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Abstract
Based on quantitative “kam theory”, we state and prove two theorems about the
continuation of maximal and whiskered quasi-periodic motions to slightly perturbed
systems exhibiting proper degeneracy. Next, we apply such results to prove that, in the
three-body problem, there is a small set in phase space where it is possible to detect
both such families of tori. We also estimate the density of such motions in proper
ambient spaces. Up to our knowledge, this is the first proof of co-existence of stable
and whiskered tori in a physical system.
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1 Overview

1.1 Two kam Theorems for Properly Degenerate Hamiltonian Systems We deal
with Hamiltonians which meet the demand of being close-to-be-integrable [see, e.g.,
Gallavotti (1986)], but, in addition, with the number of degrees of freedom of per-
turbing term being possibly larger than the one of the unperturbed part. Such kind
of Hamiltonians often arise in problems of celestial mechanics and are referred to as
“properly degenerate”, after (Arnold 1963). We denote them as

H(I , ϕ, p, q;μ) = H0(I )+ μ P(I , ϕ, p, q;μ),

where the coordinates (I , ϕ) = (I1, . . . , In, ϕ1, . . . , ϕn) are of “action-angle” kind
(after a possible application of the Liouville–Arnold theorem to the unperturbed
term), while (for our needs) the (p, q) = (p1, . . . , pm, q1, . . . , qm) are “rectangu-
lar”, namely, take value in a small ball (say, of radius (ε0)) about some point (say, the
origin). The symplectic form is standard:

� = d I ∧ dϕ + dp ∧ dq =
n∑

i=1

d Ii ∧ dϕi +
m∑

i=1

dpi ∧ dqi .

Wework in the real-analytic framework, which means that we assume that H admits a
holomorphic extension on a complex neighborhood of the real “phase space” (namely,
the domain)

Pε0 := V × T
n × B2m

ε0
,

where V ⊂ R
n is bounded, open and connected, (T = R/(2πZ)) is the “flat torus”,

B2m
ε is the 2m-dimensional ball around 0 of radius ε, relatively to some norm in R

2m .
In this framework, we present1 two “kam theorems” which deal with different sit-
uations. A basic assumption, common to both statements, and often referred to as
“Kolmogorov condition”, is:

(A1) the map I → ∂I H0(I ) is a diffeomorphism of V .

However, due to the proper degeneracy mentioned above, such assumption is to be
reinforced with some statement concerning the perturbing term, or, more precisely, its
Lagrange average

Pav(I , p, q;μ) := 1

(2π)n

∫

[0,2π ]n
P(I , ϕ, p, q;μ)dnϕ

with respect to the ϕ-coordinates. Such extra-assumption will be different in the two
statements; therefore, we quote them below.

1 We refer to specialized literature for historical notices and constructive approaches to kam theory: see,
e.g., Gallavotti (1994), Gentile and Gallavotti (1995), Bonetto et al. (1998), Chierchia and Procesi (2019)
and references therein.
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The first result is a revisitation of the so-called Fundamental Theorem by V.I. Arnold,
Arnold (1963). Such theorem has been already studied, generalized and extended in
previous works (Chierchia and Pinzari 2010; Pinzari 2018). Here, we deal with the
situation (not considered in the aforementioned papers) where Pav admits a “Birkhoff
Normal Form” (bnf hereafter) about (p, q) = (0, 0) of high2 order; say s. As expected,
a higher order of bnf allows to improve the measure of the “Kolmogorov set”, namely
the set given by the union of all kam tori. We shall prove3 the following

Theorem 1.1 Assume (A1) above and the following conditions:

(A2) Pav(I , p, q) = ∑s
j=1 P j (r; I )+O2s+1(p, q; I ), with ri := p2i +q2i

2 andP j (r; I )
being a polynomial of degree j in r = (r1, · · · , rm), for some 2 ≤ s ∈ N.

(A3) the m × m matrix β(I ) of the coefficients of the second-order term P2(r; I ) =
1
2

∑m
i, j=1 βi j (I )rir j is non-degenerate: | det β(I )| ≥ const > 0 for all I ∈ V .

Then, there exist positive numbers ε∗ < ε0, C∗ and c∗ such that, for

0 < ε < ε∗ , 0 < μ <
ε2s+2

C∗(log ε−1)c∗
. (1)

one can find a set K ⊂ Pε formed by the union of H-invariant n-dimensional
Lagrangian tori, on which the H-motion is analytically conjugated to linear Diophan-
tine quasi-periodic motions with frequencies (ω1, ω2) ∈ R

n1 × R
n2 with ω1 = O(1)

and ω2 = O(μ). The set K has positive Liouville–Lebesgue measure and satisfies

measPε > measK >
(
1 − C∗εs−

3
2

)
measPε . (2)

The second result deals with lower-dimensional quasi-periodic motions, the so-called
whiskered tori. These are n-dimensional quasi-periodic motions (in a phase space of
dimension 2n + 2m), approached or reached at an exponential rate. For simplicity, in
view of our application, we focus on the case m = 1. In addition, we allow a further
degeneracy in the Hamiltonian: the unperturbed term H0 may possibly depend not on
all the I ’s, but only on a part of them.

Theorem 1.2 Let m = 1, and let H0 depend on the components I1 = (I11, . . . , I1n1)
of the I = (I1, I2)’s, with 1 ≤ n1 ≤ n := n1 + n2. Assume (A1) with I1 replacing I
and, in addition, that

(A′
2) Pav(I , p, q;μ) = P0(I , pq;μ)+ P1(I , ϕ, p, q;μ) with ‖P1‖ ≤ a‖P0‖;

(A′
3) |∂pq P0| ≥ const > 0 and | det ∂2I2 P0| ≥ const > 0 if n2 �= 0.

2 Arnold (1963), Chierchia and Pinzari (2010), Pinzari (2018) deal with the “minimal” case s = 2. The
case s = 2 is called here “minimal” as we work in the framework of generalizations of the Kolmogorov
condition (A1) above. In Rüssmann (2001), Féjoz (2004), using different techniques, the case s = 1 has
been considered.
3 For simplicity of notations, we do not write μ among the arguments of the functions in Theorem 1.1
and 1.2.
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Fix η > 0. Then, there exist positive numbers a∗, ε∗ < ε0, C∗ and c∗ such that, if

0 < ε < ε∗, 0 < a < a∗ε4 , 0 < μ <
C∗(a‖P0‖)1+η
(log a−1)c∗

(3)

one canfinda setK formedby the unionof H-invariant n-dimensional Lagrangian tori,
onwhich the H-motion is analytically conjugated to linearDiophantine quasi-periodic
motions with frequencies (ω1, ω2) ∈ R

n1 × R
n2 with ω1 = O(1) and ω2 = O(μ).

The projectionK0 of setK onP0 := V ×T
n has positive Liouville–Lebesgue measure

and satisfies

measP0 > measK0 >
(
1 − C∗

√
a
)
measP0 . (4)

Furthermore, for any T ∈ K there exist two (n + 1)-dimensional invariant manifolds
Wu,Ws ⊂ Pε∗ such that T = Wu ∩Ws and the motions onWu,Ws leave, approach
T at an exponential rate.

Before we go on with describing how we aim to use the theorems above, we premise
some comment.

(i) The conditions involving μ in (1) and (3) are not optimal. With a procedure
similar to the one shown in Chierchia and Pinzari (2010, proof of Theorem 1.2,
steps 1–4), one can show that they can be relaxed to, respectively

μ <
1

C∗(log ε−1)2b
, μ <

1

C∗(log(a‖P0‖)−1)2b

with some C∗, b > 0.
(ii) The careful bounds on the measure of the invariant sets provided in (2) and (4)

are needed in view of our application. Indeed, we shall apply both the theorems
above in order to prove that, in the three-body problem, closely to the co-planar,
co-circular, outer retrograde configuration (see below for the exact definition),
full-dimensional and “whiskered” quasi-periodic tori co-exist [the result was
conjectured in Pinzari (2018)]. In the application, ε will correspond to the max-
imum eccentricity or inclination; a the semi-major axes ratio, and the use of a
high-order bnf in Theorem 1.1 will be necessary because the size of the set goes
to 0 with some power of ε (s = 4 will be enough for our application).

(iii) Following Chierchia and Gallavotti (1994), Theorem 1.2 might be extended to
prove the existence of “diffusion paths” and “whisker ladders”. We shall not do,
as proving Arnold instability [in the sense of Arnold (1964)] for the system (5)
below is not the purpose of this paper. We, however, remark that such kind of
instability has been found for the four-body problem in a very similar framework
(Clarke et al. 2022). We remark that proofs of chaos or Arnold instability in
celestial mechanics are quite recent (Féjoz et al. 2014; Delshams et al. 2019),
by the difficulty of overcoming the so-called problem of large gaps. See Guzzo
et al. (2020) and references therein.
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(iv) Another important aspect in view of the application described above is a rather
standard consequence of the proof of Theorem 1.2: If P (namely, P1) has an
equilibrium at (p, q) = 0, then, along the motions of K, the coordinates (p, q)
remain fixed at (0, 0) (rather than varying closely to it), namely

K ⊂ V × T
n × {(0, 0)}.

More generally, the stable and unstable invariant manifolds do not shift from the
unperturbed ones:

Ws ⊂ Pε ∩ {q = 0
}
, Wu ⊂ Pε ∩ {p = 0

}
.

1.2 Application to the three-body problemWe apply the results above to prove that,
in a region of the phase space of the three-body problem, and under conditions that will
be specified later, full dimensional and whiskered tori co-exist. We underline that the
co-existence of such different kind of motions is not a mere consequence of the non-
integrability of the system (as in such case the result would be somewhat expected)
as it persists in two suitable integrable approximations of the system, close one to the
other. Indeed, such motions will be found in a very small zone in the phase space of
the three-body problem which simultaneously is in the neighborhood of an elliptic
equilibrium of one of such approximations and in a hyperbolic one of the other. Such
an occurrence is intimately related to the use of two different systems of coordinates,
which are singular one with respect to the other, in the region of interest. The authors
are not aware of the appearance of such phenomenon, previously.
After the “heliocentric reduction” of translational invariance, the three-body problem
Hamiltonian with gravitational masses equal to m0, μm1 and μm2 and Newton con-
stant G ≡ 1, takes the form of the two-particle system [see, e.g., Féjoz (2004), Laskar
and Robutel (1995) for a derivation]:

H3b =
2∑

i=1

(
|y(i)|2
2mi

− miMi

|x (i)|

)
+ μ

(
− m1m2

|x (1) − x (2)| + y(1) · y(2)
m0

)
(5)

with suitable values of mi = mi + O(μ), Mi = m0 + O(μ). We consider the system
in the Euclidean space, namely we take, in (5), y(i), x (i) ∈ R

3, with x (1) �= x (2).
We call Kepler maps the class of symplectic4 coordinate systems C = (
1,
2, �1,

�2, y, x) for the Hamiltonian (5), where y = (y1, . . . , y4), x = (x1, . . . , x4), such
that:

4 Namely verifying

� = d
 ∧ d�+ dy ∧ dx =
2∑

i=1

d
i ∧ d�i +
4∑

i=1

dyi ∧ dxi .
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– 
i = mi
√
Mi ai , where ai denotes the semi-major axis of the i th instantaneous5

ellipse;
– �1, �2 ∈ T are conjugated to 
1, 
2. Such angles are defined in a different way
according to the choice of C. In all known examples, they are related to the area
spanned by the planet along the instantaneous ellipse.

Using a Kepler map, the Hamiltonian (5) takes the form

HC = −m3
1M

2
1

2
2
1

− m3
2M

2
2

2
2
2

+ μ fC(
1,
2, �1, �2, ŷ, x̂) (6)

where ŷ, x̂ include the couples (yi , xi ) such6 that nor yi nor xi is negligible. ŷ, x̂ are
often called degenerate coordinates, because they do not appear in (6) when μ is set
to zero. In other words, HC is a properly degenerate close-to-be-integrable system, in
the sense of the previous paragraph.

We call co-planar, co-circular, outer retrograde configuration the configuration of two
planets in circular and co-planar motions, with the angular momentum of the outer
planet having opposite verse to the resulting one. In Pinzari (2018) it has been pointed
out that, under a careful choice of C such configuration plays the rôle of an equilibrium
for the (�1, �2)-averaged perturbing function

f C(
1,
2, ŷ, x̂) = 1

(2π)2

∫

[0,2π ]2
fC(
1,
2, �1, �2, ŷ, x̂)d�1d�2.

Butwhatmattersmore is that, closely to such equilibrium, there exist two suchCi ’s such
that the Hamiltonian HC1 is suited to Theorem 1.1, while HC2 is suited to Theorem 1.2.
This leads to the following result, which states co-existence of stable and whiskered
quasi-periodic motions in the three-body problem. It will be made more precise (see
Theorem 2.1) and proved along the paper.
Theorem A In the vicinity of the co-planar, co-circular, outer retrograde configura-
tion, and provided that the masses of the planets and the semi-axes ratio are small,
there exists a positive measure set K1 made of 5-dimensional quasi-periodic motions
T1’s “surrounding” (in a sense which will be specified) 3-dimensional quasi-periodic
motions T2’s, each equipped with two invariant manifolds, called, respectively, unsta-
ble, stable manifold, where the motions are respectively asymptotic to the T2’s in the
past, in the future.
We conclude with saying how this paper is organized.

• In Sects. 2.1 and 2.2 we recall the main arguments of the discussion in Pinzari
(2018), which lead to put the system (5) to a form suited to apply Theorems 1.1
and 1.2.

5 With reference to the three-body Hamiltonian (5), the i th instantaneous ellipse is the orbit generated by

hi := |y(i)|2
2mi

− miMi
|x(i)| in a region of phase space where hi is negative.

6 The reason of this is that the Hamiltonian (5) has first integrals, as recalled in the next section.
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• In Sects. 2.3 and 2.4 we check that the two domains where Theorems 1.1 and 1.2
apply have a non-empty intersection, and such intersection includes both families
of tori. This check is subtle, because of the difference of the frameworks used.

• In Sect. 3, we prove Theorems 1.1 and 1.2 via a carefully quantified kam theory.

2 Ellipticity and Hyperbolicity Closely to Co-planar, Co-circular, Outer
Retrograde Configuration

Putting the system in a form suited to Theorem 1.1 requires identifying an elliptic
equilibrium, while Theorem 1.2 calls for a hyperbolic one.

Denoting as (C( j) := x ( j) × y( j) the angular momenta of the planets, we proceed
to study motions evolving from initial data close to the manifold

Mπ :=
{
(y, x) : C(1) ‖ (−C(2)) ‖ C, and x (1), x (2) describe circular motions.

}
.

(7)

The sub-fix “π” recalls that C(1) and C(2) are opposite. In the two next sections,
we recall material from Pinzari (2018), which highlights a sort of “double (elliptic,
hyperbolic) nature” ofMπ .

2.1 Ellipticity (with bnf)

Basically7, the construction of the elliptic equilibrium—and of its associated bnf—
proceeds as in Chierchia and Pinzari (2011). We briefly resume the procedure here.
We fix a domain Dc ⊂ R

12 for impulse-position “Cartesian” coordinates

c = (y, x) := (y(1), y(2), x (1), x (2))

of two point masses relatively to a prefixed orthonormal frame (k(1), k(2), k(3)) in R
3.

As a first step, we switch to a set of coordinates, well known in the literature, which
we name jrd, after C. G. J. Jacobi, R. Radau and A. Deprit (Jacobi 1842; Radau 1868;
Deprit 1983), who, at different stages, contributed to their construction.
We fix a region of phase space where the orbits t → (x ( j)(t), y( j)(t)) generated by
the unperturbed “Kepler” Hamiltonians

h( j)k := |y( j)|2
2m j

− m jM j

|x ( j)|

in (5) are ellipses with non-vanishing eccentricity. Then, we denote as P( j) the unit
vectors pointing in the directions of the perihelia; as a j the semi-major axes; as � j the

7 As pointed out in Pinzari (2018), the only note-worthing difference with the case studied in Chierchia
and Pinzari (2011) (which deals with prograde motions of the planets, namely, revolving all in the same
verse) is that here the elliptic character of the equilibrium does not follow for free from the symmetry of
the Hamiltonian, but is checked manually.
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“mean anomaly” of x ( j)(which, we recall, is defined as area of the elliptic sector from
P( j) to x ( j) “normalized at 2π”); as C( j) = x ( j)× y( j), j = 1, 2, the angular momenta
of the two planets and C := C(1) + C(2) the total angular momentum integral. We
assume that the “nodes”

ν1 := k(3) × C , ν := C × C(1) = C(2) × C(1) (8)

do not vanish, anytime. Such condition is equivalent to ask that the planes determined
by the instantaneous ellipses and the (k(1), k(2)) plane never pairwise coincide. As
in previous works, we use the following notations. For three vectors u, v, w with u,
v ⊥ w, we denote as αw(u, v) the angle formed by u to v relatively to the positive
(counterclockwise) orientation established by w. Then, the jrd coordinates are here
denoted with the symbols

jrd :=
(
ĵrd := (
1,
2,G1,G2, �1, �2, γ1, γ2), (G,Z, γ, ζ )

)
∈ R

4 × T
4 × R

2 × T
2

(9)

and defined via the formulae

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z := C · k(3)
G := ‖C‖
G1 := ‖C(1)‖
G2 := ‖C(2)‖

 j := M j

√
m j a j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ := αk(3) (k(1), ν1)
γ := αC(ν1, ν)
γ1 := αC(1) (ν,P(1))
γ2 := αC(2) (ν,P(2))
� j := mean anomaly of x ( j)

(10)

The main point of jrd is that Z, ζ and γ are ignorable coordinates and G is constant
along the motions of SO(3)-invariant systems. Therefore, most of motions of SO(3)-
invariant systems are effectively described by the “reduced” coordinates ĵrd. This
strong property cannot be exploited in the case study of the paper, as the manifold
Mπ in (7) is a singularity of the change (10).More generally, any co-planar or circular8

configuration is so. Pretty similarly as in Chierchia and Pinzari (2011), we bypass such
difficulty switching to new coordinates denoted as

rpsπ :=
(
r̂ psπ := (
1,
2, λ1, λ2, η1, η2, ξ1, ξ2, p, q), (Z , ζ )

)

8 Circular configurations correspond to Gi = 
i ; co-planar configurations correspond to G = σ1G1 +
σ2G2, with (σ1, σ2) ∈ {±1}2 \ {(−1,−1)}.
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where the 
 j ’s, Z and ζ are the same9 as in (9), while

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 = �1 + γ1 + γ
λ2 = �2 + γ2 − γ
η1 + iξ1 = √

2(
1 − G1)e
−i(γ1+γ )

η2 + iξ2 = −√2(
2 − G2)e
i(−γ2+γ )

p + iq = −√2(G + G2 − G1)e
iγ

(11)

As in jrd, (Z , ζ ) is a cyclic couple in SO(3)-invariant Hamiltonians but now no more
cyclic coordinates but it appears. This leaves the system with 5 degrees of freedom
and an extra-integral: the action G written using rpsπ :

Grpsπ :=
1 −
2 − η21 + ξ21
2

+ η22 + ξ22
2

+ p2 + q2

2
. (12)

We denote as

Hrpsπ := −m3
1M

2
1

2
2
1

− m3
2M

2
2

2
2
2

+ μ
(

− m1m2

|x (1)rpsπ − x (2)rpsπ |
+ y(1)rpsπ · y(2)rpsπ

m0

)

=: hk(
)+ μ frpsπ (
, λ, z) z := (η, ξ, p, q) (13)

the Hamiltonian (5) written in rpsπ coordinates, and worry about it.
We note that the manifold Mπ in (7) is now given by

Mπ = {
rpsπ : z = 0

}
.

Then we consider a neighborhood of Mπ of the form

Mrpsπ ,ε0 :=L × T
2 × B6

ε0
(0) ,

where B6
ε0

is the 6-ball centered at 0 ∈ R
6 with radius ε0; T := R/(2πZ) and L is

defined as

L :=
{

 = (
1,
2) : 
− < 
2 < 
+ , k−
2 < 
1 < k+
2

}
. (14)

9 There is an inessential difference between the Definition (11) and the one in Pinzari (2018, Eqs. (25),

(26))). Denoting as rpsπ :=
(
(
1,
2, λ1, λ2, η1, η2, ξ1, ξ2, p, q), (P, Q)

)
the coordinates defined in

Pinzari (2018), we have the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1 = λ1 + ζ
λ2 = λ2 − ζ
η1 + iξ1 = (η1 + iξ1)e

−iζ

η2 + iξ2 = (η2 + iξ2)e
iζ

p + iq = (p + iq)eiζ

P + iQ = √
2(G − Z) e−iζ

But as (Z , ζ ), (P, Q) and ζ do not appear in the Hamiltonian, its expression does not change.
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Here, 0 < 
− < 
+ are arbitrarily taken (more conditions on such numbers will
be specified in the course of the paper) and, for fixed positive10 numbers 0 < α− <
α+ < 1, k± are constants depending on α± and the masses via

k± := m1

m2

√
m0 + μm2

m0 + μm1
α± .

(15)

We now take 0 < δ < 1 and11 and assume

0 <
m2

m1
< min

{√
(1 − δ)α− , 1 − δ

}
, 0 < μ < μ0(δ) := δm0

m1(1 − δ)− m2

(16)

Then we12 have

10 Observe that α− and α+ have the meaning of lower and upper bound for the semi-major axes ratio
α = a1/a2, namely,

α− ≤ α ≤ α+ ∀ (
1,
2) ∈ L .

Indeed, from the formula


1


2
= m1

m2

√
m0 + μm2

m0 + μm1
α

we find

α ≤
(
m2

m1

)2 m0 + μm1

m0 + μm2
k2+ = α+

and, similarly, α ≥ α−.
11 The reader might ask the reason of inequalities in (16). This is related to the fact that we want to
investigate a region of phase space where the inner planet, labeled as “1”, has a larger angular momentum,
namely, G1 > G2, and, simultaneously, the masses of the planets, as well as their eccentricities and mutual
inclination are small. As, when eccentricities andmutual inclination go to zero, the Gi reduce to
i , by (14),
the number k− in (15) needs to be strictly larger than 1. Conditions (16) are apt to ensure this, as in fact
they immediately imply

1 − δ ≤ m0 + μm2

m0 + μm1
≤ 1 + δ

hence, by (15),

k− ≥ m1

m2

√
(1 − δ)α− > 1.

12 The proof in Pinzari (2018, Appendix A) is given with δ = 1 − 1
4χ2

≥ 3
4 , but works well also for any

δ ∈ (0, 1). Indeed, for (
1,
2) ∈ L,


1 −
2 = 
2

(

1


2
− 1

)
≥ 
−(k−1) ≥ 
−

(
m1

m2

√
(1 − δ)α− − 1

)
.
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Proposition 2.1 [Pinzari (2018, Section III and Appendix A)] One can find ε0 > 0,
depending only on 
−, δ, α−, m1, m2 such that the function Hrpsπ in (13) is real-
analytic13 for (
, λ, η, ξ, p, q) ∈ Mrpsπ ,ε0 . In addition, for any s ∈ N, there exists a
positive number α# such that, if α+ < α#, there exists a positive number ε1 < ε0 and
a real-analytic canonical transformation

φbn f : (
, λ, η, ξ, p, q) ∈ Mrpsπ ,ε1 → (
, λ, η, ξ, p, q) ∈ Mrpsπ ,ε0

which carries (η, ξ, p, q) = 0 to (η, ξ, p, q) = 0 for all (
, λ) ∈ L × T
2, such that,

if

Hbn f :=Hrpsπ ◦ φbn f = hk(
)+ μ fbn f (
, λ, η, ξ, p, q) (17)

then the averaged perturbing function

f avbn f (
, η, ξ, p, q) :=
1

(2π)2

∫

T2
f (
, λ, η, ξ, p, q)dλ1dλ2

“is in Birkhoff Normal Form of order s”, namely:

f avbn f = C0(
)+� · τ + 1

2
τ · T(
)τ + �s≥3

s∑

j=3

P j (τ ;
)+ O2s+1(η, ξ , p, q;
)

where�(
) = (�1(
),�2(
),�3(
));P j (τ ;
) are homogeneous polynomials of
degree j in τ :=

(
η21+ξ21

2 ,
η22+ξ22

2 ,
p2+q2

2

)
and the determinant of the 3 × 3 matrix

T(
) does not identically vanish. Moreover, φbn f leaves Grpsπ unvaried, meaning
that the function

G :=
1 −
2 − η21 + ξ21
2

+ η22 + ξ22
2

+ p2 + q2

2

is still a first integral to H.

Therefore, for (
1,
2) on a complex neighborhood of L depending on 
−, m1, m2, α− and δ we shall

have |
1 −
2| ≥ 
−
2

(
m1
m2

√
(1 − δ)α− − 1

)
and, as in the proof of Pinzari (Pinzari (2018), Proposition

III.2), one can take ε0 <

−
2

(
m1
m2

√
(1 − δ)α− − 1

)
in order that the denominators of the functions c∗1,

c2, c
∗
2 in (Pinzari 2018, Appendix A) do not vanish, and so small that collisions are excluded.

13 Namely, analytic on a complex neighborhood of Mrpsπ ,ε0 and real-valued on Mrpsπ ,ε0 .
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2.2 Hyperbolicity

The hyperbolic character appears using a set of canonical coordinates, named perihelia
reduction (p-coordinates). This is a further set of canonical coordinates

p :=
(
p̂, (Z,G, ζ, g)

)
∈ R

3n−2 × T
3n−2 × R

2 × T
2 (18)

performing full reduction of SO(3) invariance for a n-particle system, which, in
addition keeps regular for co-planar motions. The p-coordinates have been firstly
introduced in Pinzari (2018), to which we refer for the proof of their canonical charac-
ter. We remark that in (18), G, Z and ζ are the same as in jrd in (10). The coordinate g,
conjugated to G, is not the same as in (10), but of course (Z, ζ, g) are again ignorable
and G is constant in SO(3) invariant systems. For the 3-body problem, namely, n = 2,
the 8-plet p̂ is given by

p̂ := (
1,
2,G2,�, �1, �2, g2, ϑ)

with 
 j , � j , G2 as in (10). To define �, g, ϑ and g2, we assume that

ν1 := k(3) × C, n1 :=C × P(1), ν2 :=P(1) × C(2), n2 = C(2) × P(2) (19)

do not vanish. Note that ν1 in (19) is the same as in (8). We14 let (under the same
notations as in the previous section)

� :=C · P(1) = C(2) · P(1)
⎧
⎨

⎩

ϑ :=αP(1) (n1, ν2)
g :=αC(ν1, n1)
g2 :=αC(2) (ν2, n2)

(20)

We now describe the rôle of the p-coordinates in the Hamiltonian (5). We denote as

Hp = hk(
1,
2)+ μ f p(
1,
2,G2,�; �1, �2, g2, ϑ;G)

where

hk(
1,
2) = −m3
1M

2
1

2
2
1

− m3
2M

2
2

2
2
2

, f p = − m1m2

|x (1)p − x (2)p |
+ y(1)p · y(2)p

m0
.

the Hamiltonian (5) expressed in terms of p, and

f avp := 1

(2π)2

∫

[0,2π ]2
f pd�1d�2

14 The second equality in the first equation in (20) is implied by C = C(1) + C(2) and C(1) · P(1) = 0.
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the doubly averaged perturbing function. We look at the expansion

f avp = −m1m2

a2

(
1 + α2P + O(α3)

)

where α := a1
a2

is the semi-major axes ratio. We focus on the function P. Let L as
in (14); c ∈ (0, 1), and put

Lp(G) :=
{

 = (
1,
2) ∈ L : 
1 > G + 2

c

√
α+
2

5
2
1G − (G + 2

c

√
α+
1)

2(4G + 2

c

√
α+
1) > 0,

5
2
1G − (G +
2)(4G +
2) > 0


2 > G , 
1 > 2G
}

(21)

Gp(
1,
2,G) :=
{
G2 : max{2

c

√
α+
2,G} < G2 < 
2

}

Bp(G) :=
{
(�, ϑ) : |�| < G

2
, |ϑ | < π

2

}
(22)

and finally

Ap(G) :=
{
(
1,
2,G2) : (
1,
2) ∈ Lp(G), G2 ∈ Gp(
1,
2)

}

Moreover, we let

N (G) :=Ap(G)× T
3 × Bp(G), N0(G) :=Ap(G)× T

3 × {
0, 0

}
. (23)

Note that phase points in N0 has the geometrical meaning of co-planar motions with
the outer planet in retrograde motion.

Proposition 2.2 (Pinzari 2018, Section IV) The 4 degrees of freedom Hamiltonian
Hp is real-analytic in N . It has an equilibrium on N0. Such equilibrium turns to be
hyperbolic15 for P.

2.3 Existence and Co-Existence of two Families of Tori

Theorems 1.1 and 1.2 can now be used to prove the existence of both full-dimensional
and whiskered, co-dimension 2 tori in the three-body problem. Indeed,

15 In Pinzari (2018) a slightly more general result is proved: the equilibrium is hyperbolic whenLp in (21)
is defined without the inequality

5
2
1G − (G +
2)(4G +
2) > 0 (24)

and Gp in (22) is taken to be
{
G2 : max{ 2c

√
α+
2,G} < G2 < min{
2,G�}

}
, with G� the unique

root of the polynomial G2 → 5
2
1G − (G + G2)(4G + G2). But as (24) ensures 
2 < G�, under such

restriction, Gp can be taken as in (22).
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– Under conditions (1), by Theorem 1.1, an invariant16 set F ⊂ Mε for the Hamil-
tonian Hrpsπ with 5-dimensional frequencies is found, whose measure satisfies

measMε > measF >
(
1 − C∗ε

1
2+s

)
measMε (25)

where s = s − 2.
– Under conditions (3) with a = α+, by Theorem 1.2, for any G ∈ R+, one finds an
invariant setH(G) ⊂ N0(G)with 3-dimensional frequencies for Hp and equipped
with 4-dimensional stable and unstable manifolds17, whose measure satisfies

measN0(G) > measH(G) >
(
1 − C∗

√
α+
)
measN0(G) . (26)

In the next, we show that the invariant sets F and H(G) constructed above “have a
common domain of existence”. We have to make this assertion more precise, mainly
because F and H(G) have been constructed with different formalisms.
Let

φ
p
rpsπ : rpsπ → p (27)

the canonical change of coordinates between rpsπ and p, well defined in a fullmeasure
set.
Let G∗, G0 the respective images under the function (12):

G0 :=Grpsπ (Mε) , G∗ :=Grpsπ (F)

of the setsMε, F . As F ⊂ Mε, then G∗ ⊂ G0. For any G0 ∈ G0, G∗ ∈ G∗, let

Mε(G0) :=Mε ∩ {Grpsπ = G0}, F(G∗) :=F ∩ {Grpsπ = G∗}

Mε(G0) and F(G∗) are invariant sets because Grpsπ is conserved along the motions
of Hrps .
Define:

M′
ε(G0) :=φ p

rpsπ (Mε(G0)) , F ′(G∗) :=φ p
rpsπ (F(G∗)) .

16 More precisely, Theorem 1.1 is applied to the Hamiltonian Hbn f in (17), hence with

n1 = 2, n2 = 3, V = L, ε = ε1, H0 = hk, P = fbn f

corresponding to the image under φ of the invariant set obtained through the thesis of Theorem 1.1.
17 Theorem 1.2 is applied to the Hamiltonian Hp of Proposition 2.2, hence with

n1 = 2, n2 = 1, V = Ap(G)

H0 = hk − m1m2

a2
, P0 = −m1m2

a2
α2P, P1 = −m1m2

a2
O(α3), a = α+
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At the cost of eliminating zero-measure sets from G0, G∗, the sets F ′(G∗), M′
ε(G0)

are well-defined, for all G0 ∈ G0, G∗ ∈ G∗. Then split

M′
ε(G0) = M̂′

ε(G0)× {G = G0, g ∈ T} F ′(G∗) = F̂ ′(G∗)× {G = G∗, g ∈ T}

The volume-preserving property of φ p
rpsπ in (27), the monotonicity of the Lebesgue

integral and the bounds in (25) guarantee that

measM̂′
ε(G∗) > measF̂ ′(G∗) >

(
1 − C1ε

1
2+s

)
measM̂′

ε(G∗) ∀ G∗ ∈ G∗.(28)

with some C1 > 0.

Recall now the definition ofN (G),N0(G) in (23) andH(G) in (26). The main result
of the paper is the following

Theorem 2.1 Let σ > 0 half-integer. There exist ε∗, c0 ∈ (0, 1) such that, if ε < ε∗,
G∗ ∈ G∗,G∗ > c−1

0 ε
2, α+ ≤ c0ε12 andμ verifies (1), (3)with a = α+ and s = σ+ 7

2 ,
then there exists a non-empty set A�(G∗) such that, letting

Q(G∗) :=A�(G∗)× T
3 × B1(ε,G�), Q0(G∗) :=A�(G∗)× T

3 × {(0, 0)}

and denoting F̂ ′∗(G∗), Ĥ∗(G∗) the respective intersections of F̂ ′(G∗), Ĥ(G∗) with
Q(G∗), Q0(G∗) then F̂ ′∗(G∗), Ĥ∗(G∗) are non-empty and in fact verify

measQ(G∗) ≥ measF̂ ′∗(G∗) ≥
(
1 − εσ

εσ∗

)
measQ(G∗) (29)

measQ0(G∗) ≥ measĤ∗(G∗) ≥
(
1 − α+

c0ε12

)
measQ0(G∗). (30)

The proof of Theorem2.1 relies on some technical result (Propositions 2.3, 2.4 and 2.5)
which we now state and prove later.

Proposition 2.3 Let, for a suitable pure number k ∈ (1, 2),
− < G, k− ≤ k k+ ≥ 2,

α+ ≤ c2
16 . Choose
+ as the unique value of
2 > G such that C and the straight line


1 = 2
2 meet at (
1,
2) = (2
+,
+). Let

L0(G) :=
{
(
1,
2) : G ≤ 
2 ≤ 
+ , (G +
2)

√
4G +
2

5G
< 
1 < min{k+
2, 2
+}

}

A0(G) :=
{
(
1,
2,G2) : (
1,
2) ∈ L0(G), G2 ∈ Gp(
1,
2)

}

Then, the set

N0(G) :=A0(G)× T
3 × Bp(G)

is a subset of N (G).
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Proposition 2.4 There exists c1 ∈ (0, 1) depending only on 
+/G, 
−/G such that,
letting, for any γ < c21ε

2,

L1(G) :=
{
(
1,
2) ∈ L , |
1 −
2 − G| < c21ε

2
}

G1(
2) :=
{
G2 : 
2 − c21ε

2 < G2 < 
2 − γ
}

A1(G) :=
{
(
1,
2,G2) : (
1,
2) ∈ L1 , G2 ∈ G1(
2)

}

B1(G, ε) :=
{
(�, ϑ) : �2 < c21Gε

2, ϑ2 < c21
ε2

G

}

then the set

N1(G, ε) :=A1(G)× T
3 × B1(G, ε)

is a subset of M̂′
ε(G).

Proposition 2.5 Assume G ≥ 10c21ε
2 and α+ < c2

16 . Then, A0(G) and A1(G) have a
non-empty intersection A�(G), verifying

meas(A�(G)) ≥ 9

10
(c21ε

2 − γ )c41ε4

We prove how Theorem 2.1 follows from the above propositions. Q(G∗) is a subset
of M̂′

ε(G∗) and Nε(G∗), and

measQ(G∗) = C1ε
8 = C2ε

2 measM̂′
ε.

The bound in (28) guarantees that

meas
(
M̂′
ε(G∗) \ F̂ ′(G∗)

)
< C3ε

1
2+s measM̂′

ε(G∗) ∀ G∗ ∈ G∗.

On the other hand, if F̂ ′
ε(G∗) ∩ Q(G∗) was empty, we would have

meas
(
M̂′
ε(G∗) \ F̂ ′(G∗)

) ≥ measQ(G∗) = C2ε
2 measM̂′

ε(G∗)

which contradicts the previous inequality if s > 3
2 and ε is small. Finally, if G∗ ∈ G∗,

meas
(
Qε(G∗) \ F̂ ′(G∗)

) ≤ meas
(
M̂′
ε(G∗) \ F̂ ′(G∗)

)
< C3ε

1
2+s measM̂′

ε(G∗)

= C4ε
s− 3

2 measQε(G∗)

and we have (29) with σ = s − 3
2 = s − 7

2 , with s ≥ 4. The proof of (30) is similar.
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2.4 Proof of Propositions 2.3, 2.4 and 2.5

Proof of Proposition 2.3 We only need to prove that L0(G) ⊂ Lp(G). We switch to
the coordinates

y := 
1

G
, x := 
2

G
.

We denote as Xp :=G−1Lp the domain of (y, x), and as

x− := 
−
G
, x+ := 
+

G

Xp can be written as the intersection of the three sets:

X1 :=
{
(y, x) : 1 ≤ x ≤ x+ , y > 2, max{k− x, (1 + x)

√
4 + x

5
} < y < k+ x

}

X2 :=
{
(y, x) : 1 ≤ x ≤ x+ , y > 1 + 2

c

√
α+x

}

X3 :=
{
(y, x) : 1 ≤ x ≤ x+, y > 2 , 5y2 − (1 + 2

c

√
α+y)2(4 + 2

c

√
α+y) > 0

}

We prove X0 :=G−1L0 is a subset of all of them. The curve

C : y = (1 + x)

√
4 + x

5
x ≥ 1

passes through P0 = (1, 2). We denote as k the slope of the straight line y = kx which
is tangent at C at P0. The slope of the straight line y = kx through P0 is obviously
k = 2. We assume that

k− ≤ k, k+ ≥ k

and choose (x+, y+) as the only (x, y)with x > 1 such that C meets y = 2x at (x, y).
Under such assumptions, we have:

X1 =
{
(y, x) : 1 ≤ x ≤ x+ , (1 + x)

√
4 + x

5
< y < k+ x

}
⊃ X0

The straight line which is tangent at C at P0 = (1, 2) has equation

y = 6

5
x + 4

5
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Fig. 1 The blue curve is C; the orange line has slope k−, the green one has slope k+ (Mathematica)

Since we α+ < c2
4 , x > 1 and C is convex, we have

1 + 2

c

√
α+x ≤ 1 + x ≤ 6

5
x + 4

5
≤ (1 + x)

√
4 + x

5

This shows that X2 ⊃ X0. As for X3, we note that for

α+ ≤ c2

16

it is

5y2 − (1 + 2

c

√
α+y)2(4 + 2

c

√
α+y) ≥ 5y2 −

(
1 + y

2

)2 (
4 + y

2

)

= 1

4
(y − 2)(y − y−)(y+ − y).

with

y± = 13 ± √
185.

As y− < 0 and (y − 2)(y+ − y) ≥ 0 on X0, we have that X3 ⊃ X0 (Figs. 1, 2). ��

Remark 2.1 The numbers k, 
+ of Proposition 2.3 can be chosen as


+ = G

2

(
13 + √

185
)
, k = 1

4

√
3

10
(69 + 11

√
33) ∼ 1.57
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Fig. 2 L0(G) (blue) and L1(G) (green)


+ is related to the number x+ computed along the proof via
+ = x+G. k is defined
as the slope of the straight line y = kx which is tangent at C. We can compute it
eliminating y between the two equations; we obtain the cubic equation

x3 + (6 − 5k2)x2 + 9x + 4 = 0. (31)

The tangency condition is imposed identifying this equation with

(x − a)2(x − b) = 0 (32)

where a is the abscissa of the tangency point. Equating the respective coefficients
of (31) and (32), we obtain

⎧
⎨

⎩

−(b + 2a) = 6 − 5k2

2ab + a2 = 9
−a2b = 4

(33)

Eliminating b through the second and the third equations, we obtain

a3 − 9a − 8 = 0

which has the following three roots:

a0 = −1, a± = 1 ± √
33

2
.

The only admissible value is then

a = a+ = 1 + √
33

2
.
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In correspondence of this value for a, solving the system in (33), we find

b = −17 + √
33

32
, k = 1

4

√
3

10
(69 + 11

√
33) = k.

�

Proof of Proposition 2.4 From (11), we get

|z|2 = η21 + ξ21 + η22 + ξ22 + p2 + q2 = 2(G + G2 − G1)+ 2(
1 − G1)+ 2(
2 − G2).

From the equality

G1 =
√
G2 + G2

2 − 2�2 + 2
√
G2 −�2

√
G2
2 −�2 cosϑ

= G + G2 + O

(
�2

G + G2

)
+ O

(
�2G2

G(G + G2)

)
+ O

(
�2G

G2(G + G2)

)
+ O

(
ϑ2GG2

G + G2

)

and the definition of N1(G), the assertion trivially follows. ��
Proof of Proposition 2.5 Let
�2 be the abscissa, in the plane (
2,
1), of the intersec-
tion point between the curves


1 = (G +
2)

√
4G +
2

5G
, and 
1 = 
2 + G + c21ε

2 .

Using the coordinate x := 
2
G . With x� := 
�2

G , θ := c21ε
2

G , ζ := γ
G , where ζ < θ , the

set A�(G) :=A0(G) ∩ A1(G) has measure

meas(A�(G)) = G3
∫ x�

1+ζ
F1(x)F

′
2(x)dx

where

F1(x) = min
{
2x, x + 1 + θ

}
− (1 + x)

√
4 + x

5

F2(x) = min
{
θ − ζ, x − 1 − ζ, mx − ζ

}

and where, for short, we have let m := 1 − 2
c
√
α+. Then,

meas(A�(G)) ≥ G3
∫ x�

1+ζ
F1(x)F2(x)dx . (34)

To go further, we need a quantitative bound on x�. Indeed, we have

Claim 2.1 If 0 < θ < 1
10 , then 1 + 4θ < x� < 1 + 6θ .
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The proof of the claim is postponed below, in order not to interrupt the main proof.

Since we have assumed G ≥ 10c21ε
2 and α+ ≤ c2

16 , then G ≥ 12
c

√
α+

1− 2
c
√
α+

c21ε
2. In the

new variables, this is θ ≤ m
6(1−m) . But then

x∗ < 1 + 6θ ≤ 1

1 − m
�⇒ x − 1 − ζ ≤ mx − ζ ∀ x < x∗

whence

F2(x) =
⎧
⎨

⎩

x − 1 − ζ if 1 + ζ ≤ x ≤ 1 + θ

θ − ζ if 1 + θ < x ≤ x�

Observe that the second inequality is well put, because x� > 1 + 4θ , as said. The
function F1(x) splits in the same intervals:

F1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2x − (1 + x)
√

4+x
5 if 1 + ζ ≤ x ≤ 1 + θ

x + 1 + θ − (1 + x)
√

4+x
5 if 1 + θ < x ≤ x�

(35)

Since ζ < θ , a lower bound to the integral in (34) is given by

∫ x�

1+ζ
F1(x)F2(x)dx ≥

∫ x�

1+θ
F1(x)F2(x)dx = (θ − ζ )

∫ x�

1+θ
F(x)dx

with

F(x) := x + 1 + θ − (1 + x)

√
x + 4

5
(36)

the function in the second line in (35). Since F is the difference of a linear function
and a convex one, it is concave. Then, we have

F(x) ≥ F(1)+ F(x�)− F(1)

x� − 1
(x − 1) ∀ 1 ≤ x ≤ x�

since F(x�) = 0 and F(1) = θ , this inequality becomes

F(x) ≥ x� − x

x� − 1
θ ∀ 1 ≤ x ≤ x�

hence

∫ x�

1+θ
F(x)dx ≥ θ

x� − 1

∫ x�

1+θ
(x� − x)dx = θ

2

(x� − 1 − θ)2
x� − 1

≥ 9

10
θ2

123



   90 Page 22 of 45 Journal of Nonlinear Science            (2023) 33:90 

having used 1 + 4θ < x� < 1 + 6θ .
It remains to prove Claim 2.1. x� is defined as the zero of the function F in (36) in

the range (1,+∞). Multiplying the left hand side of Equation

x + 1 + θ − (1 + x)

√
x + 4

5
= 0

by x + 1 + θ + (1 + x)
√

x+4
5 , we obtain the algebraic equation of degree three

x3 + x2 + (1 + 10θ)x − 1 − 10θ − 5θ2 = 0

which, for x ≥ −1 is completely equivalent to the initial equation. We aim to apply
a bisection argument to the function at left hand side, which we denote as G(x). We
have

G(1 + 4θ) = θ(64θ2 + 19θ − 4) , G(1 + 6θ) = θ(216θ2 + 79θ + 4)

and it is immediate to check that

G(1 + 4θ) < 0 G(1 + 6θ) > 0 ∀ 0 < θ <
−19 + √

1385

128
= 0.142 . . .

Toprove uniqueness, just observe that the function x ∈ (0,+∞)→ G(x) is increasing
for all θ > 0. This completes the proof. ��

3 Quantitative kam Theory

3.1 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on an application of Chierchia and Pinzari (2010,
Proposition 3). The method is completely analogous to the one used in the proof of
Chierchia and Pinzari (2010, Theorem 1.3), so we shall only say what to change in
the proof of Chierchia and Pinzari (2010, Theorem 1.3) in order to obtain the proof of
Theorem 1.1. The polynomial N (I , r) in the first non-numbered formula in Chierchia
and Pinzari (2010, Section 4) is to be changed as

N (I , r) = P0(I )+
m∑

i=1

�i (I )ri + 1

2

m∑

i, j=1

βi j (I )rir j + �s≥3

s∑

j=3

P j (r; I ). (37)

Equations (60) and (61) in Chierchia and Pinzari (2010) can be modified, respectively,
as

sup
B2m
ε ×Vρ0

|P̃av| ≤ Cε2s+1 ∀ 0 < ε < ε0
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μ <
ε2s+2

(log ε−1)2τ+1 γ >
(6(2s + 1)

s0

)τ+ 1
2
√
μ(log ε−1)τ+ 1

2

εs+ 1
2

. (38)

Analogously toChierchia andPinzari (2010), onenext appliesLemmaA.1 inChierchia
and Pinzari (2010), but modifying the choice of K as

K = 6(2s + 1)

s0
log ε−1 (39)

and leaving the other quantities unvaried. A bound as in Equation (62) in Chierchia
and Pinzari (2010) is so obtained, with H0 as in Chierchia and Pinzari (2010), N (I , r)
as in (37), μP̃av(p, q, I ) = fbn f (I , p, q)− N (I , r) uniformly bounded by Cμε2s+1,
by (A2). Due to the choice of K in (39) and the one for γ in (38), a bound similar to the
one in Equation (63) in Chierchia and Pinzari (2010) holds, with the right hand side
replaced byCμε2s+1. At this point, one follows the indications in Step 2 of the proof of
Theorem 1.3 in Chierchia and Pinzari (2010). Namely, one has to repeat the procedure
in Steps 5 and 6 of the proof Theorem 1.4 [previously proved in altchierchiaPi10],
with the following modification. The annulusA(ε) in Equation (47) in Chierchia and
Pinzari (2010) is to be taken as

A(ε) =
{
J ∈ R

m : č1ε
s+ 1

2 < Ji < č2ε
2 , 1 < i < m

}

and the number ρ̆ in
Equation (48) in Chierchia and Pinzari (2010) is to be replaced with ρ̆ := min

{č1εs+ 1
2 /2, ρ/48}. The other quantities remain unvaried. In the remaining Steps 5

and 6 of the proof of Theorem 1.4 in Chierchia and Pinzari (2010) replace the number
“5” appearing in all the formulae with (2s + 1) and εn2/2 in Equation (56) (and the

formulae below) in Chierchia and Pinzari (2010) with εm(s− 3
2 ). ��

3.2 Proof of Theorem 1.2

The proof of Theorem 1.2 proceeds along the same lines as the proof of Theorem 1.1,
apart for being based on a generalization (Theorem3.1 below) of Chierchia and Pinzari
(2010, Proposition 3) which now we state.
As in Chierchia and Pinzari (2010) Dγ1,γ2,τ ⊂ R

n denotes the set of vectors ω =
(ω1, ω2) ∈ R

n1 × R
n2 satisfying for any k = (k1, k2) ∈ Z

n1 × Z
n2 \ {0}, inequality

|ω1 · k1 + ω2 · k2| ≥

⎧
⎪⎪⎨

⎪⎪⎩

γ1

|k|τ if k1 �= 0 ;

γ2

|k2|τ if k1 = 0 , k2 �= 0 .

(40)
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Theorem 3.1 Let n1, n2 ∈ N, n := n1 +n2, τ > n, γ1 ≥ γ2 > 0, 0 < s ≤ ε
ε+ε , ρ > 0,

A := Dρ × B2
ε+ε, and let

H(I , ψ, p, q) = h(I , pq)+ f(I , ψ, p, q)

be real-analytic on A × T
n
s+s . Let

I = (I1, I1), �(I , pq) := ∂(I ,pq)h(I , pq) = (ω1(I1, I2, pq), ω2(I1, I2, pq), ν(I1, I2, pq))

with ωk(I1, I2, pq) := ∂Ikh(I1, I2, pq), and assume that the map I ∈ Dρ → ω(I , J )
is a diffeomorphism of Dρ for all J = pq, with (p, q) ∈ B2

ε , with non-singular
Hessian matrix U (I , J ) := ∂2I h(I , J ). Let18

M ≥ ‖∂ω‖A , M̂ ≥ ‖∂ω1‖A, M ≥ ‖U−1‖A , E ≥ ‖f‖ρ,s+s, λ ≤ inf |Re ν|A .

Assume, for19 simplicity,

2
sτ γ2
6τ λ

≤ 1. (41)

Define

ĉ := 27(n + 1)(24)τ , c̃ := 26

K := 32

s
log+

(
EM2 L

γ 21

)−1

where log+ a := max{1, log a}

ρ̂ := min

{
γ1

2MK τ+1 ,
γ2

2M̂K τ+1
, ρ

}
, ρ̃ := min

{
ρ̂,
ε2

s

}

L := max
{
M, M−1, M̂−1

}

Ê := EL

ρ̂ρ̃
, Ẽ := E

λε2
.

Finally, let M1, M2 upper bounds on the norms of the sub-matrices n1 × n, n2 × n
of U−1 of the first n1, last n2 rows20. Assume the perturbation f so small that the
following “KAM conditions” hold

ĉÊ < 1 , c̃ Ẽ < 1 (42)

18 The norms will be specified in the next Sect. 3.3.
19 (41) is a simplifying assumption. It may be relaxed.

20 That is, Mi ≥ sup
Dρ

‖Ti‖ , i = 1, 2 , if U−1 =
(
T1
T2

)
.
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Then, for any (π, κ) ∈ B2
ε and any ω∗ ∈ �∗(πκ) :=ω(D, πκ) ∩ Dγ1,γ2,τ , one can

find a unique real-analytic embedding

φω∗ : T
n × {(π, κ)} → Re (Dr )× T

n × B2
ε+r ′

(ϑ, π, κ) →
(
v(ϑ, π, κ;ω∗), ϑ + u(ϑ, π, κ;ω∗), π + w(ϑ, π, κ;ω∗), κ + y(ϑ, π, κ;ω∗)

)

(43)

such thatMω∗ :=φω∗(T
n × B2

ε ) is a real-analytic (n + 2)-dimensional manifold, on
which the H-flow is analytically conjugated to

(ϑ, π, κ) ∈ T
n × B2

ε → (ϑ + ω∗t, π → πe−ν∗(ω∗,πκ)t , κ → κeν∗(ω∗,πκ)t ). (44)

In particular, the manifolds

Tω∗ :=φω∗
(
T
n × {(0, 0)})

are real-analytic n-dimensional H-invariant tori embedded in Re (Dr ) × T
n × B2

ε ,
equipped with (n + 1)-dimensional manifolds

Mu :=φω∗
(
T
n × {0} × B1

ε

)
, Ms :=φω∗

(
T
n × B1

ε × {0}
)

on which the motions leave, approach Tω∗ at an exponential rate. Let Tω∗,0 denote the

projection of Tω∗ on the (I , ϕ)-variables, and K0 :=
⋃

ω∗∈�∗
Tω∗,0. Then K0 satisfies

the following measure21 estimate:

meas2n(Re (Dr )× T
n \ K0) ≤ cn

(
meas(D \ Dγ1,γ2,τ × T

n)+ meas(Re (Dr ) \ D)× T
n
)
,

(45)

where Dγ1,γ2,τ denotes the ω0(·, 0)-preimage of Dγ1,γ2,τ and cn can be taken to be
cn = (1 + (1 + 28nE)2n)2.

Finally, the following uniform estimates hold for the embedding φω∗ :

|v1(ϑ, π, κ;ω∗)− I 01 (πκ;ω∗)| ≤ 6n

(
M1

M
+ M̂

M

)
Ê ρ̃

|v2(ϑ, π, κ;ω∗)− I 02 (πκ;ω∗)| ≤ 6n

(
M2

M
+ M̂

M

)
Ê ρ̃ ,

|u(ϑ, π, κ;ω∗)| ≤ 2 Ê s, |w(ϑ, π, κ;ω∗)| ≤ 2 Ê ε

|y(ϑ, π, κ;ω∗)| ≤ 2 Ê ε (46)

21 measn denotes the n-dimensional Lebesgue measure.
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where v(ϑ, π, κ;ω∗) = (v1(ϑ, π, κ;ω∗), v2(ϑ, π, κ;ω∗)) and I 0(πκ;ω∗) =
(I 01 (πκ;ω∗), I 02 (πκ;ω∗)) ∈ D is the ω(·, πκ)—pre-image of ω∗ ∈ �∗(πκ). where
r := 8nÊ ρ̃, r ′ = 2Êε

The proof of Theorem 3.1 is deferred to the next Sect. 3.3. Here, we prove how
Theorem 1.2 follows from it.
As said, we follow the same ideas of the proof of Theorem 3.1, which in turn follows
(Chierchia and Pinzari 2010, Theorem 1.3). By (A′

2),

Pav(I , p, q) = P0(I , pq)+ P1(I , p, q) where |P1| ≤ a‖P0‖=:ε. (47)

At this point, proceeding as in Chierchia and Pinzari (2010, Proof of Theorem 1.3,
Step 1) but with ε5 replaced by ε, under condition

μ <
ε1+η

(log(ε−1))2τ+1 , γ ≥ C
( 6

s0

)τ+ 1
2
√
μ(log ε−1)τ+ 1

2√
ε

,

by an application of Chierchia and Pinzari (2010, Lemma A.1), with K = 6
s0
log ε−1,

rp = rq = ε0, r = 4ρ = ρ := min
{

γ

2MK
τ+1 , ρ0

}
(with M := sup |∂2I1H0|), ρp =

ρq = ε0/4, σ = s0/4, �1 = n1, �2 = 0, m = n2 h = H0, g ≡ 0, f = μP ,
A = D :=ω−1

0 Dγ,τ (where ω0 is as in A1 and Dγ,τ is the usual Diophantine set in
R
n , namely the set (40) with γ1 = γ2), B = B ′ = {0}, s = s0, α1 = α2 = α = γ

2K
τ ,

and 
 = {0}, on the domain Wv,s where v = (ρ/2, ε0/2) and s = s0/2, one finds a
real-analytic and symplectic transformation φ which carries H to

H(I , ϕ, p, q) := H ◦ φ(I , ϕ, p, q)
= H0(I )+ μP0(I , pq)+ μP1(I , ϕ, p, q)+ P̃(I , ϕ, p, q)

= H0(I )+ μP0(I , pq)+ μP(I , ϕ, p, q)

where

‖P̃‖v,s ≤ Cμmax{μK
2τ+1

γ 2
,
μK

τ

γ
e−Ks0/2} ≤ Cμε = Cμa‖P0‖ ,

whence (by (47)) also P = μP̃av + P̃ is bounded by Cμa‖P0‖ on Wv,s .
The next step is to apply Theorem 3.1 to the Hamiltonian H . Since we can take

M = C , M̂ = Cμ‖P0‖ , M = C(μ‖P0‖)−1 , E = Cμa‖P0‖
M̄1 = C , M̄2 = C(μ‖P0‖)−1, λ = C−1μ‖P0‖

the numbers L , K , ρ̂ and ρ̃ can be bounded, respectively, as

L ≤ C(μ‖P0‖)−1 , K ≤ C log (a/γ1
2)−1
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and

ρ̂ ≥ c min
{ γ1

(log (a/γ12)−1)τ+1 ,
γ 2

(log (a/γ12)−1)τ+1 ,
γ̄

(log ε−1)τ̄+1 , ρ0

}

ρ̃ ≥ c min
{ γ1

(log (a/γ12)−1)τ+1 ,
γ 2

(log (a/γ12)−1)τ+1 ,
γ̄

(log ε−1)τ̄+1 , ρ0, ε
2
}

having let γ2 :=μ‖P0‖γ 2. Condition (41) is trivially satisfied for any γ < 1, s ≤ 6,
while, from the bounds

ĉ Ê ≤ Camax

{
(log (a/γ12)−1)2(τ+1)

γ 21
v
(log (a/γ12)−1)2(τ+1)

γ 22
,
(log ε)−1)2(τ+1)

γ 2
,

1

ρ20
,

1

ε4

}
,

c̃ Ẽ ≤ C
a

ε2

one sees that conditions (42) hold taking

γ = γ1 = γ 2 = Ĉ
√
a, a < Ĉ−1ε4

with a suitable Ĉ > 1. By the thesis of Theorem 3.1, we can find a set of n-dimensional
invariant tori K ⊂ P whose projection K0 on P0 satisfies the measure estimate

measP0 ≥ measK0 ≥ (1 − C ′(γ + γ1 + γ2))measP0 ≥ (1 − C
√
a)measP0 .

��

3.3 Proof of Theorem 3.1

We fix the following notations.

• in R
n we fix the 1-norm: |I | := |I |1 := ∑

1≤i≤n1 |Ii |;
• in T

n we fix the “sup-metric”: |ϕ| := |ϕ|∞ := max1≤i≤n |ϕi | (mod 2π );
• in R we fix the sup norm: |(p, q)| := |(p, q)|∞ := max{|p|, |q|};
• for matrices we use the “sup-norm”: |β| := |β|∞ := maxi, j |βi j |;
• we denote as Bn

ε (z0) the complex ball having radius ε centered at z0 ∈ C
n . If

z0 = 0, we simply write Bn
ε .

• if A ⊂ R
n , and r > 0, we denote by Ar := ⋃

x0∈A Bn
r (x0) the complex r -

neighborhood of A (according to the prefixed norms/metrics above);
• given A ⊂ R

n and positive numbers r , ε, s, we let

v := (r , ε) , Uv := Ar × B2
ε , Wv,s :=Uv × T

n
s

• if f is real-analytic on a complex domain of the form Wv0,s0 , with v0 = (r0, ε0),
r0 > r , ε0 > ε, s0 > s, we denote by ‖ f ‖v,s its “sup-Taylor–Fourier norm”:

‖ f ‖v,s :=
∑

k,α,β

sup
Uv

| fα,β,k |e|k|sε|(α,β)| (48)
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with |k| := |k|1, |(α, β)| := |α|1 + |β|1, where fk,α,β(I ) denotes the coefficients
in the expansion

f =
∑

(k,α,β)∈Zn×N
�×N

�

αi �=βi∀i

fk,α,β(I )e
ik·ϕ pαqβ;

• if f is as in the previous item, K > 0 and L is a sub-lattice of Zn , TK f and ¶L f
denote, respectively, the K -truncation and the L-projection of f :

TK f :=
∑

(k,α,β)∈Zn×N
�×N

�

αi �=βi∀i |k|1≤K

fk,α,β(I )e
ik·ϕ pαqβ , ¶L f

:=
∑

(k,α,β)∈Zn×N
�×N

�

αi �=βi∀i,k∈L

fk,α,β(I )e
ik·ϕ pαqβ

with fk,α,β(I ) := fk,α,β(I , 0, 0). We say that f is (K ,L) in normal form if f =
¶LTK f . If L is strictly larger than {0}, we say that f is resonant normal form.

Proposition 3.1 (Partially hyperbolic averaging theory) Let H = h(I1, I2, pq) +
f (I , ϕ, p, q) be a real-analytic function on Wv0,s0 , with v0 = (r0, ε0). Let K , r ,

s, ε, r̂ , ŝ, positive numbers, with r̂ < r/4, ŝ < s/4 and ε̂ < ε/4. Put σ̂ := min
{
ŝ, ε̂
ε

}
.

Assume there exist positive numbers α1, α2 > 0, with α1 ≥ α2, such that, for all
k = (k1, k2, k3) ∈ Z

n+1, 0 < |k| ≤ K and for all (I , p, q) ∈ Ur ,ε,

|ω1 · k1 + ω2 · k2 − ik3ν| ≥
{
α1 if k1 �= 0
α2 if k1 = 0, (k2, k3) �= (0, 0) (49)

and

K σ̂ ≥ 8 log 2,
23c1K σ̂

α2δ
‖ f ‖r ,s,ε < 1, δ := min{r̂ ŝ, ε̂2} (50)

with a suitable number c1. Then, one can find a real-analytic and symplectic transfor-
mation

 ∗ : Wr∗,s∗,ε∗ → Wr ,s,ε

with r∗ = r − 4r̂ , s∗ = s − 4ŝ, ε∗ = ε − 4ε̂, which conjugates H to

H∗(I , ϕ, p, q) := H ◦ ∗ = h(I , pq)+ g(I , ϕ, p, q)+ f∗(I , ϕ, p, q),

where g is (K , {0}) in normal form, and g, f verify

‖g − ¶0TK f ‖r∗,s∗,ε∗ ≤ 8c1 ‖ f ‖2r ,s,ε
α2δ
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‖ f∗‖r∗,s∗,ε∗ ≤ e−K σ̂ /4‖ f ‖r∗,s∗,ε∗ (51)

Finally,  ∗ verifies

max
{
α1ŝ|I1 − I ′1|, α2 ŝ|I2 − I2

′|, α2r̂ |ϕ − ϕ′|, α2ε̂ |p − p′|, α2ε̂, |q − q ′|} ≤ 2c1E .

(52)

Proposition 3.1 is an extension of the Normal Form Lemma by Pöschel (1993).
The extension pertains at introducing the (p, q) coordinates in the integrable part
and leaving the amounts of analyticity r̂ , ŝ and ε̂ as independent. This is needed in
order to construct the motions (44), where the coordinates (π, κ) are not set to (0, 0),
but take value in a small neighborhood of it. A more complete statement implying
Proposition 3.1 is quoted and proved in Sect. 3.4.
Below, we let B := B2

ε (0); therefore, Bε will stand for B
2
ε+ε(0).

Lemma 3.1 (kam Step Lemma) Under the same assumptions and notations as in
Theorem 3.1, there exists a sequence of numbers ρ j , ε j , s j ; of domains

(Wj )ρ j ,ε j ,s j = (A j )ρ j ,ε j × T
n
s+s j

, with (A j )ρ j ,ε j :=
⋃

(p j ,q j )∈Bε j

(
Dj (p jq j )

)
ρ j

× {(p j , q j )}

and a real-analytic and symplectic transformations

! j+1 : (I j+1, ϕ j+1, p j+1, q j+1) ∈ (Wj+1)ρ j+1,ε j+1,s j+1 → (I j , ϕ j , p j , q j ) ∈ (Wj )ρ j ,ε j ,s j

(53)

such that

H j+1(I j+1, ϕ j+1, p j+1, q j+1) = H j ◦! j+1(I j+1, ϕ j+1, p j+1, q j+1)

= h j+1(I j+1, p j+1q j+1)

+f j+1(I j+1, ϕ j+1, p j+1, q j+1)

and such that the following holds. Letting E0 := E, (M0,M0, M̂0, L0) = (M,M,
M̂, L), s0 := s, ρ0 := ρ, ε0 := ε0, λ0 := λ and, given, for 0 ≤ j ∈ Z, E j ,
(Mj ,M j , M̂ j , L j ), s j , ρ j , ε j , λ j , define

K j := 32

s j
log+

( E j L j M2
j

γ12

)−1
(54)

ρ̂ j := min

{
γ1

2Mj K
τ+1
j

,
γ2

2M̂ j K
τ+1
j

,
λ j

2Mj K j
,

λ j

2M̂ j K j
, ρ j

}
, (55)

ρ̃ j := min

{
ρ̂ j ,

ε2j

s j

}
, Ê j := E j L j

ρ̂ j ρ̃ j

123



   90 Page 30 of 45 Journal of Nonlinear Science            (2023) 33:90 

E j+1 := E j L j M2
j

γ12
, (Mj+1,M j+1, M̂ j+1, L j+1) = 2(Mj ,M j , M̂ j , L j )

ρ j+1 := ρ̂ j

4
, ε j+1 := ε j

4
, , λ j+1 := λ j − 28

E j

ε2j
, s j+1 := s j

4
. (56)

Then, for all (p j+1, q j+1) ∈ Bε j+1 ,

(i) D j+1(p j+1q j+1) ⊆ (Dj (p j+1q j+1))ρ̂ j /4. Letting

� j+1 := ∂(I j+1,p j+1q j+1)h j+1(I j+1, p j+1q j+1))

= (ω j+1(I j+1, p j+1q j+1), ν j+1(I j+1, p j+1q j+1))

the map I j+1 → ω j+1(I j+1, p j+1q j+1) is a diffeomorphism of(
Dj+1(p j+1q j+1)

)
ρ j

verifying

ω j+1(Dj+1(p j+1q j+1)), p j+1q j+1) = ω j (Dj (p j+1q j+1)), p j+1q j+1).

The map

ι̂ j+1(p j+1q j+1) = (̂ι j+1,1(p j+1q j+1), ι̂ j+1,2(p j+1q j+1)) :
Dj (p j+1q j+1) → Dj+1(p j+1q j+1)

I j (p j+1q j+1) → I j+1(p j+1q j+1) :=ω−1
j+1

(
ω j (I j , p j+1q j+1), p j+1q j+1

)

verifies

sup
Dj

|̂ι j+1,1(p j+1q j+1)− id | ≤ 3n
M1

M
Ê j ρ̃ j ≤ 3nÊ j ρ̃ j ,

sup
Dj

|̂ι j+1,2(p j+1q j+1)− id | ≤ 3n
M2

M
Ê j ρ̃ j ≤ 3nÊ j ρ̃ j (57)

L(̂ι j+1(p j+1q j+1)− id ) ≤ 29nÊ j (58)

(ii) the perturbation f j has sup-Fourier norm

‖ f j‖(Wj )ρ j ,ε j ,s j
≤ E j

(iii) the real-analytic symplectomorphisms ! j+1 in (53) verify

sup
(Wj+1)ρ j+1,ε j+1,s j+1

|I j,1(I j+1, ϕ j+1, p j+1, q j+1)− I j+1,1| ≤ 3

4

M̂ j

M j
Ê j ρ̃ j

sup
(Wj+1)ρ j+1,ε j+1,s j+1

|I j,2(I j+1, ϕ j+1, p j+1, q j+1)− I j+1,2| ≤ 3

4
Ê j ρ̃ j
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sup
(Wj+1)ρ j+1,ε j+1,s j+1

|ϕ j (I j+1, ϕ j+1, p j+1, q j+1)− ϕ j+1| ≤ 3

4
Ê j s j

sup
(Wj+1)ρ j+1,ε j+1,s j+1

|p j (I j+1, ϕ j+1, p j+1, q j+1)− p j+1| ≤ 3

4
Ê jε j

sup
(Wj+1)ρ j+1,ε j+1,s j+1

|q j (I j+1, ϕ j+1, p j+1, q j+1)− q j+1| ≤ 3

4
Ê jε j . (59)

The rescaled dimensionlessmap  ̌ j+1 := id +1
ρ̂−1
0 ,s−1

0 ,ε−1
0

(
 j+1 − id

)◦1ρ̂0,s0,ε0
has Lipschitz constant on (Wj+1)ρ j+1/ρ̂0,ε j+1/ε0,s j+1/s0

L( ̌ j+1 − id ) ≤ 6(n + 1)
(
12 · (24)τ ) j Ê j ; (60)

(iv) for any j ≥ 0, Ê j+1 < Ê2
j , λ j ≥ λ0

2 .

Proof The proof of this proposition is obtained generalizing (Chierchia and Pinzari
2010, Lemma B.1). We shall limit ourselves to describe only the different points,
leaving to the interested reader the easy work of completing details.
We construct the transformations (53) by recursion, based on Proposition 3.1. For
simplicity of notations, we shall systematically eliminate the sub-fix “ j” and replace
“ j + 1” with a “+”. As an example, instead of (53), we shall write

!+ : W+ → W .

When needed, the base step will be labeled as “0” (e.g., (76) below). Let us assume
(inductively) that

ω(D, pq) ⊂ Dγ1,γ2,τ ∀ (p, q) ∈ Bε (61)

ĉ Ê < 1 (62)

λ ≥ max

{
γ2

K τ
,
λ0

2

}
. (63)

Condition (61) is verified at the base stepprovidedone takes D0 = ω−1
0 (Dγ1,γ2,τ , p0q0);

(62) is so by assumption, while (63) follows from (41):

λ0 ≥ λ0

2
≥ sτ0γ2

6τ
≥ γ2

K τ0
. (64)

We aim to apply Proposition 3.1 with ε, s of Proposition 3.1 corresponding now to
ε + ε, s + s, and//

r = ρ̂, r̂ = ρ̂

8
, ŝ := s

8
, ε̂ := ε

8
, L = {0}.
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We check that that (61) and (62) imply conditions (49) and (50). We start with (49).
If (I , p, q) = (I1, I2, p,q) ∈ Aρ̂,ε and k ∈ Z3 \ {0}, with |k|1 ≤ K , then there exists
some I0(pq) = (I01(pq), I02(pq)) such that |I − I0(pq)| < ρ̂ and ω(I0(pq), pq) =
(ω01, ω02) ∈ Dγ1,γ2,τ . We have

|�(I , pq) · k| =
∣∣∣ω01 · k1 + ω02 · k2 + (ω1(I , pq)− ω1(I (pq), pq)) · k1
+(ω2(I , pq)− ω2(I (pq), pq))) · k2 − iν(I , pq)k3

∣∣∣

≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

{
γ1

2K τ
,
λ

2

}
if k1 �= 0

min

{
γ2

2K τ
,
λ

2

}
if k1 = 0, k2 �= 0

λ if k1 = k2 = 0, k3 �= 0

≥
⎧
⎨

⎩
α1 := γ1

2K τ
if k1 �= 0

α2 := γ2

2K τ
if k1 = 0, (k2, k3) �= (0, 0)

having used (63). The bounds above have been obtained considering separately the
cases k3 �= 0 and k3 = 0, and:
–if k3 �= 0, taking the infimum of the modulus of the imaginary part of the expression
between the |’s; observing that ω0 = (ω01, ω02) are real and bounding the differences
| Im (ωi (I , pq)−ωi (I (pq), pq)

)|with MK ρ̂ (when i = 1), M̂K ρ̂ (when i = 2) and
using the definition of ρ̂ in (55).
–if k3 = 0, using the Diophantine inequality and again bounding the differences
| Im (ωi (I , pq)− ωi (I (pq), pq)

)| as in the previous case and using the definition ρ̂.
We now check condition (50). The inequality Ks > 8 log 2 is trivial by definition
of K (see (54)), and also, the smallness condition (50) is easily met, since σ̂ =
min{ 18 ε

ε+ε ,
s
8 } = s

8 , δ = 2−6 min{ρ̂s, ε2} = 2−6ρ̃s (by the definition of ρ̃ in (56)),
whence

23c1
K s

8

α2δ
‖ f ‖Wρ̂,ε,s ≤ 26c1

EL

ρ̂ρ̃
≤ ĉ Ê < 1

having used L ≥ M̂−1, M−1, so α2 ≥ K L−1ρ̂, 26c1 < ĉ, and (62). Thus, by
Proposition 3.1, H may be conjugated to

H+ :=H ◦!+ = h+(I+, p+q+)+ f+(I+, ϕ+, p+, q+)

where

h+(I+, p+q+) = h(I+, p+q+)+ g(I+, p+q+)
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while, by (51) and the choice of K ,

‖ f+‖ρ̂/2,ε/2,s/2 ≤ e−Ks/32E ≤ ELM2

γ12
E = E+ . (65)

The conjugation is realized by an analytic transformation

!+ : (I+, ϕ+, p+, q+, ) ∈ Wρ̂/2,ε/2,s/2 → (I , ϕ, p, q) ∈ Wρ̂,ε,s .

Using (52), ρ̃ ≤ ε2/s, α1 ≥ MK ρ̂, α2 = γ2
2K τ ≥ L−1K ρ̂, Ks ≥ 6 and the definition

of Ê , we obtain the bound (59) with, at the left hand side, the set Wρ̂/2,ε/2,s/2. Below
we shall prove that W+ρ+,ε+,s+ ⊂ Wρ̂/2,ε/2,s/2, so we shall have (59).
We now evaluate the generalized frequency

�+(I+, p+q+) := ∂I+,p+q+h+(I+, p+q+) = (
ω+(I+, p+q+), ν+(I+, p+q+)

)
.

with

ω+(I+, p+q+) := ∂I+h+(I+, p+q+) = ∂I+h(I+, p+q+)+ ∂I+g(I+, p+q+) (66)

(the “new frequency map”) and

ν+(I+, p+q+) := ∂p+q+h+(I+, p+q+) = ν(I+, p+q+)+ ∂p+q+g(I+, p+q+)
(67)

(the “new Lyapunov exponent”).

Lemma 3.2 Let (p+, q+) ∈ Bε/2. The new frequency map ω+ is injective on
D(p+q+)ρ̂/2 and maps D(p+q+)ρ̂/4 over ω(D, p − +q+). The map ι̂+(p+q+) =
(̂ι+1(p+q+), ι̂+2(p+q+)) :=ω−1+ ◦ω|D(p+q+) which assigns to a point I0 ∈ D(p+q+)
the ω+(·, p+q+)-preimage of ω(I0, p+q+) in D(p+q+)ρ̂/4 satisfies

sup
(A+)ρ+,ε+

|̂ι+1(p+q+)− id | ≤ 3n
M1E

ρ̂
≤ 3n

ME

ρ̂
,

sup
(A+)ρ+,ε+

|̂ι+2(p+q+)− id | ≤ 3n
M2E

ρ̂
≤ 3n

ME

ρ̂
,

L(̂ι+(p+q+)− id ) ≤ 29n
ME

ρ̂2
. (68)

The Jacobian matrix U+ := ∂2I+h+(I+, p+q+) is non-singular on Dρ̂/4×B2
ε/2 and the

following bounds hold

M+ := 2M ≥ sup
(A+)ρ+,ε+

‖U+‖ , M̂+ := 2M̂ ≥ sup
(A+)ρ+,ε+

‖Û+‖ ,
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M+ := 2M ≥ sup
(A+)ρ+,ε+

‖U−1+ ‖ , Mi+ := 2Mi ≥ sup
(A+)ρ+,ε+

‖Ti+‖ , i = 1, 2.

(69)

where U−1+ =:
(
T+1
T+2

)
. Finally, the new Lyapunov exponent ν+(I+, p+q+) satisfies

λ+ := λ− 24
E

ε2
≤ inf
(A+)ρ+,ε+

|Re ν+|. (70)

Postponing for the moment the proof of this lemma, we let ρ+ := ρ̂/2, s+ := s/2,
ε+ = ε/2 and D+(p+q+) := ι̂+(p+q+)(D(p+q+)). By Lemma 3.2, D+ is a subset
of Dρ̂/4 and hence

(D+)ρ+ ⊂ Dρ̂/2 . (71)

We prove that Ê+ = E+L+
ρ̂2+

≤ Ê2. Since

s+ = s

4
and x+ :=

( E+L+M2+
γ12

)−1 = x2

8
where x :=

( ELM2

γ12

)−1
(72)

we have

K+ = 25

s+
log x+ = 27

s
log

x2

8
= 28

s
log+ x − 3 · 27

s
log+ 2 < 8K . (73)

Finally, (42), (70) and the definition of Ẽ imply λ+ ≥ λ
2 . Collecting all bounds, we

get

ρ̂+ = min

{
γ1

2M+K τ+1+
, ,

γ2

2M̂+K τ+1+
,

λ+
2M+K+

,
λ+

2M̂+K+
, ρ+ = ρ̂

2

}
≥ ρ̂

2 · 8τ+1

ρ̃+ = min

{
ρ̂+,

ε2+
s+

}
≥ ρ̃

2 · 8τ+1 (74)

and

Ê+ = E+L+
ρ̂+ρ̃+

≤ E2LM2

γ12

2L

ρ̂ρ̃
4 · 82(τ+1) = 8 · 82(τ+1) E LM2

γ12
Ê

Now, using, in the last inequality, the bound

E LM2

γ12
≤ 1

4

( s
6

)2(τ+1) EL

ρ̂2
≤ 1

4

( s
6

)2(τ+1)
Ê

123



Journal of Nonlinear Science            (2023) 33:90 Page 35 of 45    90 

(since ˆρ ≤ γ1
2MK τ+1 and K ≥ 6/s) we find

Ê+ ≤ 2(
4

3
s)τ+1 Ê2 < Ê2 (75)

(having used s ≤ 1/2). We now prove that λ+ ≥ λ0
2 . Iterating (70) and using ρ̂k ≤

ρ̂k−1/4, ρ̃k ≤ ρ̃k−1/4, εk = εk−1/4, Lk = 2Lk−1, (75) and the second condition
in (42) with c̃ = 26, we get

λ+ = λ j+1 = λ0 − 24
j∑

k=1

Ek

ε2k
≥ λ0 − 24

j∑

k=1

Êk
ρ̂k ρ̃k

ε2k Lk
≥ λ0 − 24

ρ̂0ρ̃0

ε20L0

j∑

k=1

Êk

≥ λ0 − 25
ρ̂0ρ̃0

ε20L0
Ê0

= λ0 − 25
E0

ε20
≥ λ0

2
. (76)

This allows to check (63) at the next step: using (64) and (73), we have

λ+ ≥ λ0

2
≥ γ2

K τ0
≥ γ2

K τ+
.

Finally, (57) and (58) follow from (68), while the estimate in (60) is a consequence of
(59), (71), (72), (74), inequality LM ≥ 1 and Cauchy estimates:

L( ̌ j+1 − id ) ≤ 2(n + 1) sup
(W̌ j+1)ρ j+1,ε j+1,s j+1

‖D( ̌ j+1 − id )‖∞

≤ 2(n + 1)
3
4 Ê j max{ρ̂ j/ρ0, s j/s0, ε j/ε0}

min{ρ̂ j/(4ρ̂0), s j/(4s0), ε j/(4ε0)}
≤ 2(n + 1)

3/4(1/4) j

1/4
(

1
2(24)τ+1

) j
Ê j = 6(n + 1)

(
12 · (24)τ ) j Ê j .

Proof of Lemma 3.2 The proof of this proposition is obtained generalizing (Chierchia
and Pinzari 2010, Lemma B.2). As above, we limit to discuss only the different parts.
By (51),

sup
Dρ̂/2×B2

ε/2

|g| ≤ sup
Dρ̂/2×B2

ε/2

|g − f | + sup
Dρ̂/2×B2

ε/2

| f | ≤ 3

2
E ,

(where f denotes the average of f ). Therefore we may bound

sup
Dρ̂/4×B2

ε/2

‖(∂2I+ h)−1∂2I+ g‖ ≤ 2M
3
2 E

(ρ̂/4)2
≤ 26

ME

ρ̂2
≤ 26

ME

ρ̂2
<

1

2
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This shows that the function (66) has a Jacobian matrix

∂I+ω+(I+, p+q+) = ∂2I+ h+(I+, p+q+) = ∂2I+h(I+, p+q+)+ ∂2I+g(I+, p+q+)

which is invertible for all (p+, q+) ∈ B2
ε/2 and satisfies

M+ := sup
Dρ̂/4×B2

ε/2

∥∥∥
(
∂I+ω+(I+, p+q+)

)−1∥∥∥ ≤ 2M

In a similar way one proves (69). Next, for any fixed (p+, q+) ∈ B2
ε/2 and ω =

ω(I (p+q+), p+q+) ∈ ω(D, p+q+) with I (p+q+) ∈ D, we want to find I+ =
I+(p+q+) ∈ D+ such that

ω+(I+(p+q+), p+q+) = ω = ω(I (p+q+), p+q+) (77)

To this end, we consider the function

I+ ∈ Dρ̂/2 → F(I+, p+q+) :=ω+(I+, p+q+)− ω (p+, q+) ∈ B2
ε/2

As F differs from ω+ by a constant, we have

m := sup
Dρ̂/4×B2

ε/2

∥∥∥
(
∂I+ F(I+, p+q+)

)−1∥∥∥ = sup
Dρ̂/4×B2

ε/2

∥∥∥
(
∂I+ω+(I+, p+q+)

)−1∥∥∥ ≤ 2M .

Similarly, we bound the quantities

Q := |∂2I+F(I )| = |∂3I+g(I+, p+q+)| ≤ 6
3
2 E

(ρ̂/4)3
< 210

E

ρ̂3
.

and

P := |F(I (p+q+))| = |∂I+g(I (p+q+), p+q+)| ≤
3
2 E

(ρ̂/4)
≤ 23

E

ρ̂
.

Putting everything together, we get

4m2PQ ≤ 216
M2E2

ρ̂4
≤ ĉ2 Ê2 < 1

By the implicit function theorem (e.g., (Celletti and Chierchia 1998, Theorem 1 and
Remark 1)), Equation (77) has a unique solution

(p+, q+) ∈ Bε/2 → I+(p+q+) ∈ Br (I (p+q+)),
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with

r = 2mP ≤ 25
ME

ρ̂
≤ ρ̂

4

so we can take

D+(p+q+) =
⋃

ω∈ω(D,p+q+)
{I+(p+q+)}

This ensures that (61) holds also for D+.
Finally, the real part of the function (67) satisfies the lower bound

inf
Dρ̂/2×B2

ε/4

|Re ν+| ≥ λ− E

(ε/4)2
= λ+.

The proof of (68) proceeds as in Chierchia and Pinzari (2010, proof of Lemma B.2).
��

Proof of Theorem 3.1.
Step 1 Construction of the “generalized limit actions”
Let (π, κ) ∈ B0 = B2

ε = ⋂
j≥0 Bε j . Define, on D0(πκ) = ω−1

0 (Dγ1,γ2,τ , πκ) ∩ D,

ι̌ j (πκ) := ι̂ j (πκ) ◦ ι̂ j−1(πκ) ◦ · · · ◦ ι̂1(πκ) j ≥ 1.

Then ι̌ j (πκ) converge uniformly to a ι̌(π, κ) = (ι̌1(π, κ), ι̌2(π, κ)) verifying

sup
D0(πκ)

|ι̌1(πκ)− id | ≤ 6n
M1

M
ρ̃0 Ê0, sup

D0(πκ)

|ι̌2(πκ)− id | ≤ 6n
Mi

M
ρ̃0 Ê0. (78)

Moreover, as

sup |̂ι j (πκ)− ι̂(πκ)| ≤ 6nÊ j ρ̃ j <
6n

ĉ
ρ̂ j < ρ j

we have

D∗(pq) := ι̌(πκ)(D0(πκ)) ⊂
⋂

j

D j (πκ)ρ j
. (79)

In particular, taking j = 0,

D∗(πκ) ⊂ (D0(πκ))6nÊ0ρ̃0
. (80)

Moreover,

L(ι̌(πκ)− id ) ≤ 28nÊ .
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So ι̌(πκ) is bi-Lipschitz, with

L−(ι̌(πκ)) ≥ 1 − 28nÊ, L+(ι̌(πκ)) ≤ 1 + 28nÊ .

Step 2 Construction of φω∗ . For each j ≥ 1, the transformation

 j :=!1 ◦ · · · ◦! j

is defined on (Wj )ρ j ,s j ,ε j . If

A∗ :=
⋃

|(π,κ)|<ε
D∗(πκ)× {(π, κ)}, W∗ := A∗ × T

n .

then, by (79), W∗ ⊂ ⋂
j (Wj )ρ j ,s j ,ε j . The sequence  j converges uniformly on W∗

to a map  . We then let

φω∗ (ϑ, π, κ) =
(
v(ϑ, π, κ;ω∗), ϑ + u(ϑ, π, κ;ω∗), π + w(ϑ, π, κ;ω∗), κ + y(ϑ, π, κ;ω∗)

)

:=  
(
ι̌(ω−1

0 (ω∗, πκ)), ϑ, π, κ
)

with v(ϑ, π, κ;ω∗) :=
(
v1(ϑ, π, κ;ω∗), v2(ϑ, π, κ;ω∗)

)
. Since (59) imply, on W∗,22

sup
W∗

|¶I1 − id |1 ≤ 2n
M̂0

M0
Ê0ρ̃0 (81)

and similarly,

sup
W∗

|¶I2 − id |1 ≤ 2nÊ0ρ̃0 , sup
W∗

|¶ϕ − id |∞ ≤ 2Ê0s0 ,

sup
W∗

|¶p − id |∞ ≤ 2Ê0ε0, sup
W∗

|¶q − id |∞ ≤ 2Ê0ε0 (82)

then, in view of (78), (81), (82), the definition of W∗ and the triangular inequality, we
have (46). Equations (80), (81), (82) also imply

Tω∗ :=φω∗(T
n, 0, 0) ⊂ (D∗(0))2Ê0ρ̃0

× T
n × B2

r ′ ⊂ (D0(0))r × T
n × B2

r ′ (83)

where

r = 8nÊ0ρ̃0, r ′ = 2Ê0ε0

Finally, with similar arguments as in Step 1, by (84), the rescaled map

 ̌ := id + 1
ρ̂−1
0 ,s−1

0 ,ε−1
0
( − id ) ◦ 1ρ̂0,s0,ε0

22 ¶z denotes the projection on the z-variables.
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has Lipschitz constant

L( ̌− id ) ≤ 26(n + 1)Ê0 . (84)

In particular,  ̌, hence,  , and, finally, the map (ϑ, π, κ;ω) → φω(ϑ, π, κ) are bi-
Lipschitz, hence, injective.

Step 3 For any ω∗ ∈ Dγ1,γ2,τ ∩ω0(D, 0), Tω∗ in (83) is a n-dimensional H-invariant
torus with frequency ω∗. This assertion is a trivial generalization of its analogue one
in Chierchia and Pinzari (2010, Proof of Proposition 3, Step 3); therefore, its proof is
omitted.
Step 4 Measure Estimates (proof of (45)) The proof of (45) proceeds as in Chierchia
and Pinzari (2010, Proof of Proposition 3, Step 4), just replacing the quantities that in
Chierchia and Pinzari (2010, Proof of Proposition 3, Step 4) are called

D0, D∗, ι̌,  ̌, K

with the quantities here denoted as

D0(0), D∗(0), ι̌(0),  ̌
∣∣
(π,κ)=(0,0), K0.

��

3.4 Normal FormTheory

Proposition 3.1 can be obtained from the more general Proposition 3.2, takingm = 1,
L = {0} and changing coordinates as follows:

p = p1 − iq1√
2

, q = p1 + iq1√
2i

.

We define cm to be the smallest number such that, for any two functions, real-analytic
in Wr ,s,ε and any choice of r̂ < r , ŝ < s, ε̂ < ε,

‖{ f , g}‖r−r̂ ,s−ŝ,ε−ε̂ ≤ cm
δ

‖ f ‖r ,s,ε‖g‖r ,s,ε with δ := min{r̂ ŝ, ε̂2}.

Proposition 3.2 Let {0} ⊂ L ⊂ Z. Proposition 3.1 holds true taking

H(I , ϕ, p, q) = h (I1, I2, J (p, q))+ f (I , ϕ, p, q), J (p, q) :=
(
p21 + q21

2
, . . . ,

p2m + q2m
2

)

replacing c1 with cm, ¶0 with ¶L and condition (49) with

|ω1 · k1 + ω2 · k2| ≥
{
α1 if k1 �= 0
α2 if k1 = 0, k2 �= 0
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∀ k = (k1, k2) ∈ Z
n1 × Z

n2+m \ L �= (0, 0), |k|1 ≤ K , ∀(I1, I2, p, q) ∈ Vr × B2m
ε

(85)

where

ω = (ω1, ω2)
:= (

∂I1h (I1, I2, J (p, q)) , ∂(I2,J (p,q))h (I1, I2, J (p, q))
)
.

Lemma 3.3 Let r̂ < r/2 ŝ < s/2, ε̂ < ε/2 and δ := min{r̂ ŝ, ε̂2}. Let

H(u, ϕ, p, q) = h(I , p, q)+ g(u, ϕ, p, q)+ f (u, ϕ, p, q) g(u, ϕ, p, q)

=
m∑

i=1

gi (u, ϕ, p, q)

be real-analytic on Wv,s,ε. Assume that inequality (85) and

‖ f ‖v,s,ε < α2δ
cm

are satisfied. Then, one can find a real-analytic and symplectic transformation

 : Wv−2v̂,s−2ŝ,ε−2ε̂ → Wv,s,ε

defined by the time-one flow23 X1
φ f := f ◦ of a suitable φ verifying

‖φ‖v,s,ε ≤ ‖ f ‖v,s,ε
α2

such that

H+ := H ◦ = h + g + ¶LTK f + f+

and, moreover, the following bounds hold

‖ f+‖v−2v̂,s−2ŝ,ε−2ε̂ ≤ (
1 − cm

α2δ
‖ f ‖v,s,ε

)−1
[ cm
α2δ

‖ f ‖2v,s,ε

+max

{
e−K ŝ/2,

(ε − ε̂
ε

)K/2
}

‖ f ‖v,s,ε + ‖{φ, g}‖v−v̂,s−ŝ,ε−ε̂
]

23 The time-one flow generated by φ is defined as the differential operator

X1
φ :=

∞∑

k=0

Lk
φ

k!

where L0
φ f := f and Lk

φ f := {
φ,Lk−1

φ f
}
, with k = 1, 2, · · · .
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Finally, for any real-analytic function F on Wv,s,ε,

‖F ◦ − F‖v−2v̂,s−2ŝ,ε−2ε̂ ≤ ‖{φ, F}‖v−v̂,s−ŝ,ε−ε̂

1 − cm‖ f ‖v,s,ε
α2δ

. (86)

Sketch of proof Lemma 3.3 is a straightforward generalization of Pöschel (1993,
Iterative Lemma). To obtain such generalization, just replace the norm defined in
Pöschel (1993, Section 1) with the norm (48), where

f =
∑

(k,α,β)∈Zn×N
�×N

�

αi �=βi∀i

fk,α,β(I )e
ik·ϕ

(
p − iq√

2

)α ( p + iq

i
√
2

)β
, (87)

and bound the “ultraviolet remainders”, namely the norm of the functions whose
expansion (87) includes only terms with |(k, α − β)|1 > K , as follows. Observe
that, if |(k, α − β)|1 > K , then either |k|1 > K/2 or |α − β|1 > K/2. In the latter
case, a fortiori, |α|1 + |β|1 ≥ |α − β|1 > K/2. Then we have, for such functions,

‖ f ‖r ,s−ŝ,ε−ε̂ ≤ max

{
e−K ŝ/2,

(
ε−ε̂
ε

)K/2} ‖ f ‖r ,s,ε. Other details are omitted.

Proof of Proposition 3.2 Let

r1 := r0 − 2r̂0, s1 := s0 − 2ŝ0, ε1 := ε0 − 2ε̂0.

By Lemma 3.3, we find a canonical transformation  1 = Xφ1 which is real-analytic
on Wr1,s1,ε1 and conjugates H = H0 to H1 = H0 ◦  1 = h + g1 + f1, where
g1 = ¶LTK f0 and

‖ f1‖v1,s1,ε1 ≤ (1 − cmE0

α2δ0
)−1

[cmE0

α2δ0
+ max

{
e−K ŝ0/2,

(ε0 − ε̂0
ε0

)K/2
} ]

E0

≤ 2
[cmE0

α2δ0
+ e−K σ̂0/2

]
E0

having used

(ε0 − ε̂0
ε0

)K/2 = e
K
2 log

(
1− ε̂0

ε0

)
≤ e

− K
2
ε̂0
ε0 .

We now focus on the case

cmE0

α2δ0
< e−K σ̂0/2
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otherwise the lemma is24 proved. Then, we have

‖ f1‖v1,s1,ε1 ≤ 4
cmE2

0

α2δ0
=:E1.

Note that

E1 <
E0

4
.

Assume now that, for some j ≥ 1, it is Hj = Hj−1 ◦ j = h + g j + f j , where

g j =
j−1∑

h=0

¶LTK fh, ‖ f j‖v j ,s j ,ε j ≤ E j ≤ min

{
E0

4 j
, 4

cmE2
0

α2δ0

}
. (88)

We have just proved this is true when j = 1. Let L :=
[

K σ̂0
8 log 2

]
. We prove that (88) is

true for j + 1, for all 1 ≤ j ≤ L . Let

r̂ j := r̂0
L
, ŝ j := ŝ0

L
, ε̂ j := ε̂0

L
hence δ j = δ0

L2 ∀ 1 ≤ j ≤ L.

Note that, for all 1 ≤ j ≤ L , it is r̂ j <
r j
2 :

r j = r1 − 2( j − 1)
r̂0
L

≥ r1 − 2(1 − 1/L)r̂0 = r0 − 4r̂0 + 2r̂ j > 2r̂ j .

Similarly, ŝ j <
s j
2 , ε̂ j <

ε j
2 . Let then

r j+1 = r j − 2
r̂0
L
, s j+1 = s j − 2

ŝ0
L
, ε j+1 = ε j − 2

ε̂0

L

so that r j = r1 − 2( j − 1) r̂0L , etc., for all 1 ≤ j ≤ L . Then

cm
E j

α2δ j
≤ 4

c20E
2
0

α22δ
2
0

L2 <
1

16
(89)

24 Indeed, in such case,

‖ f1‖v1,s1,ε1 ≤ 4e−K σ̂0/2 ≤ e−K σ̂0/4

because e−K σ̂0/4 ≤ 1
4 having chosen K σ̂0 ≥ 8 log 2.
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and Lemma 3.3 applies again, and Hj can be conjugated to Hj+1 = Hj ◦  j+1 =
h + g j+1 + f j+1, with

g j+1 = g j + ¶LTK f j =
j∑

h=0

¶LTK fh

‖ f j+1‖r j+1,s j+1,ε j+1 ≤ (
1 − cm

α2δ j
E j
)−1

[ cm
α2δ j

E2
j

+max

{
e−K ŝ j /2,

(ε j − ε̂ j
ε j

)K/2
}
E j

+‖{φ j , g j
}‖r j−r̂ j ,s j−ŝ j ,ε j−ε̂ j

]

To bound the right hand side of the latter expression, we use (89) and observe that

e−K ŝ j /2 = e− K
2L ŝ0 ≤ 1

16
(
ε j − ε̂ j
ε j

)K/2

=
(
1 −

ε̂0
L

ε1 − 2( j − 1) ε̂0L

)K/2

≤
(
1 − ε̂0

ε1L

)K/2

≤ e
− K ε̂0

2ε1L ≤ 1

16

having used e− K ŝ0
2L ≤ e− K σ̂0

2L , e
− K ε̂0

2ε1L ≤ e
− K ε̂0

2ε0L ≤ e− K σ̂0
2L and L ≤ K σ̂0

8 log 2 . Moreover,
writing

g j = ¶LTK f0 + � j≥2

j−1∑

h=1

¶LTK fh=: f L,K0 + f L,Kj−1

with f L,K0 real-analytic on Wr0,s0,ε0 , while f L,Kj−1 real-analytic on Wr j−1,s j−1,ε j−1 and
verifying

‖ f L,K0 ‖r0,s0,ε0 ≤ E0, ‖ f L,Kj−1 ‖r j−1,s j−1,ε j−1 ≤
j−1∑

h=1

E1

4 j−1 ≤ 4

3
E1

we get

‖{φ j , g j
}‖r j−r̂ j ,s j−ŝ j ,ε j−ε̂ j ≤ cmL

α2δ0
E0E j + 4

3

cmL2

α2δ0
E1E j

≤
(
cmL

α2δ0
E0 + 16

3

c2mL
2

α22δ
2
0

E2
0

)
E j

≤
(

1

32
+ 1

32

)
E j = E j

16
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Collecting all such bounds we get

E j+1 ≤ 16

15

3

16
E j <

E j

4
.

The inductive claim j → j + 1 is thus proved, for all 1 ≤ j ≤ L . Letting now
 ∗ := 1 ◦ · · · ◦ L+1 and

H∗ := HL+1 = h + gL+1 + fL+1=:h + g∗ + f∗
r∗ := rL+1 = r − 4r̂ , s∗ := sL+1 = s − 4ŝ, ε∗ := εL+1 = ε − 4ε̂

and using L + 1 > K σ̂0
8 log 2 , we get

‖ f∗‖r∗,s∗,ε∗ ≤ E0

4L+1 = e−2(L+1) log 2E0 < e− K σ̂0
4 E0

‖g∗ − ¶LTK f0‖r∗,s∗,ε∗ ≤ 4

3
E1 < 8

cmE2
0

α2δ0

as claimed. The bounds (52) are obtained from (86), by usual telescopic arguments. ��
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