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Abstract. Heat pumps can play a crucial role in the European energy strategy 2050, which
aims to achieve net-zero greenhouse gas emissions. When coupled with thermal energy storage
and integrated with advanced control strategies, heat pump operation can be optimized to reduce
carbon footprint and respond to the needs of system operators. However, to scale in a multitude
of buildings, the transferability of the modeling into heterogeneous systems is crucial. In this
paper, two different interpretable linear models, a hybrid (grey-box) and a fully data-driven
(black-box) model are investigated. Specifically, two regression-based identification methods
(SINDYc and DMDc) are used for dynamic models and the LASSO regression is used for static
models. The transferability of the approach is evaluated using two real-world facilities with
heterogeneous sizing and configuration. The results show a similar simulation performance for
both cases with a maximum normalized RMSE of 0.41 and 0.60, respectively. This confirms the
transferability of the approach that is necessary for large-scale implementation.

1. Introduction
Heat pump (HP) coupled with thermal energy storages (TESs) can be used as a source
of flexibility to support energy system operation when combined with optimal predictive
control [1]. However, a large number of such systems need to be aggregated for which
scaleable control policies are required. To this end, data-driven modeling approaches have
received considerable attention as they can reduce modeling efforts and support a cost-efficient
implementation. Previous studies have shown that black-box models such as neural networks
(NN) can achieve high modeling accuracy but have poor performance in sample efficiency and
model interpretability [2]. For large-scale exploitation of TES units, potentially unstable models
could affect energy system operation negatively and poor interpretability also raises hesitance
among grid operators. Therefore, we consider linear or non-linear state-space models identified
with the assistance of machine learning techniques. This facilitates model interpretability while
achieving reasonable modeling accuracy and a better sample efficiency [3]. When models leverage
both physics-based feature selection and machine learning methods to identify unknown model
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parameters, they are classified as hybrid (grey-box) models. In contrast, fully data-driven (black-
box) models utilize dependencies that extend beyond directly physics-related factors.
Extensive research has been carried out with hybrid models of HPs [4]. Models of a full heating
system, consisting of a HP and a TES, to be used with MPC have been presented in [5]. However,
a more systematic screening of different models and investigations into the transferability of the
modelling approach are lacking. A key criterion for a large-scale rollout is the transferability
of a model to different case studies [6]. Consequently, the main contribution of this research
lies in conducting a systematic comparison of different data-driven models based on real-world
heterogeneous variable-speed HPs combined with TES units.

2. Case study
Two case studies, the RSE Lab and NEST, with heterogeneous sizes and system configurations
have been investigated in this paper. Figure 1 and Table 1 contrast the two systems regarding
their main characteristics. The sampling time interval for both datasets is 1 minute. The
RSE Lab is equipped with a standard setup with a hydraulically decoupled thermal buffer tank
downstream of the heat pump, which is used for both heating and cooling operations [7]. In
the case of NEST, additional heat can be directly injected into the storage tank from a district
grid via a heat exchanger. In the cooling mode, no HP is involved and the tank is only charged
with cooling energy from a district cooling grid. Despite the absence of a HP, the temperature
dynamics were investigated as well. The hot water and cold water storage tanks for NEST
consist of two in-series 1100-liter tanks.

System RSE Lab NEST

HP capacity (electric power) [kW] 7 (2) 100 (24)

Heat source Air Ground & District Grid

TES volume for heating/cooling [L] 300 2200

Table 1: Case-study system characteristics

Figure 1: Schematic overview of heating system components of two case studies for heating
and cooling operations: (a) RSE Lab and (b) NEST

3. Methodology
3.1. Model identification methods
Two data-driven dynamic state-space modeling techniques, namely Sparse Identification of
Non-Linear DYnamics with control (SINDYc) [8] and Dynamic Mode Decomposition with
control (DMDc) [9] are used to identify first-order dynamic models. Kaiser et. al have shown
that these two methods can be applied in a wide range of modelling tasks and the methods are
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closely linked in the discrete-time domain [2]. Since SINDYc is a regression-based identification
method, the number of model features (complexity) can be chosen through regularization and
relaxation parameters. With DMDc, the model complexity can be adjusted by selecting the
number of eigenmodes resulting from singular value decomposition (SVD). Both dynamic
identification methods can be used for uni- or multivariate identification. For model variables
with negligible dynamics, static models, identified with Least Absolute Shrinkage and Selection
Operator (LASSO) regression, have been evaluated. Non-linearities for SINDYc and LASSO
were considered via a combination of bilinear and polynomial terms.

3.2. Model evaluation
Firstly, the model performance of the identification was evaluated. A screening of model
characteristics, such as model type (Static/Dynamic, Linear/Non-Linear), sampling time (1
minute, 15 minutes) and the prediction horizon (1 hour, 5 hours), was conducted to identify
suitable models and combinations for HP and TES variables for both case studies and operational
modes (i.e., heating and cooling). The main criteria include both model error metrics (i.e., root-
mean-square error (RMSE), R2) and stability. Secondly, suitable structures of full system models
(combined HP and TES model) have been selected. It is typical for the residential building sector
to utilize a 15-minute sampling time, thus the more limited selection process concentrates only
on models with this higher sampling time. To facilitate comparison of modelling results in
different systems, the RMSE is further normalized with the standard deviation of the respective
measurement. The two types of full system models that resulted from the evaluation are
presented in the next subsection. Both model evaluation steps were conducted for both case
studies to examine the transferability of the modelling approaches.

3.3. Selecting the model structure
The modelling approach proposed here is inspired by [5]. The HP-TES system is described by at
least three states: x = [Tst, Qhp, Php] with Tst either being an average temperature TstAvg or two
states describing the temperature at the top and bottom of the storage tank TstLow and TstHigh.
Php is the electric power and Qhp the thermal power. In practice, the only controllable variable
of the system is the compressor frequency wcomp. With the chosen identification methods, two
types of combined linear state-space models (Equation 2, Equation 3) of the following form can
be selected:

Exk+1 = Axk + Buuk + Bddk , yk = Cxk (1)

A generic descriptor state-space representation is presented in Equation 1, where matrix E allows
for the formulation of combined static and dynamic models. The HP thermal and electrical power
model in Equation 3 are static.

I) Coupled fully data-driven dynamic model:

E = I, A, Bu, Bd, C = I (2)

II) Decoupled hybrid static and dynamic (mixed) model:

E =

1 0 0
0 0 0
0 0 0

 , A =

a11 a12 0
a21 −1 0
a31 0 −1

 , Bu =

 0
bu,21
bu,31

 , Bd =

 0 bd,12 bd,13
bd,21 0 0
bd,31 0 0

 , C = I (3)

with the following definitions for the RSE Lab:

x = [Tst, Qhp, Php]T , u = [wcomp] , d = [Tamb, Troom, Qhd,cd]T (4)
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Figure 2: Screening results of feasible models

For the NEST-system the heat/cold supply from the district grid (see Figure 1) is added as
an additional disturbance in the above formulation, by extending the disturbance matrix Bd in
Equation 3 to capture the influence on the tank temperature in model (II). All the parts of the
full system models can be identified with the introduced methods. The simulation performance
of both full system models have been evaluated for the RSE Lab and NEST.

4. Results
This section first summarizes the results following the model evaluation procedure described in
subsection 3.2 and then elaborates on the simulation results of the full system HP-TES models
introduced in subsection 3.3.

4.1. Model screening
Figure 2 shows all feasible combinations of model variables, methods, sampling time, and model
types that result in stable models. With a sampling time interval of 15 minutes, the dynamics
of the HP states are not observable. Therefore no stable dynamic models can be identified with
SINDYc and DMDc. Only when the number of eigenmodes in DMDc is reduced and a 1-minute
sampling time is used, stable linear models can be obtained. Additionally, static linear and non-
linear models always perform well for both case studies and operation modes. The storage tank
states can be modeled with SINDYc and DMDc. Non-linear dynamics due to tank temperature
stratification can only be modeled with SINDYc. However, evaluations presented in the next
subsection show that linear models perform sufficiently well and are stable when the TES is
modelled using a single or multiple states with first-order dynamics.

4.2. Model selection
Modelling results in Figure 3 are shown for both case studies and both heating and cooling modes
for 1-hour and 5-hour prediction horizon. Results for the fully data-driven model for NEST are
not shown because the accuracy is very low. Dependencies between the additional disturbance
Qdist and the HP states are identified with DMDc, which is against physical intuition. A well-
performing first-order multivariate data-driven dynamic linear model as described in Equation 2
can only be identified with DMDc for the RSE Lab data. The dynamics are identified with
1-minute sampling time data and then converted to a 15-minute model. The components of
the decoupled hybrid mixed model are identified separately and then combined into a state-
space model as described in Equation 3. In addition to the linear models, modelling results
for non-linear average tank temperature models are presented. Even though the performance
is slightly better compared to linear models, it is potentially unstable. Nonetheless, in both
cases, the model performance for heating and cooling modes are comparable for short prediction
horizons.
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Figure 3: Model performance of selected 15 minutes sampling time models to construct
coupled fully data-driven and decoupled hybrid mixed HP-TES models

4.3. Full HP-TES system simulation
Figure 4 shows two-day simulations, for both case studies and both operational modes. For
the RSE lab, the coupled fully data-driven dynamic model (I) and the decoupled hybrid linear
mixed tank temperature model (II) are depicted. In this case, the normalized RMSEs of all
three states Tst, Qhp, Php of model (II) are 0.41, 0.16, 0.10, respectively. The corresponding
normalized RMSEs are 0.60, 0.07, 0.04 for NEST. Moreover, the RSE Lab system has long
charging and discharging periods. The tank temperature model mainly deviates from the true
behaviour when the temperature in the TES reaches its peak. The tank temperature model
(I) drifts off as the simulation time increases, particularly when the HP is operated in cooling
mode. The reason is a delay of the HP states of one time step (i.e., 15 minutes) introduced by
the conversion from 1 to 15 minutes. The HP states are only presented for model (II) because
the behaviour is similar to model (I). The NEST model, with its large GSHP and frequent
periodic tank charging and discharging behaviour, only shows some deviations from the true
system behaviour for long-term operations of the HP. The tank temperature model for heating
and cooling modes performs similarly.

5. Conclusion
Key to the model design and evaluation process was the ease of model interpretation provided
by the methods used. The transparency ensures the choice of stable and intuitive models.
The results show that the methodology can be applied to systems with different scales which
indicates transferability. The decoupled hybrid model has proven to be more suitable for use
in an optimal control framework. It provides good performance for short-term prediction and
long-term simulation. In contrast, the fully data-driven dynamic model suffers from a delay
of the HP dynamics, leading to a drift of the tank temperature for long-term simulations. By
manually assigning the HP-states one time step earlier for each iteration, the model can be used
for predictive control. Additionally, linear first-order two-state tank temperature models show
only slightly worse performance than the one-state model. To further improve model accuracy,
non-linear features can be added.
In the future, extended tank temperature two-state models would allow for a more accurate
state-of-charge estimation. Additionally, a more detailed model evaluation analysis consisting
of complexity, sample efficiency, and prediction error analysis can be used to evaluate the
benefits and drawbacks of non-linear features in detail. Lastly, to enhance the robustness of
the conclusions regarding the transferability of the modelling approach, future work includes
investigations on more systems with heterogeneous configurations such as different sizes and
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Figure 4: Simulation performance of the coupled fully data-driven dynamic model (I) for
RSE Lab and decoupled hybrid mixed model (II) for both case studies in the
heating mode

heat injection setups for thermal energy storages.
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