + b = 0 by the third equation and bq

2 = eb by the sixth. This 
implies Nqt/q(m) = 1.

The cases J = 2t −1 or J = t ±1 for t even can be dealt with in a similar way leading 
in each case to Nqt/q(m) = 1. �

We now investigate the equivalence between polynomials of type ϕm,q and their ad-
joints. Define φμ = Xq + Xqt+1 + μ(Xq2t−1 −Xqt−1), μ ∈ Fqt ; it holds

ϕ�
m,q = φmqt−1 (18)

for any m ∈ Fqt .

Proposition 4.4. Let t > 4. For any m, μ ∈ Fqt such that ϕm,q is scattered, ϕm,q and φμ

are nonequivalent.

Proof. Starting from
(
a b
c d

)(
x

xqt−1 + xq2t−1 + m(xq − xqt+1)

)
=

(
y

yq + yq
t+1 + μ(yq2t−1 − yq

t−1)

)

one obtains the polynomial identity modulo xσ2t − x

cX+d[Xqt−1
+ Xq2t−1

+ m(Xq −Xqt+1
)] = aqXq + bq[Xqt + X + mq(Xq2 −Xqt+2

)]

+ aq
t+1

Xqt+1
+ bq

t+1
[X + Xqt + mqt+1

(Xqt+2 −Xq2
)]

+ μaq
2t−1

Xq2t−1
+ μbq

2t−1
[Xqt−2

+ Xq2t−2
+ m22t−1

(X −Xqt)]

− μaq
t−1

Xqt−1 − μbq
t−1

[Xq2t−2
+ Xqt−2

+ mqt−1
(Xqt −X)].

This gives ten equations, four equations equivalent to b ∈ Fqt and four equations equiv-
alent to d = m−1aq = −μaq

t−1 = −m−1aq
t+1 , that is

a ∈ W, d = m−1aq, μ = −m−1aq−qt−1
.

By comparing the coefficients of Xqt one obtains μ = m−qt−1
bq−qt−1 , and finally

mq−1 =
(a
b

)q2−1
.

As a consequence, m(qt−1)/(q+1) = (a/b)qt−1 = −1 for t even end m(qt−1)/2 =
(a/b)(qt−1)(q+1)/2 = (−1)(q+1)/2 for t odd and this implies by Propositions 2.4 and 2.5
that ϕm,q is not scattered. �
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In [2] the notion of a ΓL-class of a linear set L has been introduced, which is the num-
ber of nonequivalent polynomials f such that Lf = L. As a corollary of Proposition 4.4
it results:

Theorem 4.5. For t > 4 the ΓL-class of any scattered linear set of type Lϕm,q
is at least 

two.

It is possible to prove the nonequivalence of the polynomials of type ϕm,q with the 
polynomials in the class (iii-b) with a case-by-case analysis. However, the following result 
makes it possible to shorten the proof.

Proposition 4.6. [7] Let f, g ∈ Ln,q be equivalent. Then f� and g� are equivalent.

The main result of this paper is a summary of the propositions of this section.

Theorem 4.7. Let q be odd and t > 4. If t is even and q > 3 or t is odd and q > 5, then 
there exists m ∈ Fqt such that

ϕm,q = Xqt−1
+ Xq2t−1

+ m(Xq −Xqt+1
)

is a scattered q-polynomial that is not equivalent to any previously known scattered q-
polynomial in Fq2t [X].

Proof. Take into account a scattered ϕm,q. This ϕm,q does not belong to the families (i)
and (ii) by Propositions 4.1 and 4.2. Since any element of the family (iii-b) is equivalent 
to its adjoint, by Propositions 4.4 and 4.6 such family does not contain ϕm,q. The family 
(iii-a) contains elements of type ϕ1,σ and if Nqt/qgcd(2,t)(m) �= 1, ϕm,q is nonequivalent 
to these by Proposition 4.3. So it remains to prove that at least one scattered ϕm,q exists 
satisfying that condition. Taking into account Theorem 2.3, it is enough to show that 
the sum of the cardinalities of the following three sets is less than qt − 1.

1. Sq−1, that is, the set of elements in F∗
qt which are (q − 1)-powers of elements of W ;

2. Sq+1, that is, the set of elements in F∗
qt which are (q + 1)-powers of elements of W ;

3. T , the set of elements m ∈ Fqt such that Nqt/q(m) = 1.

The equation Nqt/q(x) = 1 has (qt − 1)/(q − 1) solutions.
Assume that t is even. Combining with Proposition 2.5,

|Sq−1 ∪ Sq+1 ∪ T | ≤ qt − 1
q − 1 + qt − 1

q + 1 + qt − 1
q − 1 = (qt − 1)(3q + 1)

q2 − 1 , (19)

that for q > 3 is less than qt − 1.
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In the case that t is odd one obtains similarly

|Sq−1 ∪ Sq+1 ∪ T | ≤ qt − 1
q − 1 + qt − 1

2 + qt − 1
q − 1 = qt − 1

2(q − 1)(q + 3).

For q > 5 this is less than qt − 1. �
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