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Abstract—Isolated multi-port converters show the merits of
hosting several sources and loads with different voltage and
power ratings, allowing power routing among multiple ports
with high power density. However, many degrees of freedom
are available for modulation, and exploiting them for optimal
converter operation is challenging. This paper proposes an
artificial neural network (ANN) approach that minimizes the rms
ports currents of a triple active bridge (TAB) converter for the
entire range of operation. The ANN is trained to determine the
optimum duty-cycles for total true rms current minimization. The
effectiveness of the ANN implementation is shown by considering
an experimental TAB converter prototype rated 5 kW.

Index Terms—Artificial neural network (ANN), multi-port
converter, triple active bridge (TAB).

I. INTRODUCTION

Isolated multi-port converters (IMPCs) present advanta-
geous features for accommodating loads or energy resources
operating at different voltage and power levels while providing
galvanic isolation between the ports and high power density
[1], [2]. For these merits, applications of IMPCs can be found,
for example, in electrified vehicles [3], electrified aircrafts [4],
[5], and in nanogrids [6] and microgrids [7], [8]. A common
IMPC topology is the triple active bridge (TAB) converter,
shown in Fig. 1(a) and introduced in [9], [10]. The TAB
mainly consists of three full bridges connected through a three-
winding high-frequency transformer.

To control the power flow among the ports, phase shift
modulation (PSM), shown in Fig. 1(b), is commonly applied,
like for the case of dual active bridge (DAB) converters [11].
With PSM, the three bridges generate ac voltages v1, v2, v3
with duty-cycle fixed at 50% and variable phase shifts ϕ2 and
ϕ3. By controlling the phase-shifts magnitude and sign, it is
possible to regulate the power flow intensity and direction,
respectively [9]. PSM shows the advantage of simplicity,
besides low switching and conduction losses at moderate
to high load conditions, while operating with dc voltages
such that V1 : V2 : V3 = n1 : n2 : n3. Meanwhile,
switching and conduction losses increase dramatically at light-
load conditions or with significant voltage mismatches among
the transformer terminals.

Penta phase-shift modulation schemes, shown in Fig. 1(c),
have been introduced to overcome these drawbacks [12]. By
these approaches, the modulation exploits not only the phase
shifts ϕ2 and ϕ3 but also the duty-cycles D1, D2, D3. The in-
creased number of modulation variables significantly increases
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Fig. 1: (a) Triple active bridge converter; (b) phase-shift mod-
ulation; (c) penta phase-shift modulation. Modulation variable
ϕ2, ϕ3, D1, D2, D3 highlighted.

the complexity; controlling five modulation parameters gives
a total number of possible switching patterns in the order of
hundreds. Tackling and analyzing each switching pattern sepa-
rately to find the optimum operation, for example, in terms of
losses, is time-consuming or even not possible. The literature
reports different approaches pursuing efficiency optimization
of the converter utilizing penta phase-shift modulation [12]–
[19]. Based on the current literature, the most critical limits
that can be identified are the heavy mathematical analysis tools
and results needed for the modeling of the TAB behavior, the
inevitable mismatch among the obtained models and the actual
converter operation that impairs the results of off-line search
based on converters models, the use of large and complex
look-up tables, and the potentially long time, local-minima
issues, and inefficient transients related to on-line optimization
methods.

Potential improvements are aimed herein by the application
of artificial intelligence approaches. Considering the related
literature, in [20] an artificial neural network (ANN) model
has been built for an interleaved boost with coupled inductors
(IBCI) converter, showing its merits over a look-up table from
the point of view of memory usage. Such an advantage is
expected to be even more appreciable with the additional
degrees of freedom of a TAB. In [21] an ANN is used to



minimize the current stress for a DAB. The ANN is trained
using data collected from a PLECS simulation. No additional
applications of ANN for TAB modulation were found.

In this paper, an ANN approach is proposed for modeling
the best modulation parameters D1, D2, and D3 for a TAB
converter given the operating conditions in terms of operating
voltages and power flows. Optimality is measured in terms of
total rms current measured at transformer ports. The ANN is
trained off-line by exploiting the results from a systematic
search of the optimal modulation parameters. This search
is performed considering a simulation model that has been
calibrated to match the operation of the real experimental TAB
prototype.

The proposed approach details, implementation, and exper-
imental verification are discussed in the following.

II. PROPOSED APPROACH

The proposed approach consists in training an ANN to find
the minimum total true rms current defined as:

irms =

√√√√ 3∑
p=1

rp
(
irms
p

)2
= f(ϕ2, ϕ3, D1, D2, D3) (1)

where weights rp, p = 1, . . . , 3, are the equivalent path
resistances of the respective p-th port. Notably, the total
true rms current depends on five modulation parameters, as
mentioned in Sec. I.

Solving this complex non-convex function to find the mini-
mum total rms current is a challenging task. Herein, this com-
plexity is overcome by a data-driven approach, exploiting the
information collected from a simulation model to compute the
optimal TAB modulation parameters for rms current reduction.

The training process of the ANN is done in four steps,
discussed in the following sections:

1) simulation model validation and data-set collection, as
described in Sec. III;

2) definition of the best ANN structure, as described in
Sec. IV;

3) training of the ANN based on the collected data, as
described in Sec. V;

4) validating the obtained results on the experimental pro-
totype, as described in Sec. VI.

III. DATA COLLECTION FOR ANN TRAINING

PLECS simulations have been used to generate the data-set
used to train the ANN, as done in [21].

First, the simulation model has been calibrated and validated
to match the experimental prototype, considering the actual
transformer leakage inductance, the switching frequency, the
deadtime, etc. The matching process includes matching trans-
former rms current and current and voltage waveforms at
various test points. The rms current deviation between the two
models is below 10%.

Second, a systematic, brute-force search is run on the duty-
cycles D1, D2, D3, testing about 512 possible combinations
of duty-cycles for each power and voltage set-point. While
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Fig. 2: Example of MLP-NN with n inputs, q hidden layers p
neurons each and m outputs.

phase-shifts ϕ2 and ϕ3 are adjusted by employing two separate
linear regulators. The search finds duties with minimum total
true rms current, and it is repeated for about 15, 000 set-points
of different ports voltages and powers. The collected data-set
represents the brute-force search findings, with about 15, 000
points, which is then used to train the ANN, as described in
the next.

IV. ANN BASICS AND CHOSEN STRUCTURE

Among various kinds of ANNs used in the field of
power electronics [22], Multilayer Perceptron Neural Net-
works (MLP-NNs) are considered in this work. In this type of
network, the neurons are divided into layers that are typically
fully connected. They are also called feed-forward ANNs due
to the fact that the information only travels forward in the
network. When the relationship between inputs and outputs
is a non-linear static function, MLP-NN is the most suitable
architecture of ANN to be used [23], with an appropriate
number of hidden layers and neurons.

The basic elements in a MLP-NN are [24] i) number of
layers, ii) number of neurons in each layer, iii) activation
function of each layer, iv) algorithm used during training
process.

In MLP-NNs there are at least three layers: the input, the
output and the shallow layer. The internal layers between input
and output are denoted as hidden layers. Commonly, the higher
the problem’s complexity (i.e., the complexity of the function
to be estimated) the higher the number of neurons and hidden
layers required. Unfortunately, it is not possible to theoretically
determine a-priori how many hidden layers or neurons are
needed for a given problem. To address this issue, a systematic
analysis is carried out herein for establishing the most suitable
ANN architecture.

Fig. 2 depicts a common configuration of MLP-NN, with n
inputs, q hidden layers with p neurons each, and m outputs.
The output of a neuron is defined as a linear combination of
the inputs and the resulting output is passed to a non-linear
function called activation function. The ability of an ANN
to be used for the analysis of non-linear problems is given
by the use of activation functions that are not linear. Among
different types of activation functions [25], in this work the



sigmoid activation function is used for the deep layers while
the ReLU one for the output layer.

A. Development of ANN
The development of an ANN aims to finding the hyper-

parameters. In machine learning, the hyperparameters are the
variables that determine the network structure (e.g., number of
layers and hidden units, activation function) and its training
procedure (e.g., learning rate). Hyperparameters are set before
training and if the performance, in terms of estimation error,
is insufficient they need to be adapted.

The development of an ANN is divided into three steps:
1) Preliminary operations: given the data-set, it is split

in training (≃ 70%), validation (≃ 15%) and test (≃
15%). Training data are used during the learning phase,
validation data are crucial to test the generalization
capability of the network during training process, and
the test data are used in the performance evaluation step.
To make the learning process more efficient, the data-set
is commonly normalized; in our case between 0 and 1.

2) Training: it is the most time-consuming process. The
backpropagation algorithm, to update network weights
and biases, is applied n-times, where n is the number of
epochs. The training ends when the loss function, in this
work the mean squared error (MSE), reaches a minimum
or when it is constant over a certain number of epochs.
The validation data-set is used to detect over/under-
fitting.

3) Performance evaluation: the test-set is evaluated, and the
obtained output is compared with the data-set output. If
the performances of the ANN, in terms of error, are not
sufficient, the ANN hyperparameters should be updated.

V. DEVELOPMENT OF ANN FOR POWER EFFICIENCY
OPTIMIZATION

Several deep learning frameworks and libraries are available
nowadays. Commonly used ones are, for example, Matlab
Deep Learning, TensorFlow, and PyTorch. Herein, the ANN
is developed on Keras TensorFlow 2.6 with Intel i9-12900KF
CPU at 3.19GHz and 32GB memory. With this setup, the
average training time is less then 20 s.

The ANN has four inputs V2, V3, P2, and P3 and three
outputs D1, D2 and D3.

Being not possible, as mentioned above, to determine a-
priori how many hidden layers or neurons are needed in
each layer, a systematic, brute-force approach is adopted. As
a design choice, a maximum number of layers qmax = 3,
a minimum and maximum number of neurons per layer
pmin = 5 and pmax = 35, respectively, were chosen.

The common hyperparameters used during the training
process are reported in Tab. I.

To choose the most suitable architecture, the metrics mean
absolute percentage error (MAPE), root mean square error
(RMSE), and mean absolute error (MAE) are considered:

MAPEi(%) =
100

K

K∑
k=1

|Dk,i − D̂k,i|
Dk,i

, (2)

TABLE I: Common hyperparameters used during the training
process.

Parameter Value

Optimizer Adam
Learning Rate 0.01
Loss Function MSE
Epochs 2000
Batch Size 256
Activation Function Sigmoid and ReLU

TABLE II: Best architecture results

Metric Value HL1 HL2 HL3

RMSE 0.017 34 33 32
MAPE 2.61 34 33 32
MAE 0.010 34 32 23

RMSEi =

√√√√ 1

K

K∑
k=1

(
Dk,i − D̂k,i

)2

, (3)

MAEi =
1

K

K∑
k=1

|Dk,i − D̂k,i|, (4)

where Dk,i is the estimated i-th duty-cycle, D̂k,i is the i-th
true duty-cycle, with i ∈ {1, 2, 3}, and K is the number of
samples.

An algorithm is used to find the most suitable architecture.
The number of neurons is varied between 5 and 35 for each
layer, but configurations with one or two hidden layers are
also considered. Since the initial weights of the network
are chosen randomly, the entire training process (i.e., data
splitting, training and compute errors) is repeated three times
in order to avoid convergence at local minimum points. The
results of each run, for the same configuration, are stored
inside a vector and only the average is returned.

The best results in terms of RMSE, MAPE and MAE
are shown in Tab. II. They were calculated using the test
data-set. Fig. 3 displays the obtained performance in terms of
MAPE, similar results are were achieved considering the other
metrics. Considering the relative flatness of the metrics for
the considered problem, the choice of the ANN architecture
is done based on a trade-off between its performance in terms
of errors and its complexity. The chosen ANN has 3 hidden
layers with 20, 20, and 15 neurons, respectively. It allows to
obtain a MAPE, on test data-set, of 2.85%, a RMSE of 0.019
and a MAE of 0.011 with a training time of around 15 s.

Two operating points are used to visualize the performances
of ANN. The voltages V2 and V3 are kept constant in both
the cases shown in Fig. 4, while in the first case the P3 is
fixed at 500W and in the second one P2 at the same rating.
In Fig. 4, the dotted lines are the data obtained from brute-
force analysis and used during the training process while, the
continuous lines are the fitting of the ANN.

To visualize the complexity of the problem being analyzed
and tackled with the ANN, Fig. 5 shows a three-dimensions
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HL2, in (a) with two hidden layers and in (b) with 10 neurons
on the third hidden layer.
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Fig. 4: Fitting of the ANN compared to brute-force analysis,
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surface of the three duty-cycles when voltage V2 and V3 are
kept constant.

VI. EXPERIMENTAL RESULTS

A. Laboratory Prototype

To verify the proposed ANN approach, the experimental
setup in Fig. 6 with a TAB converter prototype with parameters
listed in Tab. III and structure in Fig. 7 was built.

Port-1 of the converter is connected to a fixed dc power
supply at the rated voltage V1 =400V, while port-2 and port-
3 are connected to corresponding dc electronic loads. The
ANN model and the converter control and modulation are
implemented on an Imperix L.t.d. BoomBox controller driving
six Imperix PEB8032-A half-bridges.
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Fig. 6: Laboratory prototype of TAB.

In order to find the five modulation parameters for each set-
point, two phase-shifts ϕ2 and ϕ3 are adjusted by employing
two separate linear regulators followed by a decoupling matrix,
as in [12]. While the duty-cycles D1, D2, and D3 are generated
from the ANN. The generated duty-cycles correspond to
the optimum duty-cycles for the specific operating condition
considered. The ANN model is run at a rate of 10 kHz, that
is, 25% of the switching and control frequency.

B. Results and Discussion

Sixteen cases are tested with a wide range of transferred
power and a wide mismatch between the ports dc voltages,
showing the merits of the proposed ANN-based modulation
over the PSM. The test cases present the following voltage
levels V1 =400V, V2 =320V, and V3 =480V, with port-
2 power fixed at P2 =350W, and changing port-3 power in
range from P3 =200W, to P3 =3650W.

Fig. 8 shows the optimum duty-cycles found experimentally
for the sixteen test cases by the proposed ANN model as
compared to those found by the brute-force search using
simulation.



TABLE III: Experimental Prototype Parameters

Parameters Value

Nominal power at each port Prated kW 5

Switching frequency fS = 1/TS kHz 40

Rated dc voltages V1 = V2 = V3 V 400

Transf. turns ratio n1 : n2 : n3 1:1:1

Transf. leakage inductances:
Port-1 leakage inductance L1 µH 40

Port-1 leakage inductance L2 µH 47

Port-1 leakage inductance L3 µH 41

Dead time µs 1

Switching Devices MMIX1Y100N120C3H1

Gating signal

Imperix L.t.d Boom-Box controller
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Fig. 9 illustrates a comparison between the PSM and the
proposed ANN-based modulation in terms of total true rms
current. The proposed ANN-based modulation reduces the
total true rms current by over 50% of its value at light load
conditions.

Finally, Fig. 10 and Fig. 11 show the voltage and current
waveforms of the PSM and the proposed ANN-based modu-
lation for two test cases out of the sixteen at port-3 power
P3 =200W and P3 =1400W, respectively. As shown in
Fig. 10, the total true rms current reduces from about 8.3A
using PSM to about 3.9A using the proposed ANN-based
modulation, reducing the total true rms current by about 53%
of its value. While the total rms current reduction of Fig. 11
is about 19%; as for the high power levels, the optimum
operating point is located nearby the full duty modulation.

VII. CONCLUSION

An artificial neural network (ANN) approach for achiev-
ing reduced rms operation of triple active bridges (TAB)
converters has been proposed and verified in this paper. A
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multilayer perceptron neural network was designed and trained
in order to estimate the optimal modulation parameters of
the TAB, aiming at converter operation with minimum total
true rms currents. The ANN was trained based on a data-set
generated by means of a simulation model. The simulation
model was preliminarily calibrated to represent the real TAB
implementation operation accurately. The approach features
ease of data generation for ANN training, and deployability in
real converter hardware, and allows significant improvements
in terms of total rms current circulation compared to the
classical phase shift approach. The proposed ANN approach
shows other potential benefits with respect to the use of a look-
up table for the modulation of the converter, including, smooth
operation under different operating points, lower memory
requirements, extension to converters with multiple ports, and
the possibility of tuning the model with a reasonably limited
number of samples of operating points.
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