
ON THE VARIATION OPERATOR FOR THE
ORNSTEIN–UHLENBECK SEMIGROUP IN DIMENSION ONE

VALENTINA CASARINO, PAOLO CIATTI AND PETER SJÖGREN

Abstract. Consider the variation seminorm of the Ornstein–Uhlenbeck semi-
group Ht in dimension one, taken with respect to t. We show that this seminorm
defines an operator of weak type (1, 1) for the relevant Gaussian measure. The
analogous Lp estimates for 1 < p <∞ were already known.

1. Introduction

In order to measure the fluctuations of a family of linear bounded operators At :
Lp(X)→ Lp(X), where t > 0 and X is a measure space, it may be useful to consider
quantities involving many differences Ttf(·) − Tsf(·), with s, t > 0 and f ∈ Lp(X).
Among these quantities, variation and oscillation seminorms are probably the best
known. The corresponding variational inequalities, stating that the Lp-norm of the
variation or the oscillation of (Atf)t>0 is uniformly bounded by the Lp-norm of f ,
have attracted increasing interest in the last fifty years.

In fact, in 1976 D. Lépingle proved a first variational inequality for a family of
bounded martingales [19], also providing a weak type (1, 1) variant (see also [22]
for extensions and a different proof). Then V. F. Gaposhkin in [10, 11] considered
oscillational inequalities for standard ergodic averages. Some years later, in 1989,
J. Bourgain proved the pointwise convergence of ergodic averages along polynomial
orbits by replacing the classical estimates for the Hardy–Littlewood maximal function
by variational seminorm bounds [4]. Further results may be found in [15, 13].

After the seminal work by Bourgain, in light of the applications to pointwise
convergence phenomena, the study of variational inequalities spread in many different
contexts (for an updated survey, especially from the point of view of oscillation
estimates, we refer to [24]). The recent paper [23] deals with jump inequalities,
seen as endpoint results for variation inequalities. Focusing on the field of harmonic
analysis, we recall here the cases of the Hilbert transform [5], Fejér and Poisson
kernels [17], families of truncations of Gaussian Riesz transforms [12] and the heat
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and Poisson semigroups of the Laplacian and Hermite operator [9, 2]. Analogous
results have been obtained for semigroups associated with Fourier-Bessel expansions
[3], for spherical means or averages along curves (t, ta) in the plane [16] and for
differential and singular integral operators in some weighted Lebesgue spaces [20, 21].
Some results are also known for the Ornstein–Uhlenbeck semigroup; see below.

To define the variation seminorm v(ρ), let φ be a real- or complex-valued function
defined in an interval I. Then for 1 ≤ ρ <∞

‖φ‖v(ρ),I := sup

(
n∑
i=1

|φ(ti)− φ(ti−1)|ρ
)1/ρ

,

where the supremum is taken over all finite, increasing sequences (ti)
n
0 of points in I.

This is a seminorm which vanishes only for constant functions. We will often omit
indicating the interval I. The space V (ρ, I) consists of those functions φ in I for
which ‖φ‖v(ρ),I <∞. In this paper we will only consider the variation of continuous
functions φ(t).

We next introduce the one-dimensional Ornstein-Uhlenbeck semigroup. LetR(x) =
x2/2 for x ∈ R, and define the measure dγ∞(u) = (2π)−1/2 exp(−R(u)) du in R. The
semigroup is then given by

Htf(x) =

∫
f(u)Kt(x, u) dγ∞(u), t > 0,

where f ∈ L1(γ∞) and the kernel Kt is

Kt(x, u) =
eR(x)

√
1− e−2t

exp

(
−1

2

(e−tu− x)2

1− e−2t

)
, t > 0, (x, u) ∈ R× R. (1.1)

The measure γ∞ is the unique probability measure which is invariant under the
semigroup.

We will consider the variation of the semigroup, i.e., the seminorm ‖Htf(x)‖v(ρ),R+

taken with respect to t and considered as an operator defined for f ∈ L1(γ∞).
When ρ > 2 it is known that this operator is bounded from Lp(γ∞) to Lp(γ∞)

for 1 < p <∞, even for the Ornstein–Uhlenbeck semigroup in any finite dimension.
This follows from [14], where a general symmetric diffusion semigroup is considered.
Another proof can be found in [18, Corollary 4.5]; it is verified in [1, page 31] that
this corollary can be applied in our setting.

The inspiration for the present work came from a comment in [1, page 31] saying
that no variational weak type (1, 1) bound is known for the Ornstein–Uhlenbeck
semigroup. We will prove the following one-dimensional result.

Theorem 1.1. For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖Htf(x)‖v(ρ),R+ , x ∈ R,

where the v(ρ) seminorm is taken in the variable t, is of weak type (1, 1) with respect
to the measure γ∞.
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In other words, the inequality

γ∞{x ∈ R : ‖Htf(x)‖v(ρ),R+ > α} ≤ C

α
‖f‖L1(γ∞), α > 0, (1.2)

holds for some C > 0 and all functions f ∈ L1(γ∞).

The structure of this paper is as follows. Section 2 contains some preliminaries,
mainly concerning the variation seminorm and the t derivative of Kt. In the following
sections, Theorem 1.1 will be obtained as a direct consequence of Propositions 3.1,
4.1 and 5.1. Of these, Proposition 3.1 deals with the variation only for t ≥ 1. For
these values of t, the estimate (1.2) is slightly strengthened. In Section 4, we split
the operator given by the variation for 0 < t ≤ 1 into a local and a global part. This
is done by means of a partition of the line into intervals where the density of γ∞ is
essentially constant. Then Proposition 4.1, dealing with the global part, is proved.

Proposition 5.1 is an estimate of the local part of the variation in 0 < t ≤ 1, and is
stated and proved in the long Section 5. The proof goes via Proposition 5.2, which
deals with one of the intervals of the partition at a time, and where γ∞ is replaced
by Lebesgue measure. Finally, Proposition 5.2 is seen to follow from estimates for
the variation of integrals of an L1 function over certain intervals, obtained as a
consequence of a known theorem about the variation of mean values.

Theorem 1.1 is proved in the one-dimensional case, and the handling of integrals
over intervals in Section 5 just mentioned seems hard to extend to higher dimensions,
because of geometrical obstructions. Only the results of Sections 3 and 4 extend
easily.

We point out that in Sections 3 and 4, we use arguments similar to some from the
authors’ papers [7] and [8]. Rather than invoking the results from there, we prefer
to give the proofs explicitly.

2. Preliminaries

By C <∞ and c > 0 we denote many different absolute constants, and X . Y , or
equivalently Y & X, means X ≤ CY . We write X ' Y if both X . Y and Y . X.

Seminorms of type ‖.‖v(ρ),I will always be taken in one of the variables t or τ .

We will let K̇t(x, u) = ∂Kt(x, u)/∂t.
It is not immediately obvious that the function x 7→ ‖Htf(x)‖v(ρ),R+ is measurable.

But Htf(x) is continuous in t for each x, as seen by dominated convergence. In the
definition of the v(ρ) seminorm, it is therefore enough to consider sequences of points
ti ∈ Q, thus only a countable family of sequences. The measurability follows.

We give some simple properties of the variation, and first observe that the semi-
norm ‖.‖v(ρ) is decreasing in ρ for 1 ≤ ρ <∞. This seminorm is also subadditive in
I, in the following sense. Take an inner point τ of I and set I+ = I ∩ [τ,+∞) and
I− = I ∩ (−∞, τ ]. Then for 1 ≤ ρ <∞ and any φ

‖φ‖v(ρ),I ≤ ‖φ‖v(ρ),I+ + ‖φ‖v(ρ),I− .
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Lemma 2.1. Let 1 ≤ ρ <∞.
(a) If φ ∈ C1(I) and φ′ ∈ L1(I), then φ ∈ V (ρ, I) and

‖φ‖v(ρ),I ≤
∫
I

|φ′(t)| dt.

(b) If φ is monotone and bounded in I, then φ ∈ V (ρ, I) and

‖φ‖v(ρ),I ≤ 2 sup
I
|φ|.

Both parts here are easy for ρ = 1 and then follow for all ρ.
The variation of products can be estimated as follows.

Lemma 2.2. Let φ and ψ be bounded functions defined in the interval I. Then for
any 1 ≤ ρ <∞

‖φψ‖v(ρ) ≤ ‖φ‖∞‖ψ‖v(ρ) + ‖φ‖v(ρ)‖ψ‖∞.

To prove this, it is enough to write for an increasing sequence (ti) in I

φ(ti)ψ(ti)− φ(ti−1)ψ(ti−1) = φ(ti)(ψ(ti)− ψ(ti−1)) + (φ(ti)− φ(ti−1))ψ(ti−1),

and then take the `ρ norm.

We next make some preparations for the proof of Theorem 1.1.
The following estimate of the variation seminorm of Htf(x) will be useful. Let the

interval I be either (0, 1] or [1,∞). From Lemma 2.1(a), we conclude that

‖Htf(x)‖v(ρ),I ≤
∫
I

∣∣∣∣ ∂∂t
∫
Kt(x, u)f(u) dγ∞(u)

∣∣∣∣ dt
=

∫
I

∣∣∣∣∫ K̇t(x, u)f(u) dγ∞(u)

∣∣∣∣ dt
≤
∫ ∫

I

∣∣K̇t(x, u)
∣∣ dt |f(u)| dγ∞(u). (2.1)

To justify moving the differentiation inside the integral in the second step here, we
refer to [8, Lemma 5.3].

We compute and estimate K̇t(x, u).

Lemma 2.3. For all (x, u) ∈ Rn × Rn and t > 0, we have

K̇t(x, u) =Kt(x, u)

(
− e−2t

1− e−2t
+
e−2t(e−tu− x)2

(1− e−2t)2
+
e−tu(e−tu− x)

1− e−2t

)
. (2.2)

Moreover, for t ≥ 1 one has∣∣K̇t(x, u)
∣∣ . eR(x) exp

(
− c

(
e−t u− x

)2 )(
e−t |u|+ e−2t

)
. (2.3)

Proof. We omit the proof of (2.2). When t ≥ 1, (2.2) implies that∣∣K̇t(x, u)
∣∣ . Kt(x, u)

(
|e−t u− x| e−t |u|+ e−2t (e−t u− x)2 + e−2t

)
. (2.4)

For t ≥ 1 (1.1) shows that Kt . eR(x) exp
(
− c (e−t u− x)

2 )
. Changing the value of

c here, we may neglect the factors e−t u− x in (2.4) and obtain (2.3). �
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3. The case of large t

In this section we consider the variation of Htf(x) only for 1 ≤ t <∞.

Proposition 3.1. For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖Htf(x)‖v(ρ),[1,+∞), x ∈ R,
is of weak type (1, 1) with respect to the measure γ∞. In fact, one has the following
stronger result: If ρ > 2 and ‖f‖L1(γ∞) = 1, then

γ∞
{
x ∈ R : ‖Htf(x)‖v(ρ),[1,∞) > α

}
.

1

α
√

logα
, α > 2. (3.1)

Notice that, when t is large, the estimate (1.2) is enhanced by a logarithmic factor.
In [6] and [7], an analogous phenomenon was already observed both for the Ornstein–
Uhlenbeck maximal operator and for the Gaussian Riesz transform.

Proof. Let f be normalized in L1(γ∞). We integrate (2.3), getting∫ ∞
1

∣∣K̇t(x, u)
∣∣ dt . eR(x)

∫ ∞
1

exp
(
− c

(
e−t u− x

)2 )(
e−t |u|+ e−2t

)
dt.

In the last parenthesis in the second integrand here, we consider first only the term
e−t |u| and make the change of variable e−t u−x = y, separately for u > 0 and u < 0.
As a result, ∫ ∞

1

exp
(
−c(e−t u− x)2

)
e−t |u| dt ≤

∫
R

exp(−cy2) dy ' 1.

Taking also the term e−2t in the integral above into account, we conclude that∫ ∞
1

∣∣K̇t(x, u)
∣∣ dt . eR(x).

Now (2.1) leads to

‖Htf(x)‖v(ρ),[1,∞) . eR(x).

It is easily seen that

γ∞
{
x : eR(x) > β

}
.

1

β
√

log β
, β > 2.

From this (3.1) follows, and since (1.2) is trivial for α ≤ 2, Proposition 3.1 is proved.
�

4. The global case with small t

We first split the operator Ht in a local and a global part, in a way adapted to
γ∞. Let η ≥ 0 be a smooth function in R+ which is 1 in (0, 1/2] and 0 in [1,∞).
The local part of the semigroup is defined by

H loc
t f(x) =

∫
f(u)Kt(x, u) η((1 + |x|)|x− u|) dγ∞(u).
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The global part Hglob
t = Ht−H loc

t is given by a similar expression, with η(.) replaced
by 1− η(.).

Proposition 4.1. For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖Hglob
t f(x)‖v(ρ),(0,1], x ∈ R,

is of weak type (1, 1) with respect to the measure γ∞.

Proof. We first give an estimate of the number of zeros of the function t 7→ K̇t(x, u)
for 0 < t < 1. From (2.2) we see that we can write

K̇t(x, u) = Kt(x, u)
Px,u(e

−t)

(1− e−2t)2
,

where Px,u is a polynomial of degree at most 4, with coefficients depending on x

and u. Thus K̇t(x, u) can have at most four zeros in (0, 1). Denote these zeros by
t1, . . . , tN−1; the ti and also N will depend on (x, u), and N ≤ 5. Set also t0 = 0 and
tN = 1. Then∫ 1

0

|K̇t(x, u)| dt =
N∑
1

∣∣∣∣∫ ti

ti−1

K̇t(x, u) dt

∣∣∣∣ ≤ 10 sup
(0,1]

Kt(x, u).

Since the computation (2.1) remains valid with an extra factor 1−η((1+|x|)|x−u|),
we conclude

‖Hglob
t f(x)‖v(ρ),(0,1] .

∫
|f(u)| sup

(0,1]

Kt(x, u) (1− η((1 + |x|)|x− u|)) dγ∞(u) (4.1)

We claim that for 0 < t ≤ 1 and all (x, u)

sup
(0,1]

Kt(x, u) (1− η((1 + |x|)|x− u|)) . eR(x) (1 + |x|). (4.2)

If 1−η((1+ |x|)|x−u|) 6= 0, we have |x−u| > 1/(2(1+ |x|)) and thus for 0 < t ≤ 1
also

(1 + |x|)−1 < 2|x− u| ≤ 2|x− et x|+ 2|et x− u| = 2(et − 1)|x|+ 2et|x− e−tu|
≤ 2et(1 + |x|) + 2e|x− e−tu|.

Now, if t(1 + |x|)2 < 1/(4e) we get a bootstrap implying

(1 + |x|)−1 < 4e|x− e−tu|.
Then we see from (1.1) that

e−R(x)Kt(x, u) ' t−1/2 exp

(
−1

2

(e−tu− x)2

t

)
≤ t−1/2 exp

(
−1

2

1

16e2t(1 + |x|)2

)
. 1 + |x|,

and (4.2) follows. On the other hand, if t(1 + |x|)2 ≥ 1/(4e), (4.2) also follows, since
then t−1/2 . 1 + |x|.
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Combining now (4.1) and (4.2), we get

‖Hglob
t f(x)‖v(ρ),(0,1] . eR(x) (1 + |x|) ‖f‖L1(γ∞).

This ends the proof of Proposition 4.1, because

γ∞
{
x : eR(x) (1 + |x|) > β

}
.

1

β
, β > 0.

�

5. The local case with small t

This section consists of the proof of the following result.

Proposition 5.1. For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖H loc
t f(x)‖v(ρ),(0,1], x ∈ Rn,

is of weak type (1, 1) with respect to the measure γ∞.

Splitting of the line into local intervals.

The localization means that the value H loc
t f(x) depends only on the restriction of

f to the interval {u : |u− x| ≤ 1/(1 + |x|)}, and we will split the line into intervals
of similar type. Choose an increasing sequence (xj)

∞
0 with x0 = 0 such that for

j = 0, 1, . . .

xj+1 −
1

1 + xj+1

= xj +
1

1 + xj
.

This recursion formula determines the sequence uniquely. We have xj+1−xj < 2 for
all j ≥ 0, so that xj ≤ 2j. Thus xj+1 − xj & 1/j and xj → +∞ as j →∞. (In fact,
xj is close to 2

√
j − 1, as shown in the Appendix.) For j < 0 we let xj = −x|j|.

The intervals

Ij =

[
xj −

1

1 + |xj|
, xj +

1

1 + |xj|

]
, j ∈ Z,

are pairwise disjoint except for endpoints, and they cover R. If supp f ⊂ Ij, we claim
that the support of H loc

t f is contained in the interval

Ĩj =

[
xj −

4

1 + |xj|
, xj +

4

1 + |xj|

]
.

To verify this, let x ∈ suppH loc
t f . Then x has distance at most 1/(1 + |x|) from

some point in Ij, so that

|x− xj| ≤
1

1 + |x|
+

1

1 + |xj|
, (5.1)
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which implies

1 + |x| ≥ 1 + |xj| −
1

1 + |x|
− 1

1 + |xj|
≥ |xj| − 1 ≥ 1 + |xj|

3
,

the last inequality holding only if |xj| ≥ 2. But if |xj| < 2, one has the same estimate,
since then 1 + |x| ≥ 1 ≥ (1 + |xj|)/3. The claim now follows from (5.1).

We also observe that if supp f ⊂ Ij and j > 0, then suppH loc
t f ⊂ {x ≥ 0}. Indeed,

Ij ⊂ [1,∞) when j > 0, so if x ∈ suppH loc
t f we must have x ≥ 1− 1/(1 + |x|) ≥ 0.

The intervals Ĩj have bounded overlap. Therefore, it is enough to prove Theo-
rem 1.1 for functions f supported in Ij, with a bound that is uniform in j ∈ Z.

In each Ĩj, the density of γ∞ is essentially constant, since e−R(x) ' e−R(xj) for

x ∈ Ĩj, and this is uniform in j. Therefore, we can pass to Lebesgue measure in u
and in x. We replace f ∈ L1(γ∞), supported in Ij, by g(u) = f(u) e−R(u) ∈ L1(du),
with the same support. Instead of H loc

t , we can then consider the operator

Hloc
t g(x) =

1√
1− e−2t

∫
g(u) exp

(
−1

2

(e−tu− x)2

1− e−2t

)
η((1 + |x|)|x− u|) du,

where we deleted the essentially constant factor eR(x).
We conclude from the above that the following proposition implies Proposition 5.1.

Proposition 5.2. For ρ > 2 and each j ∈ Z, the operator that maps g ∈ L1(Ij) to

‖Hloc
t g(x)‖v(ρ),(0,1]

is bounded from L1(Ij) to L1,∞(Ĩj), where the intervals are endowed with the Lebesgue
measure. This is uniform in j.

Proof of Proposition 5.2.

For symmetry reasons, it is enough to consider only j ≥ 0 and only points x ∈ R+.
With j ≥ 0 fixed, we let g ∈ L1(Ij). The expression for Hloc

t g(x) will be rewritten
in terms of integrals of only f(u) over many intervals which depend on t. Here we
follow [5, proof of Lemma 2.4], writing

exp(−y2/2) = −
∫ ∞
y

de−s
2/2

ds
ds = −

∫ ∞
0

χy<s
de−s

2/2

ds
ds

and

η(y) = −
∫ ∞
y

dη(σ)

dσ
dσ = −

∫ 1

1/2

χy<σ
dη(σ)

dσ
dσ.

As a result,

Hloc
t f(x) =

∫ ∞
0

de−s
2/2

ds

∫ 1

1/2

dη(σ)

dσ
Rs,σ
t g(x) dσ ds, (5.2)

where

Rs,σ
t g(x) =

1√
1− e−2t

∫
g(u)χ|e−tu−x|/

√
1−e−2t<s χ(1+|x|)|x−u|<σ du. (5.3)
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Observe that it is not enough to prove that the v(ρ) seminorm of Rs,σ
t g(x), taken

with respect to t, defines an operator of weak type (1,1) for each s and σ. This
is because L1,∞ is not a normed space. Instead we will estimate the variation of
Rs,σ
t g(x) for all s and σ in terms of one operator of weak type (1,1) (actually a small

number of such operators and actually with a factor s+1, which is integrable against
de−s

2/2/ds).
A few times below, we will use the simple inequalities

y ≤ ey − 1 ≤ 4y for 0 ≤ y ≤ 2. (5.4)

The second inequality holds because the function (ey − 1)/y is increasing for these
y, as seen from the power series.

In the sequel, we fix an x ∈ Ĩj ∩ R+ and let s > 0 and 1/2 < σ < 1, but we
temporarily allow all t > 0. We will soon introduce many quantities which will
depend on x, s, t and sometimes σ; in order not to make the notation too heavy, we
will systematically omit indicating the dependence on x.

Since the inequality |e−tu − x|/
√

1− e−2t < s can be rewritten as |u − etx| <
s
√
e2t − 1, the integration in (5.3) is taken over the interval

Jt(s, σ) =

{
u ∈ R : |u− etx| < s

√
e2t − 1 and |u− x| < σ

1 + x

}
.

Observe that Jt(s, σ) is nonempty precisely when

s
√
e2t − 1 +

σ

1 + x
> etx− x, (5.5)

or equivalently Qs(t) < σ/(1 + x), where

Qs(t) = x(et − 1)− s
√
e2t − 1 .

An instance of this function is plotted in Figure 1.

t̃(s)
σ

1+x

t1(s, σ)

t0(s) t

Qs(t)

Figure 1. Graph of Qs(t) with x = 2, s = 1. Here σ = 3/4.
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Since Q′s(t) = xet − se2t/
√
e2t − 1, one finds by squaring each of these two terms

that Q′s(t) > 0 if and only if x > s and t > t̃(s), where t̃(s) > 0 is determined by

e2t̃(s) = x2/(x2 − s2). If x ≤ s, we set t̃(s) = +∞. It follows that Qs(t) is strictly{
decreasing in 0 < t < t̃(s)

increasing in t̃(s) < t < +∞. (5.6)

Further, Qs(0) = 0, and if x > s, then Qs(t) → +∞ as t → +∞. We conclude
that there exists a t1(s, σ) ∈ (0,+∞] such that

Jt(s, σ) 6= ∅ ⇔ Qs(t) < σ/(1 + x) ⇔ 0 < t < t1(s, σ).

Moreover, t1(s, σ) < +∞ if and only if x > s.
For later use, we make a similar observation regarding the inequality Qs(t) < 0.

There exists a t0(s) ∈
(
t̃(s), t1(s, σ)

)
∪ {+∞}, finite if and only if x > s, such that

Qs(t) < 0 ⇔ 0 < t < t0(s). (5.7)

(Actually, t0(s) is given by et0(s) = x2+s2

x2−s2 if x > s.)
We let

T = T (s, σ) := 1 ∧ t1(s, σ) = sup{t ∈ (0, 1] : Qs(t) < σ/(1 + x)}.
Then T (s, σ) ∈ (0, 1], and from now on we consider only 0 < t ≤ 1.

Notice that T (s, σ) < 1 if and only if Qs(1) > σ/(1 + x). Further,

{t ∈ (0, 1] : Jt(s, σ) 6= ∅} =

{
(0, T (s, σ)) if Qs(1) ≥ σ/(1 + x)
(0, T (s, σ)] = (0, 1] otherwise.

In the first case here, JT (s,σ)(s, σ) = ∅ and Rs,σ
T (s,σ)g(x) = 0. We observe that

Rs,σ
t g(x) is in all cases defined and continuous as a function of t for 0 < t ≤ T (s, σ).
Next, we deduce a bound for T (s, σ). Since T (s, σ) ≤ t1(s, σ), any t < T (s, σ)

satisfies (5.5). Using first (5.4) and then (5.5) multiplied by x together with (5.4),
and finally the inequality between the geometric and arithmetic means, we get

x2 t ≤ x2 (et − 1) < sx
√

8t+ σ
x

1 + x
≤ x2t

2
+ 4s2 + 1.

Hence,
x2 T (s, σ) ≤ 8(s2 + 1). (5.8)

When Jt(s, σ) is nonempty, we write its endpoints as

Jt(s, σ) = (k−t (s, σ), k+t (s, σ)),

and they are

k+t (s, σ) =
(
xet + s

√
e2t − 1

)
∧
(
x+

σ

1 + x

)
and

k−t (s, σ) =
(
xet − s

√
e2t − 1

)
∨
(
x− σ

1 + x

)
.

From the last expression, it follows that

k−t (s, σ) < x ⇔ Qs(t) < 0 ⇔ t < t0(s); (5.9)
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see (5.7).

The next step in the proof of Proposition 5.2 will be to apply the following theorem,
obtained in the discrete setting in [13]. It can easily be transferred to the setting
of R, see [5, proof of Lemma 2.1]. Define the one-sided mean values of a function
φ ∈ L1(R) by

M+
τ φ(x) =

1

τ

∫ x+τ

x

φ(u) du, x ∈ R, τ > 0,

and M−
τ φ(x) similarly using the interval (x− τ, x).

Theorem 5.3. ([13, Theorem 3.6]) For 2 < ρ < ∞, the operator that maps f ∈
L1(R) to the function

‖M+
τ φ(x)‖v(ρ),R+ , x ∈ R,

is of weak type (1,1) with respect to Lebesgue measure in R. Here the variation is
taken in the variable τ .

This clearly holds also with M+
τ replaced by M−

τ .
Thus we need to rewrite Rs,σ

t g(x) = (1− e−2t)−1/2
∫
Jt(s,σ)

g(u) du in terms of mean

values of g in intervals with one endpoint at x.
With 0 < t ≤ T (s, σ), we define J+

t (s, σ) = (x, k+t (s, σ)), which is an interval of
length

|J+
t (s, σ)| = k+t (s, σ)− x =

(
(et − 1)x+ s

√
e2t − 1

)
∧ σ

1 + x
. (5.10)

We further define J−t (s, σ) = (k−t (s, σ), x), considered as an oriented interval in the
sense that if x < k−t (s, σ), an integral over J−t (s, σ) is interpreted as minus the
integral over (x, k−t (s, σ)). Its length is

|J−t (s, σ)| = |k−t (s, σ)− x| (5.11)

=
∣∣∣x(et − 1)− s

√
e2t − 1

∣∣∣ ∧ σ

1 + x
= |Qs(t)| ∧

σ

1 + x
,

as follows from the expression for k−t (s, σ) if one separates the cases when the equiv-
alent statements of (5.9) are true or false.

We now have for any 0 < t ≤ T (s, σ)

Rs,σ
t g(x) =

1√
1− e−2t

∫
J+
t (s,σ)

g(u) du+
1√

1− e−2t

∫
J−t (s,σ)

g(u) du

=
|J+
t (s, σ)|√
1− e−2t

M+

|J+
t (s,σ)| g(x)± |J

−
t (s, σ)|√
1− e−2t

M∓
|J−t (s,σ)| g(x), (5.12)

where one should read the upper signs in ± and ∓ if k−t (s, σ) < x and otherwise the
lower signs. Notice that the two terms here cancel for t = T (s, σ) if JT (s,σ)(s, σ) = ∅,
since then Qs(T (s, σ)) = σ/(1 + x) and so k+t (s, σ) = k−t (s, σ) = x+ σ/(1 + x).

We will next consider the variation in 0 < t ≤ T (s, σ) of the two mean values in
(5.12), and start with M+

|J+
t (s,σ)| g(x). Since |J+

t (s, σ)| is a nondecreasing, continuous

function of t in this interval, we can reparametrize M+

|J+
t (s,σ)| g(x), 0 < t ≤ T (s, σ),
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as M+
τ g(x) with 0 < τ ≤ τ0 for some τ0 = τ0(s, σ). This reparametrization does not

change the variation, so that

‖M+

|J+
t (s,σ)| g(x)‖v(ρ),(0,T ] = ‖M+

τ g(x)‖v(ρ),(0,τ0]

for each s and σ, with the variations taken with respect to t and τ , respectively.
Extending the range of τ here, we conclude that

‖M+

|J+
t (s,σ)| g(x)‖v(ρ),(0,T ] ≤ ‖M+

τ g(x)‖v(ρ),R+ . (5.13)

The right-hand side here is independent of s and σ, and Theorem 5.3 applies to it.
To deal with M∓

|J−t (s,σ)| g(x), we first consider the case when t0(s) < T (s, σ). At

the point t = t0(s), the difference k−t (s, σ) − x changes sign, and |J−t0(s)(s, σ)| = 0.

Observe that if x is a Lebesgue point for g, then M+

|J−t (s,σ)| g(x) tends to g(x) as

t ↓ t0(s) and similarly for M−
|J−t (s,σ)| g(x) as t ↑ t0(s). Then the second factor in the

last term of (5.12) will be continuous in t also at t = t0(s), if interpreted as g(x)
at this point. This last term, with the ± sign, is also continuous, because the first
factor is continuous and vanishes at t = t0(s). We will consider the variation of
M∓
|J−t (s,σ)| g(x) separately in the subintervals 0 < t ≤ t0(s) and t0(s) ≤ t ≤ T (s, σ).

To obtain subintervals where the length |J−t (s, σ)| is monotone, we invoke (5.6)
and split (0, t0(s)] further into

(
0, t̃(s)

]
and

(
t̃(s), t0(s)

]
. We can now reparametrize

as before in each of the three subintervals of (0, T (s, σ)] obtained. The only little
difference is that τ may now run in an interval that stays away from 0, but we can

still extend its range to R+. We conclude that for every Lebesgue point x ∈ Ĩj ∩R+,

thus for a.a. x ∈ Ĩj ∩ R+,

‖M∓
|J−t (s,σ)| g(x)‖v(ρ),(0,T ] ≤ 2 ‖M−

τ g(x)‖v(ρ),R+ + ‖M+
τ g(x)‖v(ρ),R+ ; (5.14)

here and below T = T (s, σ). This ends the case t0(s) < T (s, σ).
The remaining case t0(s) ≥ T (s, σ) is slightly easier. Then T (s, σ) = 1, and

k−t (s, σ) < x for t < 1. If t̃(s) < 1, we split (0, 1] into
(
0, t̃(s)

]
and

[
t̃(s), 1

]
;

otherwise no splitting is necessary. When t0(s) = 1, we again need to assume that x
is a Lebesgue point. It follows that (5.14) holds also in this case.

Since we are going to apply Lemma 2.2 to the products in (5.12), we observe that
the L∞ norms of the means in (5.12) are controlled by standard maximal operators
of g. More precisely,

‖M+

|J+
t (s,σ)| g(x)‖L∞ ≤M+g(x), (5.15)

‖M+

|J−t (s,σ)| g(x)‖L∞ ≤M+g(x), (5.16)

and

‖M−
|J−t (s,σ)| g(x)‖L∞ ≤M−g(x), (5.17)

where the L∞ norms are taken with respect to t, and

M±g(x) = sup
τ>0

M±
τ |g|(x).
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It remains to deal with the two factors in front of the mean values in (5.12). They
are

F± :=
|J±t (s, σ)|√

1− e−2t
=

∣∣x(et − 1)± s
√
e2t − 1

∣∣ ∧ (σ/(1 + x))
√

1− e−2t
(5.18)

=

∣∣∣∣ x(et − 1)√
1− e−2t

± set
∣∣∣∣ ∧ σ

(1 + x)
√

1− e−2t
, (5.19)

where we used (5.10) and (5.11).

Lemma 5.4. For ρ ≥ 1, s > 0 and σ ∈ (1/2, 1),

‖F±‖L∞(0,T ] . s+ 1 and ‖F±‖v(ρ),(0,T ] . s+ 1,

where the norm and the seminorm are taken in the variable t.

Proof. We have from (5.19)

|F±| ≤
xet(et − 1)√

e2t − 1
+ set ≤ 4xet t√

2t
+ es . x

√
t+ s . s+ 1,

where the second inequality comes from (5.4) and the last step uses (5.8). The first
inequality of the lemma is verified.

For the second inequality, we will apply Lemma 2.1(b). The factors F± are not
always monotone in t, but we will split the interval (0, T (s, σ)] into subintervals
where they are monotone. The splitting may depend on s, σ and x, but the number
of subintervals will be no larger than C. This will be done in several steps.

To begin with, we consider only F−. We split (0, T (s, σ)] at t = t̃(s) if t̃(s) <
T (s, σ), and also at t = t0(s) if t0(s) < T (s, σ).

The splitting then continues, and now we take both F+ and F− into account. The
next split depends on which of the quantities

∣∣x(et − 1)± s
√
e2t − 1

∣∣ and σ/(1 + x),

occurring in the minimum in (5.18), is the smaller. Since
∣∣x(et − 1)± s

√
e2t − 1

∣∣
is monotone in each subinterval obtained so far, this may give one split for F+ and
another for F−. Next, observe that in the subintervals where σ/(1+x) is the smaller,
we see from (5.19) that F± = σ/

(
(1 + x)

√
1− e−2t

)
, which is monotone. It only

remains to consider the case when
∣∣x(et − 1)± s

√
e2t − 1

∣∣ is the smaller quantity in
(5.18). Then (5.19) shows that F± = P±, where

P± =
x(et − 1)√

1− e−2t
± set.

The derivative of P± is seen to vanish precisely when

x
et − 2e−t + e−2t

(1− e−2t)3/2
= ∓set.

In this equation, we multiply by the denominator and square both sides. After
multiplication by a suitable power of et, the result will be a polynomial equation
in et, with only a bounded number of solutions. Thus we can split our subintervals
further, into intervals where P± is monotone.
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This ends the splitting, and Lemma 2.1(b) implies the second inequality of Lemma 5.4.
�

We can now finish the proof of Proposition 5.2. Applying Lemma 2.2 to the two
products in (5.12), we get

‖Rs,σ
t g(x)‖v(ρ),(0,T ]
≤ ‖F+‖L∞(0,T ]‖M+

|J+
t (s,σ)| g(x)‖v(ρ),(0,T ] + ‖F+‖v(ρ),(0,T ] ‖M+

|J+
t (s,σ)| g(x)‖L∞(0,T ]

+ ‖F−‖L∞(0,T ]

(
‖M+

|J−t (s,σ)| g(x)‖v(ρ),(0,T ] + ‖M−
|J−t (s,σ)| g(x)‖v(ρ),(0,T ]

)
+ ‖F−‖v(ρ),(0,T ]

(
‖M+

|J−t (s,σ)| g(x)‖L∞(0,T ] + ‖M−
|J−t (s,σ)| g(x)‖L∞(0,T ]

)
.

Using Lemma 5.4 together with (5.13), (5.15), (5.14), and (5.17), we conclude that
for a.a. x

‖Rs,σ
t g(x)‖v(ρ),(0,T ]

. (1 + s)
(
‖M+

τ g(x)‖v(ρ),R+ + ‖M−
τ g(x)‖v(ρ),R+ +M+g(x) +M−g(x)

)
.

The four terms to the right here are independent of s and σ, and we can insert this
estimate in (5.2) and integrate with respect to s and σ. The result will be

‖Hloc
t g(x)‖v(ρ),(0,1] . ‖M+

τ g(x)‖v(ρ),R+ + ‖M−
τ g(x)‖v(ρ),R+ +M+g(x) +M−g(x)

for a.a. x ∈ Ĩj ∩ R+. In view of Theorem 5.3, this shows that the operator given by
‖Hloc

t g(x)‖v(ρ),(0,1] is of weak type (1,1) as stated in Proposition 5.2. This ends the
proofs of Proposition 5.2 and also that of Proposition 5.1.

APPENDIX. Asymptotics of xj

Claim:

xj = 2
√
j − 1 +O

(
1√
j

)
, j → +∞.

To prove this, let zj = 1 + xj for j = 1, 2, . . . . The recursion formula says that
zj+1 − zj = 1/zj + 1/zj+1. We have

z2j+1 − z2j = (zj+1 + zj)

(
1

zj
+

1

zj+1

)
= 2 +

zj+1

zj
+

zj
zj+1

> 2. (5.20)

Writing z2j as a telescoping sum, we obtain

z2j = z20 +

j−1∑
0

(
z2ν+1 − z2ν

)
≥ 1 + 2j,

and so zj+1 − zj ≤ 2/
√

1 + 2j. We continue with the sum in (5.20), getting
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z2j+1 − z2j = 2 +
zj+1 − zj

zj
+ 1 +

zj − zj+1

zj+1

+ 1 = 4 + (zj+1 − zj)
(

1

zj
− 1

zj+1

)
= 4 +

(zj+1 − zj)2

zjzj+1

= 4 +O

(
1

(1 + 2j)2

)
.

Summing as above, we find

z2j = 4j +O(1),

and so zj = 2
√
j +O(1/

√
j). This proves the claim.
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Email address: peters@chalmers.se


	1. Introduction
	2. Preliminaries
	3. The case of large t
	4. The global case with small t
	5. The local case with small t
	Splitting of the line into local intervals
	Proof of Proposition 5.2

	References

