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Abstract
In this paper, we reconstruct the He's iterative scheme in order to show that the He's variational iteration

method can be handled without using the correction functional and restricted variations. We apply the
Laplace transform to determine the general Lagrange multiplier without invoking variational theory. We
conclude with an interesting comparison between the two methods of successive approximations and the
He's variational iteration.
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1 Introduction

In the last few decades, considerable work has
been devoted to develop new methods to
analytically/numerically solve linear and/or
nonlinear differential and/or integral equations.
There has been a great amount of research done
to address the issues of nonlinearity and
singularity phenomena that arise in many
scientific and engineering problems.

The variational iteration method proposed by
Ji-Huan He [1] is one of the methods which have
received mach attention. It is based on
modification of the general Lagrange multiplier
[13], restricted variations and correction
functional which has found a wide range
application for the solution of nonlinear ordinary
and partial differential equations. In fact, this
method can be considered as an interesting
application of Banach's Fixed-point Theorem in
Banach spaces or Contraction Mapping Theorem
in metric spaces which can give rise to solution
which converges rapidly in a large class of
nonlinear problems.

The variational iteration method was
successfully applied to autonomous ordinary
differential equations [3], to nonlinear
polycrystalline solids [6], to the construction of
solitary solutions and compaction-like solutions

for nonlinear dispersive equations [4], to
Schrödinger-KdV, generalized KdV and shallow
water equations [8], to Burgers and coupled
Burgers equations [9], to the linear Helmholtz
partial differential equation [10], to the
nonlinear fractional differential equations with
Caputo differential derivative [11], to the
nonlinear differential-difference equations [12]
among other places. Reader is referred to [14] for
further applications of the method.

Recently, Ramos showed that the He's
variational iteration method can be derived by
means of adjoint operators, Green's function,
integration by parts and the method of weighted
residuals without making any recourse
whatsoever to Lagrange multipliers, correction
functionals and restricted variations [7].
Similarly, in this paper a new approach is
proposed to construct the He's iterative scheme
by the use of Laplace transform without making
any recourse whatsoever to Lagrange multipliers,
correction functionals and restricted variations.
Using this technique, the construction of
Lagrange multiplier reduces to a simple inverse
Laplace transform instead of solving the Euler-
Lagrange equation. We also show that the claim
"the variational iteration method is nothing else
by the Picard-Lindelöf theory for initial-value
problems in ordinär)' differential equations" [7],
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is incorrect except in special cases. Indeed, we
show that such a claim is correct just for first-
order ordinary differential equations and a few
higher order ordinary differential equations.

The paper is organized as follows. In Section
2, we elaborate our idea in construction of
Lagrange multiplier by the use' of Laplace
transform. We then illustrate the new approach
by a general example in Section 3. Section 4 is
devoted to comparison of the method of
successive approximations and the He's
variational iteration method through an
exhaustive argument which investigate their
coincidence in a variety of ordinary differential
equations. In Section 5 some examples are
presented in order to compare the elapsed time of
both methods when they give rise to the same
results. The paper is concluded with a summary
in the last section.

2 Another approach to the He's
variational iteration method

Consider the following nonlinear ordinary
differential equation·

L[u(t)]+N[u(ty\ = h(t), t>0 (1)
where u(t) is an unknown function, L is a
linear differential operator, N is a nonlinear
operator and h(t) is a given function.
Following [5], the basic character of the He's
variational iteration method is to construct a
correction functional for (1), which reads

where Λ is a general Lagrange multiplier
which can be identified optimally via variational
theory, un is the n th approximate solution
and un denotes a restricted variation, i.e.,
Sun = 0. Therefore, for determining the unknown
function λ , an Euler-Lagrange's differential
equation with natural boundary conditions must
be solved.

In the following we intend to establish the He's
iterative scheme in a different manner and to
determine the unknown function λ without
requiring any correction functionals, Lagrange
multipliers or restricted variations.

Assume that λ(ί} is an unknown function
which will be determined later and multiply (1)
byA(O), integrate it and then add u(t) to both
sides to obtain

, (2)
this can be solved iteratively as

Theorem 1 Let

. (3)
The iterative scheme (3) is exactly the same as
that of the He's variational iteration method [1-
12] For determining the unknown function λ(ί) ,
we take the Laplace transform of (3), thereby
obtaining

(4)

c0(0«(0,
where for i = Q,...,m the function c((/) is
analytic at/ = 0. Then we have

£[L[u}] = F(s)£[u] + G(s) + H(s),

where F(s) and H(s) are polynomials of s of
degree m and m -1', respectively.
Proof. Since for / = 0,...,/w the function c,(f)
is analytic at / = 0 we can write

and therefore

ι=0 /=0
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ι=0 7=0

this can be rewritten as

dsj

But this is equivalent to

1=0 7=0

m oo ι

1=0 7=0 *=l

Therefore we obtain

where

d'(s'l\u\)
dsj

djs'-k

dsj

Remark 1. Similar result is established when
for any i = 0, . . . , m the function c, (/) is analytic
atf = /0.
Therefore, if l[u(/)l satisfies the hypotheses of
theorem 1, we have

Hence (4) can be rewritten as

For simplicity, we find λ(ί} such that
(5)

(6)
this yields

"W (7)
According to the proof of theorem 1, F(s) is a
polynomial of s of degree m with real
coefficients and therefore it can be decomposed
into the prime factors of degree either one or

two. Consequently, by using a partial fraction
expansion onl/F(i), we can simply
implement the inverse Laplace transform of (5) ,
obtaining

(8)

where K is a linear operator defined as

Remark 2. In practice we have a variety of
choices for determining the · unknown
function λ . In other words, we are able to
choose just some parts of L[u(t)] which contain
the differential term with the highest order.

Remark 3. If (1) is of the form

"(M)(0 = f(t,u(t\u'(t\. . ..««"" / > 0,
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then (8) can be written as

m-l ft

i=0

(9)

and hence

F(s) = c2s2

(10)

3 A general example

To better illustrate our new approach, consider
the following nonlinear differential equation
which characterizes several physical
phenomena,

Table 1 λ(ί) for different values of c„, c,, c

where C0,...,cm e R . At first, we have

and then by using the Laplace transform we
obtain

where

(=0

Therefore λ(ί) determined as follows

0-1 -1

Σ
m ,
ι=0 ' .

For the simple case when m = 2 we have

C2

0

1
0

Γ

c,
1
0
1

0

co
0
0
1

ω2

λ (t)
-1

-/
-e-'

-sin t/ ω

Disregarding sign of c, -4c2c0 , (10) has
always a unique solution. Some special cases
are reported in Table 1 which are the same as
those have obtained by the He's variational
iteration method [1-12]. Therefore, we could
provide the He's variational iteration method
without invoking the Lagrange multiplier,
correction functionals or restricted variations.

4 A comparison of the method with the
successive approximations

In [7] it is claimed that a shown that the
variational iteration method is nothing else by
the Picard-Lindel f theory for initial-value
problems in ordinary differential equations and
Banach's fixed-point theory for initial-value
problems in partial differential equations, and
the convergence of these iterative procedures is
ensured provided that the resulting mapping is
Lipschitz continuous and contractive. ". The
purpose of this section is to show that such a
claim is correct just for the first-order ordinary
differential equations and a few higher order
ordinary differential equations.
Obviously, for the following initial-value
problem
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the He's iterative scheme and the iterative
scheme of successive approximations coincide
as

provided that v0(/) satisfies the initial
conditions. Now let us consider the following
initial-value problem

and then convert it to a system of first-order
differential equations as

where

-H
and then establish the
approximations for η > 0 as

successve

(0 =
(H)

, n 2 „
On the other hand, with regard to (9), the
corresponding He's iterative scheme can be
constructed as follows

-, n>0, (12)
provided that v0(/) satisfies the initial
conditions.

Theorem 2. The iterative scheme (12) coincides
with the iterative scheme (1 1) in the sense of

when «,„(/) = v0(0, w2>0(0 = v^(/) and / is
only a function of / and u.
Proof. The proof follows by induction. For the
case when n = 1 , at first we can write

Therefore, we have

"2,2(0="2.,(0
=v,'(0

and deduce that

M, 3(0 = a + |«2>2(r)</r =a +

Now, suppose that the assertion holds for an
ordern . By the induction hypothesis, we have

from which we immediately obtain

D

Theorem 3. The iterative scheme (12) coincides
with the iterative scheme (11) in the sense of
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v„(0 = ",,„.,('),

when M10(0 = v0(0, "2,o(0 = ̂ (0, and / is
only a function of / and u .
Proof. The proof follows by induction and is
similar to the proof of Theorem 2. α
Corollary 1. Theorems 2 and 3 are not fulfilled
if f is a function of / , u and u .
Proof. We can write

Therefore, we have

which yields v,(/) = w, 2(t) , but

implies that
Furthermore, from

vj (/) Φ u22 (/) Φ ν'2 (/).

we have v,(/) Φ Μ, 3(/) Φ ν2(/). Moreover,

«2.3(0 = /?

implies that v'2(t) Φ u2 z(t) Φ v'3(t) and so on. ο
Now we consider the following initial-value
problem

(U"(f)=f(t,u(t ),«'(/),

and convert it to a system of first-order
differential equations as

where

a w,(0 :=«(>)
«2(/):=M'(O
«3('):=«"(0

«2(0
«3(0

and then establish the
approximations for η > 0 as

successive

(13)

On the other hand, with regard to (9), the
corresponding He's iterative scheme can be
constructed as follows

(14)
provided that v0(/) satisfies the initial
conditions.

Theorem 4. The iterative scheme (14) coincides
with the iterative scheme (13) in the sense of

(') ="3.3„-2(') ="3>-,(0 ="3> (0,

for «>05 V v h e n

«l.o(0 = V0(0, «2,o(') = V;(0, «3.o(0 = V0"(0

and / is only a function of / and u .
Proof. The proof follows by induction and is
similar to the proof of Theorem 2. D
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Remark 4. Similar theorems can be established
when / is only a function of t and u' or / is
only a function of / and u* .
Corollary 2. Theorems 4 is not fulfilled if /
is a function of /, u and u' .
Proof. Similar to the proof of Corollary 1 we
have

K(0=«2.,(0

V,'(0 = "2.2(0 = "2.3(0,

ν'(0 = "3.,(0 = "3.2(0,

and

V2(0 = "2,5(0

V2*(0 = "3.4(0

«1.7
1/2.7(0

Vf(0*"3.3(0

and so on.
Remark 5 Similar corollaries can be established
when / is a function of /, u and u* or f is a
function of t, u' and «" or / is a function of.
t,u,u and u'.
Remark 6 Generalization these results, it can be
claimed that the He's iterative scheme coincide
with the iterative scheme of successive

approximations in some senses just for some
types of the m-th order ordinary differential
equations but not for all of them. Hence, we can
deal with the convergence of the He's iterative
scheme with the aid of the Generalized Picard-
Lindel f Theorem in some (but not all) cases.

5. Symbolic computations

In this section we intend to compare the He's
iterative scheme and .the iterative scheme of
successive approximations for the case when
both of them in some senses give rise to the
same results.
The results of some tests are summarized in
Table 2 in which μ returns the number of
seconds of elapsed time of second iteration of
the He's iterative scheme while ν is the number
of seconds of elapsed time of fourth iteration of
the iterative scheme of successive
approximations. For all of the model problems,
initial-condition is considered as u(0) = a and
w'(0) = 0 . Furthermore, we assume

and
u20(t) = -ao)sin(ot . We must point out that
both of the iterative schemes are tested under
the same environments and conditions.

Table 2. Ela >sed time of two iterative schemes for several model problems
model problem
u' + ku + eu2 = 0
u" + ku + eu3 = 0
u" + ku + eu2+du3=0

elapsed time
μ = \1ν = \Ί
μ = 29 ν Ξ 39
μ = 45 ν Ξ 107

9

model problem
Μ" + ku + a/2 = cos(/)
u" + ku + £M3 = cos(i)
u" + ku + £w2 + <5w3 = cos(/)

elapsed time
^==37^ = 75
μ = 94^ Ξ 194
μ = 362^ = 849

Remark 7. Results obtained in this section
imply that in cases which the He's iterative
scheme coincides with the iterative scheme of
successive approximations (in the senses posed
in the previous section), the He's iterative
scheme can often be faster than the other one.

6 Summary

The most important contribution of the paper is
based on two facts. The first one is that the
general Lagrange multiplier can be determined
by the use of Laplace transform and the second
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is that the method of successive approximations
and the variational iteration method are two
completely different methods which can
produce the same iterations in some senses just
for some types of ordinary differential
equations. We point out that the method of
successive approximations can be used to solve
the explicit ordinary differential equations of the
form M(m)(/) = /(fXO,...ym~1)(0) while
the He's variational iteration method can be
applied to solve not only the explicit but also the
implicit ordinary differential equations.
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