
Vol.:(0123456789)

Calcolo           (2021) 58:30 
https://doi.org/10.1007/s10092-021-00418-5

1 3

Arbitrary‑order intrinsic virtual element method for elliptic 
equations on surfaces

Elena Bachini1,2   · Gianmarco Manzini3 · Mario Putti4

Received: 16 December 2020 / Revised: 3 May 2021 / Accepted: 15 May 2021 
© The Author(s) 2021

Abstract
We develop a geometrically intrinsic formulation of the arbitrary-order Virtual Ele-
ment Method (VEM) on polygonal cells for the numerical solution of elliptic sur-
face partial differential equations (PDEs). The PDE is first written in covariant form 
using an appropriate local reference system. The knowledge of the local parametri-
zation allows us to consider the two-dimensional VEM scheme, without any explicit 
approximation of the surface geometry. The theoretical properties of the classical 
VEM are extended to our framework by taking into consideration the highly aniso-
tropic character of the final discretization. These properties are extensively tested 
on triangular and polygonal meshes using a manufactured solution. The limita-
tions of the scheme are verified as functions of the regularity of the surface and its 
approximation.
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1  Introduction

Surface partial differential equations of elliptic and parabolic types are often 
used for the simulation of diverse phenomena in many fields of applications, 
for example in biology, atmospheric dynamics, and image processing [53, 55]. 
One of the main motivation that prompted this work is related to the modeling of 
gravity-driven flows in earth-sciences, such as, e.g., flood forecasting, landslide 
and debris flow dynamics, avalanche simulations [6, 20, 39, 41]. The numerical 
solution of surface PDEs has seen wide-spread interest in the last few years with 
different approaches being proposed, including continuous Finite Element Meth-
ods (FEM), discontinuous Galerkin (DG), finite volumes, trace-FEMs, etc. [4, 6, 
7, 33, 36, 41, 54, 55]. A recent survey of surface FEM was published in [37], 
where both steady and moving surfaces are considered, the latter finding a unify-
ing theory in [38].

Although FE-based approaches are very successful in the numerical treat-
ment of surface PDEs, they share the limitation that an explicit form of the basis 
functions is required in the formulation of the method, and thus are restricted 
mostly to triangular/quadrilateral elements. This restriction is overcome by the 
Virtual Element Method (VEM) that was designed from the very beginning to 
work on generally shaped elements with high order of accuracy. In fact, in the 
VEM approach (i) it is possible to decompose the computational domain into 
very general polygonal elements; (ii) an explicit form of the basis functions is 
not required; (iii) approximation of arbitrary order and arbitrary regularity are 
straightforward in two and three dimensions. VEM was originally developed as 
a variational reformulation of the nodal mimetic finite difference (MFD) method 
[10, 13, 24, 47] for solving diffusion problems on unstructured polygonal meshes. 
A survey on the MFD method can be found in the review paper [45] and the 
research monograph [12]. The scheme inherits the flexibility of the MFD method 
with respect to the admissible meshes and this feature is well reflected in the 
many significant applications that have been developed so far, see, for example, 
[3, 5, 8, 9, 14–19, 27, 29, 30, 32, 51, 56, 57, 64].Because of its origins, VEM is 
intimately connected with other FE-based approaches. The connection between 
the VEM and finite elements on polygonal/polyhedral meshes is thoroughly 
investigated in [26, 35, 46], between VEM and discontinuous skeletal gradient 
discretizations in [35], and between the VEM and the BEM-based FEM method 
in [28]. VEM was originally formulated in [11] as a conforming FEM for the 
Poisson problem, and was later extended to convection-reaction-diffusion prob-
lems with variable coefficients in [15]. However, the VEM technology has seen 
so far very few applications to surface PDEs, and only with first-order polynomial 
accuracy [42].

One of the major difficulties in the high-order numerical solution of surface 
PDEs is the achievement of a consistent approximation of both the geometry and 
the PDE. The work of [34] develops a general technique for high-order polygonal 
approximation of a smooth manifold, but this method requires the explicit knowl-
edge of the distance function within the tubular neighborhood of the surface. The 
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task of approximating this distance function to high order is still an open problem 
[50]. A recent approach based on this idea was presented in [4], where the authors 
study a high-order (up to four) DG scheme based on a piecewise polynomial 
approximation of the surface triangulation. However, extensions to polygonal 
grids with high polynomial orders have not yet been addressed. While VEM pro-
vides an ideal framework to work at high-order on generally shaped cells, accord-
ing to [42] the main difficulty is the high-order approximation of the surface, lim-
iting their current developments to polynomials of order one. The same authors 
suggest the use of the approach in [34] to extend their VEM scheme to higher 
order polynomials, without however eliminating the difficulty of the approxima-
tion to a consistent order of the distance function.

In this paper, we develop a novel VEM-based approach for the solution of 
elliptic surface PDEs that works at all polynomial orders. We avoid the difficulties 
related to high-order surface approximation by employing intrinsic geometry and 
following the approach described in [7] to adapt the virtual element technology 
to the surface PDE. Using this approach, we first rewrite the partial differential 
equation in covariant form in such a way that the geometric information, essen-
tially the metric tensor, is completely encoded in the equation itself. As a conse-
quence, the numerical scheme can be constructed directly on the two-dimensional 
local chart where the surface parametrization is defined, thus enabling the full 
exploitation of the VEM machinery. Here, we restrict our attention to the case 
when the surface is defined by a single chart, a case of great interest for example 
in gravity-driven flows on terrain surfaces, such as water flow and sediment trans-
port in mountain areas [20, 21, 39, 40, 52]. In principle, our proposed approach 
can be applied to the more general situation of a surface defined by an atlas if the 
transition between charts is done with care by enforcing proper smoothness as 
described in [44]. This is shown by testing our approach on the sphere by using 
the well-known charts arising from the stereographical projection.

Our method starts from a partition of the surface into polygons with curvilin-
ear edges, assuming that the parametrization of the surface is known at relevant 
quadrature points. Proceeding from the covariant PDE, we construct a high-order 
scheme exploiting the ability of the VEM approach to discretize problems that 
are anisotropic and with spatially variable coefficients [15]. In practice, we re-
define the PDE on a local coordinate system using intrinsic geometric quantities 
and operators, which contain explicitly the metric information deriving from the 
surface. Then, all the VEM projection operators are calculated using this local 
coordinate system and the knowledge of the parametrization is used to define 
the needed quantities, thus incurring in no explicit geometric error. Hence the 
final scheme is defined on a planar two-dimensional domain (the surface chart) 
and all the available machinery to achieve high-order on polygonal cells can be 
exploited. The price we pay is that now the PDE contains the anisotropic metric 
tensor and all the coefficients vary in space as a function of the regularity of the 
surface. The virtual element method has proved its efficiency in handling these 
situations [49] and can be implemented directly in this two-dimensional setting. 
In addition, with our approach the convergence theory extends straight-forwardly 
to surface problems without additional efforts.
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Our development of the intrinsic VEM proceeds as follows. In Sect.  2, we 
describe the local reference system of choice and the geometric setting. Next, we 
define the differential operators and the corresponding PDE in covariant form. In 
Sect. 3, we summarize the VEM adopted in this work and discuss the necessary 
adaptations to the problem at hand. The final Sect. 4 reports the results of exten-
sive numerical experiments that assess the effectiveness, accuracy, and robustness 
of the proposed approach.

2 � The surface partial differential equation and its Galerkin 
discretization

Notation Throughout the paper, we use the standard definition and notation of 
Sobolev spaces, norms and seminorms (see [1]), which can be directly extended 
to a compact manifold �  (see [63]). Given � an open and bounded subset of ℝd , 
d = 2, 3 , we denote with Lp(�) and Wk,p(�) the Lebesgue and Sobolev spaces, 
with Wk,2(�) = Hk(�) the classical Hilbert space. Norms and seminorms in Hk(�) 
are denoted by || ⋅ ||Hk(�) and | ⋅ |Hk(�) , respectively, and (⋅, ⋅)� denotes the inner 
product in L2(�) . We omit the subscript in the inner product notation when � is 
the whole computational domain. In a few situations, for the sake of clarity, we 
may prefer to use the integral notation of the inner product.

Consider a compact surface 𝛤 ⊂ ℝ
3 with boundary ��  over which the follow-

ing elliptic partial differential equation is defined:

where the solution u ∶ � → ℝ is a scalar function defined on the surface, 
� ∶ � → ℝ

2 is a given divergence-free velocity field tangent to the surface, the 
function � ∶ � → ℝ is a non-negative reaction coefficient. We denote by Δ

G
 and 

∇
G
 the Laplace-Beltrami and the tangential gradient operators, respectively, and by 

⟨⋅, ⋅⟩
G
 the intrinsic scalar product. These operators will be given precise definitions 

depending on the chosen coordinate system. Classically, we assume f ∈ H−1(� ) , 
� ∈ [W1,∞(� )]2 , and 𝛾 − 1

2
∇

G
⋅ � > 0 . Here we consider homogeneous Dirichlet 

problems with the more general boundary conditions described in [25].
The variational formulation of Eq. (1) reads:

Problem 1  (Intrinsic variational formulation)
Find u ∈ H1

0
(� ) such that

where the bilinear forms a(⋅, ⋅), b(⋅, ⋅), c(⋅, ⋅) ∶ H1(� ) × H1(� ) → ℝ are given by

(1)
−Δ

G
u +

⟨
�,∇

G
u
⟩

G
+ � u = f on � ,

u = 0 on �� ,

(2)a(u, v) + b(u, v) + c(u, v) = F(v) ∀ v ∈ H1
0
(� ),
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and the right-hand side linear functional F(⋅) ∶ H1
0
(� ) → ℝ is given by

Remark 1  The well-posedness of Problem 1 follows from the application of the Lax-
Milgram theorem since the classical theory of elliptic equations can be extended to 
surface PDEs in a straight-forward manner.  In particular, due to the coercivity of 
the bilinear form a(⋅, ⋅) , the continuity of the bilinear forms a(⋅, ⋅) , b(⋅, ⋅) , and c(⋅, ⋅) 
and the linear functional F(⋅) , and under the assumption that 𝛾 − 1

2
∇

G
⋅ � > 0 , the 

solution u exists and is unique and belongs to H1
0
(� ) if f ∈ H−1(� ) .  For a detailed 

description of the properties, well-posedness, and regularity of the variational prob-
lem on manifolds we refer to [43] and to [62, 63].

The discrete approximation of this problem reads as follows:

Problem 2  (Intrinsic discrete Galerkin approximation) Find uh ∈ Vh
k
 such that

where Vh
k
 is the functional space that provides a conforming approximation of H1

0
(� ) 

in the virtual element setting, and uh , ah(⋅, ⋅) , bh(⋅, ⋅) , ch(⋅, ⋅) , and Fh(⋅) are the virtual 
element approximations to u , a(⋅, ⋅) , b(⋅, ⋅) , c(⋅, ⋅) and F(⋅).

These mathematical objects are defined and discussed in the next sections.

2.1 � Geometrical setting

We assume that the surface �  is Cm regular, i.e.:

Definition 1  (Regular Surface) A connected set 𝛤 ⊂ ℝ
3 is a Cm regular or embedded 

surface if for all � ∈ �  there exists an open subset U ⊆ ℝ
2 and a map �� ∶ U → ℝ

3 
of class Cm , m ∈ ℕ ∪ {∞} , such that: 

i	 𝜙�(U) ⊆ 𝛤  is an open neighborhood of � ∈ � ;
ii	 �� is a homeomorphism with its image (i.e., there exists an open neighborhood 

of � , V ⊆ ℝ
3 such that ��(U) = V ∩ � );

iii	 The differential d�� ∶ ℝ
2
→ ℝ

3 is injective in U (i.e., it has maximum rank, in 
our case 2).

The map �� is the local parametrization of �  centered in � and we denote with 
��

−1 ∶ V ∩ � → U its inverse map, called the local chart, in � . The set 𝜙�(U) ⊂ 𝛤  is 

a(u, v) ∶= ∫�

⟨
∇

G
u,∇

G
v
⟩

G
, b(u, v) ∶= ∫�

⟨
�,∇

G
u
⟩

G
v, c(u, v) ∶= ∫�

� u v,

F(v) ∶= ∫�

f v.

(3)ah(uh, vh) + bh(uh, vh) + ch(uh, vh) = Fh(vh) ∀vh ∈ Vh
k
,
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called a coordinate neighborhood, while (s1
�
, s2

�
) are the local coordinates of any point 

� ∈ ��(U).

Remark 2  Throughout the paper we assume that �  is contained in only one chart.  
This is not a limitation under the assumption of C∞ regularity of �  (or Cm with m 
sufficiently large) since we can always find compatible local parametrizations cov-
ering �  .  Indeed, given two points � and � ∈ �  with local parametrizations �� and 
�� such that U� ∩ U� ≠ � , the transition map ��◦�

−1
�

 is a C∞ (or Cm ) diffeomor-
phism.  Thus, it is always possible to find an atlas for �  formed by appropriate charts 
that maintains all the required continuity properties.  A proper selection of these 
charts is fundamental to obtain a numerically well-conditioned reference system in 
our approach.  For an example of a constructive methodology for the definition of 
smooth multi-charts see [44].

For simplicity, from now on we will drop the subscripts � and � in both the local 
coordinates � = (s1, s2) and the global Cartesian coordinates � = (x1, x2, x3) . In sum-
mary, we have the following explicit definitions of these transformations:

We want to choose a coordinate system to give a workable meaning to the partial 
differential equation and related differential operators. We define the local reference 
system following the approach in [6, 7]. To this aim, we compute the pair of tangent 
vectors {�̂1(�), �̂2(�)} on the tangent plane T

�
� :

This pair is orthogonalized via Gram-Schmidt, yielding the orthogonal frame 
{�1, �2} . The ensuing metric tensor is given by:

The associated scalar product between two vectors � and � is given by 
⟨�, �⟩

G
= � ⋅ G � = G� ⋅ � , where “ ⋅ ” is the canonical ℝ2 scalar product. Tensor G 

represents the realization of the first fundamental form with respect to the chosen 
reference system (chart). For a Cm-regular surface (see definition 1), the determinant 
detG of the metric tensor is a well-defined and bounded function, and the metric ten-
sor itself is coercive, i.e., it is symmetric and positive-definite and has a symmetric 
and positive-definite inverse. In other words, we can find constants g∗ and g∗ such 
that [31]:

where ‖�‖2 = � ⋅ �.

� ∶ U → V ∩ � �−1 ∶ V ∩ � → U

� ↦ � � ↦ �

�̂i(�) =
(
𝜕x1

𝜕si
,
𝜕x2

𝜕si
,
𝜕x3

𝜕si

)
, i = 1, 2.

(4)G ∶=

( ‖‖�1(�)‖‖2 0

0 ‖‖�2(�)‖‖2
)
.

(5)g∗‖�‖2 ≤ ⟨�,G�⟩ ≤ g∗‖�‖2,
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We can now write the intrinsic differential operators with respect to the local 
coordinate system, and we collect the appropriate definitions in the following 
proposition, which we state without proof:

Proposition 1  (Intrinsic Differential Operators) Given f ∶ � → ℝ a scalar differen-
tiable function on �  and denoting with ∇ and ∇⋅ the gradient and divergence opera-
tors in ℝ2 , the intrinsic differential operators expressed in the local coordinate sys-
tem are given by the following expressions:

–	 The intrinsic gradient of f  is: 

–	 The intrinsic Laplace-Beltrami operator of f  is: 

We would like to recall that our reference frame is covariant and thus scalar 
products must act on vectors written in contravariant components. This applies 
both to velocity vector and to the divergence operator as well.

Remark 3  We can use the orthonormal reference frame �1, �2 as a base for ℝ2 with 
which we can express differential operators and vector quantities.  In this case we 
need to take into consideration the Jacobian matrix � = [�1, �2] of the parametriza-
tion, and recall that G = �T� .  This applies in particular to the velocity vector field 
� , which can be written as:

where �̂ = [w(1),w(2)]
T is the velocity vector written with respect to �1, �2.

In this setting, we can give the definition of the integral of a function over a 
surface as follows:

Definition 2  Let f ∶ � → ℝ be a continuous function defined on a regular surface 
�  , which we assume contained in the image of a local parametrization � ∶ U → � .

The f  on �  is given by

We can relate any function f ∶ � → ℝ to a specific coordinate system using 
the above coordinate transformations, i.e.:

(6)∇
G
f = G−1∇f .

(7)Δ
G
f = ∇

G
⋅ ∇

G
f =

1√
detG

∇ ⋅

�√
detGG−1∇f

�
.

� = [w1,w2]T = G−1∕2[w(1),w(2)]
T = G−1∕2 �̂ ,

∫�

f = ∫�−1(� )

(f◦�)
√
detG d�.
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In the following we will make use only of the local coordinate system and will write 
f (�) omitting the hat symbol.

The classical tools deriving from Stokes theorems hold with the intrinsic opera-
tors without any modification. In particular, the intrinsic Green formula can be 
stated as in the following lemma.

Lemma 1  (Intrinsic Green formula) Let 𝛤 ⊂ ℝ
3 be a surface with smooth boundary 

��  and given two functions u ∈ C2(� ) and v ∈ H1(� ) , then:

where � ∶ � → ℝ
2 denotes the vector tangent to �  and normal to ��  with compo-

nents written with respect to the local reference frame (i.e. � = �1�1 + �2�2).

In view of remark 3, we reformulate the bilinear forms a(⋅, ⋅) , b(⋅, ⋅) , and c(⋅, ⋅) the 
linear functional F(⋅) of the intrinsic variational formulation (2) on the chart �−1(� ) 
through:

and

Therefore, the intrinsic variational formulation (2) is equivalent to solving the 
advection-diffusion-reaction equation in variational form:

where the equation coefficients are defined by

The problem as above formulated is still well-posed and maintains all the properties 
listed in remark 1. Indeed, since  our surface is assumed to be regular, there exist 
two positive constants c

G
 and C

G
 such that c

G
≤ √

detG ≤ C
G
 and

where �∗ = c
G
g∗ and �∗ = C

G
g∗ , and g∗ and g∗ are the constants introduced in (5).  

The coercivity of a(⋅, ⋅) with respect to the H1-norm follows immediately by noting 
that �u�H1(� ) ≤ ‖u‖H1(� ) and applying the Poincaré inequality in H1

0
(� ) . Moreover, 

f (�) = f◦𝜙(�) = f̂ (�) .

(8)∫�

⟨
∇

G
u,∇

G
v
⟩

G
= −∫�

Δ
G
u v + ∫��

⟨
∇

G
u,�

⟩
G
v ,

a(u, v) = ∫𝜙−1(𝛤 )

�√
detGG

−1
�
∇u ⋅ ∇v d� , b(u, v) = ∫𝜙−1(𝛤 )

�√
detGG

−1∕2
�
�̂ ⋅ ∇u v d� ,

c(u, v) = ∫�−1(� )

√
detG � u v d� , F(v) = ∫�−1(� )

√
detGf v d� .

(9)∫�−1(� )

(
�∇u ⋅ ∇v + �̃ ⋅ ∇u + �̃uv

)
d� = ∫�−1(� )

f̃ v d�,

� =
√
detGG

−1 , �� =
�√

detGG
−1∕2

�
�̂ , �𝛾 =

√
detG 𝛾 , �f =

√
detG f .

(10)�∗|u|2H1(� ) ≤ a(u, u) ≤ �∗|u|2H1(� ),
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there exist two positive constants wmax and �max such that ���̃��∞ ≤ C
G
‖�‖∞ ≤ wmax 

and �̃ ≤ CG � ≤ �max.

3 � The virtual element method

In this section, we discuss the virtual element approximation of problem  2. The 
numerical method that we use in this work is based on refs. [2, 11, 15], which define 
optimal approximations of the finite dimensional spaces on polygonal meshes when 
the equation coefficients are variable in space. As already observed in remark 2, we 
work on a single coordinate neighborhood Ω = �−1(� ) and consider the (global) 
parametrization � ∶ Ω → �  . We start from a partition of �  formed by surface polyg-
onal elements E� with edges denoted by e� . Through the parametrization � , we can 
associate the partition of �  with a partition of Ω formed by elements E and possibly 
curvilinear edges e . Because of the regularity assumption on the surface, every ele-
ment E� is in a one-to-one relation with one and only one polygonal element E in Ω . 
To avoid curvilinear edges, we use the surface vertices of E� to define the vertices 
of the polygons E in Ω through the inverse parametrization and connect them with 
straight segments to define the partition of Ω . This procedure maintains the above 
one-to-one relationship between elements E� in �  and E in Ω (see Fig. 1).

In addition, any function in E� can be expressed in E by composition with the 
inverse parametrization. Thus, all the local functional spaces of interest can be 
defined indifferently on E� or E . The definitions of the building blocks of the virtual 
element method is done in Ω using standard two-dimensional Cartesian coordinates. 
These constructions are needed to evaluate the surface bilinear forms and the right-
hand side linear functional of the weak formulation (2) by a careful use of the metric 
tensor.

The conforming virtual element space Let T = {Ωh}h be a set of decompositions 
Ωh of the computational domain Ω into a finite set of nonoverlapping polygonal ele-
ments E . The subindex label h is the maximum of the diameters of the mesh ele-
ments, i.e., hE = sup��,���∈E |�� − ���| . Each element E has a nonintersecting boundary 
denoted by �E formed by straight edges e , center of gravity �E and area |E| . A few 
regularity assumptions are needed on the mesh family {Ωh} to prove the convergence 
of the VEM and derive the error estimates in the L2 and H1 norms. We present these 

Fig. 1   Example of surface 
polygonal element E� in �  and 
corresponding (planar) element 
E in Ω
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assumptions at the end of this section where we briefly discuss the convergence of 
the proposed VEM.

Let k ≥ 1 be an integer number and E ∈ Ωh a generic mesh element. The con-
forming virtual element space Vh

k
 of order k ≥ 1 built on mesh Ωh is obtained by glu-

ing together the local approximation spaces denoted by Vh
k
(E):

The local virtual element space Vh
k
(E) is defined in accordance with the enhance-

ment strategy introduced in [2]:

where ℙk(E) and ℙk(e) denote the polynomial spaces of degree at most k defined 
over an element E or an edge e , respectively. By definition, each space Vh

k
(E) con-

tains ℙk(E) and the global space Vh
k
 is a conforming subspace of H1

0
(Ω) . The defini-

tion of the virtual element bilinear forms ah(⋅, ⋅) , bh(⋅, ⋅) , and ch(⋅, ⋅) , and the forcing 
term Fh(⋅) requires the definition of the elliptic and orthogonal projections operators.

 Elliptic projection The elliptic projection operator Π∇,E

k
∶ H1(E) → ℙk(E) can be 

defined for any vh ∈ Vh
k
(E) as:

Equation (14) allows the removal of the kernel of the gradient operator. The ellip-
tic projection operator Π∇,E

k
 is a polynomial-preserving operator, i.e., Π∇,E

k
q = q for 

every q ∈ ℙk(E) . One of its major property is that the projection Π∇,E

k
vh of any vir-

tual element function vh ∈ Vh
k
(E) is computable from the degrees of freedom of vh 

[11], which are defined as follows.
The degrees of freedom of the virtual element function vh ∈ Vh

k
(E) are given by 

the set of values: 

(D1)	� For k ≥ 1 , the values of vh at the vertices of E;
(D2)	� For k ≥ 2 , the values of vh at the k − 1 internal nodes of the k-th Gauss-

Lobatto formula on every e ∈ �E;
(D3)	� For k ≥ 2 , the cell moments of vh of order up to k − 2 on element E : 

(11)Vh
k
∶=

{
vh ∈ H1

0
(Ω) ∶ vh|E ∈ Vh

k
(E) ∀E ∈ Ωh

}
.

(12)

Vh
k
(E) =

{
vh ∈ H1(E) ∩ C0(E) ∶ vh|𝜕E ∈ C0(𝜕E), vh|e ∈ ℙk(e) ∀e ⊂ 𝜕E, Δvh ∈ ℙk(E),

∫E

(vh − Π∇,E

k
vh)md� = 0 ∀m ∈ ℙk(E)�ℙk−2(E)

}
,

(13)∫E

∇Π∇,E

k
vh ⋅ ∇q d� = ∫E

∇vh ⋅ ∇q d� ∀q ∈ ℙk(E),

(14)∫�E

(
Π∇,E

k
vh − vh

)
d� = 0.
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 where Mk−2(E) is the set of scaled monomials that span the linear space of polynomi-
als of degree up to k − 2 . These set of values are unisolvent in Vh

k
(E) , cf. [11], and thus, 

every virtual element function is uniquely identified by them. The degrees of freedom 
of a virtual element function in the global space Vh

k
 are given by collecting the ele-

mental degrees of freedom (D1)–(D3). Their unisolvence in Vh
k
 is an immediate conse-

quence of their unisolvence in every elemental space Vh
k
(E) . 

Orthogonal projections From the degrees of freedom of a virtual element function 
vh ∈ Vh

k
(E) we can also compute the orthogonal projections Π0,E

k
vh and Π0,E

k−1
∇vh , cf. 

[2]. In fact, the definition of the orthogonal projection Π0,E

k
vh reads as

The right-hand side is the integral of vh against the polynomial q , and is comput-
able from the degrees of freedom (D3) of vh when q is a polynomial of degree up to 
k − 2 , and from the moments of Π∇,E

k
vh when q is a polynomial of degree k − 1 and 

k, cf. (12). Clearly, the orthogonal projection Π0,E

k−1
vh is also computable.

In turn, using the definition of the orthogonal projection Π0,E

k−1
∇vh and integrating by 

parts, we find that

for every � ∈
[
ℙk−1(E)

]2 , where �E,e denotes the unit outward vector orthogonal to 
the boundary edge e ∈ �E . The first integral on the (last) right-hand side is com-
putable from the degrees of freedom (D3), i.e., from the moments of vh against the 
polynomials of degree k − 2 over E . The edge integrals are computable from the 
degrees of freedom (D1)–(D2) because we can compute the trace of vh on each edge 
by interpolating these nodal values. 

The virtual element bilinear forms Following the VEM gospel, we write the dis-
crete bilinear forms ah(⋅, ⋅) , bh(⋅, ⋅) and ch(⋅, ⋅) as the sum of elemental contributions

The bilinear forms aE
h
(uh, vh) , bEh (uh, vh) and cE

h
(uh, vh) on each element E are given 

by

(15)
1

|E| ∫E

vh m d�, ∀m ∈ Mk−2(E),

(16)∫E

Π0,E

k
vh q d� = ∫E

vh q d� ∀q ∈ ℙk(E).

(17)
∫E

Π0,E

k−1
∇vh ⋅ � d� = ∫E

∇vh ⋅ � d� = −∫E

vh∇ ⋅ � d� +
∑
e∈�E

∫e

vh�E,e ⋅ � d�

(18)

ah(uh, vh) =
∑
E∈Ωh

aE
h
(uh, vh), bh(uh, vh) =

∑
E∈Ωh

bE
h
(uh, vh), ch(uh, vh) =

∑
E∈Ωh

cE
h
(uh, vh).

(19)

aE
h
(uh, vh) = ∫E

√
detGG−1 Π0,E

k−1
∇uh ⋅ Π

0,E

k−1
∇vh d� + SE

h

��
I − Π∇,E

k

�
uh,

�
I − Π∇,E

k

�
vh

�
,
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The bilinear form SE
h
(⋅, ⋅) in the definition of aE

h
(⋅, ⋅) provides the stability term and 

can be any symmetric positive definite bilinear form defined on E for which there 
exist two positive constants c∗ and c∗ such that

Note that SE
h
(⋅, ⋅) must scale like the restriction of a(⋅, ⋅) on the mesh element E . 

Also, the stabilization term in the definition of aE
h
(⋅, ⋅) gives a zero contribution if 

one of its two entries is a polynomial of degree (at most) k since Π∇,E

k
 is a projection 

on the polynomial space. In this work, we consider two possible implementations of 
the stability term:

–	 The choice originally provided in [11], which is sometimes called the “dofi-dofi 
stabilization” in the virtual element literature, and reads as 

 where DOFi(⋅) is the map between a virtual function and its degrees of freedom;
–	 The formula proposed in [48], which is sometimes called the “D-recipe stabiliza-

tion” in the virtual element literature, and reads as 

 where A is the matrix resulting from the implementation of the first term in the 
bilinear form aE

h
(⋅, ⋅) : 

 where �i (and �j ) are the “canonical” basis functions generating Vh
k
(E) , i.e., the 

functions whose i − th (or j − th ) degree of freedom is equal to 1 and all other 
degrees of freedom are 0. We note that these basis function are unknown in the 
virtual element framework, but their projections Π0,E

k−1
∇�i (and Π0,E

k−1
∇�j ) are 

computable.
The stabilization term, and, in particular, condition  (22), is designed in order that 
aE
h
(⋅, ⋅) satisfies the two fundamental properties:

(20)bE
h
(uh, vh) = ∫E

√
detGG−1∕2�̂ ⋅ Π0,E

k−1
∇uh Π

0,E

k−1
vh d�,

(21)cE
h
(uh, vh) = ∫E

√
detG�Π0,E

k−1
uh Π

0,E

k−1
vh d�.

(22)c∗a
E(vh, vh) ≤ SE

h
(vh, vh) ≤ c∗aE(vh, vh) ∀vh ∈ Vh

k
(E) with Π∇,E

k
vh = 0.

(23)SE
h
(vh,wh) =

NDOF∑
i=1

DOFi(vh)DOFi(wh),

(24)SE
h
(vh,wh) =

NDOF∑
i=1

AiiDOFi(vh)DOFi(wh),

(25)Aij ∶= ∫E

√
detGG−1 Π0,E

k−1
∇�i ⋅ Π

0,E

k−1
∇�j d�,
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–	 k-consistency: for all vh ∈ Vh
k
 and for all q ∈ ℙk(E) it holds 

–	 Stability: there exist two positive constants �∗, �∗ , independent of h and E , 
such that 

The virtual element forcing term To approximate the right-hand side of  (3), 
we split the term into the sum of elemental contributions and approximate every 
local linear functional by means of the orthogonal projection Π0,E

k
vh:

With these definitions the VEM scheme in problem 2 is completely determined. 

Convergence properties The numerical analysis of the scheme requires the follow-
ing hypotheses on the mesh, typical of VEM methods.

Assumption 1  (Mesh regularity assumptions) There exists a positive constant � 
independent of h (and, hence, of Ωh ) such that 

	 (i)	 Every element E of every mesh Ωh is star-shaped with respect to a disk with 
radius ≥ �hE;

	 (ii)	 Every edge e ∈ �E has length he ≥ �hE.

The star-shapedness property (i) implies that the polygonal elements are simply 
connected subsets of ℝ2 . In turn, the scaling assumption (ii) implies that the num-
ber of edges in each elemental boundary is uniformly bounded over the whole 
mesh family {Ωh}.

The following theorem summarizes the results for the virtual element approxi-
mation in problem 2. The proof of these results found in [15] is easily extended to 
our setting. Indeed, we choose to write the theorem in terms of the chart Ω and its 
discretization Ωh , but it can be written equivalently in terms of the surface �  and 
its discretization �h , since the norms of the parametrization and its inverse are 
uniformly bounded by hypothesis.

Theorem 1  Let u ∈ Hk+1(Ω) ∩ H1
0
(Ω) , be the solution to the variational problem 2 

on a convex domain Ω with f ∈ Hk(Ω) . Let uh ∈ Vh
k
 be the solution of the virtual 

element method (3) on every mesh of a mesh family {Ωh} satisfying the mesh regu-
larity assumption 1. Then, a strictly positive constant C independent of h exists such 
that

(26)aE
h
(vh, q) = aE(vh, q);

(27)�∗a
E(vh, vh) ≤ aE

h
(vh, vh) ≤ �∗aE(vh, vh) ∀vh ∈ Vh

k
.

(28)Fh(vh) =
�
E∈Ωh

�
f ,Π0,E

k
vh
�
E
where

�
f ,Π0,E

k
vh
�
E
= ∫E

√
detG f Π0,E

k
vh d�.
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–	 The H1-error estimate holds: 

–	 The L2-error estimate holds: 

The constant C may depend on the coefficient bounds �∗ , �∗ , wmax and �max , the stabil-
ity constants �∗ and �∗ , the mesh regularity constant � , the size of the computational 
domain |Ω| , and the approximation degree k.

The approximate solution uh is not explicitly known inside the elements. Conse-
quently, in the numerical experiments of Sect. 4, we approximate the error norms as 
follows:

Here, Π0
k
uh is the global projector on the space of discontinuous polynomials of 

degree at most k built on mesh Ωh , and ||u − Π0
k
uh||H1(Ωh)

 is the norm in the broken 
Sobolev space H1(Ωh) that is defined by summing the H1(E)-norms of each element 
E . Operator Π0

k
uh is obtained by taking the elemental L2-orthogonal projections 

Π0,E

k
uh in every mesh element E , which are computable from the degrees of freedom 

of uh , so that 
(
Π0

k
uh
)
|E = Π0,E

k

(
uh|E

)
.

4 � Numerical results

In this section we present numerical results on synthetic test cases to support the state-
ments of the previous sections by means of experimental evidence. Our test cases are 
grouped into four main categories. The first two sets of experiments, Test Cases  1 
and 2, are aimed at showing the correctness of our implementation and the order of 
convergence of the proposed VEM scheme up to fourth order of accuracy. In the third 
set of experiments, Test Case 3, we explore the limits of the VEM approach as the 
metric tensor G becomes more and more anisotropic (large condition numbers) as a 
function of the regularity of the surface. Finally, Test Case 4 considers the use of ste-
reographic projection to build a two chart atlas for the sphere to show the applicability 
of our approach in a multi-chart case.

In the first three experiments we consider the surface provided by the graph of the 
following height function, a simple trigonometric perturbation of a portion of a sphere 
embedded in ℝ3:

where r is the radius of the sphere, and a and k are the amplitude and the frequency 
of the cosine trigonometric perturbation. We use the Monge parametrization given 

(29)||u − uh||H1(Ω) ≤ Chk
(|u|Hk+1(Ω) + |f |Hk(Ω)

)
;

(30)||u − uh||L2(Ω) ≤ Chk+1
(|u|Hk+1(Ω) + |f |Hk(Ω)

)
.

||u − uh||H1(Ω) ≈ ||u − Π0
k
uh||H1(Ωh)

and ||u − uh||L2(Ω) ≈ ||u − Π0
k
uh||L2(Ω).

(31)x3 = H(x1, x2) =

√
r − (x1)2 − (x2)2 + a cos2

(
k
�

2
((x1)2 + (x2)2)

)
,
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by � = {x1 = s1, x2 = s2, x3 = H(x1, x2)} and work on the single chart represented by 
the domain Ω = {(s1, s2) ∶ s1, s2 ≥ 0 and

√
(s1)2 + (s2)2 ≤ 1} . For r → 1 the metric 

tensor G tends to become singular as one of the two tangent vectors increases indefi-
nitely at the boundary of the surface, leading to large spectral condition numbers 
�(G) . Analogously, the condition number of G increases when the frequency k and 
the amplitude a are increased. Fig. 2 shows the three-dimensional plot of the sur-
face in the left panel, and the spatial distributions of g

11
 , g

22
 , and 

√
detG , respec-

tively, in the next three columns. The rows are relative to the case r = 2 , with the 
sphere ( a = 0 ) shown in the top, while the trigonometric deformation of the sphere 
is shown in the middle row for the case a = 0.5 and k = 5 , and in the bottom row for 
the case a = 2 and k = 5 . In this latter cases we note that G has a sinusoidal behav-
ior with g

11
≈ 1 in the regions where g

22
≈ 20(150) , leading to �(G) ≈ 20(150) . Note 

that G does not enter the reaction term and has a small effect in the advection term, 
as it amounts to a rotation and a stretching of the advective field. On the other hand, 
it has a large effect on the coercivity of the diffusion bilinear form, and thus we con-
centrate on the latter. The condition number of the VEM stiffness matrix A can be 
bounded by [22, 58]:

Fig. 2   Surfaces and metric components used in the numerical experiments (see Eq. (31)). The columns 
show the spatial behavior of the surface �  , g

11
 , g

22
 , and 

√
detG ( r = 2 , a = 0 first row; r = 2 , a = 0.5 , 

k = 5 second row; r = 2 , a = 2.0 , k = 5 third row). Note the completely different color scales between the 
case a = 0 and the cases a > 0 , where the metric tensor displays strong anisotropy ( g

11
≈ 20 (150) where 

g
22
≈ 1 ). The choice of an orthogonal reference frame ensures that the principal directions of anisotropy 

(the eigenvectors of G ) in the second order diffusion term do not vary in space
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where �(A
LAP
) is the condition number of the VEM stiffness matrix of Laplace equa-

tion. In our case, we have that:

Note that, 
√
det(G) �(G−1) ≥ 1 is smooth although possibly unbounded when r → 1 

(or k and a are large), as mentioned above. We would like to remark that this is not a 
contraddiction of Eq. (10), but rather a consequence of the fact that we use a single 
Monge parametrization. The presence of the metric tensor in the equation always 
deteriorates, possibly drastically, the condition number of the system matrix.

In Test Case 4, we consider Laplace equation (i.e., � = 0 and � = 0 ) on � = S2 
and use two parametrizations, one for the northern and one for the southern hemi-
spheres, given by:

and:

We proceed by discretizing the unit disk as reference domain once and for all for 
both hemispheres, with a polygonal approximation of the boundary. We then use the 
appropriate charts to express the VEM linear and bilinear forms in the northern and 
southern cells. We connect the two domains together by means of a simple Jacobi 
domain decomposition approach, and to avoid iterations we use the manufactured 
solution as boundary condition at the domain interface. Note that the use of curved 
edges would allow to solve the problem without the need to decompose the compu-
tational domain, exploiting the fact that the transition map for the two charts is read-
ily available and sufficiently regular.

In all the experiments, numerical errors are evaluated by defining a manufactured 
solution u(s1, s2) ∶ Ω → ℝ and calculating the resulting forcing function f (s1, s2) by 
substitution into the original equation. Using u(s1, s2) = sin(2�s1) sin(2�s2) and tak-
ing into account the contributions of the metric G , the general form of f (s1, s2) can 
be evaluated as:

�(A) ≤ max
�∈Ω

�√
detG(�) �(G−1(�))

�
�(A

LAP
),

√
det(G) �(G−1) =

�
max{g

11
, g

22
}3

min{g
11
, g

22
}
.

�N(s
1, s2) =

(
2s1

1 + (s1)2 + (s2)2
,

2s2

1 + (s1)2 + (s2)2
,
1 − (s1)2 − (s2)2

1 + (s1)2 + (s2)2

)
= (x1, x2, x3) ,

�S(s
1, s2) =

(
2s1

1 + (s1)2 + (s2)2
,

2s2

1 + (s1)2 + (s2)2
,
−1 + (s1)2 + (s2)2

1 + (s1)2 + (s2)2

)
= (x1, x2, x3) .



1 3

Arbitrary-order intrinsic virtual element method for elliptic… Page 17 of 28     30 

where �̂ = [w(1),w(2)]
T.

4.1 � Test case 1

We use two families of polygonal meshes discretizing the domain (see Fig. 3). To 
avoid geometric error in the refinement process we uniformly distribute 8 nodes on 
the curvilinear boundary of Ω and approximate it with linear interpolation. All the 
refined meshes are built on this geometry. The meshes in the first family are con-
strained Delaunay triangulations obtained using Triangle [59, 60], dividing by a fac-
tor 4 the area target of the elements at each level. The second family of meshes is 
obtained by means of PolyMesher [61] by imposing approximately the same number 
of elements of the triangulation at each corresponding level. Note that the sides of 
the boundary elements may contain as extra node one of the fixed vertices used to 
define the curvilinear boundary, and are thus formed by more than one edge.

Convergence is tested on four different grid refinement levels, in the cases of 
a = 0 and r = 1.1, 1.01, 1.001 . Correspondingly, the results are reported in Figs. 4 
and 5 for the triangulations and the polygonal meshes, respectively. The experi-
mental convergence rates are optimal for all the tested polynomial orders, as can 
be seen from the figures and from the slopes of the lines, which are obtained by 

f (s1, s2) = sin(2�s2)

�
2�w(1) cos(2�s

1)
√
g

11

+ � sin(2�s1)

�

+

� sin(2�s1) cos(2�s2)

�
g

11

�g
22

�s2
−

�g
11

�s2
g

22

�

g
22
detG

+ � sin(2�s2)

⎡⎢⎢⎢⎢⎣

cos(2�s1)

�
�g

11

�s1
g

22
− g

11

�g
22

�s1

�

g
11
detG

+
4� sin(2�s1)(g

11
+ g

22
)

g
22
detG

⎤⎥⎥⎥⎥⎦
+

2�w(2) sin(2�s
1) cos(2�s2)

√
g

22

,

Fig. 3   TC1: Level 0 and 1 triangulations (left panels) and polygonal meshes (right panels) of Ω
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Fig. 4   TC1: Convergence of L2 (top) and H1 (bottom) errors vs h on the triangulations. The convergence 
lines are obtained by approximating via least-squares all the point values. The different lines denote dif-
ferent polynomial orders from 1 (solid line with circular data points) to 4 (dashed-dotted line with trian-
gular data points). The optimal theoretical slope is represented by the lower right triangles

Fig. 5   TC1: Convergence of L2 (top) and H1 (bottom) errors vs h on the polygonal meshes. The con-
vergence lines are obtained by approximating via least-squares all the point values. The different lines 
denote different polynomial orders from 1 (solid line with circular data points) to 4 (dashed-dotted line 
with triangular data points). The optimal theoretical slope is represented by the lower right triangles
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approximating via least-squares all the point values. This confirms the theoretical 
expectations of the behavior of the VEM.

4.2 � Test case 2

This test case is designed to verify the robustness of the scheme for increasingly 
accurate approximations of the curvilinear boundary. To this aim we look at the 
errors for a fixed mesh size and vary the number of vertices used to discretize 
the curvilinear boundary, using only the polygonal mesh. Two sets of meshes are 
defined: one with approximately 25 elements and the other with 100 elements. 
In each set we consider 5 mesh levels characterized by different approximations 
of the curvilinear boundary. In the first level the boundary is discretized with 
8 vertices, as in the previous test case. The subsequent levels are obtained by 
doubling each time the number of nodes located on the curvilinear boundary to 
arrive at the final level with 128 vertices (see, e.g., Fig. 6). Since the size of the 
cells remains approximately the same, the boundary sides of the boundary ele-
ments are formed by an increasing number of straight edges. While the mesh lev-
els approximate the curvilinear boundary with increasing accuracy, the fact that 
the length of the edges of the boundary elements becomes unbalanced may lead 
to increased errors in the VEM solution. However, we know from the literature 
[23] that such unbalance may only affect the constant that appears in the error 
estimates. Such constant is increased by a factor proportional to the square root 
of log(1 + �) , � being the ratio between the maximum and the minimum edge 
length. Hence, in our experiments we expect the errors to remain approximately 
constant as we refine the boundary.

The results of the simulations are shown in Fig. 7, where we report the L2 and H1 
errors (top and bottom, respectively) with respect to the manufactured solutions as a 
function of the number of points discretizing the curved boundary for the two set of 
meshes (left and right). It is evident that the proposed scheme is robust with respect 
the increasing unbalance of the edge lengths as the errors for each polynomial order 
remain approximately constant.

Fig. 6   TC2: Level 0, 1, and 2 of polygonal meshes of Ω with 25 cells and increased boundary resolution 
(8, 16, and 32 nodes)
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4.3 � Test case 3

This test case is aimed at studying the robustness of the scheme to spatial vari-
ability and strong anisotropy of the diffusion bilinear form with spatially variable 
anisotropy ratios. We verify convergence of the proposed VEM scheme by solv-
ing our equations on the same families of meshes of Test Case 1 with r = 2 , k = 5 
and two different values for a, a = 0.5 and a = 2 . Figure 2, second and third rows, 
shows the surface and the spatial distribution of g

ii
 for k = 5 and a = 0.5 and 2, 

respectively. The spatial variability of the anisotropy ratio (ratio between g
11
 and 

g
22

 or its inverse) varies between 1 and 150 for a = 2 corresponding to large basis 
vectors for the tangent plane. This test case challenges the ability of the discre-
tization scheme to handle large and spatially varying anisotropy ratios.

Figures 8 and 9 show the numerical convergence of the L2 and H1 norms of 
the error as a function of h . We note that asymptotic behavior of the error is 
reached as soon as the mesh size is able to resolve the spatial scales of varia-
tion of the metric tensor. For this reason the convergence lines in the figures are 
obtained by interpolation of the last two point values for each polynomial order. 
Pre-asymptotic convergence is more evident for the higher order polynomials. 

Fig. 7   TC2: L2 (top) and H1 (bottom) errors vs number of points on the curvilinear boundary on the 
polygonal meshes (average of 25 cells, left panels; average of 100 cells, right panels). The different lines 
denote different polynomial orders from 1 (solid line with circles) to 4 (dashed-dotted line with triangles)
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We attribute this behavior to the smoothing effects of a lower order interpola-
tion. Indeed, the first two or three point values for all polynomial orders display 
at least the same convergence order of linear polynomials.

The high degree of anisotropy of this test case causes a loss of convergence 
in the higher polynomial orders. This behavior is more evident for the polygonal 
meshes. To better quantify this convergence loss, Tables 1 and 2 report the con-
vergence order sequence for the triangulations and polygonal meshes, respec-
tively. We note that, for first and second order polynomials, almost optimal order 
of convergence is reached for both mesh sets and both a = 0.5 and a = 2 . In the 
higher orders, a clear loss of at least half an order is evident. This can be attrib-
uted to difficulties in resolving the large anisotropy ratios that are typical of this 
test case. The fact that this occurs only for the higher orders is due to the ill-con-
ditioning of the resulting linear system that controls the ratio between the norms 
of the residuals and the errors in the linear system solver.

Fig. 8   TC3: Convergence of L2 (top) and H1 (bottom) errors versus h on the triangulations ( a = 0.5 , left 
panels; a = 2 , right panels). The convergence lines are obtained by approximating via least-squares only 
the last two point values. The different lines denote different polynomial orders from 1 (solid line with 
circles) to 4 (dashed-dotted line with triangles). The optimal theoretical slope is represented by the lower 
right triangles
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4.4 � Test case 4

This test case shows the convergence properties of the proposed framework in 
a multiple charts setting. We discretize the full unit disk with 5 polygonal mesh 
levels following the strategy reported in Test Case  1, so that the level � = 0 is 
characterized by 100 cells and the last one ( � = 4 ) by 25600 cells. The VEM 
solution, reconstructed on � = S2 using nodal only degrees of freedom, is shown 
in Fig. 10 for the coarsest mesh.

The experimental convergence on these mesh levels is reported for the L2 and 
H1 norms of the error as a function of h in Fig. 11 and in Table 3. The numeri-
cal results show that the proposed approach is functioning as expected and that 
the use of two different charts doe not influence the optimal convergence of the 
scheme. Obviously, this is a very favorable case as the stereographical projection 
produces charts and, if necessary, transition maps that are sufficiently smooth to 
allow high order. In the future it will be important to study how to derive charts 
and transition maps with specified regularity for different surfaces, possibly start-
ing from the work of [44].

Fig. 9   TC3: Convergence of L2 (top) and H1 (bottom) errors vs h on the polygonal meshes ( a = 0.5 , left 
panels; a = 2 , right panels). The convergence lines are obtained by approximating via least-squares only 
the last two point values. The different lines denote different polynomial orders from 1 (solid line with 
circles) to 4 (dashed-dotted line with triangles). The optimal theoretical slope is represented by the lower 
right triangles
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5 � Conclusions

We have developed an arbitrary-order virtual element method for the discre-
tization of elliptic surface PDEs. The approach employs a local parametrization 

Table 1   TC3: experimental errors and convergence rates for the triangular mesh set
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2 3.30 10−2 2.076 1.18 10−3 3.086 2.62 10−4 2.436 5.60 10−5 3.851
3 8.50 10−3 1.956 1.69 10−4 2.809 1.35 10−5 4.276 1.86 10−6 4.911
4 2.13 10−3 1.995 2.32 10−5 2.861 9.47 10−7 3.837 1.16 10−7 4.000
5 5.43 10−4 1.998 2.80 10−6 3.088 4.99 10−8 4.303 2.89 10−9 5.399
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0 3.95 10−1 – 5.26 10−2 – 2.99 10−2 – 2.84 10−2 –
1 1.40 10−1 1.495 1.59 10−2 1.730 9.61 10−3 1.639 8.40 10−3 1.755
2 3.28 10−2 2.094 3.14 10−3 2.335 1.28 10−3 2.913 1.16 10−3 2.852
3 8.07 10−3 2.023 4.27 10−4 2.878 1.07 10−4 3.571 6.66 10−5 4.125
4 2.09 10−3 1.951 8.55 10−5 2.321 1.07 10−5 3.324 2.92 10−6 4.512
5 5.38 10−4 1.981 1.14 10−5 2.940 7.38 10−7 3.910 1.38 10−7 4.462
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2 1.49 10−2 1.613 3.87 10−3 2.455 6.31 10−4 3.115 1.61 10−4 3.891
3 3.92 10−3 1.859 5.16 10−4 2.799 6.99 10−5 3.056 1.31 10−5 3.486
4 1.15 10−3 1.759 6.20 10−5 3.046 7.07 10−6 3.294 7.32 10−7 4.142
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of the surface to properly re-define the PDE on the local chart. This allows the 
straight-forward definition of a two-dimensional VEM discretization at all poly-
nomial orders, overcoming the difficult task of the consistent approximation of 
the surface and of the distance function of its tubular neighborhood. The draw-
back of the approach is that the geometrically intrinsic form of the PDE contains 
the metric information, which may be strongly non-isotropic and highly variable 
in space, depending the regularity of the surface. The choice of the VEM scheme 

Fig. 10   TC4: Numerical solution (nodal dofs only) on the coarsest mesh with linear interpolation from 
the nodal values

Fig. 11   TC4: Convergence of L2 (left) and H1 (right) errors versus h on the polygonal meshes. The con-
vergence lines are obtained by approximating via least-squares only the last three point values. The dif-
ferent lines denote different polynomial orders from 1 (solid line with circles) to 4 (dashed-dotted line 
with triangles). The optimal theoretical slope is represented by the lower right triangles



1 3

Arbitrary-order intrinsic virtual element method for elliptic… Page 25 of 28     30 

is motivated by the need to ensure robustness and high order of convergence for 
these anisotropic and spatially variable coefficients.

The developed scheme has been tested on several numerical examples showing 
varying degrees of regularity. In fact, optimal orders of convergence up to 5 has been 
reached for surfaces with relatively small curvatures. Only when curvatures and met-
ric information become extremely large loss of convergence is noticed. This loss of 
convergence is related to the presence of strongly anisotropic diffusion tensors and 
strongly aligned advective fields due to the behavior of the metric tensor. Handling 
strong anisotropy is still a major challenge in the numerical solution of PDEs by the 
virtual element method, and is left for future research. This difficulty can be relaxed 
also by employing multiple charts that decrease the anisotropic characteristic of the 
metric tensor. However, proper regularity of the transition maps between the differ-
ent charts must be ensured to achieve full order convergence. To verify the ability 
of our formulation to work with multiple charts we tested the proposed scheme on 
the full sphere by employing two charts arising from the stereographical projection. 
Future work will be addressed to define for general surfaces appropriate multiple 
charts with regular transition maps starting from the work of [44].

One of the major advantages of the developed VEM formulation is that can be 
used efficiently to minimize geometric errors of curvilinear boundaries. We have 
tested our approach on an hemispherical surface discretized by a fixed number of 
polygonal cells, where the boundary edges formed by an increasing number of 
nodes. The resulting errors were independent of the edge discretization, showing the 
robustness of the VEM scheme in this situation.
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