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Abstract. Surface charges accumulating on dielectrics during long-time operation of Gas
Insulated High Voltage Direct Current (HVDC-GIS) equipments may affect the stable operation
and could possibly trigger surface flashovers. In industrial applications, to quantify and identify
the location of the surface charge accumulation from experimental measurements, the surface
potential distribution is evaluated using, e.g., electrostatic probes, then the charge density is
determined by solving an electrostatic problem based on an inversion procedure known as Charge
Inversion Algorithm. The major practical limitation of such procedure is the inversion and the
storage of the fully dense matrix arising from the representation via Integral Equations of the
electrostatic phenomenon, resulting in O(N3) computational complexity and O(N2) memory
requirement. In this paper it is shown how hierarchical matrices can be efficiently used to
accelerate the charge inversion algorithm and, more importantly, reduce the overall memory
requirement.

1. Introduction
High Voltage Direct Current (HVDC) systems, because of their compact size, large-capacity
transmission, and stable operation, have become of crucial importance in many applications
[1, 2, 3]. Unlike High Voltage Alternating Current (HVAC) systems, for which the electric field is
driven by the electrical permittivity of the materials, in HVDCs it depends both on permittivity
and electrical conductivity [4, 5]. Moreover, for Gas Insulated HVDC (HVDC-GIS), the gas
conductivity cannot be assigned a priori, but is affected by the motion of free gas ions due to
electric field and diffusion [6].

A relevant aspect, specific of HVDC-GIS transmission, is the surface charge accumulating
on dielectrics during the transition from the initial (capacitive) to the final (resistive) field
distribution [4]. Charges accumulated on the dielectric surfaces are generally considered as the
main factor that lowers the flashover voltage, by the local increase of the electric field [7, 8], and
thus limits the practical applicability of HVDC-GIS systems.

Experimentally, the quantification of the charge density on dielectrics in HVDC-GIS is based
on the measured surface potential distribution. Usually, electrostatic probes (e.g., Kelvin probes)
are used to perform such measurements [9, 10]. This probing method does not require the physical
contact with the measured surface, and the potential distribution is based on the compensation
principle [10]. The Charge Inversion Algorithm, first introduced by Ootera et. al. [11], is usually
adopted to retrieve the charge density from the potential measurements [12]. The main drawback
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of this method is the computational effort required for the storage and the inversion of the dense
matrix which maps potentials to surface charges [13, 14]. However, as shown in this paper, this
limitation can be overcome by exploiting hierarchical matrices (H–matrices) [15, 16], which
provide a data-sparse format to efficiently store and manipulate dense matrices arising from
integral formulation [17].

In recent years, the interest on H–matrices applied to Integral Equations (IE) methods
[18, 19, 20, 21] for electromagnetic simulations has significantly increased. Indeed, as shown in
[22, 23], H–matrices allow for significantly reducing the overall computational effort required
by IE methods and they have been used to alleviate the computational burden required by
numerical studies in many different industrial applications, e.g., from wireless power transfer
devices for electric vehicles [24, 25] to thermonuclear fusion applications [26, 27] or filters for
electronic devices [28].

Despite the increasing use of H–matrices in the context of IE methods, it seems that such
techniques have not been adopted in HVDC-GIS research field yet. However, they would be very
useful to solve, or at least alleviate, the computational issue arising from the need of storing and
inverting the dense matrices arising in the Charge Inversion Algorithm.

This work aims to bridge the gap between these two reserach areas, with the aim of showing
how H–matrices coupled with low-rank compression techniques can be used to reduce the overall
computational burden required by the Charge Inversion Algorithm in HVDC-GIS applications.
In this article, different type of H–matrices are used (i.e., H Off Diagonal Low Rank (HODLR),
H Adaptive Low Rank (HALR) and H–Semi–Separable (HSS) matrices). Moreover, depending
on the case, different strategies are proposed, giving priority to the solution accuracy or to the
reduction of the computational effort.

2. Charge Inversion Algorithm
In this section we briefly describe the Charge Inversion Algorithm which is used in HVDC-GIS
applications to identify the charge distribution from measurements of the electric potential. The
algorithm is based on the well-known electrostatic field equations [29]:

∇ ·D = ρfree, (1)

E = −∇ϕ, (2)

where ϕ is the electric potential, ρfree is the free volumetric charge density [11] and E is the
electric field. The electric displacement field D is given by

D = ε0E + P, (3)

where ε0 is the vacuum electric permittivity and P is the polarization vector. Substituting (3)
into (1) and defining the apparent charge density as

ρapp = ρfree + ρbound, (4)

where ρbound = −∇ ·P, equation (1) can be rewritten as

∇ ·E = −∇2ϕ =
ρapp
ε0

. (5)

It is worth noting that the Charge Inversion Algorithm aims at quantifying the free charge
density distribution, i.e., ρfree (which is the main cause that lowers the surface flashover voltage
and limits the practical applicability of HVDC-GIS systems), whereas ρapp is introduced for
computation purposes.
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The Poisson equation (5) can then be reformulated in terms of Green function G(r, r′), i.e.,
the solution of:

∇2G(r, r′) = −δ(r− r′), (6)

where r is the field point, r′ is the source point, and

G(r, r′) =
1

4π||r− r′||
. (7)

By using (6) and (7) into (5), the integral solution of the Poisson equation is obtained:

ϕ(r) =

∫
Ω

ρapp(r
′)

ε0
G(r, r′)dΩ =

∫
Ω

ρapp(r
′)

4πε0||r− r′||
dΩ, (8)

where Ω is the integration domain. This integral equation is the starting point of the Charge
Inversion Algorithm [13]. In practical situations, the charge density only stays on dielectric and
metallic surfaces [12]; therefore, equation (8) is rewritten as:

ϕ(r) =

∫
Γ

σapp(r
′)

4πε0||r− r′||
dΓ, (9)

where σapp(r) is the apparent surface charge density and Γ is the boundary of Ω [30]. The
numerical solution of (9) requires the discretization of the computational domain Γ into, e.g.,
triangular elements and the expansion of the unknown σ(r) in terms of Degrees of Freedom
(DoFs) by using base functions wk:

σapp(r) =

N∑
k=1

qapp,kwk(r), (10)

where N is the number of triangular elements and qapp,k is the apparent charge on the k-th one
[31]. In this paper, piece-wise uniform bases function are considered, i.e., wk(r) = 1/|Sk| when
r is in the k-th element, and wk(r) = 0 when r is elsewhere, where |Sk| is the area of the k-th
triangular element [31]. However, higher order shape functions or different mesh elements can be
also used. Using expansion (10), and projecting the resulting equations by adopting the same
shape functions (i.e., by exploiting the Galerkin scheme), equation (9) becomes:

φi =

∫
Γ
wi(r)

( N∑
j=1

∫
Γ

wj(r
′)qapp,j

4πε0||ri − r′j ||
dΓ

)
dΓ, (11)

where φi is the average electric potential in the i-th triangle. It is worth noting that in other works
in the literature a collocation method is used instead of the Galerkin scheme here adopted [11],
i.e. no averaging is performed on the electric potentials. In this paper, the Galerkin procedure
(i.e., the averaging) is adopted since it allows for alleviating the issues related to the singularity
of the Green’s function in the evaluation of the integrals. However, all the discussions and
considerations of the paper still hold if a collocation method is used for deriving (11), as in [11].

Then, equation (11) can be recasted in matrix form:

Φ = Pqapp, (12)

where Φ and qapp are arrays storing the electric potential and apparent charges on each triangle.
The coefficients of matrix P ∈ IRN×N are given by:

Pij =
1

|Sj ||Si|

∫
Si

∫
Sj

1

4πε||ri − r′j ||
dΓ′dΓ. (13)
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When the field and integration points overlap (r′ → r), the integrand (13) exhibits a singularity
due to the Green’s function. To properly evaluate matrix coefficients, singularity extraction
techniques reported in the literature should be adopted [32]. On the contrary, the larger the
distance between field and integration points, the smoother the integrand function [22], and
therefore simple numerical techniques can be used to evaluate far-mutual coefficients without
losing accuracy. Once the electric potentials are obtained from measurements, the apparent
charge is computed by solving (12).

As previously discussed, the aim of the Charge Inversion Algorithm is to find the free surface
charge density distribution, and not the apparent one. The free surface charge q is derived by
using the dielectric interface boundary condition [11, 12, 13, 14]. Numerically, this procedure is
performed by multiplying qapp with an integral matrix operator, whose coefficients depends on
the relative permittivity discontinuities. Such operator, usually indicated as F, is given in, e.g.,
[11, 14]. Therefore, q (i.e., the array storing the charges in each triangle) is obtained by using F,
i.e.,

q = Fqapp. (14)

Once q is obtained, the free surface charge density, σ, is given by

σ(r) =

N∑
k=1

qkwk(r). (15)

Nevertheless, the bottleneck of the surface Charge Inversion Algorithm is related to the
computational effort required to solve equation (12), due to the fact that P is a full matrix.

3. Data-Sparse Representation
Generally, a large number of mesh elements is required to reach good accuracy with the Charge
Inversion Algorithm. However, this leads to a high computational effort since the storage
and assembly cost for generating P grows with N2, whereas the direct solution of (12) has
O(N3) complexity. Fortunately, due to the smoothness of the Green’s function for distant field
and integration points, the fully populated matrix P contains low-rank blocks. By applying
a reordering of the triangles (e.g., following a geometric criterion), off-diagonal matrix blocks
representing interaction between far-field points, can be represented with low–rank approximation
techniques making P compressible [33].

There exists a variety of data-sparse representations based on H-matrices: Hierarchical Off
Diagonal Low Rank (HODLR) [15], Hierarchical Semi Separable (HSS) [34], Hierarchical Adaptive
Low Rank (HALR) [35], and H2 matrices [16], which can be used to represent P in a data-sparse
format, while keeping a reasonably high accuracy. In the next sections, the steps required to
generate such sparse representation of P are discussed.

3.1. Geometric Partitioning and Cluster Tree
This section describes the geometric procedures at the base of the hierarchical subdivision of the
triangles which discretize the boundary Γ.

Starting from ordered sets I, J representing row and column indices of matrix P, corresponding
to the triangles, a bisection of each set is generated, e.g., I is partitioned into two clusters:
τI = {1, . . . , bN/2c} and σI = {bN/2c + 1, . . . , N}. The same operation is performed for J ,
leading to the clusters τJ and σJ . Then, each of the four cluster pairs representing matrix blocks
P(τI ,τJ ), P(τI ,σJ ),P(σI ,τJ ),P(σI ,σJ ) are tested against an admissibility criterion which identifies
if the cluster is a good candidate for applying low-rank approximation or if it must be further
partitioned [27]. Such admissibility check is given by

min{diam(τ), diam(σ)} ≤ η dist(τ, σ), (16)



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012136

IOP Publishing
doi:10.1088/1742-6596/2090/1/012136

5

(a) (b)

Figure 1. Example of clustering performed with the geometric bisection algorithm, on conical
spacer surface. Originial (a) and reordered (b). For the latter case, triangles {1, ..., N} were
reordered so that near ones have approximately the same colour.

where η > 0 is the admissibility parameter chosen by the user (e.g., η = 2), diam is the cluster
diameter and dist is the distance function between clusters (see [22, 33] for more details).

The admissible cluster pairs (i.e., the ones which satisfy (16)), whose corresponding matrix
block belongs to the far-field interaction, are stored efficiently with low-rank techniques (as
described in the next section); otherwise, the clusters are halved and the procedure is applied
recursively until the admissibility check is satisfied or the number of elements (i.e., unknowns)
related to the matrix block reaches a specified minimum threshold (blocksize2) [27]. This recursive
procedure generates the so called block cluster tree [33, 36].

It is worth noting that a proper reordering of the triangles is of crucial importance in order to
guarantee that off-diagonal blocks are actually low-rank. In fact, the index set {1, ..., N} should
be reordered so that close indices in the set correspond to near geometric entities [22]. Only in
this condition the far-field interactions (i.e., the off-diagonal blocks of P) can be represented
by using low-rank approximation with good accuracy. Such reordering can be performed by
clustering the triangles using, e.g., a geometric bisection algorithm. This bisection algorithm
constructs a binary cluster tree of index set {1, ..., N} with a prescribed number of subdivisions
(levels). Clearly, increasing the number of levels, the reordering procedure is more accurate. An
example of clustering with the geometric bisection is reported in figure 1.

For reordered index sets, the off-diagonal blocks of P correspond to far-field interactions for
which the Green’s function is smooth. Therefore, such blocks are actually low-rank and can be
efficiently represented by using low-rank compression techniques.

3.2. Low-Rank Approximation
In this section, for the sake of completeness, we briefly describe the low-rank approximation of
far-field (admissible) off-diagonal blocks. Consider a matrix block A ∈ IRm×n, related to far-field
interactions of triangles in τ and σ. Matrix A has a low-rank representation if exists matrices
U ∈ IRm×k and V ∈ IRn×k such that [36]:

A = UVT , (17)

with k(m + n) < mn, where k is the effective rank. Since this is not known a priori, the
rank-revealing factorization (17) is computed within a prescribed tolerance ε [37]:

||A−Uk′V
T
k′ ||F

||A||F
< ε. (18)
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Figure 2. Illustration of block cluster trees for HSS (left) and HALR (right) hierarchical matrices.
The number in each block represents the numerical rank of the approximation.

where k′ < k is the numerical rank. The decomposition (18) can be conveniently obtained by
using the Adaptive Cross Approximation (ACA) algorithm [38, 39]. It is a completely matrix-free
approach which adaptively computes the columns of Uk′ and Vk′ , without previously storing
the entire matrix A. The algorithm requires only the capability of computing the generic entry
(13) for i ∈ τ, j ∈ σ. Since only few entries of the original matrix must be computed, it can be
proven that the computational cost required by the ACA approximation have a linear-logarithmic
complexity [27].

3.3. HALR, HODLR and HSS matrices
The data-sparse representations mentioned in Section 3 differs from the way the block cluster
tree is built. For the HALR representation, the cluster tree can be specified by the user allowing
for greater flexibility. The HODLR case correspond to H-matrices with partitioning recursively
done in 2 x 2 blocks [40], while the HSS format, using the same partitioning, correspond to a
H2-matrix [34] performing a re-compression of blocks. Examples of block cluster tree for HSS
and HALR H-matrices are shown in figure 2.

Once the H-matrix representation of P is obtained, the H-matrix arithmetic allows for
standard algebraic operations such as, matrix summation, matrix-vector product and, more
importantly, matrix inversion and LU-factorization. Obviously, by exploiting the H-matrix
arithmetic, all the operations are significantly accelerated and require less memory with respect
to standard arithmetic applied to the corresponding dense matrices.

4. Numerical Procedure
The code used for the numerical experiments has been written in MATLAB® by using
parallel MEX–FORTRAN functions based on OpenMP libraries for the computation of the
matrix coefficients. The low-rank approximation of the dense matrices was realized with the
MATLAB® library hm-toolbox [40] which allows for using different techniques for the data-sparse
representation of P and the solution of the inverse problem.

In particular, depending on the user requirements, we describe here two alternative procedures
where H–matrices are used to reduce the computational cost of the Charge Inversion Algorithm:

(i) If the storage of the full matrix P is not the main problem, the data-sparse representation
can be performed by directly using the entire matrix P. Then, a data-sparse representation
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Figure 3. 3D view of conical spacer (blue) with deposited annular charge density (red).

of P, i.e., H-P, is generated by using, e.g., HODLR, HALR or HSS format. By using the
algebra of H-matrices implemented in the hm-toolbox, a data-sparse H-LU factorization of
H-P is efficiently computed and the solution of the linear system (12) is performed with
the GMRES iterative solver using the H-LU of H-P as preconditiner. Since the H-LU is a
very good preconditioner, GMRES will require only a few iterations to converge, and no
factorization of the full matrix P is performed.

(ii) If the storage of the full matrix P is an issue, the data-spare structure of P can be generated
by using a matrix-free approach. In this case, only an operator which evaluates the coefficients
of P for a generic set of indices is required. Thus, the data-sparse representation of P, H-P,
can be generated by using, e.g., HODLR, HALR or HSS format and the corresponding H-LU
factorization is obtained. Finally, a GMRES solver can be adopted to solve the problem by
using H-P as the system matrix and the H-LU as preconditioner.

As a preprocessing operation, the reordering of triangles was performed with the geometric
bisection algorithm.

5. Numerical Results
The accuracy analysis of the charge reconstruction in a conical spacer [41] was taken as test case
to show the performances of the data-sparse method. As shown in figure 3, a charge density
σimposed = 1 C/m2 was deposited on an annular area of the upper surface of the insulator and
the corresponding electric potential Φ was calculated with (12). The computational domain was
discretized with different numbers of triangular elements: N = 26724 and N = 42852 to check
the scalability of the proposed method. For the block cluster tree construction, blocksize = 64
was adopted. A summary of the computational performances for the test case is listed in table 1
and table 2, including the following data:

• Memory Ratio: data-sparse compression percentage, defined as:

Memory Ratio = 100 · MemorySize(H)

MemorySize(P )
, (19)

where MemorySize(·) gives the computer memory required by the object;
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Table 1. Results for N = 26724 triangular elements following approach (ii) of Section 4.

- Memory ratio Relative error Construction H-LU Solving
[%] [%] [s] [s] [s]

HODLR (ε = 10−2) 10.4 10.6 11 20 0.7
HODLR (ε = 10−3) 14.1 2.4 9 25 0.6
HODLR (ε = 10−4) 18.7 0.3 14 36 0.5
HODLR (ε = 10−5) 23.3 0.1 26 59 0.5
HSS (ε = 10−3) 2.8 5.9 189 — 2.5
HSS (ε = 10−4) 7.6 0.8 403 — 3.8
HSS (ε = 10−5) 12.6 0.1 422 — 6.5
HALR (ε = 10−3) 23.0 1.2 21 34 1.0
HALR (ε = 10−4) 25.6 0.3 20 62 1.9
HALR (ε = 10−5) 28.9 0.01 16 51 0.8
Dense 100.0 0.0 39 — 26.5

Table 2. Results for N = 129384 triangular elements following approach (ii) of Section 4. The
low-rank accuracy ε was set to 10−4.

- Memory ratio Relative error Construction H-LU Solving
[%] [%] [s] [s] [s]

HODLR 7.8 0.5 210 492 4
HSS 1.4 1.2 9423 — 25
HALR 6.3 0.3 142 281 5
Dense 100.0 0.0 889 — 1941

• Relative Error: relative percentage error as:

Relative Error = 100 ·
||σ − σimposed||
||σimposed||

, (20)

with σ the solution of the problem (12) obtained from (15);

• Construction: time spent to assemble data-sparse format;

• LU: time spent to compute the H-LU factorization;

• Solving: time spent to solve the linear system with GMRES (tol = 10−6).

It it worth nothing that the memory required to store the full P matrix for N=26724 and
N=129384 is 5.7 GB and 133.9 GB, respectively. However, using e.g., the HSS (ε = 10−4), the
memory requirement drastically reduces to 0.43 GB and 1.86 GB.

For the HODLR cases of table 1, figure 4 shows the error map determined as the absolute
difference between the imposed and the reconstructed charge density, on the upper part of the
conical insulator, on each triangular element.

Also the approach (i) of Section 4 is tested against N = 129384 triangles and the results are
reported in table 3. We remind that in this case the full (dense) matrix P was used for the
matrix-vector products required by GMRES iterations and the H-LU factors of H-P (computed
with ε = 10−2) were used for the preconditioning.
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Table 3. Results for N = 129384 triangular elements following approach (i) of Section 4. The
low-rank accuracy ε was set to 10−2 to lower the computational effort for H-LU computation.

- Memory ratio Relative error Construction H-LU [s] Solving
[%] [%] [s] [s] [s]

HODLR 4.5 8·10−5 114 197 41
HSS 0.2 1.7·10−4 1798 — 109
HALR 4.3 5·10−5 80 123 43
Dense 100.0 0.0 889 — 1941

(a) (b) (c)

Figure 4. Reconstruction error map using HODLR representation, with low-rank approximation
parameter ε=10−2 (a), ε=10−3 (b), ε=10−4 (c), from the left to the right.

The overall results reported in the figures and tables show that H-matrices are a valid tool to
significantly reduce the computational burden required for the solution of (12), both in terms
of memory requirement and computation time. In particular, the computational performances
of HALR are slightly better than HODLR when large problems are considered (see table 2).
Indeed, thanks to the higher generality of the cluster tree (see figure 2), HALR matrices allow for
low memory ratio and high accuracy. HSS matrices allow for very low memory ratio and good
accuracy, however they also require a long computation time for the construction of the HSS
matrix representation (see table 2 and table 3). Indeed, they require the generation of all the
coefficients of P (several times) and the re-compression require a non-negligible computation time.
Therefore, HSS should be used when the memory must be kept very low wheres the computation
time is not the main issue.

In this paper, we have used the hm-toolbox [40], which provides HODLR, HALR, and HSS
matrix implementations that can be easily applied to a large class of problems. However, it is
worth noting that better performances (even in terms of orders of magnitude for the computation
time) could be achieved by using the highly optimized HLibPro library [42] for HALR matrices
(which exploits a lower-level programming language with respect to hm-toolbox), as shown by
many works where such library was used in IE methods [31, 22, 17], or STRUMPACK library
[43] for HSS matrices.
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6. Conclusions
This paper describes the application of an improved Charge Inversion Algorithm for high voltage
gas insulated systems. The bottleneck of the method was highlighted and an efficient solution
for reducing the storage and inversion requirements of P matrix, with data-sparse (hierarchical)
techniques, has been presented. The effectiveness of the data-sparse representation was verified
evaluating the capability of reconstruction of the apparent charge deposited on a ring surface of
a conical insulator.

The performances in term of storage requirement, solution relative error and construction
times were analyzed in terms of different data-sparse representations and low-rank approximation
tolerances. The data-sparse format, due to its logarithmic scaling, becomes more and more
efficient for increasing number of discretization elements. This aspect, together with the matrix-
free approach, sets up the possibility of using a huge number of elements, providing better
numerical accuracy.
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