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Abstract
We give explicit formulas for the number of meromorphic differentials on CP

1 with
two zeros and any number of residueless poles and for the number of meromorphic
differentials on CP

1 with one zero, two poles with unconstrained residue and any
number of residueless poles, in terms of the orders of their zeros and poles. These are
the only two finite families of differentials on CP

1 with vanishing residue conditions
at a subset of poles, up to the action of PGL(2,C). The first family of numbers is
related to triple Hurwitz numbers by simple integration and we show its connection
with the representation theory of SL2(C) and the equations of the dispersionless KP
hierarchy. The second family has a very simple generating series, and we recover it
through surprisingly involved computations using intersection theory ofmoduli spaces
of curves and differentials.
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1 Introduction

On the complex projective line, for any configuration of n ≥ 3 distinct marked points
and n nonzero integers summing to −2, there exists a differential, unique up to multi-
plication by a nonzero complex constant, whose zeros and poles are at the n marked
points and their order is given by the n integers.

Up to the action of PGL(2,C), which is three-dimensional, the space of configura-
tions of n marked points onCP1 has dimension n−3, so the number of configurations
of n marked points supporting a meromorphic differential with fixed orders of zeros
and poles is finite if and only if n = 3. Considering that, for n = 3, one pole and
one zero must always exist, this leaves us with two cases in which the number of
meromorphic differentials is finite: two zeros and one pole or two poles and one zero.

Each of these two cases can be enriched if we allow for extra poles of degree at least
−2 whose residue is constrained to vanish. This way, for each new pole, we introduce
a new degree of freedom (its position on CP

1) and an extra equation (the vanishing
of its residue), keeping each family zero-dimensional. We refer to differentials with
two zeros and any number of residueless poles as differentials of the first type, and
to differentials with one zero, two poles with unconstrained residue and any number
of residueless poles as differentials of the second type. This terminology is not to be
confused with the classical one for Abelian differential of the first, second, or third
kind (they are actually quite incompatible).

Meromorphic differentials of the first type are actually exact and can be integrated
to meromorphic functions, so the first family of numbers is a special family of triple
Hurwitz numbers for which classical Hurwitz techniques are available, as done in [6].
Our results, beside recovering those of [6], relate these numberswith the representation
theory of SL2(C) and the theory of integrable systems of PDEs. In particular, the
numbers of differentials of the first type turn out to coincide, up to a simple factor,
with the coefficients of the dispersionless Kadomtsev–Petviashvili (KP) equations.
This relies on a more general result from [4] involving Hodge and double ramification
integrals on the space of residueless meromorphic differentials on genus g curves
and their relation with the coefficients of the equations of the full KP hierarchy. We
also show that the generating series of the numbers of meromorphic differentials of
the first type is a Dubrovin–Frobenius potential and present two explicit formulas for
it. The dispersionless KP hierarchy is a reduction of the system of primary flows of
the associated principal hierarchy. We thus view the constructed Dubrovin–Frobenius
manifold as a natural Dubrovin–Frobenius manifold underlying the dispersionless KP
hierarchy.

The number of differentials of the second type as a function of the order of their
zeros and poles was computed in [7, Proposition 2.3], in [9, Proposition 6.3] and in
[12, Proposition 4.6]. It turns out that these numbers, or their generating function,
are described by a remarkably simple formula, for which we give a new proof using
techniques of intersection theory on the moduli space of stable curves and projec-
tivized meromorphic differentials from [1, 2, 8]. In particular, our proof is based on
Lemma 4.2, a recursive relation between numbers of meromorphic differentials of the
first and second type of independent interest, lifted from the WDVV relations in the
cohomology of the moduli spaces of rational stable curves.
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2 Main definitions

With the same notations used in [4, Section 1], for A = (a1, . . . , ak) ∈ Z
k and

B = (b1, . . . , bn) ∈ Z
n≤−2 satisfying

∑
ai +∑

b j = 2 g − 2, let Hg(A; B) be the
locus in Mg,k+n whose points correspond to genus g smooth curves with marked
points z1, . . . , zk+n such that there exists a meromorphic differential whose divisor of
zeros and poles is

∑k
i=1 ai [zi ]+

∑n
j=1 b j [zk+ j ] and such that, for k+1 ≤ j ≤ k+n,

its residue at the poles z j vanishes. Hg(A; B) is a closed substack of Mg,k+n of
dimension

dimHg(A; B) =
{
2 g − 3 + k, if ai < 0 for some 1 ≤ i ≤ k,

2 g − 2 + k, otherwise.
(2.1)

We denote by Hg(A; B) the closure ofHg(A; B) inMg,k+n .
Suppose that ai = 0 for some i , say i = 1. Then among the spaces Hg(A; B)

only the following ones are finite and non-empty: H0(0, a;−a − 2), a ≥ 0, and
H0(0,−1,−1); and they are all just points.

Suppose that ai �= 0 for all 1 ≤ i ≤ k. From formula (2.1) it is easy to see that
Hg(A; B) can be non-empty and finite only in the case g = 0 and if one of the
following two conditions are satisfied:

(1) k = 2 and a1, a2 ≥ 1;
(2) k = 3 and exactly one of the three numbers a1, a2, a3 is positive.

Formally, there is also the case when k = 3 and exactly one of the three numbers
a1, a2, a3 is negative, but this is obviously reduced to the first case. We see that these
two cases correspond to differentials of the first and second type, respectively. So our
goal is to compute the following two families of numbers:

|H0(a, b; −c1, . . . , −cn)|, a, b ≥ 1, ci ≥ 2, a + b −
∑

ci = −2,

|H0(a,−b, −c; −d1, . . . , −dn)|, a, b, c ≥ 1, di ≥ 2, a − b − c −
∑

di = −2.

The spaceH0(A; B) can be described very explicitly. Indeed, given a (k+n)-tuple
Z = (z1, . . . , zk+n) of pairwise distinct points on CP

1, there exists a unique, up to
multiplication by a nonzero complex constant, meromophic differential ωZ ,A,B on
CP

1 such that (ωZ ,A,B) = ∑k
i=1 ai [zi ] +∑n

j=1 b j [z j+k]. It is given by

ωZ ,A,B =
k∏

i=1

(z − zi )
ai

n∏

j=1

(z − z j+k)
b j dz,

where, if zl = ∞ for some l, then we assume that the corresponding factor is equal to
1. Then

H0(A; B)
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∼=
{
Z = (z1, . . . , zk+n) ∈ (CP1)k+n

∣
∣
∣
zi �= z j and resz=zl ωZ ,A,B = 0
for k + 1 ≤ l ≤ k + n

}/
PGL(2,C).

Example 2.1 Let us compute the number |H0(1, 1;−2,−2)|. A meromorphic differ-
ential ω with (ω) = [1] + [t] − 2[0] − 2[∞], t �= 0, 1,∞, is given by

ω = (z − 1)(z − t)

z2
dz,

and we have resz=0 ω = −1 − t , which is zero only for t = −1. Thus,
|H0(1, 1;−2,−2)| = 1.

Example 2.2 Let us compute the number |H0(2, 2;−3,−3)|. A meromorphic differ-
ential ω with (ω) = 2[1] + 2[t] − 3[0] − 3[∞], t �= 0, 1,∞, is given by

ω = (z − 1)2(z − t)2

z3
dz,

and we have resz=0 ω = 1+ 4t + t2. This quadratic polynomial has exactly two roots
and, therefore, |H0(2, 2;−3,−3)| = 2.

Example 2.3 Let us compute the number |H0(2, 2;−2,−2,−2)|. A meromorphic
differential ω with (ω) = 2[x] + 2[y] − 2[0] − 2[1] − 2[∞], x, y �= 0, 1,∞, x �= y,
is given by

ω = (z − x)2(z − y)2

z2(z − 1)2
dz,

and we have

resz=0 ω = 2xy(−x − y+ xy), resz=1 ω = −2(−1+ x + y− x2y− xy2 + x2y2).

So we have to find solutions of the system

−x − y + xy = 0 = −1 + x + y − x2y − xy2 + x2y2, x, y �= 0, 1, x �= y.

From the first equationwe obtain x = y
y−1 , and substituting this in the second equation

we get y2−y+1
y−1 = 0, which has exactly two solutions. Thus, |H0(2, 2;−2,−2,−2)| =

2.

Example 2.4 Let us compute the number |H0(a+ b− 1,−1,−a;−b)|, a ≥ 1, b ≥ 2.
A meromorphic differential ω with (ω) = (a + b − 1)[t] − [1] − b[0] − a[∞],
t �= 0, 1,∞, is given by

ω = (t − z)a+b−1

zb(1 − z)
dz,
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and we have

resz=0 ω = ta
b−1∑

k=0

(−1)k
(
a + b − 1

k

)

tb−1−k =: P(t).

The ratio P(t)
ta is a polynomial of degree b − 1, which does not vanish at t = 0. Also

P(1) = (−1)b−1
(a+b−2

b−1

) �= 0. From the elementary identity

P(t) − t − 1

a + b − 1
P ′(t) = (−1)b

(
a + b − 1

b

)

ta−1

we conclude that the polynomial P(t)
ta does not have multiple roots. Thus, |H0(a +

b − 1,−1,−a;−b)| = b − 1.

3 Differentials of the first type

3.1 Hurwitz numbers

Let v1, . . . , vr be tuples of positive integers and d ≥ 1. We denote by

Hurd(v1, . . . , vr )

the number of ramified coverings f : C → CP
1, where deg f = d, C is a compact

connected smooth algebraic curve, f is ramified over r fixed branch points inCP1, the
ramification profile over the i-th branch point is given by the parts of vi together with
the necessary number of units, and the ramified covering f is taken with the weight
that is equal to the inverse of the order of the automorphism group of the covering,
where we assume that an automorphism fixes the points corresponding to the parts of
vi .

We will be interested in the numbers Hur∑ ci−n((a+1), (b+1), (c1 −1, . . . , cn −
1)), where a, b ≥ 1, c1, . . . , cn ≥ 2 and the condition a+b−∑ ci = −2 is satisfied.
Then the Riemann–Hurwitz formula says that for a corresponding ramified covering
f : C → CP

1 we have g(C) = 0.

3.2 The dispersionless KP hierarchy

Let p and f ( j)
i , i ≥ 1, j ≥ 0, be formal variables, and consider the ring of polynomials

R f := C

[
f ( j)
i

]

i≥1, j≥0
. We also denote fi := f (0)

i . Introduce a linear operator

∂x : R f → R f by ∂x := ∑
i≥1, j≥0 f ( j+1)

i
∂

∂ f ( j)
i

. Let us endow the ring R f [p, p−1]]
with a Poisson structure by

{A, B} := ∂p A · ∂x B − ∂p B · ∂x A, A, B ∈ R f [p, p−1]],
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where ∂p := ∂
∂ p . For a formal Laurent series A = ∑

i≤m ai pi ∈ R f [p, p−1]], denote
A+ := ∑m

i=0 ai p
i and resp=0 A := a−1.

Let

λ(p) := p +
∑

i≥1

fi p
−i ∈ R f [p, p−1]]. (3.1)

The dispersionless KP hierarchy is a system of evolutionary PDEs with dependent
variables fi , i ≥ 1, spatial variable x , and times Tn , n ≥ 1, given by

∂λ(p)

∂Tn
=
{(

λ(p)n
)
+ , λ(p)

}
, n ≥ 1.

For example, ∂ fi
∂T1

= f (1)
i and

∂ f1
∂T2

= 2 f (1)
2 ,

∂ f2
∂T2

= 2 f (1)
3 + 2 f1 f

(1)
1 .

Define a change of variables fi 
→ wi ( f1, f2, . . .) by

wi ( f1, f2, . . .) := resp=0 λ(p)i , i ≥ 1.

For example, we have

w1 = f1, w2 = 2 f2, w3 = 3 f3 + 3 f 21 , w4 = 4 f4 + 12 f1 f2,

w5 = 5 f5 + 20 f1 f3 + 10 f 22 + 10 f 31 .

Since

∂wi

∂Tj
= resp=0

{
λ(p) j+, λ(p)i

}
= resp=0

(
∂pλ(p) j+∂xλ(p)i − ∂xλ(p) j+∂pλ(p)i

)

= resp=0

(
−λ(p) j+∂x∂pλ(p)i − ∂xλ(p) j+∂pλ(p)i

)

= −∂x resp=0

(
λ(p) j+∂pλ(p)i

)
,

we obtain that the dispersionless KP hierarchy written in the variableswi has the form

∂wi

∂Tj
= ∂x Ri, j ,

where Ri, j are polynomials in w1, w2, . . ., which can be found using the well-known
formula (see e.g. [15, equations (5.2.11)])

Ri, j = − resp=0

(
λ(p) j+∂pλ(p)i

)
.
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They satisfy the properties Ri, j = R j,i and Ri,1 = R1,i = wi . The first nontrivial
polynomials are

R2,2 = 4

3
w3−2w2

1, R2,3 = 3

2
w4−3w1w2, R3,3 = 9

5
w5−3w1w3− 9

4
w2
2 +3w3

1.

It is easy to see that the coefficients of the inverse power series of (3.1),

p(λ) = λ +
∑

α≥1

t−α−1λ−α,

are given by

t−α−1 = −wα

α
.

The following result iswell known, see, e.g. [15, equation (6.2.3)], but for completeness
we will give a short proof of it.

Lemma 3.1 We have

∑

p,q≥1

1

pq
Rp,q z

pζ q = log

⎛

⎝1 −
∑

i≥1

1

i

zi − ζ i

z−1 − ζ−1wi

⎞

⎠ . (3.2)

Proof First of all, for α, β ≥ 0, we note that

Coef
λ−α−1
1 λ

−β−1
2

log

⎛

⎝1 −
∑

i≥1

1

i

λ−i
1 − λ−i

2
λ1 − λ2

wi

⎞

⎠ = resλ2=0 resλ1=0

[

λα
1λ

β
2 log

(
p(λ2) − p(λ1)

λ2 − λ1

)]

and then transform the right-hand side as follows:

resλ2=0 resλ1=0

[

λα
1λ

β
2

(

log

(
p(λ2) − p(λ1)

p(λ2)

)

+�������
log

(
p(λ2)

λ2 − λ1

))]

= resp2=0 resp1=0

[
∂p1λ(p1)α+1

α + 1

∂p2λ(p2)β+1

β + 1
log

(
p2 − p1

p2

)]

= −
resp=0

(
λ(p)β+1

+ ∂pλ(p)α+1
)

(α + 1)(β + 1)

= Rα+1,β+1

(α + 1)(β + 1)
,

where the extra term in the first line can be eliminated since it is regular as λ1 → 0.
��

123



97 Page 8 of 27 A. Buryak, P. Rossi

3.3 The representation theory of SL2(C)

Denote by ρ1 the fundamental representation of the group SL2 = SL2(C) and by ρk
its k-th symmetric power. The complete list of finite-dimensional irreducible repre-
sentations of SL2 is {ρk}k≥0. The tensor product ρk ⊗ ρl is decomposed in the sum of
irreducible representations as follows:

ρk ⊗ ρl = ρ|k−l| ⊕ ρ|k−l|+2 ⊕ . . . ⊕ ρk+l .

We embed the group C
∗ into SL2 by

C
∗ � λ 
→

(
λ 0
0 λ−1

)

∈ SL2.

For a finite-dimensional SL2-representation V and d ∈ Z, we denote by V[d] ⊂ V
the subspace of vectors having weight d with respect to the C

∗-action. So we have
V = ⊕

d∈Z V[d].

3.4 Themain result

Theorem 3.2 Let a, b ≥ 0, n ≥ 1, and c1, . . . , cn ≥ 2 be fixed integers satisfying the
condition a + b −∑

ci = −2. Then all the following numbers are equal:

(1) |H0(a, b;−c1, . . . ,−cn)|;
(2) Hur∑ ci−n((a + 1), (b + 1), (c1 − 1, . . . , cn − 1));

(3) (−1)n+1 (c1 − 1) . . . (cn − 1)

(a + 1)(b + 1)

∂n Ra+1,b+1

∂wc1−1 . . . ∂wcn−1

∣
∣
∣
∣
w∗=0

;

(4) (n − 1)! dim (⊗n
i=1ρci−2

)
[a−b];

(5) (n − 1)!Coef ta+1

∏n

i=1

t − tci

1 − t
.

Proof To prove the equation (1)=(2), note that any residueless meromorphic differen-
tial ω on CP1 is exact and can be integrated to a meromorphic function f . Moreover,
if

(ω) = a[z1] + b[z2] −
∑n

i=1
ci [zi+2], (3.3)

where z1, . . . , zn+2 ∈ CP
1 are pairwise distinct, then the only critical points of f are

the points z1, . . . , zn+2 withmultiplicities a+1, b+1, c1−1, . . . , cn−1, respectively.
Moreover, the set {z3, . . . , zn+2} is the set of poles of f , and the Riemann–Hurwitz
formula implies that f (z1) �= f (z2). Sinceω satisfying (3.3) is determined by the tuple
Z = (z1, . . . , zn+2) uniquely up to multiplication by a nonzero complex constant, a
function f satisfying d f = ω is determined by Z uniquely up to the transformation
f 
→ α f + β, α ∈ C

∗, β ∈ C. Let us fix the choice of α and β by requiring that
f (z1) = 0 and f (z2) = 1. This proves that the correspondence f 
→ d f gives a bijec-
tion between the set of isomorphism classes of ramified coverings giving the number
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Hur∑ ci−n((a+1), (b+1), (c1−1, . . . , cn −1)) and the setH0(a, b;−c1, . . . ,−cn).
Therefore, the equation (1)=(2) is proved.

The equation (1) = (3) is the special case of [4, Theorem 3.5] in genus 0.
Let us prove that (3) = (5). We have to prove that

1

pq

∂n Rp,q

∂wl1 . . . ∂wln

∣
∣
∣
∣
w∗=0

= − (n − 1)!
∏n

i=1 li
Coef z p

n∏

i=1

zli+1 − z

1 − z
,

n, p, q, l1, . . . , ln ≥ 1,
p + q = n +∑

li .

Note that if we assign to wi degree i + 1, then the polynomials Rp,q become homo-

geneous with deg Rp,q = p + q. Transforming also
∏n

i=1
zli+1−z
1−z = ∏n

i=1
zli −1
z−1−1

, we
see that the desired equation is equivalent to

1

pq

∂n Rp,q

∂wl1 . . . ∂wln

∣
∣
∣
∣
w∗=0

= − (n − 1)!
∏n

i=1 li
Coefz pζ q

n∏

i=1

zli − ζ li

z−1 − ζ−1 , n, p, q, l1, . . . , ln ≥ 1,

or, using the generating series, to

∑

p,q≥1

1

pq

∂n Rp,q

∂wl1 . . . ∂wln

∣
∣
∣
∣
w∗=0

z pζ q = − (n − 1)!
∏n

i=1 li

n∏

i=1

zli − ζ li

z−1 − ζ−1 .

This can be further equivalently transformed as

∂n

∂wl1 . . . ∂wln

⎛

⎝
∑

p,q≥1

1

pq
Rp,q z

pζq

⎞

⎠

∣
∣
∣
∣
∣
∣
w∗=0

= ∂n

∂wl1 . . . ∂wln
log

⎛

⎝1 −
∑

i≥1

1

i

zi − ζ i

z−1 − ζ−1 wi

⎞

⎠

∣
∣
∣
∣
∣
∣
w∗=0

,

and therefore is equivalent to identity (3.2).
It remains to prove that (4) = (5). For a finite-dimensional representation V of SL2

denote
χV (q) :=

∑

d∈Z
qd dim V[d] ∈ Z[q, q−1].

Note that χρi (q) = qi+1−q−i−1

q−q−1 and for two finite-dimensional SL2-representations V
and W we have χV⊗W (q) = χV (q)χW (q). So we compute

Coef ta+1

n∏

i=1

tci − t

t − 1
= Coef ta+1 t

∑
ci
2

n∏

i=1

t
ci−1
2 − t−

ci−1
2

t
1
2 − t− 1

2

= Coef ta+1 t
a+b+2

2

n∏

i=1

t
ci−1
2 − t−

ci−1
2

t
1
2 − t− 1

2

= Coef
t
a−b
2

n∏

i=1

t
ci−1
2 − t−

ci−1
2

t
1
2 − t− 1

2

q=t
1
2����� Coefqa−b

n∏

i=1

qci−1 − q−ci+1

q − q−1
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= dim
(⊗n

i=1ρci−2
)
[a−b] ,

as required. ��
Remark 3.3 The equality (2) = (5) was proved in [6, Proposition 2.1] using other
methods.

Example 3.4 For n = 2, the theorem gives

|H0(a, b;−c1,−c2)| = min(a, b, c1 − 1, c2 − 1), a, b ≥ 0, c1, c2 ≥ 2,

c1 + c2 = a + b + 2.

3.5 Dubrovin–Frobenius potential

Consider the following formal power series in formal variables tα ,α ∈ Z

 := Z\{−1},

collecting all the numbers |H0(a, b;−c1, . . . ,−cn)|, a, b ≥ 0, c1, . . . , cn ≥ 2, a +
b −∑

ci = −2, described above:

F(t∗) :=
∑

n≥1

∑

a,b≥0
c1,...,cn≥2

a+b−∑ ci=−2

|H0(a, b;−c1, . . . ,−cn)| t
atb

2

t−c1 . . . t−cn

n! . (3.4)

Here and in what follows we use the subscript or superscript ∗ to denote all possible
values of the corresponding index and we adhere to Einstein’s convention of sum over
repeated upper and lower indices.

Proposition 3.5 Define the constant infinite matrix ηαβ = ηαβ := δα+β,−2, α, β ∈ Z



and the differential operators E := ∑
α≥0 t

α ∂
∂tα and Ẽ := ∑

α∈Z
 αtα ∂
∂tα . Then the

generating series (3.4) satisfies the following system of equations

∂3F

∂tα∂tβ∂tμ
ημν ∂3F

∂tν∂tγ ∂tδ
= ∂3F

∂tα∂tγ ∂tμ
ημν ∂3F

∂tν∂tβ∂tδ
, α, β, γ, δ ∈ Z


, (3.5)

∂3F

∂t0∂tα∂tβ
= ηαβ, α, β ∈ Z


, (3.6)

EF = 2F, Ẽ F = −2F . (3.7)

In other words, F(t∗) is the Dubrovin–Frobenius potential for an infinite-
dimensional Dubrovin–Frobenius manifold with metric η = ηαβdtα ⊗ dtβ , unit
e = ∂

∂t0
. This Dubrovin–Frobenius manifold is homogeneous with respect to the

two distinct Euler vector fields E and Ẽ , only the first of which is compatible with the
unit in the sense that [e, E] = e. See [10] for the general theory of (finite-dimensional)
Dubrovin–Frobenius manifolds. Infinite-dimensional Dubrovin–Frobenius manifolds
have appeared in the literature, for instance in [5, 13, 14], but for the formal ver-
sion needed here see the discussion in [3, Section 4.1] on tame infinite-rank partial
cohomological field theories.
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Proof In [4, Proposition 1.8] it was proved that, for g, n ≥ 0 such that 2g −
2 + n > 0 and for integers α1, . . . , αn ∈ Z


, the fundamental classes of the clo-
sure Hres

g (α1, . . . , αn) in Mg,n of the loci Hres
g (α1, . . . , αn) in Mg,n whose points

correspond to genus g smooth curves with marked points z1, . . . , zn such that there
exists a residueless meromorphic differential whose divisor of zeros and poles is∑n

i=1 αi [zi ], which vanish unless∑n
i=1 αi = 2 g−2, form a tame partial cohomolog-

ical field theory with phase space V = span(eα)α∈Z
 , metric η(eα ⊗ eβ) = δα+β,−2,
and unit e0. This, in particular, entails the well-known fact that the genus 0 primary
potential F(t∗) of this partial CohFT satisfies the WDVV equations (3.5), (3.6).

Homogeneity equations (3.7) follow from the fact that, for n ≥ 3,Hres
0 (α1, . . . , αn)

is zero-dimensional only if exactly twoαi among theα1, . . . , αn ∈ Z

 are nonnegative,

and empty unless
∑n

i=1 αi = −2. ��
Consider the following formal power series:

p̃(λ) :=
∑

α≥0

tαλα, P̃(λ) :=
∑

α≥0

tα
λα+1

α + 1
,

satisfying P̃ ′(λ) = p̃(λ).

Proposition 3.6 The Dubrovin–Frobenius potential (3.4) can be written as

F(t∗) = resλ2=0 resλ1=0

[

−1

2
p̃(λ1) p̃(λ2) log

(
p(λ1) − p(λ2)

λ1 − λ2

)]

= resp=0
P̃(λ(p))+∂p P̃(λ(p))

2
.

(3.8)

Proof The right-hand side in the first line of (3.8) is clearly quadratic in the variables
tα with α ≥ 0 and so is F(t∗) by the homogeneity condition EF = 2F , hence, in
order to prove the first equality, it is enough to check that

∂2F

∂tα∂tβ
= resλ2=0 resλ1=0

[

−λα
1λ

β
2 log

(
p(λ1) − p(λ2)

λ1 − λ2

)]

, α, β ≥ 0,

which readily follows from Eq. (3.2) and equality (1) = (3) in Theorem 3.2. For the
second equality, we have

F(t∗) = resλ2=0 resλ1=0

[

−1

2
P̃ ′(λ1)P̃ ′(λ2) log

(
p(λ1) − p(λ2)

λ1 − λ2

)]

= resλ2=0 resλ1=0

[

−1

2
P̃ ′(λ1)P̃ ′(λ2)

(

log

(
p(λ1) − p(λ2)

p(λ1)

)

+������
log

(
p(λ1)

λ1 − λ2

))]

= resp2=0 resp1=0

[

−1

2
∂p1 P̃(λ(p1))∂p2 P̃(λ(p2)) log

(
p1 − p2

p1

)]

= resp=0
P̃(λ(p))+∂p P̃(λ(p))

2
,
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where the extra term in the second line can be eliminated since it is regular as λ2 → 0.
��

According to [11], the primary flows of the principal hierarchy of the above
Dubrovin–Frobenius manifold are computed as

∂t−α−2

∂tβ0
= ∂x

∂2F(t∗)
∂tα∂tβ

, α, β ∈ Z

, (3.9)

where tα = tα(x, t∗∗ ) is nowseen as a formal loopon theDubrovin–Frobeniusmanifold
depending on time variables tαd , α ∈ Z


, d ≥ 0. Obviously, if α, β ≥ 0, then the right-
hand side of (3.9) does not depend on tγ with γ ≥ 0. This implies that restricting to
α, β ≥ 0, we get a subsystem of the principal hierarchy, which by the equality (1) =
(3) of Theorem 3.2 coincides with the dispersionless KP hierarchy. Thus, the above
Dubrovin–Frobenius manifold is a natural Dubrovin–Frobenius manifold underlying
the dispersionless KP hierarchy.

4 Differentials of the second type

As remarked in the introduction, the following theorem was proved in [7, 9, 12]. We
provide an alternative proof in a different spirit, using Lemma 4.2, a recursive relation
between the number of differentials of the first and second type induced by theWDVV
relations in the cohomology of the moduli space of rational stable curves.

Theorem 4.1 We have

|H0(a,−b,−c;−d1, . . . ,−dn)| = n!
n∏

i=1

(di − 1),

where a ≥ 0, b, c ≥ 1, di ≥ 2, and a − b − c −∑
di = −2.

Proof Let us introduce the following generating series:

θab,c(t2, t3, . . .) : =
∑

n≥0

1

n!
∑

d1,...,dn≥2∑
di=a−b−c+2

|H0(a,−b,−c;−d1, . . . ,−dn)|td1 · · · tdn ,

a ≥ 0, b, c ≥ 1,

Pa,b(t2, t3, . . .) :=
∑

n≥1

1

n!
∑

d1,...,dn≥2∑
di=a+b+2

|H0(a, b;−d1, . . . ,−dn)|td1 · · · tdn , a, b ≥ 0.
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Clearly, we have

⎧
⎪⎨

⎪⎩

θab,c = 0 if b + c > a + 2,

θab,c = 1 if b + c = a + 2,

θab,c = 0 if b + c = a + 1.

(4.1)

��
Lemma 4.2 For any a, d, e, f ≥ 1 and c ≥ 2, there is the following relation:

∑

b≥2

∂2Pa,d

∂tc∂tb
θb−2
e, f +

∑

b≥2

∂Pa,b−2

∂tc

∂θde, f

∂tb
=
∑

b≥2

θaf ,b
∂Pb−2,d

∂te∂tc
+ θaf ,1

∂θd1,e

∂tc

+
∑

b≥2

∂Pa,b−2

∂t f

∂θdb,e

∂tc
+

∑

b1,b2≥2

(b2 − 1)θaf ,b1θ
d
e,b2

∂Pb1−2,b2−2

∂tc

+
∑

b1,b2≥2

(b1 + b2 − 2)θaf ,b1
∂θde,b2

∂tc
Pb1−2,b2−2. (4.2)

Proof See Sect. 5. ��
Consider relation (4.2) with d = 3 and c = 2. Clearly,

∂2Pa,3

∂t2∂tb
= 0, if b > a + 3,

and from Example 3.4 it follows that

∂2Pa,3

∂t2∂ta+3
= 1.

Wesee that the coefficient of θb−2
e, f in the first sumon the left-hand side of equation (4.2)

is one for b = a + 3 and is zero for b > a + 3. Looking also at the other terms
in (4.2), we notice that if a ≥ 3, then relation (4.2) allows to express θa+1

e, f in terms

of θ
p
q,r with p ≤ a. So relation (4.2) allows to express all polynomials θae, f in terms

of the polynomials θ
p
q,r with p ≤ 3, but all these polynomials are determined by

properties (4.1) and Example 2.4.
So it remains to check the following statement.

Lemma 4.3 The polynomials θ̃ab,c, a ≥ 0, b, c ≥ 1, defined by

θ̃ab,c :=
∑

n≥0

∑

d1,...,dn≥2∑
di=a+2−b−c

n∏

i=1

(di − 1)tdi

satisfy Eq. (4.2).
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Proof Let us substitute the polynomials θ̃ab,c in (4.2) and sum both sides over a, d ≥ 0

with the coefficient xa+1yd+1. It is sufficient to prove that we obtain an equality of
two formal power series in x, y, and ti .

Introduce the following formal power series:

A(x, y) := 1 +
∑

i≥0

xi − yi

x−1 − y−1 ti+1, B(x) := 1 −
∑

i≥1

(i − 1)xi ti .

The equality (1) = (3) of Theorem 3.2, together with formula (3.2), implies that

∑

a,b≥0

Pa,bxa+1yb+1 = − log A(x, y).

It is easy to see that

θ̃ab,c = Coef za+2−b−c
1

B(z)
.

We compute

E1 :=
∑

a,d≥0

xa+1yd+1
∑

b≥2

∂2Pa,d

∂tc∂tb
θ̃b−2
e, f

= xc−1 − yc−1

x−1 − y−1

1

A(x, y)2
∑

b≥2

xb−1 − yb−1

x−1 − y−1 Coef zb−e− f
1

B(z)

= xc−1 − yc−1

x−1 − y−1

1

A(x, y)2
∑

b≥2

xb−1 − yb−1

x−1 − y−1 Coef zb−1
ze+ f −1

B(z)

= xc−1 − yc−1

x−1 − y−1

1

A(x, y)2

(
xe+ f −1

B(x)
− ye+ f −1

B(y)

)
1

x−1 − y−1 ;

E2 :=
∑

a,d≥0
b≥2

xa+1yd+1 ∂Pa,b−2

∂tc

∂θ̃de, f

∂tb

= −
∑

d≥0
b≥2

yd+1Coef yb−1

(
xc−1 − yc−1

x−1 − y−1

1

A(x, y)

)

Coef zd+2−e− f
(b − 1)zb

B(z)2

= −Coef yb−1

(
xc−1 − yc−1

x−1 − y−1

1

A(x, y)

)
(b − 1)yb+e+ f−1

B(y)2

= −y∂y

(
xc−1 − yc−1

x−1 − y−1

1

A(x, y)

)
ye+ f

B(y)2
;
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E3 :=
∑

a,d≥0

xa+1yd+1
∑

b≥2

θaf ,b
∂Pb−2,d

∂te∂tc

=
∑

b≥2

x f +b−1

B(x)
Coef xb−1

(
xe−1 − ye−1

x−1 − y−1

xc−1 − yc−1

x−1 − y−1

1

A(x, y)2

)

= x f

B(x)

xe−1 − ye−1

x−1 − y−1

xc−1 − yc−1

x−1 − y−1

1

A(x, y)2
;

E4 :=
∑

a,d≥0

xa+1yd+1θaf ,1

∂θd1,e

∂tc
= (c − 1)x f ye+c

B(x)B(y)2
;

E5 :=
∑

a,d≥0

xa+1yd+1
∑

b≥2

∂Pa,b−2

∂t f

∂θdb,e

∂tc

= −
∑

b≥2

Coef yb−1

(
x f −1 − y f −1

x−1 − y−1

1

A(x, y)

)
(c − 1)yb+e+c−1

B(y)2

= − x f −1 − y f −1

x−1 − y−1

1

A(x, y)

(c − 1)ye+c

B(y)2
;

E6 :=
∑

a,d≥0

xa+1yd+1
∑

b1,b2≥2

(b2 − 1)θaf ,b1θ
d
e,b2

∂Pb1−2,b2−2

∂tc

= −
∑

b1,b2≥2

(b2 − 1)
x f+b1−1

B(x)

ye+b2−1

B(y)
Coef xb1−1yb2−1

(
xc−1 − yc−1

x−1 − y−1

1

A(x, y)

)

= − x f

B(x)

ye

B(y)
y∂y

(
xc−1 − yc−1

x−1 − y−1

1

A(x, y)

)

;

E7 :=
∑

a,d≥0

xa+1yd+1
∑

b1,b2≥2

(b1 + b2 − 2)θaf ,b1
∂θde,b2

∂tc
Pb1−2,b2−2

= −
∑

b1,b2≥2

(b1 + b2 − 2)
x f +b1−1

B(x)

(c − 1)yc+e+b2−1

B(y)2
Coef xb1−1yb2−1 log A(x, y)

= − x f

B(x)

(c − 1)ye+c

B(y)2
(
x∂x + y∂y

)
log A(x, y) .
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Let μa := xa−1 − ya−1 and Ã(x, y) := (x−1 − y−1)A(x, y). We compute

E1 − E3 = μc ye

Ã(x, y)2

(
x f y−1

B(x)
− y f−1

B(y)

)

,

E2 − E6 = y∂y

(
μc

Ã(x, y)

)
ye

B(y)

(
x f

B(x)
− y f

B(y)

)

.

We have to check the vanishing of the expression

y−e(E1 + E2 − E3 − E4 − E5 − E6 − E7) (4.3)

= μc

Ã(x, y)2

(
x f y−1

B(x)
− y f −1

B(y)

)

+ y∂y

(
μc

Ã(x, y)

)
1

B(y)

(
x f

B(x)
− y f

B(y)

)

− (c − 1)x f yc

B(x)B(y)2

+
(
x f −1 − y f−1

) 1

Ã(x, y)

(c − 1)yc

B(y)2
+ x f

B(x)

(c − 1)yc

B(y)2
(
x∂x + y∂y

)
log A(x, y).

Note that

y2∂y Ã(x, y) = B(y). (4.4)

Let us collect the underlined terms on the right-hand side of (4.3):

− μc y f−1

Ã(x, y)2B(y)
− (y∂yμc)y f

Ã(x, y)B(y)2
+ μc

(
y2∂y Ã(x, y)

)
y f−1

Ã(x, y)2B(y)2
− (c − 1)yc+ f −1

Ã(x, y)B(y)2
.

The second and the fourth terms here obviously cancel each other, while the first and
the third terms cancel each other by (4.4).

Thus, the expression on the right-hand side of (4.3) is equal to

μc

Ã(x, y)2
x f y−1

B(x)
+ y∂y

(
μc

Ã(x, y)

)
x f

B(x)B(y)
− (c − 1)x f yc

B(x)B(y)2

+ x f−1

Ã(x, y)

(c − 1)yc

B(y)2
+ x f

B(x)

(c − 1)yc

B(y)2
(
x∂x + y∂y

)
log A(x, y)

=������μc

Ã(x, y)2
x f y−1

B(x)
− (c − 1)yc−1

Ã(x, y)

x f

B(x)B(y)
−

������
μc y−1

Ã(x, y)2
x f

B(x)
− (c − 1)x f yc

B(x)B(y)2

+ x f−1

Ã(x, y)

(c − 1)yc

B(y)2
+ x f

B(x)

(c − 1)yc

B(y)2

∑
i≥0(i + 1) xi−yi

x−1−y−1 t
i+1

A(x, y)

= − (c − 1)yc−1

Ã(x, y)

x f

B(x)B(y)
+ x f −1

Ã(x, y)

(c − 1)yc

B(y)2
+ x f

B(x)

(c − 1)yc

B(y)2

∑
i≥0 i

xi−yi

x−1−y−1 t
i+1 − 1

A(x, y)

= − (c − 1)yc−1

Ã(x, y)

x f

B(x)B(y)
+ x f −1

Ã(x, y)

(c − 1)yc

B(y)2
+ x f

B(x)

(c − 1)yc

B(y)2

B(y)
y − B(x)

x

Ã(x, y)

= 0,
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as required. ��

5 Proof of Lemma 4.2

5.1 Multiscale differentials with residue conditions

For A = (a1, . . . , ak) ∈ Z
k and B = (b1, . . . , bn) ∈ Z

n with b j ≤ −2, 1 ≤ j ≤ n,
let us briefly review the properties of the moduli space Hg(A; B) from the point of
view of multiscale differentials with residue conditions as treated in [8].

In [8, Sections 3 and 4.1] (see also [2, Section 2]) the authors construct a proper
smooth Deligne–Mumford stack Bg(A; B) as a moduli stack for families of equiva-
lence classes of projectivized multiscale differentials with residue conditions on stable
curves, whose definition we will recall in this section. Our motivation comes from the
fact that this moduli stack comes with a forgetful map p : Bg(A; B) → Mg,k+n asso-
ciating to a projectivized multiscale differential on a stable marked curve C the stable
marked curve itself and that this map restricts to an isomorphism of Deligne–Mumford
stacks p : Bg(A; B) → Hg(A; B) on the open substack Bg(A; B) = p−1(Mg,k+n)

of projectivized multiscale differentials on smooth curves, so that

[Hg(A; B)] = p∗[Bg(A; B)].

Moreover, the boundary Bg(A; B)\Bg(A; B) is a normal crossing divisor and [8] gives
a modular description of these boundary strata. Crucially, the map p is compatible
with the stratified structures of the two spaces and we will use this fact to understand
the intersection of [Hg(A; B)]with the boundary strata ofMg,k+n , in particular those
formed by stable curves with one separating node.

In what follows, given a stable curve C with associated stable graph �C , we will
denote its irreducible components by Cv for v ∈ V (�C ) and we will use the same
notation for the marked points ofC and the corresponding legs of the associated stable
graph�C , for nodes ofC and the corresponding edges of�C , and for branches of nodes
on irreducible components Cv of C and the corresponding half-edges of �C . Given a
leg xi ∈ L(�C ) or a half-edge h ∈ H(�C ), we denote by v(xi ) or v(h) the vertex to
which they are attached.

Firstly, an enhanced level graph is a stable graph � of genus g with a set L(�) of
n marked legs together with:

(1) a total preorder1 on the set V (�) of vertices. We describe this preorder by a sur-
jective level function � : V (�) → {0,−1, . . . ,−L}. An edge is called horizontal
if it is attached to vertices on the same level and vertical otherwise.

(2) a function κ : E(�) → Z≥0 assigning a nonnegative integer κe to each edge
e ∈ E(�), such that κe = 0 if and only if e is horizontal.

For every level 0 ≤ j ≤ −L , let C( j) be the (possibly disconnected) stable curve
obtained from C by removing all irreducible components whose level is not j and let

1 A preorder relation ≤ is reflexive and transitive, but x ≤ y and y ≤ x do not necessarily imply x = y.
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C(> j) be the (possibly disconnected) stable curve obtained from C by removing all
irreducible components whose level is smaller than or equal to j .

Secondly, given a meromorphic differential ω on a smooth curve C and a point
p ∈ C , if ω has order ordp ω = a �= −1 at p then for a local coordinate z in a
neighborhood of p such that z(p) = 0 we have, locally, ω = (cza + O(za+1))dz
for some c ∈ C

∗. Then the k = |a + 1| roots ζ such that ζ a+1 = c−1 determine

k projectivized vectors ζ ∂
∂z

∣
∣
∣
p

∈ TpC/R>0 (if a ≥ 0) or −ζ ∂
∂z

∣
∣
∣
p

∈ TpC/R>0 (if

a < −1) which are called outgoing or incoming prongs of ω, respectively. The set of
outgoing (resp. incoming) prongs at p is denoted by Pout

p (resp. P in
p ).

Thirdly, let A = (a1, . . . , ak) ∈ Z
k and B = (b1, . . . , bn) ∈ Z

n with b j ≤ −2,
1 ≤ j ≤ n. Then amultiscale differential of profile (A; B), with

∑k
i=1 ai+

∑k
j=1 b j =

2g − 2, on a stable curve C of genus g with k + n marked points x1, . . . , xk+n ∈ C ,
with zero residues at xk+1, . . . , xk+n consists of:

(1) a structure of enhanced level graph (�C , �, κ) on the dual graph �C of C (where
a node is said to be vertical or horizontal if the corresponding edge is);

(2) a collection of meromorphic differentials ωv , one on each irreducible compo-
nent Cv of C , v ∈ V (�C ), holomorphic and non-vanishing outside of marked
points and nodes, such that the following conditions are satisfied:

(i) ordxi ωv(xi ) = ai for 1 ≤ i ≤ k, and ordx j ωv(x j ) = b j−k for k+1 ≤ j ≤ k+n.
(ii) resx j ωv(x j ) = 0, k + 1 ≤ j ≤ k + n.
(iii) If q1 ∈ Cv1 and q2 ∈ Cv2 , v1, v2 ∈ V (�C ), form a node e ∈ E(�C ), then

ordq1 ωv1 + ordq2 ωv2 = −2.

(iv) If q1 ∈ Cv1 and q2 ∈ Cv2 , v1, v2 ∈ V (�C ), form a node e ∈ E(�C ), then
�(v1) ≥ �(v2) if and only if ordq1 ωv1 ≥ −1. Together with the previous
property, this implies that �(v1) = �(v2) if and only if ordq1 ωv1 = −1.

(v) If q1 ∈ Cv1 and q2 ∈ Cv2 , v1, v2 ∈ V (�C ), form a horizontal node e ∈ E(�C )

(i.e. κe = 0), then
resq1 ωv1 + resq2 ωv2 = 0. (5.1)

(vi) For every level −1 ≤ l ≤ −L of �C and for every connected component Y
of C(>l) such that Y does not contain any marked pole xi , with ai < 0 and
1 ≤ i ≤ k, ∑

q∈Y∩C(l)

resq− ωv(q−) = 0, (5.2)

where q+ ∈ Y and q− ∈ C(l) form the vertical node q ∈ Y ∩ C(l).

(3) a cyclic order-reversing bijectionσq : Pout
q+ → P in

q− for each vertical nodeq formed

by identifying q+ on the upper level with q− on the lower level, where κq =
|Pout

q+ | = |P in
q−|.

Lastly, there is an action of the universal cover of the torus C
L → (C∗)L on

multiscale differentials with residue conditions by rescaling the differentials with
strictly negative levels and rotating the prong matchings between levels accordingly,
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producing fractional Dehn twists. The stabilizer of this action is called the twist group
of the enhanced level graph and denoted by Tw� . Two multiscale differentials with
residue conditions are defined to be equivalent if they differ by the action of T� :=
C

L/Tw� . By further quotienting by the action of C∗ rescaling the differentials on all
levels and leaving all prong-matchings untouched, we obtain equivalence classes of
projectivized multiscale differentials with residue conditions.

Remark 5.1 Using notation from [8, Section 4.1], condition (2)(vi) is a reformulation
of the R-global residue condition in the particular case when λ is the partition of Hp

in one-element subsets and λR is the set of parts of λ corresponding to the residu-
eless poles. This condition is understood by realizing that the residues appearing in
the sum (5.2) correspond to periods around the “waist” of an undegeneration of the
corresponding node (see below for the explicit form of this undegeneration). The sum
of such periods has to equal the sum of residues in Y by the residue theorem applied
to such undegeneration.

As a special case of [8, Proposition 4.2] (corresponding to the choice of λ and λR
described in Remark 5.1), we have the following result.

Proposition 5.2 [8]

1. Given A = (a1, . . . , ak) ∈ Z
k and B = (b1, . . . , bn) ∈ Z

n with b j ≤ −2,
1 ≤ j ≤ n, there is a proper smooth Deligne–Mumford stack Bg(A; B) contain-
ing Bg(A; B) as an open dense substack whose complement is a normal crossing
divisor. Bg(A; B) is a moduli stack for families of equivalence classes of projec-
tivized multiscale differentials with residue conditions. Its dimension is

dim Bg(A; B) =
{
2 g − 2 + k, if ai ≥ 0 for all 1 ≤ i ≤ k,

2 g − 3 + k, otherwise.

2. We denote the closure of the stratum parameterizing multiscale differentials whose
enhanced level graph is (�, �, κ) by D(�,�,κ) or simply by D� . Then D� is a proper
smooth closed substack of Bg(A; B) of codimension

codim D� = h + L,

where h is the number of horizontal edges in (�, �, κ) and L + 1 is the number of
levels.

Remark 5.3 Notice that the multiscale differentials appearing at level l in the generic
boundary stratum of Bg(A; B) are of a new type, because of the global residue condi-
tion (2)(vi) not only is more general than just requiring the vanishing of each residue
at a subset of the marked poles, but also involves poles on different connected com-
ponents of the curve C(l). This is the reason why, in [8], the authors consider moduli
stacks of more general projectivized multiscale differentials with residue conditions,
where the underlying stable curve can be disconnected and the residue condition con-
strains sums of residues at fixed disjoint subsets of poles.With their choice, the moduli
spaces involved in the boundary strata of another moduli space are all of the same type.
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This problem with the moduli spaces Bg(A; B) we introduced is less severe when-
ever one is only interested in boundary strata where the underlying stable curve has
only separating nodes (i.e. it is of compact type). Indeed, in that case, each sum in
condition (2)(vi) can only involve at most one pole for each of the Nl connected
component of the curve C(l) at level l, and the effect of all the sums with more than
one summand is simply to reduce the (C∗)Nl−1-symmetry consisting in rescaling the
differentials on each connected component by relative multiplicative constants.

This happens, for instance, if one studies genus 0 multiscale differentials (as we do
in this paper) or if one is interested in the intersection of the boundary strata with the
pull-back of the top Chern class λg of the Hodge bundle from Mg,k+n (since λg is
well known to vanish on the locus of curves of non-compact type) or, more in general,
in the context of partial cohomological field theories.

5.2 Proof of Lemma 4.2

For n ≥ 0 and for integers a, d ≥ 0, e, f > 0, c, c1 . . . , cn ≥ 2, consider the closed
substack of meoromorphic differentials

H0(a, d,−e,− f ;−c,−c1, . . . ,−cn) ⊂ M0,5+n .

Wewill denote (−c1, . . . ,−cn) =: −C and more in general (−ci1 , . . . ,−cir ) =: −
CI for any I = {i1, . . . , ir } ⊂ {1, . . . , n}, so that H0(a, d,−e,− f ;−c,−c1, . . . ,
−cn) = H0(a, d,−e,− f ;−c,−C). Consider moreover the moduli stack
B0(a, d,−e,− f ;−c,−C) of projectivized multiscale differentials described above,
with its natural projection

p : B0(a, d,−e,− f ;−c,−C) → H0(a, d,−e,− f ;−c,−C) ⊂ M0,5+n, (5.3)

which restricts to an isomorphism p : B0(a, d,−e,− f ;−c,−C) → H0(a, d,

−e,− f ;−c,−C), so that [H0(a, d,−e,− f ;−c,−C)] = p∗[B0(a, d,−e,− f ;
−c,−C)]. By Proposition 5.2, we have dimH0(a, d,−e,− f ;−c,−C) =
dim B0(a, d,−e,− f ;−c,−C) = 1.

We want to intersect [H0(a, d,−e,− f ;−c,−C)] with the pull-back to
H2(M0,5+n) of the WDVV relation in H2(M0,4):

a

−c − f

−e

0 0 =
a

− f −c

−e

0 0 ∈ H2(M0,4),

via the map that forgets the n + 1 marked points with multiplicities d and −C . Notice
here that we are slightly abusing the usual stable graph notation indicating the classes
of boundary strata in M0,4, since we are using the zero and pole multiplicities to
label the marked points of curves that, in general, do not belong toH0(a, d,−e,− f )
(which can be empty because a + d − e − f is not necessarily equal to −2). As
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long as we assign a unique letter representing the order of a zero or a pole to each
marked point, the notation works for boundary strata in any M0,k+n and is more
easily comparable with the corresponding enhanced level graph notation we will use
for strata of Bg(A; B), but the reader should be mindful that curves in these boundary
strata ofM0,4 orM0,5+n do not carry, in general, any meromorphic differential with
the indicated multiplicities.

When pulled back to H2(M0,5+n) the above relation becomes

a

d

−c − f

−e

0 0 +

a

−c − f

d

−e

0 0 =

a

d

− f −c

−e

0 0 +

a

− f −c

d

−e

0 0 ∈ H2(M0,5+n ),

(5.4)
where we have omitted the n marked legs with multiplicities −C , i.e. each term in the
above formula represents a sum over all possible stable ways of distributing these n
legs between the two vertices of the graph.

The preimage through the map (5.3) of each of the boundary strata intervening
in Eq. (5.4) is a normal crossing divisor in B0(a, d,−e,− f ;−c,−C) and, hence,
is zero-dimensional. By what explained in Sect. 5.1, each such divisor is a union of
strata D� with � being either a one level connected graph with two vertices and one
horizontal edge, or a two level connected graph with no horizontal edges. Strata of
the second type can only be zero-dimensional if either there is one vertex at level
0 and one at level −1, connected by a vertical edge, or there is one vertex at level
0 connected by two vertical edges to exactly two vertices at level −1, with the C

∗-
symmetry rescaling the differential on one component at level −1 with respect to the
other being fixed by the global residue condition (2)(vi). This last situation can only
happen if the component at level 0 contains neither of the points marked with −e
and − f . Strata D� with � being a two level graph with more than one connected
component at level 0 or more than two connected components at level −1 are always
empty: if they were not, chosen a differential in the stratum, we could produce at
least a one-dimensional space of them by rescaling by a nonzero complex number the
differential on one connected component with respect to the others on the same level
(still satisfying the global residue condition (2)(vi) at level −1), which contradicts the
fact that these boundary strata should be zero-dimensional. Moreover any of the three
type of strata can be zero-dimensional only when the differential on each component
of the stable curve exhibits no moduli, i.e. when it has two zeros and one pole with
unconstrained residue or one zero and two poles with unconstrained residue (and, of
course, any number of residueless poles).

We will describe boundary strata of B0(a, d,−e,− f ;−c,−C) using enhanced
level graphs. In particular half-edges (not including legs) pointingupwardswith respect
to their vertex represent poles of order at least 2, half-edges pointing downwards rep-
resent either zeros or points with multiplicity 0 and horizontal half-edges represent
simple poles for the meromorphic differential at the vertex. Somewhat similarly, legs
pointing upwards represent poles (including simple poles) and legs pointing down-
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wards represent zeros or points with multiplicity 0. Zigzagged half-edges and legs
always point up and represent residueless poles.

Let us list all potentially non-empty components D� ⊂ B0(a, d,−e,− f ;−c,−C)

in the preimage of the stratum appearing in each term of Eq. (5.4) by the corresponding
enhanced level graph �:

first term:

−e − f

da

−c

0

0

b−2

−b

, second term:
−e

− f

d

a

−c

0

0

b−2

−b

, (5.5)

where b ≥ 2; the preimage of the third term is empty; and the fourth term gives

−e

− f

a

d

−c

0

0

b−2

−b

,
−c

−e

d

a

− f

0

0

b−2

−b

,

a

− f −c

d

−e

0 0
−1 −1 , (5.6)

where b ≥ 2, together with

−c

−e

da

− f

0

0 0
−b2−b1

b1−2 b2−2

, −c
−e

da

− f

0

0 0
−b2−b1

b1−2 b2−2

, (5.7)

where b1, b2 ≥ 2.
Notice in particular how the last two graphs above represent zero- dimensional

strata thanks to the fact, mentioned above, that the global residue condition (2)(vi)
prescribes that the sum of the residues of the two differentials on the lower level at the
poles with multiplicities −b1 and −b2 must vanish.

To deduce from these considerations the intersection number of
H0(a, d,−e,− f ;−c,−C) with each boundary stratum appearing in Eq. (5.4) we
need to study the multiplicity of each of these intersections. These can be computed
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by studying the local model for the undegeneration of a multiscale differential at a
nodal singularity, see [1, Section 4] and [2, Section 4].

For all strata in (5.5) and (5.6) the local model and the argument are simi-
lar. Let us explain it for the first stratum in (5.6). Fix I , J ⊂ {1, . . . , n} with
I � J = {1, . . . , n} and choose p1 ∈ H0(d, b − 2,−e;−c,−CI ) ⊂ M0,4+|I | and
p2 ∈ H0(a,− f ,−b;−CJ ) ⊂ M0,3+|J |. Letσ : M0,4+|I |×M0,3+|J | → M0,5+n be
thegluingmapat themarkedpoints carrying the labelsb−2 and−b. Let p = σ(p1, p2)
and denote S := H0(a, d,−e,− f ;−c,−C) for brevity.

Choose local coordinates V1 onM0,4+|I | and V2 onM0,3+|J | so that p1 = 0 ∈ V1
and p2 = 0 ∈ V2. Denote by �r ⊂ C the disk of radius r . We claim that we can
choose local coordinates V1 × V2 × �r on M0,5+n so that S = {0} × {0} × �r and
the image of σ is V1 × V2 ×{0}. Then the transversality of the intersection is obvious.
Let us describe how to choose these local coordinates.

Let κ := b− 1. The curves C1 and C2 corresponding, respectively, to the points p1
and p2, carry meromorphic differentials α and β, both unique up to a multiplicative
constant. For the meromorphic differential α, we fix this constant arbitrarily. On the
other hand, note that β has a nonzero residue at the marked point labeled by −b.
So for β, we fix the multiplicative constant by requiring that this residue is 1. In a
neighborhood of the marked points with labels b − 2 and −b, respectively, there is a
local coordinate z on C1 and w on C2 such that α = zκ dz

z and β = (−w−κ + 1) dw
w
.

Additionally to that, in a neighborhood of the marked point with label d, there is a
local coordinate z0 on C1 such that α = zd0dz0. We extend such local coordinates to
curves in V1 and V2, possibly after shrinking V1 and V2, in an arbitrary way. So we
can assume that the differentials α and β are locally defined in these coordinates on
all curves in V1 and V2.

Now, given a curve C1 in V1, a curve C2 in V2, and a complex number ε ∈ �r ,
there is a unique meromorphic differential on C1 having exactly two poles at the
marked points labeled by −e and b − 2, both of order 1 and with residues εκ and
−εκ , respectively. Denote this differential by η. If r > 0 is small enough, then for
any ε ∈ �r we can perturb the local coordinate z (resp. z0) on an annulus around the
marked point labeled by b− 2 (resp. d) in such a way that α + η = (zκ − εκ) dzz (resp.

zd0dz0) on this annulus. Let us now remove the disk in C1 bounded by the internal
circle of the annulus around themarked point labeled by b−2, remove a neighborhood
of the marked point w = 0, and glue in the “waist” zw = ε. Moreover, let us remove
the disk bounded by the internal circle of the annulus around the marked point labeled
by d and glue it back in such a way that the differential α + η is equal to zd0dz0 on
the whole disk around the point z0 = 0. When C1 and C2 correspond to 0 ∈ V1 and
0 ∈ V2, and ε ∈ �r\{0}, the curve thus obtained carries the differential that is glued
from the differential α + η on C1 and the differential εκβ on C2, which, around the
“waist” zw = ε, looks as follows:

εκ(−w−κ + 1)
dw

w
= (zκ − εκ)

dz

z
.

Notice how the complex number εκ corresponds to the period around the “waist”
zw = ε.
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We have thus shown that the intersection of H0(a, d,−e,− f ;−c,−C) with the
boundary strata appearing in Eq. (5.4) at points in the image through p of the zero-
dimensional strata (5.5) and (5.6) is transversal, so its multiplicity is 1.

The computation of the multiplicity at points in the image through p of the zero-
dimensional strata (5.7) is similar. Let us focus on the first one. Fix I , J , K ⊂
{1, . . . , n} with I � J � K = {1, . . . , n} and choose p0 ∈ H0(b1 − 2, b2 −
2;−c,−CI ) ⊂ M0,3+|I |, p1 ∈ H0(a,− f ,−b1;−CJ ) ⊂ M0,3+|J |, and p2 ∈
H0(d,−e,−b2;−CK ) ⊂ M0,3+|K |. Let σ : M0,3+|I | × M0,3+|J | × M0,3+|K | →
M0,5+n be the gluing map at the marked points carrying the labels b1 − 2 and −b1
and the labels b2 − 2 and −b2, respectively. Let p = σ(p0, p1, p2) and denote
S := H0(a, d,−e,− f ;−c,−C) for brevity.

Choose local coordinates V0 onM0,3+|I |, V1 onM0,3+|J |, and V2 onM0,3+|K | so
that p0 = 0 ∈ V0, p1 = 0 ∈ V1, and p2 = 0 ∈ V2. We will show that we can choose
local coordinatesV0×V1×V2×�2

r onM0,5+n so that S is a curve in {0}×{0}×{0}×�2
r

whose equation we will write down explicitly. Moreover, the image of σ will be
V0×V1×V2×{0}×{0}, while V0×V1×V2×{0}×�r and V0×V1×V2×�r ×{0}
are the codimension 1 boundary divisors containing undegenerations of only one of
the two nodes, i.e. the images of the maps σ1 : M0,3+|J | ×M0,4+|I |+|K | → M0,5+n

and σ2 : M0,4+|I |+|J | × M0,3+|K | → M0,5+n , respectively.
Let κ1 := b1 − 1 and κ2 := b2 − 1. The curves C0, C1, and C2 corresponding,

respectively, to the points p0, p1, and p2, carry meromorphic differentials α, β1, and
β2, all three unique up to multiplicative constants. For the meromorphic differential α,
we fix this constant arbitrarily. On the other hand, note that β1 (resp. β2) has a nonzero
residue at the marked point labeled by−b1 (resp.−b2). So for β1 (resp. β2), we fix the
multiplicative constant by requiring that this residue is 1 (resp.−1). In a neighborhood
of the marked point with label b1 − 2 there is a local coordinate z1 on C0 such that
α = zκ11

dz1
z1

, and in a neighborhood of the marked point with label b2 − 2 there is a

local coordinate z2 onC0 such that α = zκ22
dz2
z2

. In a neighborhood of the marked point

with label −b1, there is a local coordinate w1 on C1 such that β1 = (−w
−κ1
1 + 1) dw1

w1
.

In a neighborhood of the marked point with label −b2, there is a local coordinate w2
on C2 such that β2 = (−w

−κ2
2 − 1) dw2

w2
. We extend such local coordinates to curves

in V0, V1, and V2 in an arbitrary way. So we can assume that the differentials α, β1,
and β2 are locally defined in these coordinates on all curves in V0, V1, and V2.

Now, given a curve C0 in V0, a curve C1 in V1, a curve C2 in V2, and a complex
number ε, there is a unique meromorphic differential ηε on C0 having exactly two
poles at the marked points labeled by b1 − 2 and b2 − 2, both of order 1 and with
residues −ε and ε, respectively. If r > 0 is small enough, then for any (ε1, ε2) ∈ �2

r
we can perturb the local coordinate z1 (resp. z2) on an annulus around the marked
point labeled by b1 − 2 (resp. b2 − 2) in such a way that α + η

ε
κ1
1

= (zκ11 − ε
κ1
1 ) dz1z1

(resp. α + η
ε
κ2
2

= (zκ22 + ε
κ2
2 ) dz2z2

) on this annulus. Let us now remove the disk in
C0 bounded by the internal circle of the annulus around the marked point labeled by
b1 − 2, remove a neighborhood of the marked point w1 = 0, and glue in the “waist”
z1w1 = ε1. Let us also remove the disk in C0 bounded by the internal circle of the
annulus around the marked point labeled by b2 − 2, remove a neighborhood of the
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marked point w2 = 0, and glue in the “waist” z2w2 = ε2. When C0, C1, and C2
correspond to 0 ∈ V0, 0 ∈ V1, and 0 ∈ V2, respectively, and also ε

κ1
1 = ε

κ2
2 , the curve

thus obtained carries the differential that is glued from the differential α + η
ε
κ1
1

on C0

and the differentials ε
κ1
1 β1 and ε

κ2
2 β2 on C1 and C2, and which, around the “waists”

z1w1 = ε1 and z2w2 = ε2, looks as follows:

ε
κ1
1 (−w

−κ1
1 + 1)

dw1

w1
= (zκ11 − ε

κ1
1 )

dz1
z1

, ε
κ2
2 (−w

−κ2
2 − 1)

dw2

w2
= (zκ22 + ε

κ2
2 )

dz2
z2

.

We see that S is the curve in {0} × {0} × {0} × �2
r given by the equation ε

κ1
1 = ε

κ2
2 ,

which intersects the image of σ1 with multiplicity κ2 = b2 − 1 and the image of σ2
with multiplicity κ1 = b1 − 1.

Notice that, for the case in question, we are interested in the intersection with the
image of σ1 only, since the image of σ2 is not a component of the stratum represented
by the fourth term of Eq. (5.4). Indeed, contracting the edge labeled by b1 − 2 and
−b1 in the first graph in (5.7), we don’t obtain the stable graph in the fourth term of
Eq. (5.4). On the other hand, for the second graph in (5.7), both the image of σ1 and
that of σ2 are components of the stratum represented by the fourth term of Eq. (5.4),
so the total multiplicity is the sum of the multiplicities of each component.

We have thus shown that the intersection of H0(a, d,−e,− f ;−c,−C) with the
boundary strata appearing in Eq. (5.4) at points in the image through p of the zero-
dimensional strata (5.7) has multiplicity b2 − 1 and b1 + b2 − 2, respectively.

Let us slightly abuse the level graph notation above by having an enhanced level

graph � denote, instead, the pushforward to H∗(M0,5+n), via the appropriate gluing

map at the nodes, of
∏

v∈V (�)[H(v)], where V (�) is the set of vertices of � and

H(v) := H0(A(v); B(v)), with A(v) and B(v) being the labels at the straight and
zigzagged half-edges or legs of v. The above considerations prove that the intersection

of [H0(a, d,−e,− f ;−c,−C)] with Eq. (5.4) is equivalent to

∑

b≥2

−e − f

da

−c

0

0

b−2

−b

+
∑

b≥2 −e

− f

d

a

−c

0

0

b−2

−b

=
∑

b≥2

−e

− f

a

d

−c

0

0

b−2

−b

+

a

− f −c

d

−e

0 0
−1 −1 +

∑

b≥2 −c

−e

d

a

− f

0

0

b−2

−b
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+
∑

b1,b2≥2

(b2 − 1)

−c

−e

da

− f

0

0 0
−b2−b1

b1−2 b2−2

+
∑

b,b2≥2

(b1 + b2 − 2) −c
−e

da

− f

0

0 0
−b2−b1

b1−2 b2−2

.

Notice that, all of the involved spaces of meromorphic differentials being zero-
dimensional, the above equation is an equality of numbers. It is easy to see that,
expressing this equality in terms of the two generating series θab,c(t2, t3, . . .) and

Pa,b(t2, t3, . . .), we obtain exactly the seven terms equation of Lemma 4.2.
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