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1. Introduction

This article continues a project of the authors, started in [3] and proceed in [4] and [5], concerning the 
study of the links between recurrent sets and Lyapunov functions.

Let φ be a continuous flow on a compact metric space (X, d). The aim of the present paper is to give 
a constructive proof of the existence of a continuous Lyapunov function for φ which is strictly decreasing 
outside the strong chain recurrent set SCRd(φ).

Such a result generalizes Conley’s Fundamental Theorem of Dynamical Systems—see the seminal book 
[6][Section 6.4, Page 39]—since we look at SCRd(φ), instead of the chain recurrent set CR(φ).
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For dynamics given by the iteration of a homeomorphism, the problem has already been solved by Fathi 
and Pageault in [8][Theorem 2.6], by using Fathi’s formalism in weak KAM theory. In particular, they 
proved the following result.

Theorem. Let f : X → X be a homeomorphism on a compact metric space (X, d). Then there exists a 
Lipschitz continuous Lyapunov function for f which is strictly decreasing outside SCRd(f).

Yokoi independently proved the existence of a continuous Lyapunov function (a priori non-Lipschitz) for 
a homeomorphism on a compact metric space, that strictly decreases outside the SCRd(f) (see [9][Theo-
rem 5.2]).

Combining the variational approach established by Fathi and Pageault in [8] and some of Conley’s tech-
niques presented in [6], the authors Bernardi and Florio have attacked the same problem in the framework 
of continuous flows, uniformly Lipschitz continuous on compact subsets of [0, +∞). We recall that a contin-
uous flow φ : X × R → X on a compact metric space (X, d) is uniformly Lipschitz continuous on compact 
subsets of [0, +∞) if for any T > 0 there exists MT > 0 such that for every x, y ∈ X

d(φt(x), φt(y)) ≤ MT d(x, y) ∀t ∈ [0, T ] .

In [4][Theorem 4.1], the following result is proved.

Theorem. Let φ : X × R → X be a continuous flow on a compact metric space (X, d), uniformly Lipschitz 
continuous on the compact subsets of [0, +∞). Then there exists a Lipschitz continuous Lyapunov function 
for φ which is strictly decreasing outside SCRd(φ).

The proof of the above result is constructive. Nevertheless, the authors did not manage to generalize the 
result for only continuous flows, getting rid of the further hypothesis about uniformly Lipschitz regularity 
of the flow with respect to time. This is due to the fact that, in building the Lyapunov function for the 
flow, some “regularizing” process of an initial function (coming from the variational approach) is needed. 
In particular, some Lipschitz-like control over time is required. Even if any flow of a Lipschitz continuous 
vector field satisfies the regularity hypothesis of the above theorem, there are examples of (dynamically 
interesting) flows that fail to fulfill such a hypothesis, see e.g. Example 3.4.

In this article—for a continuous flow—we prove the existence of a Lyapunov function, which is strictly 
decreasing outside the strong chain recurrent set, in the most general framework. In order to obtain it, we 
exploit the Conley-type decomposition of the strong chain recurrent set, previously shown in [3][Theorem 
2]. The constructive method to prove the existence of the required Lyapunov function is then inspired by 
Conley’s original ideas presented in the proof of his celebrated theorem in the chain recurrent case.

Thus, our main result reads as follows.

Theorem 1.1. If φ : X ×R → X is a continuous flow on a compact metric space (X, d), then there exists a 
continuous Lyapunov function for φ which is strictly decreasing outside SCRd(φ).

Acknowledgments. Olga Bernardi thanks prof. Alberto Abbondandolo who introduced her to Conley’s theory 
of Lyapunov functions and posed her the problem solved in this article. O. Bernardi and J. Wiseman have 
been supported by the PRIN project 2017S35EHN 003 2019-2021 “Regular and stochastic behavior in 
dynamical systems”.
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2. Preliminaries

Let φ : X×R → X, (x, t) �→ φt(x) be a continuous flow on a compact metric space (X, d). In this section 
we recall the notions of Lyapunov function, strong chain recurrent point, stable set and strongly stable set.

Definition 2.1. A continuous function h : X → R is a Lyapunov function for φ if h(φt(x)) ≤ h(x) for every 
t ≥ 0 and x ∈ X.

Definition 2.2. Given x, y ∈ X, ε > 0 and T > 0, a strong (ε, T )-chain from x to y is a finite sequence 
(xi, ti)i=1,...,n ⊂ X ×R such that ti ≥ T for all i, x1 = x and, setting xn+1 = y, we have

n∑
i=1

d(φti(xi), xi+1) < ε.

A point x ∈ X is said to be strong chain recurrent if for any ε > 0 and T > 0 there exists a strong 
(ε, T )-chain from x to x.
The set of strong chain recurrent points is denoted by SCRd(φ).

Definition 2.3. A closed set B ⊂ X is stable if it has a neighborhood base of forward invariant sets.

We refer to [1][Page 1732] and [2][Paragraph 1.1]. If B is a stable set, then for every x ∈ X either ω(x) ∩B = ∅
or ω(x) ⊆ B, see [3][Lemma 4.1]. Moreover, the complementary of a stable set B is defined as

B• := {x ∈ X : ω(x) ∩B = ∅}.

The set B• ⊂ X is invariant and disjoint from B but it is not necessarily closed even if B is closed (see also 
Paragraph 1.5 in [7]).

Definition 2.4. A closed set B ⊂ X is strongly stable if there exist a family (Uη)η∈(0,1) of closed nested 
neighborhoods of B and a function

(0, 1) 
 η �→ T (η) ∈ (0,+∞)

bounded on compact subsets of (0, 1), such that:

(i) for any 0 < η < λ < 1, {x ∈ X : d(x, Uη) < λ − η} ⊆ Uλ;
(ii) B =

⋂
η∈(0,1) ω(Uη);

(iii) for any 0 < η < 1, cl{φ[T (η),+∞)(Uη)} ⊆ Uη.

We refer to [3][Definition 4.2]. Every strongly stable set B is closed, forward invariant and stable, see 
[3][Remark 4.1].
In [3][Theorem 4.2], the subtle relation between strongly stable sets and SCRd(φ) has been explained:

Theorem 2.1. If φ : X ×R → X is a continuous flow on a compact metric space, then

SCRd(φ) =
⋂

{B ∪B• : B is strongly stable}. (1)

The proof of the main result of this paper is based on the above theorem.
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3. Proof of Theorem 1.1

3.1. A Lyapunov function for (B, B•)

Let φ : X ×R → X be a continuous flow on a compact metric space (X, d).
In this section, for every pair (B, B•) with B strongly stable, we construct a Lyapunov function for φ

which is strictly decreasing on X \ (B ∪B•).

Lemma 3.1. Let B ⊂ X be a strongly stable set and (Uη)η∈(0,1) be a family of closed nested neighborhoods 
of B as in Definition 2.4.

If B• �= ∅ then there exists an η0 ∈ (0, 1) such that

B∗
η0

:= {x ∈ X : ∀t ≥ 0, φt(x) /∈ Uη0} (2)

is nonempty. The set B∗
η0

is forward invariant, B∗
η0

⊆ B• and B ∩ cl(B∗
η0

) = ∅.

Proof. Let x be an element of B•, so ω(x) ∩ B = ∅. Since B =
⋂

η∈(0,1) ω(Uη), there exists η0 such that 
ω(x) ∩ ω(Uη0) = ∅. Since Uη0 is eventually forward invariant, this means that φt(x) /∈ Uη0 for all t ≥ 0. �
We observe that, since the Uη’s are nested,

B∗
η0

= {x ∈ X : ∀t ≥ 0, φt(x) /∈
⋃

η∈(0,η0]

Uη}.

Theorem 3.1. Let B• �= ∅ and B∗
η0

be as in formula (2) of Lemma 3.1.
Then there exists a continuous Lyapunov function h : X → R for φ such that

(i) h−1(0) = B.
(ii) h−1(1) = cl(B∗

η0
).

(iii) h is strictly decreasing on the set X \ (B ∪B•).

Proof. We first define the function l : X → R as follows:

l(x) :=

⎧⎪⎪⎨
⎪⎪⎩

η

η0
if η = infλ∈(0,η0) λ such that x ∈ Uλ,

1 otherwise.

(3)

The function l is continuous: this follows from the fact that each Uη is closed and by property (iii) of 
Definition 2.4. Moreover, B = l−1(0), cl(B∗

η0
) ⊆ l−1(1) and l(X) ⊆ [0, 1]. Define now the function k : X → R

by

k(x) := sup
t≥0

{l(φt(x))}. (4)

Since both B and cl(B∗
η0

) are forward invariant, it follows that B = k−1(0) and cl(B∗
η0

) ⊆ k−1(1). Moreover, 
k(X) ⊆ [0, 1]. We show now that the function k is continuous.

(a) k is continuous on cl(B∗
η0

). Since l is continuous and since cl(B∗
η0

) ⊆ l−1(1), for every ε > 0 there exists 
a neighborhood V of cl(B∗

η ) such that

0
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|l(y) − l(x)| < ε

∀y ∈ V and ∀x ∈ cl(B∗
η0

). In particular, for every y ∈ V we have 1 − l(y) < ε. Observe that l ≤ k ≤ 1. 
Thus we deduce that

|k(y) − k(x)| = 1 − k(y) ≤ 1 − l(y) < ε

∀y ∈ V and ∀x ∈ cl(B∗
η0

). This concludes the proof of the continuity of k on cl (B∗
η0

).
(b) k is continuous on B. Since l is continuous and since B = l−1(0), for every ε > 0 there exists a 

neighborhood V of B such that l|V < ε. Corresponding to V and up to restricting V , there exists 
η ∈ (0, η0) such that Uη ⊆ V . From property (iii) of Definition 2.4, there is T (η) > 0 so that

φ[T (η),+∞)(Uη) ⊆ Uη ⊆ V. (5)

Observe that φ[T (η),+∞)(Uη) is a neighborhood of B. From (5), the function k is ε-bounded on 
φ[T (η),+∞)(Uη). This proves the continuity of k on B.

(c) k is continuous on X \ (B ∪ cl (B∗
η0

)).
Fix x ∈ X \ (B∪ cl (B∗

η0
)). Thus, there exists τ(x) ≥ 0 such that φτ(x)(x) ∈

⋃
η∈(0,η0) Uη. Let η̄ ∈ (0, η0)

be such that η̄ = infλ∈(0,η0) λ so that φτ(x)(x) ∈ Uη̄. Then, by property (i) of Definition 2.4 and the 
continuity of the flow, fixed η̄ < η̃ < η0, there exists a neighborhood V of x such that φτ(x)(V ) ⊆ Uη̃. 
Therefore, by property (iii) of Definition 2.4, we have

φ[τ(x)+T (η̃),+∞)(V ) ⊆ Uη̃

and consequently

l|φ[τ(x)+T (η̃),+∞)(V ) ≤
η̃

η0
.

Hence, for every y ∈ V we have

k(y) = sup
t≥0

{l(φt(y))} = max
t∈[0,τ(x)+T (η̃)]

{l(φt(y))}.

By the continuity of y �→ maxt∈[0,τ(x)+T (η̃)]{l(φt(y))}, we conclude that k is continuous at x ∈ X \ (B ∪
cl (B∗

η0
)).

By its definition in (4), it immediately follows that k is a Lyapunov function for φ.
Define now the function h : X → R as

h(x) :=
+∞∫
0

e−sk(φs(x)) ds. (6)

Since k is continuous, the function h is continuous too; moreover, h is decreasing along trajectories. Moreover, 
on one hand h(x) = 0 if and only if k(φs(x)) = 0 for every s ≥ 0, i.e. if and only if x ∈ B. On the other 
hand, h(x) = 1 if and only if k(φs(x)) = 1 for every s ≥ 0. That is if and only if φs(x) /∈ Uη0 for every 
s ≥ 0, which is the definition of B∗

η0
.

We finally prove that the function h is strictly decreasing on

x ∈ X \ (B ∪B•) = {x ∈ X \B : ω(x) ⊆ B}.
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Fig. 1. The dynamics of Example 3.1.

Fig. 2. The Lyapunov function for the dynamics of Example 3.1.

Indeed, for any x ∈ X \ (B ∪B•) and t > 0, we have

h(φt(x)) − h(x) =
+∞∫
0

e−s (k(φs+t(x)) − k(φs(x))) ds < 0

since the integrand is not identically zero. Indeed, if this is not the case, then, since k is a Lyapunov function, 
k(φT (x)) = k(x) for every T ≥ 0. But, since x ∈ X \ (B ∪B•) and arguing as at point (c) of the continuity 
argument for k, we can find τ > 0 such that k(φτ (x)) < k(x), obtaining the required contradiction. This 
concludes the proof. �
We recall that the corresponding result for an attractor-repeller pair is contained in [6][Section B, page 
33]. Our proof follows the main lines of Conley’s original idea. However we notice that Conley’s Lyapunov 
function for an attractor-repeller pair is identically zero on the attractor and identically 1 on the repeller. 
The same does not hold for (B, B•), with B strongly stable. In such a case—see also Example 3.1 below—the 
Lyapunov function of Theorem 3.1 assumes all the values between 0 and 1 in B•.

Example 3.1. (Example 4.4 in [3])
On the circle R/Z endowed with the standard quotient metric, consider the dynamical system of Fig. 1. In 
the sequel, we denote by X̂Y (resp. cl(X̂Y )) the clockwise-oriented open (resp. closed) arc from X to Y . 
The arc cl(ÂB) and the points C and D are fixed; on the other points we have a clockwise flow. Then cl(ÂE)
is strongly stable with B• = ÊD ∪ {D}. In such a case, a set B∗

η0
as in formula (2) of Lemma 3.1 is—for 

example—B∗
η0

= cl(B̂D) and the corresponding Lyapunov function for (B, B•) constructed in Theorem 3.1
equals 0 if x ∈ cl(ÂE) and d(x,E)

d(x,E)+d(x,B) if x ∈ ÊB ⊆ B•. Then, such a function assumes all the values 
between 0 and 1 in B• (see Fig. 2).

3.2. Reduction to a countable set of (B, B•)

Conley’s proof of Fundamental Theorem of Dynamical Systems uses the facts that attractor-repeller 
pairs are closed and that there are countably many such pairs. We notice that the pairs (B, B•), involved 
in the decomposition of SCR(φ), aren’t as well behaved. Firstly, different B’s can give the same B ∪ B•: 
the obvious example is the identity flow on a connected compact metric space. Moreover, B ∪ B• isn’t 
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Fig. 3. Dynamics of Example 3.2.

necessarily closed, there can be uncountably many different B ∪ B•’s and, finally, the structure B ∪ B• is 
not conserved by finite intersection.

The first part of this section is devoted to showing—by simple examples—these facts.

Example 3.2. On the compact space [0, 1]2 ⊂ R2 endowed with the standard metric, consider the dynamical 
system of Fig. 3. Segments [0, 1] × {0} and [0, 1] × {1} are fixed; moreover, for every x ∈ [0, 1], on each 
open vertical interval {x} × (0, 1) we have a north-south flow. In such a case, B = {(0, 0)} is strongly stable 
with complementary B• = ((0, 1] × [0, 1]) ∪ {(0, 1)}, and the union B ∪ B• is not closed. Moreover, every 
closed segment Bx connecting (0, 0) to (x, 0), x ∈ [0, 1], is strongly stable, and the collection (Bx)x∈[0,1]
gives uncountably many different Bx ∪B•

x’s.

Example 3.3. Let us consider again Example 3.1. It is straightforward to see that there exist B0 and B1
strongly stable sets such that

B0 ∪B•
0 = cl(ÂD) and B1 ∪B•

1 = cl(D̂C).

However cl(ÂD) ∩ cl(D̂C) = {D} ∪ cl(ÂC) is not the union of a strongly stable set and its complementary.

The aim of the second part of the section is proving the next theorem.

Theorem 3.2. Let φ : X ×R → X be a continuous flow on a compact metric space (X, d). Then there exists 
an—at most countable—collection of strongly stable sets {Bn} such that

SCRd(φ) =
⋂
n

Bn ∪B•
n. (7)

We will use the following lemmas in the proof of the theorem.

Lemma 3.2. Let {Uα} be a—possibly uncountable—collection of open sets of a separable space. Then there 
exists an—at most countable—subcollection {Un} such that⋃

n

Un =
⋃
α

Uα.

Proof. Take a countable basis for the topology and let {Vn} be the set of basis elements that are contained 
in 

⋃
α Uα. For each Vn, set Un = Uα for some Uα containing Vn, or Un = ∅ if no such Uα exists. We claim 

that 
⋃

n Un =
⋃

α Uα.
The inclusion 

⋃
n Un ⊆

⋃
α Uα is immediate. To see that 

⋃
n Un ⊇

⋃
α Uα, let x be any element of 

⋃
α Uα. 

Then x is in Uα for some α, and so there exists a basis element Vn such that x ∈ Vn ⊆ Uα. Thus Un is not 
empty and contains x. �
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Lemma 3.3. Let φ : X ×R → X be a continuous flow on a compact metric space (X, d). Then
⋂

{cl(B ∪B•) : B is strongly stable} =
⋂

{B ∪B• : B is strongly stable}.

Proof. The inclusion
⋂

{cl(B ∪B•) : B is strongly stable} ⊇
⋂

{B ∪B• : B is strongly stable}

is immediate.
In order to show the other inclusion, we need to recall some results from [3][Section 3].
For fixed ε > 0, T > 0 and Y ⊂ X, let

Ω(Y, ε, T ) := {x ∈ X : there is a strong (ε, T )-chain from a point of Y to x}

and

Ω̄(Y, ε, T ) :=
⋂
η>0

Ω(Y, ε + η, T ).

Moreover, let

Ω̄(Y ) :=
⋂

ε>0, T>0
Ω(Y, ε, T ) =

⋂
ε>0, T>0

Ω̄(Y, ε, T ).

Let now x be a point in cl(B ∪B•)\(B ∪B•) for some strongly stable set B. We will show that there exists 
a strongly stable set B̃ (clearly depending on the point x) such that x /∈ cl(B̃ ∪ B̃•).

Since x /∈ B ∪B•, by Theorem 2.1, x /∈ SCRd(φ). Equivalently,

x /∈ Ω̄(x) =
⋂

ε>0, T>0
Ω̄(x, ε, T ).

In particular, there exist ε > 0 and T > 0 such that x /∈ Ω̄(x, ε, T ).
We proceed by proving that—corresponding to these ε > 0 and T > 0—there exists a closed ball C̃

centered in x such that

C̃ ∩ Ω̄(C̃, ε, T ) = ∅. (8)

Suppose, for the sake of contradiction, that C ∩ Ω̄(C, ε, T ) �= ∅ for every closed ball C centered at x, in 
particular, for a sequence (Cn)n∈N of closed balls centered at x of radius 1/n → 0. This means that for 
every η > 0 and n ∈ N there are points xη

n and yηn ∈ Cn such that there exists a (ε + η, T )-chain from yηn
to xη

n. Since, for every η > 0,

lim
n→+∞

xη
n = x = lim

n→+∞
yηn,

we conclude that x ∈ Ω̄(x, ε, T ). This fact contradicts the hypothesis that x /∈ Ω̄(x, ε, T ) and therefore there 
necessarily exists a closed ball C̃ centered in x satisfying formula (8).

In order to conclude, define

B̃ := ω(Ω̄(C̃, ε, T )),

which is—see Example 4.3 in [3]—a strongly stable set. Moreover (see Corollary 3.1 in [3]),
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B̃ ⊆ Ω̄(C̃, ε, T ).

As a consequence, since (by formula (8)) x /∈ Ω̄(C̃, ε, T ), then x /∈ B̃. We finally recall that—by Lemma 3.6 
in [3]—ω(C̃) ⊆ ω(Ω̄(C̃, ε, T )), so that for every point y ∈ C̃, we have

ω(y) ⊆ ω(C̃) ⊆ ω(Ω̄(C̃, ε, T )) = B̃.

This means that y /∈ B̃• for all y ∈ C̃.
Finally, since the point x /∈ B̃ and x ∈ int(C̃), we conclude that x /∈ cl(B̃ ∪ B̃•) and the desired inclusion 

is proved. �
As a direct consequence of the previous lemmas, we can give the proof of Theorem 3.2.

Proof of Theorem 3.2. Consider the collection of open sets

{Uα} := {X\cl(Bα ∪B•
α) : Bα is strongly stable}.

Then, by Lemma 3.2, there exists an—at most countable—subcollection {Un} such that

⋃
α

Uα =
⋃
n

Un.

Consequently, applying also Theorem 2.1 and Lemma 3.3, we obtain

SCRd(φ) =
⋂
α

Bα ∪B•
α =

⋂
α

cl(Bα ∪B•
α)

= X\
⋃
α

Uα = X\
⋃
n

Un =
⋂
n

cl(Bn ∪B•
n)

⊇
⋂
n

Bn ∪B•
n ⊇

⋂
α

Bα ∪B•
α = SCRd(φ),

which gives exactly formula (7). �
3.3. End of proof of Theorem 1.1

Proof of Theorem 1.1. With reference to Theorems 3.1 and 3.2, let denote by hn the Lyapunov function 
for the nth-pair (Bn, B•

n). As in [6][Page 39], define the function

h(x) =
+∞∑
n=0

hn(x)
3n . (9)

The function h is continuous. Moreover—as a consequence of Theorems 2.1 and 3.1—h is a Lyapunov 
function for φ which is strictly decreasing outside SCRd(φ). �
Remark 3.1. We observe that the proof in [3] of the decomposition of the strong chain recurrent set (here 
Theorem 2.1) actually uses only the property of φ being a semiflow. Moreover, the construction of the 
function in Theorem 3.1 and the countability result in Theorem 3.2 also work under this hypothesis. Con-
sequently, Theorem 1.1 can be rephrased, more generally, for a continuous semiflow on a compact metric 
space.
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Fig. 4. The metric space of Example 3.4.

Fig. 5. The flow lines of Example 3.4.

As recalled in the Introduction, if the flow is uniformly Lipschitz continuous on compact subsets of [0, +∞), 
then the result of Theorem 1.1 is proved in [4][Theorem 4.1]. The proof we present here does not need any 
additional regularity assumption on the continuous flow.

We finally present an example of a continuous flow which is not uniformly Lipschitz continuous on 
compact time subsets. That is, an example of a flow to which the result in [4] cannot be applied, but for 
which Theorem 1.1 holds.

Example 3.4. Let us think of T as [0, 1] with 0 identified to 1. Define τ : [0, 1] → R as

τ(x) :=

⎧⎨
⎩
√

x− 1
2 +

√
2−1√
2 x ∈

[1
2 , 1

]
√

1
2 − x +

√
2−1√
2 x ∈

[
0, 1

2
]

Consider X = {(x, y) ∈ R2 : x ∈ [0, 1], 0 ≤ y ≤ τ(x)} endowed with the standard metric from R2, see 
Fig. 4. Identify the graph of τ with [0, 1], i.e. such that (x, τ(x)) ∼ (x, 0). Let us consider the flow φ on X
whose flow lines are described in Fig. 5.

We first observe that φ is a continuous flow, not uniformly Lipschitz continuous on compact subsets of 
[0, +∞). Indeed, since the function τ is not Lipschitz continuous at x = 1/2, for any time T greater than
the maximum of τ , we cannot find a uniform constant MT such that, for every x ∈ [0, 1], we have

d(φt(1/2, 0), φt(x, 0)) ≤ MT d((1/2, 0), (x, 0)) ∀t ∈ [0, T ] .

So, the condition of uniform Lipschitz continuity is not satisfied.
The set of periodic points corresponds to the central vertical strip (of positive measure), so that Per(φ) �=

X. We also observe that every point in X \ Per(φ) cannot be strong chain recurrent: its dynamics goes 
“from left to right” and, since the vertical strip of periodic points has positive measure, the strip cannot be 
traversed by a finite number of jumps whose sum is arbitrarily small. Therefore,

SCRd(φ) = Per(φ) �= X.
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