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Abstract: In this paper, we consider the first eigenvalue A1 (Q) of the Grushin operator A = Ay, + X1 |2s Ay, with
Dirichlet boundary conditions on a bounded domain Q of R? = R%*%, We prove that A;(Q) admits a unique
minimizer in the class of domains with prescribed finite volume, which are the cartesian product of a set in R%
and asetin R%, and that the minimizer is the product of two balls Qf ¢ R% and Q; ¢ R%. Moreover, we provide
alower bound for |Q7] and for A;(Q] x Q). Finally, we consider the limiting problem as s tends to 0 and to +oo.
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1 Introduction

We consider the Grushin operator A in R? defined by
Ag = DAy, + |X1[¥Ay,, $>0,

whered € N, d > 2,dq,dy € N,d = dy + dy, x1 € R%, and x, € R%. Here x; and X, denote the first d; and last d
components of x € R4, and Ay, denotes the standard Laplacian with respect to x;, i = 1, 2.

As one can immediately realize, A¢ is not uniformly elliptic since it degenerates to Ay, on the xj-axis. In
addition, if s € N, it can be written as

k
Ag =) X7,
i=1

where k € Nand {X;}i=1,... k is a family of smooth vector fields satisfying the Hormander condition, i.e. {X;i}i=1, .k
generates a Lie algebra of maximum rank at any point (see [23]). However, in general (i.e. for s ¢ IN) the Hor-
mander condition fails to hold since the generating vector fields are not smooth.

The operator Ag has been independently introduced by Baouendi [1] and Grushin [20, 21]. Later on, it has
been generalized and further studied by several authors under different points of view. Here we mention, with-
out the sake of completeness, Franchi and Lanconelli [15-17] for the Holder regularity of weak solutions and
for the embedding of the associated Sobolev spaces, Garofalo and Shen [19] for Carleman estimates and unique
continuation results, D’Ambrosio [9] for Hardy inequalities, and Thuy and Tri [31] and Kogoj and Lanconelli [24]
for semilinear problems. Finally, we mention Chen, Chen, Duan and Hu [4], Chen and Chen [5] Chen, Chen and
Li [6], and Chen and Luo [7] for asymptotic bounds for eigenvalues.
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It is well known that the spectrum of the problem

—-Agu=Au inQ,
(11)

u=20 on 0Q,

in a bounded domain (i.e. a connected open set) Q of R? is made of eigenvalues of finite multiplicity that can be
arranged in a divergent sequence:

0<A(Q)<---<Ai(R) <+ / +00.

In the present paper, we are interested in moving some steps toward the understanding of the minimization
problem of the first eigenvalue A1 () among domains Q with prescribed finite volume. Since the seminal works
of Faber [13] and Krahn [25], it is known that the ball minimizes the first eigenvalue of the Dirichlet Laplacian
among all domains with a fixed volume (see also [22] for a monograph on optimization problems for eigenvalues
of elliptic operators). The same problem for degenerate operators is far from being understood and, to the best of
our knowledge, no conclusive results for the optimization of Grushin eigenvalues are available in the literature,
not even for the minimization of the first eigenvalue. In particular, an optimal shape for the first eigenvalue is
not even conjectured, not even in the simplest case d = 2, s = 1, and in general it is not an euclidean ball (see
Section 4)

It is worth mentioning that Lamberti, Luzzini and Musolino [27] showed that, when s € N, the symmetric
functions of the eigenvalues {A,},en depend real analytically upon suitable perturbations of the domain and
proved an explicit Hadamard-type formula for their shape differential. This formula is then used to characterize
critical domains under isovolumetric perturbations via an overdetermined problem, which for the first eigen-
value A; with normalized eigenfunction u; consists of finding the domains such that the following problem is
satisfied:

- Aguy :/11111 in Q,
up =0 on o0Q,
(%)Zlvdz =const. ondQ.
v
Here, v = (vy,, Vy,) denotes the outer unit normal field to 0Q and v¢ := (vy,, [X1/5Vx,). To the best of our knowl-
edge, the understanding of this kind of overdetermined problems for degenerate operators is at the moment
limited, and thus no information on critical domains can be extracted from them.

Our point of view in order to give a first and partial answer to the problem of minimizing the first Grushin
eigenvalue is to consider the case in which Q is the cartesian product of two bounded domains Q; ¢ R%,
Q, ¢ R%. That is, for V > 0 fixed, we set

A(V) = {91 x Q1 Q1 < RY, @, ¢ R%, Q4, Q, are bounded domains, |Q4]|Q] = V},

and we consider the minimization problem
min A;(Q). .2)
QeA(V)

By separation of variables, problem (1.1) decouples into two problems. The first one is a problem for the stan-
dard Laplacian in R% and the second one for the Schrodinger operator with potential u|x;|** in R%, where u is
the coupling constant. Our main result shows that problem (1.2) admits a unique minimizer which is the prod-
uct of two balls Q7 and Q7 in R% and R%, respectively (see Theorem 3.10). The main tool of the uniqueness
proofrelies on a differential inequality involving the second derivative of the first Schrédinger eigenvalue with
respect to the coupling constant (see Proposition 3.8). As a further result, we provide some information on the
localization of this unique minimum by proving a lower bound for |Q7|, which in turn implies a lower bound
for 21(Q] x Q7) (see Propositions 3.11 and 3.12). Then we study the asymptotic behavior of the problem when
s — 0 and s — +oo and we deduce that our lower bounds are sharp in these limits. Finally, we provide some
numerical computations in the planar case, that is, for d; = d, = 1. We first numerically solve the minimization
problem for some value of s > 0 and then we also compute the first eigenvalue in the case of balls in R? and we
compare it with the first eigenvalue on rectangles.
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The paper is organized as follows: Section 2 contains some preliminaries on the eigenvalue problem for the
Grushin operator Ag. In Section 3, we prove our main results on the minimization problem on cartesian product
domains. In particular, we prove that the minimization problem for the first Grushin eigenvalue admits a unique
minimum, we provide some information on the localization of this minimum proving a lower bound, and we
study the behavior of the problem when s — 0 and s — +oco. Finally, in Section 4 we present the numerical
computations.

2 Preliminaries on the eigenvalue problem

Let Q be a bounded domain in R%. We retain the standard notation for the Lebesgue space L%(Q) of real-valued
square integrable functions. We denote by H é(Q) the space of functions in L2(Q) such that V, u € (L3(Q))% and
[x1|5Vx,u € (L%(Q))%. The space H};(Q) is a Hilbert space with the following scalar product:

(U, V)62 = (U, Vg + (Vi U, Vi, V)2 + (X1 Vi U, X115V, v),  forall u, v € H(Q).
Here (-, - ), denotes the standard scalar product in L%(Q). Moreover, if u € H};(Q), we set
Vol = (Vi U, [X1°Vy,u)

and we refer to Vs u as the Grushin gradient of u. We denote hy Hé’O(Q) the closure of C°(Q) in H, };(Q). Analogs
of the Rellich-Kondrachov embedding theorem and of the Poincaré inequality hold in Hé,O(Q). That is, the
following theorems hold (for proofs we refer to [18, Theorem 4.6] and [9, Theorem 3.7], respectively).

Theorem 2.1 (Rellich-Kondrachov). Let Q be a bounded domain in RY. Then the space HéJO(Q) is compactly
embedded in L%(Q).

Theorem 2.2 (Poincaré inequality). Let Q be a bounded domain in RY. Then there exists C > 0 such that
lullz2e) < ClVeullzaye  for allu € Hg o(Q).

We consider the eigenvalue problem for the Grushin operator with Dirichlet boundary conditions:

-Agu=Au inQ,
2.1

u=0 on o0Q,

in the unknowns A (the eigenvalue) and u (the eigenfunction). Problem (2.1) is understood in the weak sense as
follows:

j Veu - Vgvdx = A j uvdx forallv e Hy ((Q) 22)

Q Q
in the unknowns A € Rand u € H, 16,0(9). By Theorem 2.1, Theorem 2.2 and by a standard procedure in spectral
theory, problem (2.2) can be recast as an eigenvalue problem for a compact self-adjoint operator in L?(Q). In par-
ticular, the eigenvalues of equation (2.2) have finite multiplicity and can be represented by means of a divergent
sequence:

0<A1(Q) £ A2(Q) <+ < A(Q) < -+ / +00.

Moreover, by the min-max principle (see [10, Section 4.5]), the following variational characterization holds:
[Veul* dx
4i(Q) = min max Jo

EcHL (@) u<E [ u?dx
: Q
dimE= “*0

forallj € N.

We note that by Monticelli and Payne [29, Theorem 6.4] there exists a non-negative eigenfunction u; corre-
sponding to the first eigenvalue A1(Q). In addition, A1 (R) is known to be simple if s € IN and Q is connected and
non-characteristic (see [5, Proposition A.2]), or if Q \ {x1 = 0} is connected (see [29, Theorem 6.4]).
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3 The eigenvalue problem in cartesian product domains

Here we consider the eigenvalue problem for the Dirichlet Grushin operator (2.1) in cartesian product domains,
so that it is possible to proceed by separation of variables. Let Q; < R%, Q; ¢ R% be two bounded domains and
let Q = Q1 x Qy. We claim that the solutions u of problem (2.1) can be written as

u(x, x2) = fix1)g(xa),  (x1,x2) € Q1 x Qa.
In this case, (2.1) becomes
~g0)Ax flxr) = X1 f) Ay, g0x2) = Afx1)g(xa), (X1, x2) € Q1 x Qo
which is equivalent to
80)(=hx flxa) = A1) = Ixa|flx) B, 8(xa), (X1, x2) € Q1 x Q.

Separating the equations and imposing the boundary conditions, for some y > 0 we have

- Ay, g = in Qy,
{ ng yg 2 (31)
g=0 on 0Qo,
and )
-A x1|“f = Af in Qq,
xf +ulxi|=f = Af 1 32
f=0 onoQ.

The eigenvalue problem is then split into two coupled eigenvalue problems, one for the Laplacian and the
other for the Schrédinger operator with potential u|x;|%. As is well known, problem (3.1) admits a sequence
of eigenvalues

0 < u1(R2) < ta(Q2) < -+ < Wj(Q) <-++ / +00,

with corresponding eigenfunctions {gj}jen orthonormal in L%(Q,), whereas problem (3.2), for each fixed u > 0,
admits a sequence of eigenvalues

0 < Ex(u, Q1) < Ex(u, Q1) <--- < Ej(u, Q1) < -+ / +00,

with eigenfunctions {f].” }jew orthonormal in L%(Q1). We note that, by the min-max principle, the first eigenvalue
Eq(u, Q1) of problem (3.2) is given by

o, IV 1P+ xR dx
Ey(g, Q)= min 3 :
feHy(@\(0} Jg, * dx1

Here and throughout this paper, by H},(Ql) we denote the closure of C°(Q1) with respect to the norm
(||j]|§ + ||VX1]‘]|§)1/2 of H'(Q1). Therefore, a family of eigenvalues is given by {Ej(ux(Q2), Q1)}j,ken With asso-
ciated eigenfunctions {gx j” "(QZ)}]-J{E]N. The claim is proved since, recalling that {gx}xen and {fj“ k(QZ)}jelN are
complete systems, it is standard to show that

{gkf}#k(QZ)}j,keN
is a complete system in L%(Q1 x Q). Then
{An(@}nen = {Ej(r(R2), Q)}j ke
and

(3.3)

o IV ua(Qa)Ixa P2 dxy
A1(Q) = E1(u1(R2), Q1) = min : :
feH;(@1)\(0) Jg, f* dx1

Remark 3.1. Since the first eigenvalue of the Dirichlet Laplacian —Ay, on Q; and the first eigenvalue of the
Dirichlet Schrédinger operator —Ay, + ylxllzs on Q are well known to be simple, it is immediately seen that,
in the case of a cartesian product domain Q = Q; x Q,, Q; ¢ R% and Q; ¢ R%, the first eigenvalue A1(Q) is
simple without requiring any additional assumption. However, as already pointed out, the simplicity of the
first Grushin eigenvalue is known to hold without requiring Q to be a cartesian product domain under some
additional assumptions (see [29, Theorem 6.4] and [5, Proposition A.2]).
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3.1 Existence of a minimum
We now start to consider the minimization problem for the first eigenvalue in cartesian product domains with
a prescribed volume. That is, we fix V > 0 and we consider the minimization problem
min A1(Q), (3.4)
QeA(V)
where
AV) ={Q1xQ2: Q1 ¢ R%, Q, c R%, Q;, Q, are bounded domains, |Q1]|Q2| = v}

Remark 3.2. As is well known, if one removes a zero capacity set from either Qi or Q,, the eigenvalues of
problems (3.1) and (3.2) remain the same. Thus here in this paper, we do not allow this kind of irregularity in
the domains and when speaking of uniqueness of minimizers we always mean uniqueness up to sets of zero
capacity (see also [22, Section 3.2]).

Remark 3.3. Instead of considering the minimization problem (3.4), one can for instance consider the more
simple problem of minimizing A;(Q) in the class of cartesian products with each product domain having pre-
scribed volume, that is, in

B(Vy, V2) = {Q1 x Qy : Q1 < RY, Q; < R%, Q4, Q, are bounded domains, |Qi] = Vi, |Q] = Va}

for some V3, V5 > 0. Since the ball in R% with volume V5, which we denote by By(V5), is the unique mini-
mizer of the first eigenvalue of the Dirichlet Laplacian among all domains with volume V; (up to translation),
it minimizes p1(R2). Accordingly, in order to minimize A1(Q) for Q = Q1 x Q, € B(Vy, V3), we must have

Qy = By(V>).

Also, by Benguria, Linde and Loewe [2, Theorems 3.7 and 4.2], the ball B1(V;) in R% centered at zero with
volume V7 is the unique minimizer of the first eigenvalue of the Schrodinger operator with potential 4 (Qa)|x]%.
Thus, the unique minimum of A1(Q) in B(Vy, V) is attained by

Q = B1(Vy) x Bo(V),

up to a translation of By(V3). As one could expect, the minimization problem in B(V1, V;) is trivial and not
general enough to capture the anisotropic nature of the problem.

We then return to the minimization problem (3.4). Let Q = Q1 x Qy € A(V). We set
- 1 .
Q=19 9 Q, j=12,

so that
Q=1 j=1,2.

Let B; be the ball in R% centered at zero with |B;| = 1, and let B; be a ball in R% with |B;| = 1. Then
~ _2 ~ _2 2 _2 2
U1(Q2) = 1(R2)|Qa| % = u1(Q)V" % |Q1|% = pi1(Bz)V % |Qq]%.
By equation (3.3) we have

Jo, 1V f1? dxa + 1(Q2) [ 1xa|?*f? dxy

A(Q) = inf
feHy@D\(0} Jo, f? dxa
o, Vo da . fo, Ml
B (Y L LT P ¥ i
. ’ :
Jesi@anie Jo, /*dx: Jo, 17 dxa
5,1V ﬂz dxy . - |X1|25f2 dxy
S [ JQle— + Hl(Bz)V_%IQH%J”%IQI—
_ ’ :
e e LA
o, [V fl” dx o o X122 dx
il E it (M + (B V1@ |8 M)
1 ' :
feHo@\0} JQlf dxy .[Qlf dxy
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2 222,
= [Q @ E(u1(B2)V % Q|5 %7 a, Qy)
2 2 a2,
> Q4| T E1(U1(Ba)V % |Qq|% " %@ By).

Note that the last inequality in the above computations follows again by Benguria, Linde and Loewe [2, Theo-
rems 3.7 and 4.2]. The previous inequality gives a lower bound for the first Grushin eigenvalue in the case of
cartesian product domains. We note that the lower bound is attained if and only if Q is the product of two balls,
the first one being centered at zero. Thus, in order to minimize the first eigenvalue A;(Q) for Q € A(V) we need
to find, if it exists, the volume |Q4| which minimizes the quantity

2 2 2,2 25
|Q1] @ Eq(u1(By) V™ % |Qq|4 " & d | By).
In other words, we need to find the minimizing ¢ € (0, +oco) of the function
_2 _2 2,2 .32
t WE1(U1(B)V & t@ &7 d By). (3.5)
For the sake of simplicity and clarity in the computations, by using the substitution
_2 2,32 .3
o=0(t)=w(B)V @t & & >0, (3.6)
we transform the minimization problem for 1;(®) into studying the minimizers of
d
F(0) := 0 &% Ey (0, By), 0 € (0, +00). 3.7)
We are able to prove the following proposition concerning the existence of a minimum for F.

Proposition 3.4. The function F admits a minimum in (0, +00).

Proof. Since the first Schrodinger eigenvalue E1(a, B1) is simple for all o € (0, +c0), by classical analytic per-

turbation theory (see [11, 30]), it can be easily seen that F is an analytic function of ¢ € (0, +c0), and thus in

particular it is smooth. A more up-to-date formulation of abstract perturbation results can be found for example

in [26, Theorem 2.27]. Moreover, we claim that the following assertions hold:

() limg_g+ F(0) = +00.

(ii) limg_, 400 F(0) = +00.

Statements (i) and (ii) would immediately imply the validity of the lemma. Statement (i) holds because E1(a, B1)

converges to the first eigenvalue of the Dirichlet Laplacian in By, which is strictly positive, when o tends to zero.
Next, we consider statement (ii). Let f be an eigenfunction corresponding to E1(a, B1). We still denote by f5

its extension by zero in R%. We note that

Ei(0,By) = j|\7x1fo|2 dx, +0 j e [5f2 dxy

) By
= [afolt o [ i axi 08
R4 R%
> E1(g, RM)

= o Ey(1, RY).

We have denoted by Eq(o, R%) the first eigenvalue of the Schrodinger operator —Ay, + alx1|% in R%. The
inequality in (3.8) holds because also E1 (g, R%1) can be variationally characterized as

R Jgas 1V f12 + alxa [2£% dxq
FeHL(RM)\{0) Jger f2 dxa

Ei(o,R%) = 3.9)

and Hé(Ql) c Hé(IRd1 ). Moreover, the last equality in (3.8) follows by a simple rescaling argument. Accordingly,

dy dy 1
F(0) = 0 @09% Ey(q, By) > 0 @& 5 E (1, RM).
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Since
dz 1 dl

TG 0d 1 @idisddrs Y
statement (ii) holds. O

By the previous discussion and by Proposition 3.4, we deduce that the first Grushin eigenvalue admits at least
a minimum in the class of cartesian product domains. Namely, we have the following proposition.

Proposition 3.5. Let V > 0. There exists Q* = Q7 x Q7 € A(V) such that
A(Q%) < A1(Q) forallQ € A(V).
Moreover, Q] < R%, Q; ¢ R% are two balls, the first one being centered in zero.

Our next step is to show that such a minimum is unique (up to translation of Q). To this end, we need to develop
some preliminary results.

3.2 The Schradinger eigenvalue problem in the ball

In this section, we prove a differential inequality involving the second derivative of the first Schrodinger eigen-
value of (3.2) in a ball with respect to the coupling constant u.
Let R > 0, u > 0. For the sake of brevity, we set

Eq(u, R) := E1(u, B(0, R)),

where E1(u, B(0, R)) is the first eigenvalue of problem (3.2) in B(0, R) = {x; € R% : |x1] < R} By using spherical
coordinates, since the first eigenfunction is radial, problem (3.2) for E1(u, R) can be written as

"

dl_l i 25
-V - —v r°v=Ei(u,R)v on(0,R),
- +U 1, R) (0,R) (3.10)

Vv(R) = 0.
Let v be the unique non-negative solution of (3.10) normalized in L%((0, R), ri=1dr).

Remark 3.6. As already noted in the proof of Proposition 3.4, since E1(y, R) is simple, classical analytic per-
turbation theory implies that E1(u, R) and its corresponding eigenfunction v depend analytically upon u > 0.
Accordingly, the computations performed in this section involving the derivatives of E1(u, R) and v with respect
to u are justified.

As a first step, we need some integral identities.

Lemma3.7. LetR > 0, u > 0. Let v be the unique non-negative solution of (3.10) normalized in L>((0, R), r:~dr).
Then

R R
J(v’)zrdl‘l dr+pu j r2s*a-1y2 dr = E;(u, R), (311
0 0
R R
R%
j(v’)zrdl‘1 dr - T(V’)Z(R) = su J restdi=ly gp, (3.12)
0 0
P R
E1(u,R) := @El(y,R) = Jrz“"ll‘lv2 dr. (3.13)

Proof. In order to prove (3.11), it suffices to multiply equation (3.10) by r®~1v and integrate by parts. Iden-
tity (3.12) follows by multiplying (3.10) by r% V', integrating by parts and using (3.11). Finally, equation (3.13)
follows by classical abstract results in perturbation theory (see, e.g., [26, Theorem 2.30]) or, with the notation of
quantum mechanics, by the Hellmann-Feynman theorem (see [14]). O
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By using identities (3.11)-(3.13) of the previous proposition, we can recover the following differential identity

for E1(u, R): i
1

Bt B) - PR = 1+ ), R). (314)

We set
2

.. 0 " _ 0%
V= A v, Ei(u,R):= Y E1(u, R).
Then, by taking the derivative of (3.14) with respect to y, we get

~RUV'(R)V'(R) = sEx(u, R) + u(1 + 5)Ex(u, R). (3.15)

Our aim is to understand the sign of the right-hand side of the previous equation, and we have the following
proposition.

Proposition 3.8. LetR > 0, u > 0. Then
sE1(u, R) + u(1 + $)E1(u, R) = 0.

Proof. Let v be the unique non-negative solution of problem (3.10) normalized in L%((0, R), r%~dr). We note
that, since v is positive and v(R) = 0, we have

V'(R) <0, W(R)=0.

Moreover, by taking the u-derivative of the normalization condition, we deduce that
R
J réi=lyp dr = 0,
0

and accordingly v changes sign at least once. We will show that v changes sign only once in (0, R), and that
V'(R) = 0. Differentiating (3.10) with respect to g, we obtain

" - dl—r'1v’ +ur®v + r®v = E1(u, R)v + E;(u, R)v  in (0, R). (3.16)

By equations (3.10) and (3.16), we get
(r @'y = ")’ = (28T - By, Rrthy? in (0, R),
that is,

r
rd= 1@y — v’y = J(tZS — Ey(u, R)tY W2 (t)dt in (0, R).
0

We set

.
n(r) := j(t“ - Ey(u, R)t%W2(t)dt forallr € [0, R].
0
As one can immediately realize, n(0) = n(R) = 0. Moreover, since th-1y2(¢) is non-negative for ¢ € (0, R) and
(% - El(y, R)) is strictly increasing for t € (0, R) and negative at ¢ = 0, we obtain that n has exactly one critical
point and
n(r)<0 forallre (0,R).

This implies that % is strictly decreasing in (0, R) since

vy Vv—oy .
(;) :T<0 ln(O,R),

and accordingly v can change sign only once and v'(R) > 0. We have then proved that
R4V (R)V'(R) = 0,

and the statement follows by equation (3.15). O
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3.3 Uniqueness of the minimum

We are now ready to prove the uniqueness of the minimum of problem (3.4) by means of the following
proposition.

Proposition 3.9. The function F defined in (3.7) has a unique minimum in (0, +co).
Proof. We take the derivative of F. Let ¢ > 0. Then

d

_dil_l 2
F’ o)=0 dq+(1+s)d: —
(0) = o~ d +(1+5)d,

Ei(0, B1) + 0E1(0, Bl))-
By Proposition 3.4, F’ has at least a zero, i.e. a critical point of F. Accordingly, let ¢* > 0 be a critical point of F.
Computing the second derivative of F in *, we get

d; .
-— = __F
d1 + (1 + S)dz

dy .
(di + (1 +5)dz)(1+ s)El(o »Bi)+ 1

d . .
F'(0*) = (o) @mom ! 1(0", B1) + E1(a”, B1) + 0" E1(0", By))

b S . .
:(O'*) d1+(12+5)d2 1( +SE1(O'*,31)+O'*E1(O'*,B1)).

By identity (3.13) on the y-derivative of Eq(u, R), we have that
El(O'*, Bl) > 0.
Moreover, by Proposition 3.8,

L}f-?1(c7*,Bl) +0*Eq(0*,By) = 0.
1+s

Thus,

F'(c*) > 0.
Since F is smooth in (0, +00) and all its critical points have positive second derivative, F has only one critical
point which is a minimum. O

By Proposition 3.5 and Proposition 3.9, we can immediately deduce that the first Grushin eigenvalue admits
a unique minimum.

Theorem 3.10. Let V > 0. There exists a unique set Q* = Qf x Q3 in A(V) (up to translations in R%) such that
AM(Q%) < A1(Q) forall Q@ € A(V).

Moreover, Q] ¢ R%, Q5 < R% are two balls, the first one being centered in zero.

3.4 Localizing the minimum

In this section, we obtain some information on the localization of the minimum we proved to be unique in the
last section. Let B; be the ball in R% centered in zero with |B;| = 1, and let B, be a ball in R% with |By| = 1.
Moreover, we denote by 74 the volume of the d-dimensional unit ball, that is,

d/2

Tgi= ———.
ra+9

Let 0 > 0 and let f; be an eigenfunction corresponding to E1(o, B1) normalized in L%(B4). We write F'(0) more
explicitly. Since

d
LoE1(0,By) = jlxll“fé dx1,
B
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we have
d, ol B
F, o) = _(—o- d1+(1+s)dy E O',B -0 q+(I+s)dy J X 28 £2 dX )
(0) hrd+9d 1(0, B1) X117 f5 dxa
B
d, b 4 9 96 p2 o 95 22
= — "% g @G ( J \vj dxq + GJ x1145F2 dx )_ g GHI+s)d, J x1145F% dx )
(aiva Vafol? dxa + o [ i 2572 dxq b2 dxy
By By By
R R d2 ( 2 d1 + Sd2 2
= —g @+0+s)dy - e \vj dX _ g X S £2 dX )
d1+(1+3)d2 jl leﬂl 1 dZ J' 1| fg 1
By B

Let ¢* > 0 be the unique minimum point of F. Then F'(¢*) = 0. That is,

di +sdy
[Vt 2 = S22 [pafPof2. dn o,
Bl 2 Bl

We note that
J'VX1fU*|2 dx1 = 1 BOIfoell72 g, = 11 (B1),
By
where p1(B1) is the first Dirichlet Laplacian eigenvalue on the ball B; € R%, and
_2s _2s
J|x1|25 2odx <1y o laggy = Ta
B

where we have used the fact that |x1| < 7;11/ 4 for all X1 € By. Thus,

dy +sdy dy+sdy -%
J|Vx1fo*|2 dx - — g I|X1|zsf3* dxq = g (By) - ———21,"
d2 d2 !
By By
Since for all o € (0, +c0) such that . g
& 2
o< T B
< dy dl +Sd2‘u1( 1)
one has p 5 -2
+8dy -4
U1 (B1) - 1d—227d1d1 g>0,
the unique minimum point of F must satisfy
2 d
LN o 4“2 B1).
a —le d1+sd2u1( 1)

In other words, recalling the substitution (3.6), we have proved the following lower bound.

Proposition 3.11. Let V > 0. Let Q] < R%, Q¢ R% be the two balls given by Theorem 3.10. Then

(317

|gz*|>(r‘% dy Hl(Bl)V%>%.
=\ gy 4 sdy ua(Ba)

By the lower bound (3.17) of the previous proposition, it is also possible to provide a lower bound on
min A4(Q).
QeA(V)
Proposition 3.12. Let V > 0. Let Q} ¢ R%, Q5 ¢ R% be the two balls given by Theorem 3.10. Then

- 2 d B1)\ s sy
A1(QF x Q3) > 1y (By) 71 V™ oo Ey(1,R%)( 1,/ Z s % —Z 1EBS)< DT (3.18)

Proof. Let o* be the unique minimizer of F. Consider the inequality (see (3.8))

Ei(0*,By) = (6*)"1 Ey(1,RY) forall o > 0.

Then, recalling the substitutions made in (3.5)-(3.7) and using the lower bound (3.17), we have that the lower
bound (3.18) holds and the statement is proved. O
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3.5 Limitsass — 0"ands — +00

In this section, we study the behavior of the minimization problem when the parameter s tends either to 0 or
to +0o. We use the notation introduced in Section 3.1. In particular, B; denotes the ball in R% centered in zero
with |B4| = 1, and B; denotes a ball in R% with |By| = 1. Let V > 0. It will be convenient to introduce a new
variable &, defined by

G =5(t) = w(By)th " EV E  forallt > 0.
Then, if o is the variable defined in (3.6), we have
a(t) = 5(Hth  forallt > 0.

The introduction of the variable & is motivated by the fact that, in this section, we will need to keep the depen-
dence of the coupling constant g explicit on s, since we are studying the behavior of the first eigenvalue when s
tends to 0 or to +co. We then set

Gs(t) = t & E(G(t)tdr, By) forallt >0, (3.19)

where we recall that E1(u, 1), for u > 0, denotes the first eigenvalue of problem (3.2) set in Q1 < R%. We recall
that, as noted in Section 3.1 (see in particular (3.5)), the unique minimal point of G represents the volume of the
ball in R% of the minimal set. We now start to consider here the limit as s — 0*.

Proposition 3.13. Let G be the function defined in (3.19). Let
Go(t) = £ (u1(By) + 6(1)) = €4 py(By) + t7 V% iy (By)  forall t > 0.

Then
lirBI Gs(t) = Go(t) forallt > 0.
s—0*

Proof. We start by noting that for all f € Hé(B1), Iflz2,) = 1, and o € (0, +00), we have
_2s
ijlﬂz dxi+0 [l dn < walﬂz g + o7, (3.20)
By B By
Then, taking the minimum over f ¢ H(l) (B1) with [Iflz2(s,) = 1 to both sides of (3.20), we immediately obtain

_2s

E1(0,B1) < u1(By) + 07, . 3.21)

On the other hand, if /5 is the unique (up to sign) eigenfunction associated with E1 (o, B1) satisfying ||follz2(s,) = 1,
and if B(0, €) is the ball in R% centered at zero and of radius ¢ € (0, T;ll/ dl), then

Ei(0,By) = j|vx1fa|2 dx, + 0 j|xl|23f3 dx;
B1 B1

2 J |VX1fU|2 dxq + 0€* j fg dxq
B1\B(0,¢) B1\B(0,¢)

|Vxﬂ2dxl
> J fédxl( min IBl\B(O’E) - +082s>

2 (B1\B(O, 2 dx
BA\B(O,¢) e [s06 /> 1

= (f1(e) + 0e™) J fa dxi,
B1\B(0,¢)
where Hé(Bl \ B(0, €)) denotes the closure of C®(By) in H(B; \ B(0, €)), and fi1(¢) is the first eigenvalue of
the Laplacian in By \ B(0, ¢) with Dirichlet boundary conditions on 0 B1 and Neumann boundary conditions on
9B(0, ¢). It is well known that ji;1(g) — p1(B1) as € — 0" (see, e.g., [28] and the references therein). Moreover,

(3.22)

1= Jfé dx; = J f2dxq + J f2dx;. (3.23)
By B1\B(0,¢) B(0,¢)
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If d; > 2, we know from the Hoélder inequality and the Sobolev inequality in the supercritical case (see, e.g.,
[12, Section 5.6.3, Theorem 6 (i)]) and from (3.21) that

_ 2

J fg Xm < C82||W0'||%2(Bl) < CEZEl(G’ Bl) < CSZ(‘Lll(Bl) + O'leﬂ).
B(0,¢)

Moreover, if di = 1, the subcritical Sobolev inequality (see, e.g., [12, Section 5.6.3, Theorem 6 (ii)]) and (3.21) imply
that

_2s
J f3 dx1 < CelVfoll2, 5, < CeEr(a, Ba) < Ce(pa(Br) + 07, ).
B(0,¢)

Finally, if dy = 2, exploiting the critical Sobolev inequality (see [3, Section 4.7, Theorem 15]) together again
with (3.21), we obtain

j £2 dxi < Ce*(1 + log(&)DIVfol. 5,
B(0,¢)

< Ce(1 + [log(e)|)E1 (0, B1)

_2s
< Ce2(1 + [log(e)]) (u1(By) + Uledl )

see also [8, Appendix B], where the above inequalities are derived with all details. In all cases, the constant C
depends only on d; (in general it depends on the domain, which in this case is B1). Thus, by the above inequal-
ities, and by (3.22) and (3.23), for all ¢ € (0, +0c0), s € (0, +c0) and € € (0, T;ll/ dl), we have

25

E1(0, B1) = (1 () + 06*)(1 - Cw(e) (11 (By) + 07,"))
for some continuous function w : (0, 1;11/ dl) — (0, +00) such that

lim w(e) = 0.
-0t

1/d1)

1

Therefore, for all t € (0, +00), s € (0, +00) and ¢ € (0, 7, we have

Gs(0) 2 €7 (1 (2) + 0(0))(1 - Cae)(ua(Br) + ()7, ),

_2 *
Gs(t) < €@ (u1(By) + a()Ty, ™).
Since limg_,o+ o(t) = G(t), we have

lim sup Gs(¢t) < Go(t) forallt >0,

s—0*

1/d1)

and, for all € € (0, T;l

lim %gf Gs(t) > t_% (f11(€) + 6(t))(1 — Cw(e)(u1(By) + a(t))) forallt > 0.

Thus,
lim%nf Gs(t) = Go(t) forallt > 0.
s—0*
We have then proved that
lirgl Gs(t) = Go(t) forallt > 0.
s—0*
and accordingly the statement follows. O

Remark 3.14. Clearly, u;(B;) + G is the first eigenvalue of problem (3.2) with u = 6 when we set s = 0. We easily

see that Go(t) is optimized when
didy
2d

. _ (d2u1(B1)
= (2= Ve, 3.24
(dlﬂl(Bz)) (324

als
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and accordingly
d1p1(By)\ %
skl (3.25)
dZHI(Bl))
The optimum given by (3.24), (3.25) is the expected one, since, as s — 0%, the problem converges to the Dirichlet
problem for the classical Laplacian in cartesian product domains. Note that the limit as s — 0* of the lower
bound (3.17) on the optimal ¢ minimizing Gs(t) for any s (i.e. the optimal |27 ) computed in Proposition 3.11

equals the t* minimizing Go. Therefore, the lower bound in Proposition 3.11 is sharp in the limit s — 0*.

o _p-2d
Go(t") = V7 - ua(B)(

Next, we pass to consider the limit as s — +co. We first need a preliminary result on the asymptotic behavior
of the first eigenvalue
Ei(s) = Ei(1,R"Y)

of the Schrodinger operator —Ay, + x| on R% as s — +oo. The next Lemma 3.15 is probably known, but we
include a detailed proof for the sake of completeness.

Lemma 3.15. Let B(0,1) < R% be the ball of radius one and centered at the origin. Let y11(B(0,1)) be the first
eigenvalue of the Dirichlet Laplacian on B(0, 1). Then

2
dq

Jm Eq(s) = u1(B(0, 1)) = 7, " u1(B1). (3.26)

Proof. Inorder to prove (3.26), we provide sharp lower and upper bounds. We begin with the upper bound. Let
h € (0, 1). Let uj, be the first L2-normalized eigenfunction of the Dirichlet Laplacian on B(0, 1 — h). We shall still
denote by uy, the extension by zero of uy, to R%. Clearly, the eigenvalue corresponding to uy, is

#1(B(0,1))
(1-h?

From the min-max principle (see (3.9)), we have that

Eq(s) < J IVl + [xa [ uj; dxq < % +(1-h?* (3.27)
B(0,1-h)
for all s > 0. Then
11 (B(0, 1))

lim sup E{(s) <
msup E1(s) < =32

Since h € (0,1) is arbitrary, we also deduce that

lim sup E1(s) < p1(B(0, 1)).

S—+00

Note that, by letting h — 0 in (3.27), we also obtain that
Ei(s) < 11(B(0,1)) +1

forall s > 0.
Now we pass to consider the lower bound. Let s > 0. Let f; denote an L?-normalized eigenfunction corre-
sponding to E1(s). Then for all h € (0, 1),

(1+h) j F2dx < j a2 dxy
R%\B(0,1+h) R4\B(0,1+h)
< Eq(8)
< u1(B(0,1)) +1,

and thus
_ m(BO,1) +1

2
J Jsda < = e

RU\B(0,1+h)
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which in turn implies that
fs >0 inL*@R% \ B(0,1+ h)) forall h € (0,1).
Next we take h, i’ ¢ Rwith0 < h’ < h <1, and let p € C2®(R%) be such that
0<p<l, suppp<cB(0,1+h), ppei+h) =1

By the min-max principle for the first eigenvalue of the Dirichlet Laplacian in B(0, 1 + h) with test function pf;
and integrating by parts, we have

A+ 2uBO.D) [ P dxs [ Vaplf dxi- [ pfidefdn
R% R% R%

By the eigenvalue equation —Ay, fs = E1(s)fs — |x11%fs, we can deduce that

en @) [ pfians [ Wuplfan B [ pfian- | el da
R4 B(0,1+h)\B(0,1+h") R% R4
< | weePRans B [ PR
B(0,1+h)\B(0,1+h") R%

Since clearly

1- J frdx < j pHfldx; <1,
RU\B(0,1+h’) R4
we have
(1+ h)2uy(B(0, 1)) < E4(s) + j Va2 dxt + (1 + h)21(B(0, 1)) j P2f2 dx.
B(0,1+h)\B(0,1+h") RU\B(O,1+ 1)

Since p? and |Vy, p|? are uniformly bounded, both
J IV, pl*fEdx;  and J P*fi dxy
B(0,1+h)\B(0,1+1") RUN\B(0,1+1)
converge to zero as s — +oo. That is, we proved the lower bound

o #1(B(0,1))
i = =
which implies

liminf E1(s) > u1(B(0, 1)),

S—+00
since h € (0,1) is arbitrary. The first equality of (3.26) is proved. The second equality follows simply by
rescaling. O

Proposition 3.16. Let G be the function defined in (3.19). Let

u1(By)
g €0 Ta),
Gool(t) =
0 u1(By)
d t € [1q4,,+00)
Ty,

Then
lim Gy(t) = Go(t) forallt>O0.
S—+00
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Proof. We need to distinguish two cases: ¢ < 74, and ¢ > 74,.
Assume first that ¢ < 74,. We have immediately from the min-max principle that for all ¢ > 0,

Eqi(a, B1) = u1(By),

and in particular
liminf Eq(a, B1) = u1(B1).
§—+00

Moreover, for any f € H})(Bl) with |fllzz,) =1,
_1
J|Vxlﬂ2 dx, + 5(t) j(t%pqn“fz dx; < walﬂz dx + (7,0 5(0),
By B; By

Taking the minimum over all f € Hé(Bl) with [|fllz2,) = 1, we obtain

Ey((0e7, Br) < p(By) + (17 7,7 )*6(0). (3.28)

Since t < 7q4,, we have that ,
limsup E1(6(t)t%, B1) < u1(B1).

S§—+00
We have proved that
. N
Jlm Ey(&(06%, Br) = wi(By),

and therefore, by recalling the definition (3.19), we have

lim G(¢) = HaBD

$—+00 t2/du :

Next, we pass to consider the case t > 74,. Let L > t be fixed. We denote by u1(B(0, L~Y/d1)) the first eigen-
value of the Dirichlet Laplacian on the ball B(0, L~Y/41) ¢ R% centered in zero and of radius L~/% . Note that
the volume of B(0, L~1/41) is TLﬂ < 1. In particular,

i L&
pa(BO.L70) = ()" By,
From the inclusion Hy(B(0, L~Y/%)) ¢ H}(B;) (where we understand that any u € Hy(B(0, L~/4)) is extended
by zero to By), and from an analogous computation to the one in (3.28), we obtain

Ev(6(0)t%, Br) < E1(3(0)t%, B(0, 1)
< ui(B(0,L™H)) + (¢ L% )% 6(0)

L& 11 g0
= (5) " (By) + (65 L) 5(0).

1
Then, forall L > ¢, )
timsup E1 (60, By) < () p(By)
Td

S—+00 1
Therefore,
2s t \#
limsupEl((J(t)té1 ,B1) < (T—)d1#1(31),

$—+00 dy

which in turn implies

B
lim sup G(t) < Ha 1).
$—+00 Té/dl

1

In order to prove a lower bound, we can proceed as follows. We simply note that, by (3.8), for all o € (0, +00),

Er(0, By) 2 Ey(0, RY) = 51 E; (1, RY).
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Now, since |
(a(0))1 = (&(8)) ™1 taCm

we have ,
lim (a(t)) = t@r,
S—+00

Moreover, by Lemma 3.15,

B
lim E;(1, RG) = F1BD.
$5+00 TZ/dl
d;
Thus, we immediately deduce that
B
liminf Gy(f) > P18
5400 TZ/ d;
dy
This implies, along with the upper bound, that, for ¢ > 74,,
B
lim Gy(r) = 18D
$—+00 TZ/d1
d;
Thus the statement is proved. O

Remark 3.17. Note that, in the limiting case s — +oo, we have a continuum of optimal ¢, namely all ¢ > 74,
minimize G, (t). We also note that the lower bound on the optimal ¢ provided for any s in Proposition 3.11 goes
to 74, as s — +oo. Therefore, also in this sense, that lower bound is sharp.

4 Some numerical computations

In this last section, we present some numerical computations in the planar case, that is, in the case dy = dy = 1.
First, we consider the minimization problem of the first eigenvalue in the class of cartesian product domains
(i.e. rectangles of R?). Then we also numerically compute the first eigenvalue in the case the domain is a ball
in R? and we make some comparisons with the case of rectangles. For simplicity we also set V = 1, but by a
simple scaling argument one can also deduce similar results for the general case V > 0. Note that in this case

2 g
Td, = 2, [11(31)’1’ 4 = I ~ 2.467.

The numerical scheme to solve the two decoupled one-dimensional problems has been implemented in Python
with the help of Gabriele Santin (FBK-ICT).

Figure 1 shows the plot of G4(t) and the numerical computation of its minimum for some values of s. We
recall that the function G,(t), defined in (3.19), equals A1(21 x Q) when Q1 ¢ R%, Q, ¢ R% are two halls, the
first one being centered in zero and with [Q4]|Q| = 1, |Q1] = t. The unique minimum point ¢t* of G(¢t) represents
then the volume of Q7, where Q] and Q; are the balls which realize the minimum for the first eigenvalue (see
Theorem 3.10).

Figure la corresponds to the limiting case s — 0*. As expected, the minimum is attained at ¢ = 1, which
means, with the notation of Theorem 3.10, |Q]| = |Q7| = 1. Indeed, for the standard Laplacian in two dimen-
sions, the minimum over the class of cartesian product domains is attained by a square. Figures 1h—1f show the
numerical computation of the minimum for s = 0.5,s =1,s = 2, s = 3, and s = 150.

We note that the numerical computations agree with the lower bounds of Propositions 3.11 and 3.12. More-
over, they also agree with the asymptotic behavior as s — +co computed in Proposition 3.16, since Gg(t) tends
to flatten to the value ”TZ for t > 74, = 2 when s increases.

We conclude by comparing the eigenvalues on rectangles in R? with those of the disk with the same area,
centered at the origin (see Figure 2).

When s = 0, clearly the disk of unit area (i.e. radius 77~/?) has lower first eigenvalue than any rectangle of
the same area (Faber-Krahn inequality). In fact, for s = 0,

M(BO,777)) ~18.17 and Ay (QF x QF) ~ 19.74
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Figure 1: The unique minimizer t* of G for s = 0,0.5, 1, 2, 3, 150.

20

10&\ I A1(B(O,7T_1/2),S)

L s
0 20 40 60 80 100

Figure 2: 1,(B(0, m~"/2)) as a function of s.



370 = P.Luzzini et al., The first Grushin eigenvalue on cartesian product domains DE GRUYTER

20
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Figure 3: A;(B(0, m"2)), 11(B(0, 1)) and A1(B(0, 2)) as a function of s.

Already when s = 0.5, we have
A1(B(0, n‘%)) ~10.45 and A1(Q) x Q) ~8.88,

and, when s = 1, we have
M(B(O,772)) ~8.90 and Ay(QF x Q3) ~ 5.78.

We also note that, as s — +oo,
3

M (B, 77%) = 7.75 = HZ’

while
2
AM(Q] x Q) = T
The numerics suggest that there exists some sy < % such that the disk of unit area is no more the minimizer
among all domains of the same area, and we always find a rectangle doing better.

We have also computed the first eigenvalue on the disk of radius 1 and of radius 2 as functions of s (see
Figure 3).

We note that, as s — +oo, the first eigenvalue of the disks of radius 1 and 2 seems to behave like ”TZ, exactly
as A1(Qq x Qy) with |Q4| > 2 (which means, length of the side parallel to the x;-axis greater than 2).

We note that ”Tz is exactly the first Dirichlet eigenvalue of an interval of length 2. On the other hand, the
value ”TS, the expected limit of the first eigenvalue of the disk of area 1 as s — +00, is the first Dirichlet eigenvalue
of an interval of length 27171/2,

It seems that the behavior of the first eigenvalue of a domain, as s — +o0, is determined by the length of
the longest segment parallel to the x;-axis contained in Q N {|x1]| < 1}, which is 2 in the case of B(0, 1), B(0, 2)
and of any rectangle Q; x Q; with |Q1] > 2, and is 277~1/2 for B(0, 7~1/%). We will consider these issues from an
analytical point of view in future works. At any rate, we are left with the following question.

Question: Does A1(2) — A1((0, L)) as s — +oo, where L is the length of the longest segment parallel to the
x1-axis contained in Q N {|x1| < 1}, and A1((0, L)) is the first Dirichlet eigenvalue on (0, L)?
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