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Abstract—The worldwide commercialization of fifth generation
(5G) wireless networks and the exciting possibilities offered by
connected and autonomous vehicles (CAVs) are pushing toward
the deployment of heterogeneous sensors for tracking dynamic
objects in the automotive environment. Among them, Light
Detection and Ranging (LiDAR) sensors are witnessing a surge
in popularity as their application to vehicular networks seem
particularly promising. LiDARs can indeed produce a three-
dimensional (3D) mapping of the surrounding environment,
which can be used for object detection, recognition, and topogra-
phy. These data are encoded as a point cloud which, when trans-
mitted, may pose significant challenges to the communication
systems as it can easily congest the wireless channel. Along these
lines, this paper investigates how to compress point clouds in a
fast and efficient way. Both 2D- and a 3D-oriented approaches are
considered, and the performance of the corresponding techniques
is analyzed in terms of (de)compression time, efficiency, and
quality of the decompressed frame compared to the original.
We demonstrate that, thanks to the matrix form in which LiDAR
frames are saved, compression methods that are typically applied
for 2D images give equivalent results, if not better, than those
specifically designed for 3D point clouds.

Index Terms—LiDAR, point cloud, compression, autonomous
driving, data broadcasting, performance comparison.

I. INTRODUCTION

The Light Detection and Ranging (LiDAR) sensor is a
remote scanner that determines the distance with an object by
measuring the time between the emission of a light pulse and
the reception of the back-scattered signal. LiDAR pulses are
generated by an array of lasers that fire thousands of times per
second at different vertical inclinations, and that continuously
rotate to produce a three-dimensional (3D) omnidirectional
representation of the surrounding environment in the form of
a point cloud. Specifically, a LiDAR point cloud consists of a
set of 3D data points in space corresponding to the projections
of the laser beams on the surface of shapes or objects, and
may also provide additional information including the laser
intensity, scan angle, and reflectance properties of the surface.

In the last decades, LiDARs have been extensively applied
to different research fields, including agriculture (e.g., for
topographic analysis and prediction of soil properties), military
(e.g., for ground surveillance, navigation, search and rescue)
and architecture (e.g., for detecting subtle topographic fea-
tures). More recently, LiDAR scanners have also been playing
an increasingly important role for connected and autonomous
vehicles (CAVs) to enhance detection and recognition of road
entities, and enable a safer driving environment [1]. Compared

to other types of sensors such as RADARs or color/thermal
cameras [2], LiDARs are robust under almost all lighting and
weather conditions, with or without glare and shadows, and
are currently the most precise sensors to measure range [3].
On the other hand, LiDAR acquisitions may produce very
large volumes of data that can be challenging to handle with
standard Vehicle-to-Everything (V2X) technologies [4], [5].
One possible method to solve capacity issues is by leveraging
the millimeter wave (mmWave) spectrum, as promoted by
recent IEEE and 3GPP standardization activities for future
vehicular networks [6]. At the same time, sensor data should
be carefully selected as a function of the available channel
bandwidth, so as to save (already limited) network resources
for the most valuable transmissions [7]. However, this typically
requires machine learning methods to be trained and validated
for identifying the critical data, which may be difficult to do on
board of vehicles [8]. In any case, data rates could be further
reduced if the LiDAR point clouds were efficiently compressed
before data are validated and broadcast [9].

In these regards, the most challenging aspect for data
compression lies in the way the point cloud is represented.
Given the 3D nature of LiDAR perceptions, geometric com-
pression algorithms, based on Point Cloud Data (PCD), LAS-
Comp/LASzip [10] and Octree [11] formats, are the most
common in the literature. More recent techniques based on
deep learning, e.g., OctSqueeze [12], have been developed
to enhance compressibility in 3D scenes. Even though these
methods preserve accuracy after compression, they require
point-level processing of data, which may not be implemented
in real time. As a result, the scientific community is consider-
ing applying bi-dimensional (2D) transformations to the point
cloud, using graph algorithms, and then exploit image-oriented
compression techniques, such as Lossless JPEG (J-LS) [13]
or Portable Network Graphics (PNG) [14], as well as video-
oriented and dictionary-based compression techniques, such
as Motion JPEG 2000 (MJ2) [15] and Lempel–Ziv–Welch
(LZW) [16] respectively, to reduce computational complexity.
Despite these studies, however, there is no accepted standard
for point cloud compression, thus stimulating further research.

Based on the above introduction, in this paper we provide
a comparison between 2D and 3D compression methods for
point clouds, shedding light on the most promising scheme(s)
to guarantee accurate though efficient compression before
data broadcasting. Compared to prior work, e.g., [17], our
performance analysis is assessed not only in terms of average
compression ratio (which generally indicates how accurately
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Figure 1: A schematic representation of the 3D and 2D compression methods reviewed in this paper.

data is compressed), but also in terms of Peak Signal to
Noise Ratio (PSNR) (which measures the quality of the com-
pressed point cloud, a critical requirement to ensure precise
autonomous driving operations) and (de)compression time (to
verify whether the point cloud can be (de)compressed in low
latency, as is the case in safety-critical applications). Moreover,
we study both 3D and image/video-based compression strate-
gies, and investigate whether representing the point cloud with
spherical coordinates, as natively supported in LiDAR data,
would result in better compression than considering Cartesian
coordinates. Our simulation results, validated on the public
Veloview Sample Dataset, demonstrate that 2D compression
methods are orders of magnitude more efficient and up to
20× faster than the considered 3D methods, especially when
spherical coordinates are adopted, while incurring limited
accuracy degradation in the reconstructed point cloud.

The remainder of this paper is organized as follows. In
Sec. II and Sec. III we describe some of the most common
2D and 3D methods, respectively, to compress LiDAR point
clouds. In Sec. IV we present our simulation setup and
numerical results. Finally, in Sec. V we summarize our main
conclusions and suggestions for future work.

II. 3D COMPRESSION METHODS

LiDARs emit light pulses and record the backscattered
waveforms. In general, from each return pulse, we can estimate
the Cartesian coordinates (x, y, z) and the angle of arrival of
each point, the received signal intensity, the registered time,
as well as other side information. In this work, we consider
the data returned by the Velodyne sensors, i.e., a collection of
User Datagram Protocol (UDP) packets encoded in a Packet
Capture (PCAP) file, and try to compress the file size.

A. 3D Data Representation

The most challenging aspect of collecting point clouds is
related to their unordered and sparse structure, which makes
classical storage methods inefficient. For this reason, new
solutions have been specifically designed to represent point
cloud data. Octrees [18], in particular, are an extension of
binary trees in which each internal node has exactly eight
children, and that can be used to partition 3D spaces. The
root of the Octree is associated to the bounding box containing

the whole point cloud. Then, the space volume is partitioned
in eight parts, each assigned to a children of the root node.
Each level of the space is subsequently split in eight parts.
Thus, each child represents 1/23 of the parent space. With this
approach, each point collected by the LiDAR is represented
by the leaf which contains it, so the encoding precision grows
with the number of levels. A similar structure is the Voxel Grid
(VG) that has been traditionally used in computer graphics to
reduce both the input space dimensionality and the number of
points in the raw point cloud.The VG sub-sampling technique
is based on a grid of 3D voxels.1 For each voxel, a centroid
is chosen as the representative of all the points that lie on the
corresponding partition of the space. [19]. Clearly, both the
Octree and the VG representations introduce a quantization
error, which depends on the granularity of the space partition.

B. 3D Data Compression

Several 3D compression algorithms were developed, de-
pending on how the point cloud is represented. For example,
a compression algorithm exploiting the Octree data structure
to perform predictive decoding based on local surface ap-
proximations was proposed in [11]. A deep neural network,
also based on Octree data, was then introduced in [12].
Notably, a fast compression algorithm was developed in [20]
considering spherical voxels, while the Moving Picture Expert
Group (MPEG) has released specifications for the video-
based (V-PCC) and the geometry-based (G-PCC) point cloud
compression standards [21].

In this work, we analyze the efficiency and accurateness of
G-PCC, as a possible standard for 3D point cloud compression,
and of the Octree representation, as an efficient 3D storage
method for point clouds, as illustrated in Fig. 1. For the
Octree generation, the Point Cloud Library (PCL)2 [22] was
used. Each node of the Octree is represented by 8 bits, each
stating whether the corresponding space partition is empty (0)
or contains at least one point (1).Then, all non-zero bytes
are saved in breadth-first order [19]. PCL offers 12 different

1A voxel is a discrete volumetric element used in the visualization and
analysis of 3D data. It represents the equivalent of a 2D-image pixel but on
a regular grid in the 3D space.

2The PCL is a standalone, large scale, open C++ library for point cloud
processing and management. The PCL can be publicly accessed at https:
//pointclouds.org/documentation/tutorials/pcd file format.html.

https://pointclouds.org/documentation/tutorials/pcd_file_format.html
https://pointclouds.org/documentation/tutorials/pcd_file_format.html
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Profile Resolution Color Encode Method

1 1 cm3 No Online
2 1 cm3 Yes Online
3 5 mm3 No Online
4 5 mm3 Yes Online
5 1 mm3 No Online
6 1 mm3 Yes Online
7 1 cm3 No Offline
8 1 cm3 Yes Offline
9 5 mm3 No Offline
10 5 mm3 Yes Offline
11 1 mm3 No Offline
12 1 mm3 Yes Offline

one point (1).Then, all non-zero bytes are saved in breadth-
first order [20]. PCL offers 12 different resolution profiles
(corresponding to 12 different levels of compression), which
can be grouped into 3 categories, i.e., HIGH, MEDIUM, and
LOW, as reported in Table I.

III. 2D COMPRESSION METHODS

In this section we discuss how 3D LiDAR point clouds can
be transformed into 2D representations (Sec. III-A), and then
compressed via 2D methods originally designed to compress
images (Sec. III-B) and videos (Sec. III-C).

A. 3D-to-2D Data Representation
The 3D LiDAR data can be stored into a 2D image array,

represented through Cartesian or spherical coordinates.
• Cartesian representation. According to prior work [18],

the original Cartesian (x, y, z) point-cloud coordinates
can be mapped into the 2D plane according to one of
the following strategies:

– Single-channel Cartesian representation: The points
are saved in three single-channel (grayscale) images
by assigning Cartesian coordinates to each image.

– Tri-channel Cartesian representation: The points are
saved in one Red-Green-Blue (RGB) colored image
by assigning the x coordinate to the R channel, the
y coordinate to the G channel, and the z coordinate
to the B channel.

• Spherical representation. We propose to represent the
point cloud through the (⇢, ✓, �) spherical coordinates
(where ⇢ is the radial distance, ✓ is the polar/elevation
angle and � is the azimuth angle), computed as ⇢ =p

x2 + y2 + z2, ✓ = arctan
⇣
z/(

p
x2 + y2)

⌘
, and

� = arctan (y/x). The data is then stored into a 2D
image array.

Notice that converting 3D data into a 2D image requires
the point-cloud coordinates to be converted from float
to unsigned integers, thus introducing a quantization
error. Considering a n-bit encoding, a floating point value uf

can be easily converted to unsigned integer ui as

ui =

�
uf � min(uf )

max(uf ) � min(uf )
· (2n � 1)

⇡
. (1)

In our trials, we observed that encoding with more than 16
bits would not bring any significant improvement in terms of
accuracy, thus we set n = 16 in our simulations.

This image representation of LiDAR frames makes the ap-
plication of existing 2D compression algorithms quite straight-
forward. Furthermore, the image encoding preserves the value
continuity of the scene, i.e., neighboring pixels have similar
values, an important property when applying image compres-
sion algorithms: each row in the matrix-form representation of
the point cloud contains the points having the same elevation
angle, i.e., acquired by the same laser, whereas the columns
scan the azimuth space, according to the laser rotation. In the
following, we present the 2D compression algorithms that we
considered in this work, as illustrated in Fig. 1.

B. 2D (Image-Based) Data Compression
For image-based compression, we consider the well-known

PNG and J-LS image formats. Specifically, PNG uses DE-
FLATE, a compression algorithm that combines LZW [17]
with the Huffman coding [24]. Similarly to other dictionary
coders, LZW employs a sliding window to scan the data:
whenever a new sequence of bytes is observed, the corre-
sponding dictionary entry is created and all the subsequent
occurrences of the same sequence are substituted with the
corresponding dictionary index. The dictionary is then com-
pressed with the Huffman coding.

The J-LS algorithm [14], instead, predicts the value of each
pixel in the image from the values of the neighboring pixels,
thus leveraging the correlation among consecutive frames. This
information is then modeled through a two-sided geometric
distribution, and encoded using the Golomb coding, which is
similar to the Huffman one.

C. 2D (Video-Based) Data Compression
Once the 3D LiDAR frames are converted into their 2D

representation, video-based compression techniques (either
inter- or intra-frame) can be applied. Specifically, we analyze
the performance of an adaptation of LZW (DEFLATE) for
videos, and the MJ2 algorithms. In both cases, 8 bit-encoding
was applied, as typically considered in the most common video
encoding standards.

We easily extended LZW [17] (specifically DEFLATE) in
order to be applied inter-frame compression, i.e., taking into
account the temporal correlation among consecutive frames
to improve compression rates. Namely, for a given sequence
of N LiDAR frames, three N -long vectors are generated, one
per coordinate – either Cartesian (x, y, z) or spherical (⇢, ✓, �).
DEFLATE is then applied to each coordinate vector separately.

MJ2 is another popular video coding scheme [16]. In
this case, the video frames are generated as a sequence of
images, according to the representation strategies described in
Sec. III-A. Then, each frame is independently encoded using
JPEG 2000. Because of the intra-frame encoding, the MJ2
is more resilient to propagation of errors over time, more
scalable, and better suited to networked and point-to-point
environments than DEFLATE. Also, it permits random access
to individual frames.

Table I: List of Octree compression profiles according to the PCL [22].

resolution profiles (corresponding to 12 different levels of
compression), which can be grouped into 3 categories, i.e.,
HIGH, MEDIUM, and LOW, as reported in Table I.

III. 2D COMPRESSION METHODS

In this section we discuss how 3D LiDAR point clouds can
be transformed into 2D representations (Sec. III-A), and then
compressed via 2D methods originally designed to compress
images (Sec. III-B) and videos (Sec. III-C).

A. 3D-to-2D Data Representation

The 3D LiDAR data can be stored into a 2D image array,
represented through Cartesian or spherical coordinates.
• Cartesian representation. According to prior work [17],

the original Cartesian (x, y, z) point-cloud coordinates
can be mapped into the 2D plane according to one of
the following strategies:

– Single-channel Cartesian representation: The points
are saved in three single-channel (grayscale) images
by assigning Cartesian coordinates to each image.

– Tri-channel Cartesian representation: The points are
saved in one Red-Green-Blue (RGB) colored image
by assigning the x coordinate to the R channel, the
y coordinate to the G channel, and the z coordinate
to the B channel.

• Spherical representation. We propose to represent the
point cloud through the (ρ, θ, φ) spherical coordinates
(where ρ is the radial distance, θ is the polar/elevation
angle and φ is the azimuth angle), computed as ρ =√
x2 + y2 + z2, θ = arctan

(
z/(
√
x2 + y2)

)
, and

φ = arctan (y/x). The data is then stored into a 2D
image array.

Notice that converting 3D data into a 2D image requires
the point-cloud coordinates to be converted from float
to unsigned integers, thus introducing a quantization
error. Considering a n-bit encoding, a floating point value uf
can be easily converted to unsigned integer ui as

ui =

⌊
uf −min(uf )

max(uf )−min(uf )
· (2n − 1)

⌉
. (1)

In our trials, we observed that encoding with more than 16
bits would not bring any significant improvement in terms of
accuracy, thus we set n = 16 in our simulations.

This image representation of LiDAR frames makes the ap-
plication of existing 2D compression algorithms quite straight-
forward. Furthermore, the image encoding preserves the value
continuity of the scene, i.e., neighboring pixels have similar
values, an important property when applying image compres-
sion algorithms: each row in the matrix-form representation of
the point cloud contains the points having the same elevation
angle, i.e., acquired by the same laser, whereas the columns
scan the azimuth space, according to the laser rotation. In the
following, we present the 2D compression algorithms that we
considered in this work, as illustrated in Fig. 1.

B. 2D (Image-Based) Data Compression

For image-based compression, we consider the well-known
PNG and J-LS image formats. Specifically, PNG uses DE-
FLATE, a compression algorithm that combines LZW [16]
with the Huffman coding [23]. Similarly to other dictionary
coders, LZW employs a sliding window to scan the data:
whenever a new sequence of bytes is observed, the corre-
sponding dictionary entry is created and all the subsequent
occurrences of the same sequence are substituted with the
corresponding dictionary index. The dictionary is then com-
pressed with the Huffman coding.

The J-LS algorithm [13], instead, predicts the value of each
pixel in the image from the values of the neighboring pixels,
thus leveraging the correlation among consecutive frames. This
information is then modeled through a two-sided geometric
distribution, and encoded using the Golomb coding, which is
similar to the Huffman one.

C. 2D (Video-Based) Data Compression

Once the 3D LiDAR frames are converted into their 2D
representation, video-based compression techniques (either
inter- or intra-frame) can be applied. Specifically, we analyze
the performance of an adaptation of LZW (DEFLATE) for
videos, and the MJ2 algorithm. In both cases, 8 bit-encoding
was applied, as typically considered in the most common video
encoding standards.

We easily extended LZW [16] (specifically DEFLATE) in
order to be applied inter-frame compression, i.e., taking into
account the temporal correlation among consecutive frames
to improve compression rates. Namely, for a given sequence
of N LiDAR frames, three N -long vectors are generated, one
per coordinate – either Cartesian (x, y, z) or spherical (ρ, θ, φ).
DEFLATE is then applied to each coordinate vector separately.

MJ2 is another popular video coding scheme [15]. In
this case, the video frames are generated as a sequence of
images, according to the representation strategies described in
Sec. III-A. Then, each frame is independently encoded using
JPEG 2000. Because of the intra-frame encoding, the MJ2
is more resilient to propagation of errors over time, more
scalable, and better suited to networked and point-to-point
environments than DEFLATE. Also, it permits random access
to individual frames.



IV. PERFORMANCE COMPARISON

In this section we first describe our simulation scenario and
performance metrics (Sec. IV-A), then we present our main
performance results (Sec. IV-B).

A. Simulation Scenario and Parameters

The performance of compression algorithms has been com-
pared on the Veloview Sample Dataset3, that contains data
from seven heterogeneous road environments acquired with
a Velodyne VLP-16 and a Velodyne HDL-32 LiDAR, so as
to consider different point cloud resolutions. In particular, the
former sensor uses 16 laser beams with an angular resolution
of 2 degrees and 0.1 degrees on the elevation and azimuth
dimensions, respectively, while the latter configures up to 32
laser beams at around twice the resolution. Furthermore, the
data was acquired using two rotation frequencies, i.e., 600 and
1200 rpm, thus further increasing the data diversity and the
robustness of the results. The datasets were converted from the
original PCAP format into the CSV or Binary PCD formats
with the Matlab velodyneFileReader module, to be then
used in our custom Python code for performance evaluation.

We compare the performance of the compression algorithms
reviewed in Secs. II and III. For 3D methods, we consider
the Octree compression levels (HIGH, MEDIUM, and LOW),
and G-PCC with default parameters. For 2D methods, we
compare image-based (PNG and J-LS, considering both tri-
channel Cartesian and spherical representations) and video-
based (LZW and MJ2, considering spherical representation
only) solutions. The following metrics have been used to
evaluate the compression algorithms.

a) Compression rate: Let S̄ be the size of the com-
pressed point cloud, and Sraw be the size of the raw point
cloud, which is the PCAP file from the LiDAR acquisition.
The compression rate measures the reduction in size of the
data representation produced by compression, and is given by

Compression rate = 1− (S̄/Sraw). (2)

b) Bytes per Point (BPP): Let |P̄ | be the total number
of points contained in the compressed point cloud of size S̄.
The BPP is defined as the number of bytes used to compress
each point in the original point cloud, and is quantified as

BPP = S̄/|P̄ |. (3)

c) Point-to-plane Peak Signal to Noise Ratio (PSNR):
The PSNR is proportional to the quality of reconstructed
point clouds/images/videos subject to compression, and is thus
related to the accuracy of autonomous driving operations like
object detection [24]. Let p ∈ P be one point in the original
point cloud P , and q ∈ P̂ be its nearest neighbor in the
reconstructed point cloud P̂ . The point-to-plane Mean Square
Error (MSE) can be computed with respect to P as

MSEP→P̂ =
1

|P |
∑

∀p∈P
(〈p− q,nq〉)2 , (4)

3The Veloview Sample Dataset can be publicly accessed at https://data.
kitware.com/#collection/5b7f46f98d777f06857cb206.
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Figure 2: Compression rate for different 2D vs. 3D compression methods.

where nq is the surface tangent in q ∈ P̂ , and 〈p− q,nq〉 is
the projection of vector p− q on nq . Accordingly, the point-
to-plane PSNR with respect to P can be written as

PSNRP→P̂ = 10 log10

(
(θ∗P )2

MSEP→P̂

)
(5)

where θ∗P represents the peak value in the original point cloud
P . Generally, θ∗P is selected according to the nearest neighbor
distances dp for all points p in P , i.e., θ∗P = max∀p∈P {dp}.
Then, the PSNR between P and P̂ is given by

PSNRP,P̂ = min
{

PSNRP→P̂ , PSNRP̂→P

}
. (6)

d) Computation time: It refers to the time required to
compress/decompress the point cloud (from when the raw
LiDAR output is produced in the form of a PCAP file, until
the compressed point cloud is generated, or vice versa) using
one of the techniques presented in the paper. This quantity
has been measured on a machine executing an Intel Core i5-
4210U processor at 1.70 GHz, running Linux 5.4.74-1, Python
3.8.6, g++ 10.2.0, using PCL 1.10 for Octree compression and
G-PCC 13. All the trails have been run single threaded.

B. Numerical Results

Compression efficiency. In Fig. 2 we plot the compression
rate for different compression methods. First, we observe
that G-PCC achieves the best compression rate (98.74%),
thus imposing as the standard for point cloud compression.
Second, 2D compression and, in particular, PNG and J-LS,
outperforms the Octree-based compression. In fact, unlike their
2D counterparts, Octree methods tend to overfit the data and
cannot detect and appropriately remove redundant information
hidden in the point cloud representations [9], resulting in a
dramatic drop in the compression rate when increasing the
resolution. On the contrary, PNG still guarantees a promising
80% compression rate, up to 25% better than Octree.

Third, Fig. 2 shows that representing the point cloud with
spherical coordinates can result in better compression than
using Cartesian coordinates, e.g., in case of PNG. In fact,
while the former approach tries to store only radius and
azimuth for each point in the LiDAR data (the elevation
angle is indeed constant for each LiDAR laser beam), raw

https://data.kitware.com/#collection/5b7f46f98d777f06857cb206
https://data.kitware.com/#collection/5b7f46f98d777f06857cb206


Image LZW MJ2 LOW MED HIGH G-PCC
0

50

100

109 111

63

50

91 91

124

49.5PS
N

R
[d

B
]

2D Image Cartesian Octree
2D Video Spherical G-PCC

Figure 3: PSNR for different 2D vs. 3D compression methods. “Image”
compression is obtained by averaging PNG and J-LS compression.

Cartesian files encode three geometric coordinates as a tri-
channel image, thus using about 1/3 more BPPs than in the
spherical methods. We also tried to convert the point cloud into
spherical coordinates using the radius only, thus representing
the LiDAR’s input as a single-channel image. While this
approach permits to reduce the BPPs by 2/3 compared to
Cartesian files, the final compression rate was unsatisfactory.

Third, Fig. 2 illustrates that video-based methods like LZW
can compress efficiently by taking advantage of the temporal
correlation between neighboring frames in the 2D point cloud
representation, for example tracking the movement of cars:
compared to PNG, LZW achieves a +11% improvement, just
8% less than G-PCC.

Compression accuracy. Compression accuracy is measured
in terms of PSNR, as depicted in Fig. 3 (where the “Image”
bars are obtained by averaging PNG and J-LS schemes, that
gave similar results). It appears clear that Octree with HIGH
profile exhibits the best performance (+14% against PNG,
however in the face of a significant degradation in terms of
compression rate), even though both LOW and MEDIUM
profiles underperform image-based methods (−17%). In any
case, the PSNR is guaranteed to be above 100 dB, thereby
resulting in basically lossless compression; this ensures that
the reconstructed point cloud after decompression can be con-
sidered the same as the original dataset. Notably, for image-
based methods, both Cartesian and spherical representations
give similar PSNR performance.

On the other hand, Fig. 3 shows that video-based compres-
sion, despite the high compression rate, suffers from very bad
accuracy compared to both image- (up to −55%) and Octre-
based (up to −60%) schemes. In fact, while static images are
encoded with 16 bits, video frames are designed to operated
with 8 bits, as illustrated in Sec. III-C. Even though updates
to both LZW and MJ2 standards have been made to increase
the bit-depth, commercially available implementations are still
limited to 8 (or sometimes 12) bits per sample, which make
the compression lossy.

Similarly, G-PCC exhibits a low PSNR, thus revealing the
accuracy cost (up to 74 dB vs. Octree and 60 dB vs. 2D
solutions) required to achieve its outstanding compression rate.
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Figure 4: Compression (above) and decompression (below) times for different
2D vs. 3D compression methods.

(De)compression time. Timely compression and decom-
pression is of utmost importance for communication systems
to ensure that sensor data is broadcast in real time. From Fig. 4
(above), we observe that image-based methods achieve up to
10× and 20× faster compression than Octree and G-PCC.
In particular, PNG works slightly better than J-LS, achieving
an improvement of 20%. In both cases, the compression time
grows linearly with the number of points in the point cloud, as
expected. On average, Octree and G-PCC can compress around
670k and 440k point/s respectively, against the 5.5M points/s
for PNG. In comparison, the HDL-32 sensor captures 695k
points/s, thereby making image-based compressors the only
methods capable of processing the data at the frame rate of the
LiDAR, thus achieving real-time performance. Interestingly,
video-based strategies (LZW and MJ2) are significantly slower
than their competitors, which make them undesirable for
most applications.

In terms of decompression, Fig. 4 (below) illustrates that
image-based methods are still faster than the 3D ones. Notably,
decompression takes less time than compression, a critical fea-
ture for autonomous driving since decompression is generally
executed on-board of cars [9].

Compression guidelines for data broadcasting. To sum-
marize our conclusions, Fig. 5 compares the compression
performance of the investigated algorithms in terms of PNSR
(to quantify the accuracy of the reconstructed point cloud) and
BPP (to quantify the size of the compressed point cloud). As
anticipated, image-based methods, in particular PNG, achieve
the best trade-off. On one side, Octree-based solutions at
HIGH profile could guarantee up to +14% better PSNR, while
requiring in turn 3× more BPPs for compression, making this
solution ineffective for efficient data broadcasting. A LOW
profile would exhibit worse PSNR and BPP performance, and
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involve up to 10× slower compression. On the other side,
video-based compression methods and G-PCC permit to rep-
resent the point cloud with −45% and −66% BPPs compared
to PNG, even though degrading the PSNR by an impressive
−45% and −55%, which makes these solutions lossy. Also,
MJ2, LZW and G-PCC are not compatible with low latency
for data dissemination, since compression and decompression
may take tens/hundreds of seconds to complete. For both PNG
and J-LS schemes, employing spherical coordinates before
compression guarantees better compressibility than Cartesian-
based methods, despite involving slower compression.

V. CONCLUSIONS AND FUTURE WORK

In this paper we faced the challenge of compressing LiDAR
data to facilitate efficient data broadcasting. To do so, we
compared 3D compression methods (Octrees and G-PCC)
specifically designed for point clouds, and 2D methods (PNG,
J-LS, LWZ and MJ2) typically used to compress image and
video frames. We showed that 2D algorithms, even though
requiring the raw point cloud to be first transformed into its
two-dimensional representation, can achieve a high compres-
sion rate and up to 20× faster compression than G-PCC, while
guaranteeing a PNSR greater than 100 dB, thus supporting
lossless compression.

In our future work we will investigate whether more ad-
vanced solutions, e.g., other settings of G-PCC [21] or meth-
ods based on artificial intelligence, may improve compression
accuracy by operating directly on the raw 3D point cloud.
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