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Abstract—Drones have become increasingly popular in a va-
riety of fields, including agriculture, emergency response, and
package delivery. However, most drone operations are currently
limited to within Visual Line of Sight (VLoS) due to safety
concerns. Flying drones Beyond Visual Line of Sight (BVLoS)
broadens to new challenges and opportunities, but also requires
new technologies and regulatory frameworks to ensure that the
drone is constantly under the control of a remote operator. In this
work, we propose a novel graph-based multi-layer framework
that closely resembles real-world scenarios and challenges in
order to plan drone BVLoS operations. Our framework includes
layers of constraints such as ground risk, cellular network
infrastructure, and obstacles, at different heights. From the multi-
layer structure, a graph is constructed whose edges are weighted
with a dependability score that takes into account the information
of the layers, allowing efficient path planning of BVLoS missions,
using algorithms such as Dijkstra’s. Since the built graph can
be really large, we also propose lighter graph-based corridors
by considering only a limited portion of the original graph.
Through extensive experimental evaluation on a real dataset,
we demonstrate the effectiveness of our framework in solving
the Maximum Dependability Path Problem (MDP2), which can
be efficiently solved by applying the Dijkstra’s algorithm.

Index Terms—Drones, BVLoS, Connectivity, Ground risk

I. INTRODUCTION

Nowadays, drones, also known as Unmanned Aerial Ve-
hicles (UAVs), or more broadly, Unmanned Aerial System
(UAS), are being used in a growing number of applications [1],
[2] and play a significant role in the promotion of advanced air
mobility, which involves the use of small automated aircraft in
urban and suburban areas at low altitudes [3]. Previously, only
ground vehicles and manned aerial vehicles have been utilized
in these contexts. However, ground vehicles face limitations
due to terrain and congested infrastructure, while the use of
planes is prohibitively expensive for most people. Therefore,
the use of UAS is becoming an attractive solution in various
applications, also because they do not emit greenhouse gases.
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Urban environments are critical, and introducing UAS in
cities poses to significant challenges, including concerns about
public safety, cyber-security, and privacy. Specifically, urban
areas, characterized by dense populations, increase the risk of
UAS crashes, potentially involving people and, in the most
severe scenarios, causing casualties. Typically, flying over
people is allowed only under specific conditions to ensure an
adequate level of safety. The categorization of UAS operations
is based on their level of risk [4]. Operations that pose a
low risk do not require prior authorization, whereas those that
present a higher risk must obtain special authorization before
proceeding. Currently, any operation that requires the drone
to fly Beyond Visual Line of Sight (BVLoS) requires special
authorization. To enable BVLoS missions, there are some
methods available, such as a Notice to Airmen (NOTAM) au-
thorization, Extended Visual Line of Sight (EVLoS) flights [5],
or the exploitation of “corridors” [6], [7]. NOTAMs restrict a
specific area, reducing the risk because only authorized UAV
operations can use the area, and ground facilities are aware of
the presence of the drone. An EVLoS flight simulates BVLoS
operations by linking different VLoS operators in series.
Although for different reasons, these methods are considered
inflexible, complex, and impractical for enabling daily BVLoS
flights in the near future.

Fig. 1. Our envisioned scenario involves an operator or a central unit piloting
UAVs in BVLoS. The operator has limited visibility and follows the drone
using the cellular infrastructure. The drone’s path is selected by prioritizing
robust wireless connections and ground safety.

To pursue reliable BVLoS flights, there are two great chal-
lenges regarding the ground risk and the drone connectivity.
The ground risk is a measure of the risk in case of some drone
malfunctioning. It depends on the concentration of people over
areas, and on the density and the type of the ground buildings,
tall trees, towers, etc [8]. In this paper, we assume that the
drone flies below the legal height limit of 120m (400 ft) [5],
which reduces the risk of coming across other aircraft, which
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normally fly much higher. The presence of buildings, towers,
and trees can slightly mitigate the risk for the people since
they can act as shelters [9], but they also represent obstacles
during the flight. A previous risk assessment helps UAVs to
limit the risks of the flight.

By drone connectivity is meant that a UAV must commu-
nicate its position anytime so that its route can be monitored
by some ground central unit (or operator), who can possibly
modify the route by providing new tasks [10]. Connectivity is
indeed the way to extend the drone operation with the same
level of dependability guaranteed by the VLoS operations.
Since thinking of deploying an ad hoc infrastructure for
ground-UAV and UAV-UAV communications has a high cost
and is not a sustainable solution, it is realistic to rely on already
available ones, like those used for connecting ground users
(cellular). There are many generations of cellular networks
already deployed (e.g., 4/5G), characterized by different wave-
lengths, that can be used for BVLoS links [11], [12].

In order to enable BVLoS flights (see the scenario envi-
sioned in Figure 1), we propose a novel graph-based multi-
layer framework that considers at the same time the ground
risk and the drone connectivity. The framework uses infor-
mation from various layers such as no-fly zones, obstacles,
and from the cellular infrastructures with the aim of planning
BVLoS missions. We weight the edges of the graph with a
dependability score that reflects the information extracted by
the layers of the framework. Our ultimate goal is to plan a
BVLoS mission from a source to a destination in the graph
by following the path with the highest dependability.

A preliminary version of this paper is detailed in [13] that
only contained the framework and graph model. From that,
we enhanced the framework including the handover-success-
rate probability function (detailed in Section IV-A). We also
present a new lightweight graph-based corridor model. To find
the path with the maximum dependability, we apply Dijkstra’s
algorithm on both the graph- and the corridor-models. Our
contributions are summarized as follows:

• We revisit and extend a graph-based multi-layer frame-
work that integrates crucial information from diverse lay-
ers, encompassing obstacles, ground risks, and wireless
communication infrastructure, at varying altitudes.

• From this framework, we build a graph whose edges are
weighted based on a dependability score derived from
the layers, on which we optimally solve the Maximum
Dependability Path Problem (MDP2).

• We also propose a lightweight yet sub-optimal solution
that involves generating smaller graph-based corridors by
focusing on specific segments of the original graph.

• We evaluate the effectiveness of our framework in solving
the MDP2 by assessing various metrics, including the
number of traversed vertices, handovers, height changes,
and path dependability. Our experiments use a real dataset
for the tower distribution.

• We compare the dependability performance of the graph-
and the corridor-solutions.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the model
and multiple layers. Section IV and V introduce the graph

and corridor structure, respectively. Section VI evaluates the
performance of our framework. Section VII offers conclusions.

II. RELATED WORK

This section covers existing works on risk-aware path plan-
ning and communications for UAVs flying BVLoS, but none
of the works considers both factors together.

A. Risk Analysis and Path Planning

The use of drones for BVLoS operations presents various
risks, such as collisions, communication loss, and equipment
failure. To assess the impact of a UAV crash on the population,
Primatesta et al. [8] propose a two-dimensional Risk Map
that considers factors such as population density, no-fly zones,
obstacles, and sheltering factors. Risk values are calculated
using a risk assessment process that considers various pa-
rameters and uncertainties. The authors suggest using the
Risk Map to identify the optimal risk path based on the
Rapidly-exploring Random Tree (RRT*) and A* algorithms.
It is worth noting that the framework presented in our work
includes the Risk Map by Primatesta et al. as one of its
components. Indeed, our approach can even plan a path only
taking into account the ground risk. However, differently from
Primatesta et al., we discretize the map and we use Dijkstra’s
algorithm to identify the optimal risk path. Our work extends
Primatesta’s work extending the framework to address the
connectivity issue. The same author proposes in [14] a path
planning strategy based on a variant of the RRT* algorithm,
performing a risk assessment during the path planning phase.
Unlike in the previous work of the authors [8], where the
RRT* algorithm is used to minimize risk costs of a risk-
based map, in the proposed strategy the risk assessment is
performed during the path planning phase. Specifically, each
time a new node is added to the exploration graph, a risk
assessment procedure is done evaluating the flight direction
and velocity, and estimating a probabilistic impact area. The
probabilistic risk assessment approach takes into account the
drone parameters and environmental characteristics.

In [15], authors present an approach for simplified path
planning for UAVs in obstacle-dense high-risk areas. They
reduce the complexity of the 3D planning problem to that of
a 2D planning problem by leveraging regulatory restrictions
and guidelines as well as mission-specific boundary condi-
tions. They further suggest a multi-layered motion planning
architecture, where each of the planners is tailored to a specific
flight phase and displays deterministic behavior in memory
and runtime complexity. However, the proposed 2D reduction
relies on the assumption of a steady flight altitude for the
drone. Moreover, the authors completely neglect both the
communications requirements and the mandatory restriction
of having a constant and reliable link between the drone and
a ground base, e.g., a cell tower, to allow the BVLoS flight.
In our proposed solution, the drone may change its altitude
along the flight, and the same must adapt its path in order to
have always reliable communication with a ground antenna to
ensure connectivity during the flight.
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In [16], authors survey the risk assessment for UAVs based
on two UAS logistic delivery case studies. To examine the
expected level of safety to ground risk and air risk, the
case studies result in acceptable data to support the UAS
logistic delivery with adequate path planning in the remote
and suburban areas in Taiwan. Google routing is used for
path planning to keep away from highly populated areas.
Differently from our studies, the authors in [16] claim ideal
communication between the drones and operators regardless of
their relative position, and the potential presence of obstacles.

The authors in [17] present a path planning algorithm that
accommodates real-time traffic and geo-fence constraints in
low-altitude BVLoS airspace, by integrating RRT techniques
with Detect and Avoid Alerting Logic. The proposed architec-
ture differs from ours, firstly, because it does not assess the
ground risk for path planning. Secondly, due to throughput
requirements, they avoid storing the complete airspace using a
reduced one based on a tree data structure. As a consequence,
their devised algorithm cannot provide a guaranteed quality
bound for the flight dependability. The authors in [18] suggest
a strategy to assess the capacity of UAV corridors by relating
the collision rate of the corridor and the failure rates of
UAVs to the number of ground fatalities, while the ones
in [19] present an optimization model for drone navigation
that minimizes both the maximum threat level and the flight
path length. In both the papers the main difference with respect
to our framework is the complete absence of communication
handling between the drones and ground stations during the
path planning. Moreover, the authors in [18] restrict their
studies only to corridors, whereas in [19] they claim fixed
and steady drone flight altitude.

B. Cellular Communications and UAVs

One of the main technical challenges of BVLoS operations
is maintaining a reliable link between the drone and operator
as the drone moves. In particular, it is critical to maintain the
connection during the handover, i.e., when the drone moves
away from one ground station of the cellular network and
switches to a new one. Several studies addressed the han-
dover problem for BVLoS drones. In [20], authors study the
performance of cellular-connected UAVs under 3D practical
antenna configurations. Their results reveal that vertically-
mobile UAVs are susceptible to altitude handover due to
consecutive crossings of the nulls and peaks of the antenna side
lobes. Diversely from our research, the core of the paper [20]
is understanding the coverage variation in the communication
network according to several antenna displacements, and drone
infrastructures. The authors in [21] propose an approximation
of the probability mass function of handover count (HOC)
as a function of the UAV’s velocity, HOC measurement time
window, and ground station densities. However, the authors
focus solely on the optimization of the quality of service
experienced during the drone flight. Moreover, the paper does
not consider the ground risk and assumes a steady flight
for the drone at a constant altitude. Furthermore, the authors
in [22] propose an experimental study on cell association and
handover rates for drones, connected to an LTE-A network

in a suburban environment. In our paper, we select the path
of the drone including the cost of performing handovers. The
contributions of this paper differ from ours because the scope
is solely the handover optimization evaluated through a real
test-bed. In [23], authors conduct a field trial measurement
in an LTE network and suburban environment, at the National
University of Malaysia campus. The measurement results show
that by increasing flight height from the ground to 170m the
received signal power and the signal quality levels are reduced
by 20 dBm and 10 dB respectively. However, the handover
still occurred in good condition. By comparing the results of
heights 0m and 40m, it is revealed that when the drone flies
above the height of buildings and trees it is almost served by
nearby eNodeBs [24]. Consequently, the same authors in [25]
propose a hardware and software configuration that utilizes
the cellular network and Detect and Avoid (DAA) system to
achieve a safe BVLoS UAV operation. They fly the UAV at
the determined routes at a speed of 18 km/h at 4 different
elevations (65m, 85m, 105m, and 125m). They find that at
65m height, planning the routes is a bit difficult since they
need to avoid high-rise buildings and high trees. On the other
side, by increasing the height, the network quality is degraded.
Therefore, they foresee that the best altitude to operate the
UAV is within the 85m height range. Differently from our
scope, the results reported by the previous papers are related
to the development of a reliable drone jointly with a tracking
infrastructure. Therefore, they revise the real performance of
the built drone towards an effective BVLoS infrastructure.

In [26], authors set system parameters for the Ultra-reliable
low latency communication (URLLC) of 5G focusing on
information theoretic approximations for reliability and latency
under finite block-length regime for different altitudes (1.5m
to 120m). They find that the minimum distance between UAVs
to avoid any crash should be around 0.2m for 15m/s UAV
speed. The paper’s main focus lies in conducting experiments
to optimize mission parameters for signal reliability and
throughput. Unlike our approach, it appears to neglect ground
risk and overall mission dependability. Finally, authors in [27]
introduce several urban airspace segmentation and present a
future perspective of 6G-enabled dynamic UAV traffic man-
agement (UTM) ecosystems in 3D space for conflict-free UAV
operations. In contrast to our approach, the authors of the paper
delve into the technical details of the network segmentation
optimization, providing a reasonable solution to tackle current
network limitations. Therefore, they investigate BVLoS but
only from the infrastructure development point of view.

In summary, the discussed papers serve as valuable test
beds, offering insights into the intricate context of UAV com-
munications modeling. These specific case studies highlight
the complexity of the subject matter. However, it is crucial to
note that these studies do not provide definitive conclusions
or take-away lessons, making it challenging to draw any firm
assumptions from their findings to be used in our context.

III. SYSTEM MODEL AND MULTI LAYERS

Let us consider a 3D environment bounded by a box
denoted by B characterized by a length BL, width BW , and
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height BH , that lies on the ground plane, with BL, BW , and
BH ∈ R+. To discretize the environment, we divide B into a
number of identical 3D cells, each with length, width, and
height side ℓL, ℓW , and ℓH , respectively. We denote each
cell with its relative position from the origin with a tuple
c = (xc, yc, zc) ∈ B, where xc, yc, and zc ∈ N are the x-
coordinate, y-coordinate, and z-coordinate, respectively, of c in
the discretized environment. The drone position is discretized
as well, and without loss of generality, we assume that its
actual position is at the center of the cell. In fact, the cell
c = (xc, yc, 1) ∈ B lies at the lowest level at a height ℓH

2

above the ground. The sizes of B are n = BL

ℓL
, m = BW

ℓW
, and

h = BH

ℓH
, respectively, so there are nmh cells. So, 1 ≤ xc ≤ n,

1 ≤ yc ≤ m, and 1 ≤ zc ≤ h. For simplicity, in the rest of the
paper, we assume the flying area to be flat. So, this assumption
is not a limitation as any environment can be reconstructed
using obstacle cells.

According to the drone mobility, the drone can only move to
adjacent positions. In fact, given c = (xc, yc, zc) ∈ B, let A(c)
be the set of adjacent cells of c where A(c) = {c′ ∈ B, c′ =
(xc′ , yc′ , zc′) ̸= c : xc′ = xc ± {0, 1}, yc′ = yc ± {0, 1}, zc′ =
zc ± {0, 1}}. Note that c is excluded from A(c). Therefore,
max |A(c)| = 33−1 = 26 as c can be located on the boundary
of B, reducing the number of available adjacent positions.

Since flying in BVLoS requires some essential information
about the surrounding environment in B, we propose a graph-
based multi-layer framework where each layer contains useful
data. Each cell is associated with a geo-referenced location
and has three different values, one for each type of layer. The
framework is composed of the following layers:

• No-Fly zone/Obstacle Layer: models the areas where
the drone flight is forbidden/not allowed or possible;

• Risk-map Layer: models the risk to people on the ground
in the event of a drone crash or malfunction;

• Wireless infrastructure Layer: models the feasible
wireless communications and their quality.

A. No-Fly zone/Obstacle Layer

The no-fly zone/obstacle layer models the cells where
drones cannot fly, such as buildings or trees, or close to
airports. This layer is considered at various heights. If there
are obstacles, drones can fly over them at a sufficient height.
As a rule, the higher the drone flies, the fewer obstacles it will
encounter. No-fly zones, on the other hand, are areas where
drone flight is prohibited and are effective at any height.

Each cell c ∈ B has a forbidden flight probability PFF(c).
PFF is a probability rather than a binary value because it
reflects the likelihood that a given cell contains an obstacle
or falls within a no-fly zone, thus rendering it unsuitable for
flights. The amount of obstacles varies based on the type of
environment, which can be classified as rural, suburban, or
urban, with urban areas typically having a higher frequency,
while rural areas tend to have fewer. If a cell c = (xc, yx, zc)
contains no-fly zones or obstacles, also in any cell c′ =
(xc, yc, zc′), with 1 ≤ zc′ ≤ zc, the flight is forbidden.

B. Risk-map Layer

The risk-map layer models the potential risks that unex-
pected events can cause to ground people. We do not consider
air risk, i.e., collisions with other flying vehicles (manned or
unmanned). The ground risk-map layer is evaluated depending
on a concatenation of different probabilities, and it is defined
at various heights. Moreover, it will be computed for the flying
area and then given in input to our algorithm.

We refer mainly to [8], [28] for computing the risk. Given
a cell c ∈ B, the risk [8] is so defined:

R(c) = Pevent(c) Pimpact(c) Pfatality(c), (1)
where Pevent, Pimpact, and Pfatality are the probabilities of event,
impact, and fatality, respectively, and 0 ≤ R(c) ≤ 1. Pevent
is the probability [28] that the drone loses control with the
consequent uncontrolled descent with a crash on the ground.
It is the frequency to have a ground impact event defined as a
rate per hour. Four descent event types are considered: ballistic
descent, uncontrolled glide, parachute descent, and fly-away.
Pimpact is a 0-1 normalized function [28] that depends on the
population area density, and on the size of the drone, where
a higher population density, a larger crash area, and a larger
drone size result in a higher probability of impact. In particular,

Pimpact(c) = ρ(c) Aexp (2)
where ρ(c) is the population area density, and Aexp is the
exposed lethal area, which is:

Aexp = 2(rp + ruav)
hp

tan(ψ)
+ π(rp + ruav)

2 (3)

with rp and hp are the average radius and height of a person,
respectively, ruav is the radius of the drone, and ψ is the impact
angle on the ground. Pfatality, as a result of a drone impact, is
a function [28] that depends on both the sheltering factor and
the altitude of the drone at the time of impact, and measures
the probability of killing people. The sheltering factor S(c)
at cell c, which is dependent on the area where the drone is
operating, quantifies the level of shelter provided to people
by elements such as buildings or trees [29]. An urban area,
e.g., has a high value of sheltering factor, which can greatly
reduce the kinetic energy at impact and hence the probability
of fatalities. Furthermore, a greater drone altitude upon impact
leads to a higher likelihood of fatality. Specifically [28],

Pfatality(c) =
1− κ

1− 2κ+
√
τ/η E

(4)

where E = (η/Eimp)
3

S(c) , κ = min{1,E}, η is the impact
energy needed to cause a fatality when S(c) → 0, τ is the
impact energy needed to obtain a fatality probability of 50%
when S(c) = 6, and Eimp = 1

2δv
2
imp is the kinetic energy at

impact where δ is the drone mass, and vimp =
√
v2init2gζ is

impact velocity, where vinit is initial vertical velocity, g is the
acceleration due to gravity, and ζ is the height from which the
drone is falling which depends on the layer.

So, each cell c ∈ B has a ground-safeness probability
PGS(c) which depends on the risk R(c). Specifically,

PGS(c) = 1−R(c), (5)
and 0 ≤ PGS(c) ≤ 1. Moreover, PGS is the frequency rate to
have a casualty [28], also called as the probability per hour to
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have a lethal accident. Parameters are detailed in Section VI.

C. Wireless Infrastructure Layer

The wireless infrastructure layer W defines the wireless
connectivity in the area. In our proposed model, we assume
the presence of a pre-existing wireless network infrastructure
(e.g., through 4/5G networks) within the environment B, which
includes a set of cellular towers denoted as T . Each tower
t ∈ T is characterized by its discretized position in the
environment, represented by a tuple t = (xt, yt, zt) ∈ B,
where xt, yt, and zt denote the x-coordinate, y-coordinate,
and z-coordinate, respectively, of the tower. To simplify, we
assume that all towers are located at the lowest level, with
zt = 1, and that there is no more than one tower in a single
cell. This simplification can be easily removed if the graph
construction is done on computers with large RAM or if the
graph is saved to an external memory. In that case, the cell size
can be reduced until there is one tower per cell. It becomes
evident that the identifier tower t coincides with the cell c
where it resides. However, a drone can receive and send its
messages to any tower that is up to a certain distance from the
drone itself as explained below. The communication quality
depends on the presence of obstacles, and the power of signal.

1) Presence of Obstacles: An aspect to consider is the
probability of being on the Radio Line of Sight (briefly, LoS)
which increases if the drone height increases. Namely, the
probability PLoS of being LoS increases with the elevation
angle between the drone and the tower. Not only the height
of the drone but also the presence of obstacles impact PLoS,
whose value decreases if the density of obstacles increases. So,
given two parameters α and β [30] that model the environment
(rural, suburban, urban) by assuming that the drone is flying
at the cell c, the PLoS with the tower t is defined as [30]:

PLoS(c, t) =
1

1 + α e−β(ϕ−α)
, (6)

where ϕ = arctan
(

zc
dG

)
is the drone/tower elevation angle,

with dG being the Euclidean ground distance that separates
the two. Hence, by increasing the height zc and fixing xc and
yc, a drone can detect more towers due to increased elevation.

2) Power of the Signal: Drones can connect to towers if
some physical constraints are met at the same time. We have
to distinguish between the transmitter device, and the receiver
device. We adopt the Friis transmission equation [31] (see
Eq. (7)) in order to determine the quality of the BVLoS com-
munication link if a drone in cell c = (xc, yc, zc) establishes
a connection to a tower t = (xt, yt, 1), i.e., by evaluating:

PW (c, t) = PW (t) G(t) G(c)

(
λ

4πdS

)2

, (7)

where PW (c, t) is the power at the receiver, PW (t) is the
transmitted power, G(t) and G(c) are the antenna gains of the
transmitting and receiving devices, respectively, λ is the wave-
length that represents the effective aperture area of the receiv-
ing antenna, and dS = ∥c− t∥2 is the drone/tower Euclidean
slant distance. Then, we normalize the value PW (c, t) ∈ [0, 1]
where 1 represents an excellent signal strength received at
the drone, and 0 represents no signal/disconnection (details

in Section IV-A). At different heights, the distance dS varies,
which in turn affects the power received by the drone. So,
the higher the altitude, the longer the distance dS , the less
is the received power PW (c, t), and the less is the quality of
the BVLoS link. So, by increasing the distance between the
tower and the drone, the PLoS and the power of the signal have
an opposite behavior. Although the communication distances
change in a continuum way, we represent them using our cell
model. First, we model the PLoS which increases with the
elevation angle. Then, we exploit the signal quality.

We assume that the drone can communicate only with a
subset of towers in its neighboring. Let γ ∈ N be the visibility
factor at the drone, and for a given cell c = (xc, yc, zc) ∈ B,
let Sγ(c) be the visibility square area, i.e., a square which
contains a subset of cells of side length 2γ · zc + 1 centered
at cell c. Specifically,

Sγ(c) = {q ∈ B : xc − γzc ≤ xq ≤ xc + γzc and
yc − γzc ≤ yq ≤ yc + γzc}.

(8)

To determine the visible towers which a drone located in po-
sition c can communicate with, the square Sγ(c) is computed
using the value of γ. This square is centered around the drone,
and any towers within the square can be communicated with.
As the height of the drone increases, the size of the square
also increases. For instance, when zc = 1, the side length is
2γ + 1, for zc = 2, it becomes 4γ + 1, and so forth.

Now, let Uγ(c) be the subset of towers that the drone can
“see” when it is in c, i.e., the towers that belong to the square
Sγ(c) centered in c. Precisely,

Uγ(c) =
⋃

t∈Sγ(c)

t. (9)

Under this simplification, we assume that a drone in cell c
can communicate with any tower t ∈ Uγ(c). For any t ̸∈
Uγ(c) we assume that there is no connection between the drone
and the tower and so both PW (c, t) = PLoS(c, t) = 0. Note
that |Uγ(c)| increases (or at least does not decrease) with cell
height. Moreover, for each neighbor of c ∈ B, i.e., ∀c′ ∈
A(c), let Uγ(c, c

′) = Uγ(c)∩Uγ(c
′) be the subset of the same

antennas that a drone would see if it flew from c to c′.
Each combination of cell c ∈ B and tower t ∈ Sγ(c) has a

link-reliability probability PLR(c, t). Specifically,
PLR(c, t) = PLoS(c, t) PW (c, t), (10)

that returns the product among the probability of being in LoS,
and the normalized received power at the drone. So, it holds
that 0 ≤ PLR(c, t) ≤ 1.

D. The Multi-Layer Conceptual Construction

In this section, we show how we build our three layers,
i.e., for the no-fly zones, risk-map, and wireless infrastructure
layers, respectively, given the box B. The pseudocode of the
construction is reported in Algorithm 1.

Initially, all layers are empty (Algorithm 1, Line 1), then
sequentially, the no-fly zone/obstacle layer with PFF (Line 2),
the risk-map layer using PGS (Line 7), and finally, the wireless
infrastructure layer with PLR (Line 10)
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Algorithm 1: Multi-Layer Conceptual Construction
1 Initialize empty layers
// no-fly zone/obstacles layer

2 for c = (xc, yc, 1) ∈ B do
3 if is forbidden to fly in c depending on PFF(c) then
4 maxh ← forbidden up here (h in case of airports)
5 for c′ = (xc, yc, zc′) ∈ B : zc′ = 1, . . . ,maxh do
6 forbid flight in c′

// risk-map layer
7 for c ∈ B : flight is allowed do
8 R(c)← Pevent(c) Pimpact(c) Pfatality(c) (see Eq. (1))
9 PGS(c)← 1−R(c) (see Eq. (5))

// wireless infrastructure layer
10 for c ∈ B : flight is allowed do
11 for t ∈ Uγ(c) (see Eq. (9)) do
12 calculate PLoS(c, t) (see Eq. (6))
13 calculate PW (c, t) (see Eq. (7))
14 PLR(c, t)← PLoS(c, t) PW (c, t) (see Eq. (10))

IV. THE GRAPH STRUCTURE

In this section, we devise a graph-based structure based on
the multi-layer concept, used then by path planning algorithms.

A. Path Dependability

After we presented the multi-layer concept, and before
building the graph-based structure, we need to introduce
some fundamental prerequisites. The graph we will create
has vertices that represent “cells” or “cells associated with a
tower”, and edges that represent “movements between adjacent
cells” or “tower handovers”. Precisely:

• vc represents the cell c,
• vtc represents the status of residing in cell c while com-

municating with the tower t,
• (vtc, v

t
c′) represents the movement from cell c to cell c′

being connected to the tower t, and
• the pair of edges (vtc, vc); (vc, v

t′
c ) represents the handover

between tower t and t′ in cell c.
The towers t and t′ are two towers visible in Sγ(c) (note
that the cell c specifies also the altitude and γ the visibility
factor). The edges on the graph are weighted based on a de-
pendability score, which refers to the level of trustworthiness
and robustness of that edge, quantified by a probability. Such
a probability/score is determined by ground-safeness, link-
reliability, and handover-success-rate, indicating flying safety,
communication strength, and tower connection success in
the respective cell, respectively. Specifically, ground-safeness,
link-reliability, and handover-success-rate are obtained from
the framework information as follows.

In the next, consider two vertices vtc and vtc′ that represent
adjacent cells c and c′ with the same tower t. So, there exists
a direct edge (vtc, v

t
c′) from vtc to vtc′ .

a) Ground-Safeness: The ground-safeness is the de-
pendability of the link with respect to the ground and the
possible related safety risks. It is defined as PGS((v

t
c, v

t
c′)) =

1−R(c′) (see Eq. (5)), where PGS = 0 represents the highest
risk, whereas PGS = 1 represents no risk. It is independent of
the tower t.

b) Link-Reliability: The link-reliability is defined as
PLR((v

t
c, v

t
c′)) = PLoS(c

′, t) PW (c′, t) (see Eq. (10)), which
combines the probability to be in LoS, and the normalized
received power by tower t at the destination cell c′. The
normalized received power is obtained by applying Eq. (7)
and normalizing it as follows:

PW (c′, t) =



1 if PW (c′, t) > −65

0.999 if − 75 < PW (c′, t) ≤ −65

0.9 if − 85 < PW (c′, t) ≤ −75

0.85 if − 95 < PW (c′, t) ≤ −85

0 otherwise

(11)

where the right-hand values1 are represented in dBm.
c) Handover-Success-Rate: When moving between two

cells keeping the same tower, no handover happens and the
link is not at risk. Whereas, when the drone moves from the
tower t to t′, there is a risk that the communication will be
lost. We assume that the handover is handled inside a cell.
Hence, we assume that the Handover-Success-Rate is a value
PHSR ∈ [0, 1], that represents the success of establishing the
communication via another nearby tower t′. The more the
received signal strength at the tower t′ and the more is the
height of the drone, the more will be the handover-success-
rate [22]. To represent the handover from t to t′ in cell c, we
concatenate the two edges (vtc, vc) and (vc, v

t′
c ). Note that we

do not create a connection directly from (vtc, v
t′
c ) in order to

reduce the number of edges from a quadratic number in the
visible towers to a linear number.

The weight of the edge P((vtc, vc)) = 1, and the weight
P((vc, v

t′
c )) = PHSR. Precisely, PHSR for (vc, v

t′
c ) depends

on PW (c, t′), and on zc (height of c). In our experiments in
Section VI, when c is at the highest altitude (zc = 3), the
weight PHSR depends on PW according to Eq. (12):

PHSR((vc, v
t′
c )) =


1 if PW (c, t′)>−75

0.975 if − 85<PW (c, t′)≤−75

0.95 if − 95<PW (c, t′)≤−85

0 otherwise

(12)

Specifically, it takes on different values based on intervals of
the power PW (c, t′): if PW (c, t′) is above −75 dBm, PHSR
is set to 1, suggesting a strong wireless connection; if it is
between −75 and −85 dBm, PHSR is slightly reduced to 0.975,
reflecting a slightly weaker but still reliable connection; if it
falls further between −85 and −95 dBm, PHSR decreases to
0.95, indicating a less reliable connection; and finally, if it is
below −95 dBm, PHSR is set to 0, indicating an unreliable or
nonexistent connection.

For lower altitudes, i.e., zc = 2 and zc = 1, PHSR is affected
by a decreasing factor, which is independent of the position
of the cell and depends only on the altitude of c:

PHSR((vc, v
t′
c )) =

{
0.975 PHSR((vc, v

t′
c )) if zc = 2

0.95 PHSR((vc, v
t′
c )) if zc = 1

(13)

As we will see in the next section, any edge (vtc, v
t
c′) is

associated with a dependability score given by the product of

1The power thresholds are suggested by the classification of the commu-
nications in excellent, good, etc given in [32].
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the ground-safeness and the link-reliability. Any edge (vtc, v
t′
c )

has the handover-success-rate as weight. We will conclude our
construction by saying that any path in the weighted graph has
a dependability score given by the product of the dependability
score of the edges belonging to the path.

In the following section, we detail even more the graph
construction and we give a graph-construction example.

B. Graph Construction

Let G = (V,E) be the weighted directed graph (called from
now on as the dependability graph) which is defined by a set
V of vertices and a set E of edges, built from the box B
and the previous layers. We build G as follows. For each cell
c ∈ B, we create a vertex vc that represents the cell c, plus
|Uγ(c)| additional vertices to represent the towers to which it
is possible to connect from c, denoted as vtc, where t ∈ Uγ(c).
Formally, the set of vertices is V = {vc : c ∈ B} ∪ {vtc :
t ∈ Uγ(c) ∀c ∈ B}, while the set of edges E is somewhat
more complicated. In general, there are two types of edges:
intra-edges (i.e., tower handover) and inter-edges (i.e., moves
between adjacent cells). An intra-edge is in the form of (vtc, vc)
or (vc, vtc), while an inter-edge is in the form of (vtc, v

t
c′). The

pseudocode of the construction is in Algorithm 2.

Algorithm 2: Graph Construction
1 for c ∈ B do
2 create vertex vc
3 for t ∈ Uγ(c) do
4 create vertex vtc

// intra-edges (see Eqs. (12) (13))
5 add edge (vc, v

t
c) with cost PHSR ̸= 1

6 add edge (vtc, vc) with cost PHSR = 1

7 for c ∈ B do
8 for c′ ∈ A(c) do
9 for t ∈ Uγ(c, c′) do

// inter-edges (see Eqs. (10) (5))
10 add edge (vtc, v

t
c′) with cost PLR(c

′, t) PGS(c
′)

Regarding the intra-edges, these are used to connect a drone
located in a given cell to all the possible visible towers in that
cell. For each vtc ∈ V we add a directed edge (vtc, vc) ∈
E with cost PHSR = 1 (no handover) and a directed edge
(vc, v

t
c) ∈ E whose cost PHSR (do handover) depends on the

signal quality and the drone’s height (Algorithm 2, Line 1).
Crossing this latter edge represents the drone connecting to
a different tower. Regarding the inter-edges, these are used
when the drone moves between adjacent locations. For each
neighbor of c ∈ B, i.e., ∀c′ ∈ A(c), we connect pairs of
vertices that represent the same tower t in the two different
cells c and c′, i.e., the towers in t ∈ Uγ(c, c

′). For each of
these pairs, we add a directed edge (vtc, v

t
c′) ∈ E with cost

PLR(c
′, t) PGS(c

′). Crossing these edges represents the drone
moving, e.g., from cell c to c′, thus considering the ground-
safeness and the link-reliability of the coming cell.

An example is reported in Figure 2. Consider γ = 1. The
yellow vertex located at cell (2, 3) has 8 neighbors, which
correspond to the cells located within the green highlighted
square. For the purposes of this example, we will assume that

the drone height is fixed and so we omit the zc coordinate
when referring to a cell. Moreover, there are 3 towers: ta, tb,
and tc. Among these, only ta and tb are in range with position
(2, 3), and therefore intra-edges from v(2,3) are only created
between va(2,3) and vb(2,3). The blue cell is in position (3, 3)
which is in range with all 3 towers. As we can see, both v(2,3)
and v(3,3) share the towers ta and tb, and hence inter-edges
(va(2,3), v

a
(3,3)), and (vb(2,3), v

b
(3,3)), are created. The same can

be repeated for the red cell in (3, 2).

tatb

tc

1

2

3

4

1 2 3 4
v(3,3)

vc(3,3)

vb(3,3)

va(3,3)

v(2,3)

va(2,3)

vb(2,3)

v(3,2)

vb(3,2)

vc(3,2)

Fig. 2. Example of subgraph with 3 cells: (2, 3) (yellow), (3, 3) (blue), and
(3, 2) (red); also, h = 1 and γ = 1. The grid shows the cells inside the box.
Solid and dashed edges are the intra-edges and the inter-edges, respectively.

In conclusion, we discuss the size of the constructed
graph. The number |V | of vertices of G is upper-bounded by
|V | ≤ nmh + nm

∑h
zc=1 |Sγ(c)|, where |Sγ(c)| ∈ O(γ2z2c )

(see Eq. (8)). Concerning the edges, we can upper bound
|E| ≤ nm

∑h
zc=1 |Sγ(c)| + nm

∑h
zc=1 26|Sγ(c)|, where the

first summation refers to the intra-edges, while the second
summation refers to the inter-edges. Hence, (|V | + |E|) ∈
O(nm γ2h3), where nmh is the number of cells in B and γ
is the visibility factor.

C. Problem Formulation and Solution

Given a box B, the graph-based multi-layer structure, and
a starting and a destination cell s, g ∈ B respectively, we
are in a position to solve the Maximum Dependability Path
Problem (MDP2) whose objective is to find a drone path Λ∗

that starts in s and finishes in g such that the dependability
of Λ∗ = {(s, ·), . . . , (·, g)} is maximized. Recall that edges
e ∈ E are in the form of (vtc, vc) or (vc, v

t
c) (intra-edge),

and (vtc, v
t
c′) (inter-edge), and that their cost is P(e) assigned

according to Algorithm 2. Formally [13],

Λ∗ = argmax
Λ

∏
e∈Λ

P(e) (14)

In a nutshell, it is easy to see that MDP2 can be solved by
applying the Dijkstra’s algorithm [33]. Precisely, to maximize
Eq. (14), one can apply any log function (with base > 1) to the
product, thus converting the product into a sum. To maximize
the argument of the log function in the right side of Eq. (16),

Λ∗ = argmax
Λ

log

(∏
e∈Λ

P(e)

)
(15)

= argmax
Λ

∑
e∈Λ

log (P(e)) (16)
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is the same as minimizing Eq. (17) since all the addends are
negative

Λ∗ = argmin
Λ

∑
e∈Λ

| log (P(e)) |. (17)

Hence, the original objective of maximizing dependability
from s to g is then equivalent to minimizing the path cost from
s to g, where the path cost is defined as the sum of the absolute
value of the logarithms of the original weights (probabilities).
The path returned by Dijkstra’s algorithm solves MDP2,
and it is the path with maximum dependability in B. The
dependability score can be computed by elevating the base
of the log to the path cost returned by Dijkstra’s algorithm.

Fig. 3. A path example with s = (0, 0, 1) and g = (49, 49, 1).

Figure 3 illustrates a hypothetical small instance of MDP2
with random values. s = (0, 0, 1) is on the left, and g =
(49, 49, 1) on the right. The drone’s path is in black; the
traversed vertices at the level 1 in white, at level 2 in cyan,
and at level 3 in blue; the used towers in magenta; the actual
connections among the drone and the towers in dashed green;
and the obstacles clearly visible.

Hence, we can plan BVLoS operations effectively since the
Dijkstra’s algorithm is polynomially solvable. Note that the
optimality is related only within the discretized B area. In
fact, better paths from a given source to a destination could
pass through other vertices outside B.

V. THE CORRIDOR STRUCTURE

In Section IV, given a box B, we proposed a graph-based
structure in order to optimally solve MDP2 by invoking the
Dijkstra’s algorithm. Although this approach is optimal in the
discretized area, the main disadvantage is that it considers the
whole B, which requires too much space to store the graph,
and it is also computationally heavy.

We propose a much lighter but sub-optimal approach to
solve MDP2 that considers a subset of cells of B that we call
Corridor C, i.e., a subset of cells along a way between the
starting and the destination cell. More precisely, we create a
corridor with a given width CW (in terms of number of cells)
that starts at the starting cell s = (xs, ys, zs) and follows
some specific structures, and ends at the destination cell g =
(xg, yg, zg). The length of the corridor CL depends on the

position among s and g. Moreover, the height of the corridor
is equal to the height of the box B, i.e., CH = BH .

The detailed construction is depicted in the next section.

A. Construction

We start with some definitions, regardless of the positions
of both s and g, that help us to define our approach clearly.

• Horizontal (Vertical) block, denoted as H-block (V-
block), is a set of adjacent cells aligned horizontally
(vertically) within the box. It consists of cells arranged in
a single row (column). The length of a H-block (V-block)
is the number of cells it contains in that row (column).

• Horizontal (Vertical) straight corridor consists of a set
of 2ν + 1 adjacent H-blocks (V-blocks), where ν is an
integer number that represents the distance of the farthest
H-block (V-block) from the central one (see Figure 4,
left). So, CW = 2ν + 1. In the example, ν = 2.

• Horizontal (Vertical) zig-zag corridor consists of a set
of V-blocks (H-blocks) repeatedly added on the left or
right (above or below) while each block is shifted one
cell to the top or bottom (to the right or left). It holds
that CW = 2ν+1. In Figure 4, right, there is a horizontal
zig-zag corridor and ν = 1.

Fig. 4. Examples of different types of corridors: (left) a horizontal straight
corridor formed by many H-blocks, (right) a horizontal zig-zag corridor
formed by many V-blocks.

We now proceed by explaining each step of the proposed
corridor-based approach. According to the coordinates of the
starting and the destination cell, there can be 16 different
cases (see Figure 5). So, based on any of these cases, we will
create different kinds of corridors between the starting and the
destination cells. The pseudocode of the proposed approach is
given in Algorithm 3. We briefly denote horizontal and vertical
as H and V, respectively.

Algorithm 3: Corridor Construction
1 s = (xs, ys, 1), g = (xg, yg, 1)
2 x′ ← |xs − xg|, y′ ← |ys − yg|
3 if x′ ≥ y′ then
4 if g is on the top-right or bottom-right of s then
5 create H zig-zag corridor s⇝ t = (xs + y′, yg, 1)
6 else
7 create H zig-zag corridor s⇝ t = (xs − y′, yg, 1)

8 create H straight corridor t⇝ g

9 else
10 if g is on the top-right or top-left of s then
11 create V zig-zag corridor s⇝ t = (xg, ys + y′, 1)
12 else
13 create V zig-zag corridor s⇝ t = (xg, ys − y′, 1)

14 create V straight corridor t⇝ g
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W.l.o.g., we only consider the cases in which the destination
cell g = (xg, yg, 1) is on the top-right of the starting cell
s = (xs, ys, 1). The procedure for the other cases, when the
destination cell is on the top-left, bottom-right, and bottom-
left of the starting cell, is analogous. We now analyze different
cases (e.g., Cases 1 to 5) enumerated in Figure 5.

s

g

5

6

78

9

1011

12

13

14

15 16

1

2 3

4

Fig. 5. All possible different cases according to the coordinates of the starting
cell s = (xs, ys, 1) and the destination cell g = (xg , yg , 1).

The idea behind the proposed corridor-based approach is to
start from the starting cell s and use zig-zag corridors until
the destination cell g can be reached by a straight corridor.
Note that the length CL of the corridor connecting s and g is
|xs−xg|+1 for horizontal corridors (|ys−yg|+1 for vertical
corridors), and CW = 2ν + 1.

(i) Case 1: If yg = ys, we create a V straight corridor with
CL = |ys − yg|+1 between s and g (see Figure 6, left).
Note that s and g belong on the first and last cell in the
central V-block.

(ii) Case 2: The corridor is built by combining a V zig-
zag corridor with length µ = |xs − xg| + 1, and a V
straight corridor with length |yg − ys −µ| (see Figure 6,
right). Note that the corridor construction starts from s
and grows toward g.

(iii) Cases 3 and 4: For Case 3, we create a H zig-zag
corridor with CL = |xs−xg|+1. For Case 4, the corridor
is constructed by combining a H zig-zag corridor of
length µ = |ys − yg| + 1 and a H straight corridor of
length |xg − xs − µ| (see Figure 7, left).

(iv) Case 5: If xg = xs, corridors are similarly created as (i)
but horizontally (see Figure 7, right).

s

g

s

g

Fig. 6. Corridor construction based on the positions of the starting and the
destination cells: (left) Case 1 with ν = 2, (right) Case 2 with ν = 3.

After creating the corridor, the proposed approach con-
structs the corresponding graph GC ⊆ G only by taking the
corridor and the set of towers (including the towers outside
the corridor2) into account. So, the resulting subgraph GC is
then used to optimally find a local solution, by minimizing

2Each cell knows about all nearby towers, not just the ones in the corridor.

s

g s g

Fig. 7. Corridor construction based on the positions of the starting and the
destination cells: (left) Case 4 with ν = 2, (right) Case 5 with ν = 1.

Eq. (17), that would be sub-optimal for the original global
graph G. The advantage of the proposed approach is that
the width of the corridor can be suitably chosen as an input
parameter, especially when the volume of the box starts to be
quite large. Also, by selecting different widths the resulting
computed paths will be different. This of course affects the
computational complexity of the problem. More precisely, if
cl = |CL| and cw = |CW |, it holds that |V | ∈ O(clcw γ2h3),
and |E| ∈ O(clcw γ2h3), where clcwh≪ nmh is the number
of cells in the corridor. Note that cw ∈ Θ(ν) and cl is related
with the distance between s and g, and can be either n or m.

VI. EXPERIMENTAL EVALUATION

We perform an extensive experimental evaluation when
approaching the MDP2. In Section VI-A we describe the
used parameters in our scenarios, while in Section VI-B and
Section VI-C we evaluate the path dependability when solving
MDP2 in the general graph and in the corridor structure,
respectively. Our results are founded on the assumptions made
for ground-safeness, link-reliability, and normalized power in
Sections III and IV. For the towers, we extract their position
from a real dataset [34]. Our algorithms are in C++173, and
run on an AMD Ryzen 3 PRO computer with 32GB of RAM.

A. Setting

We have selected three distinct environments that vary in
complexity to assess the performance of our model:

• The rural environment features a low population density,
a low building density (low sheltering), and few antennas,
allowing a clear LoS. However, the limited number of
towers may pose difficulties in maintaining consistent
communications between the drone and the operator.

• The suburban environment has a higher population and
building density than the rural area and a larger number
of antennas, providing a balance between rural and urban
connectivity, and ground risk.

• The urban environment has the highest population and
building density, resulting in a high sheltering factor,
numerous obstacles, and a large number of antennas. This
makes it easier to maintain connectivity.

We consider a box B with BL = BW = 10 km, and BH =
90m. Each cell c ∈ B has ℓL = ℓW = 10m, and ℓH = 30m.
Accordingly, we have n = m = 1000 and h = 3, so we limit
to 3 different heights.

3Implementation is available at https://github.com/ulisse91/BVLOS.
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Concerning the no-fly zone/obstacle layer, we randomly
generate obstacles on the ground with PFF that depends on the
environment. To be more precise, the rural environment is set
to PFF = 5%, while it is set to 15% and 25% for the suburban
and urban environments, respectively. We generate potential
obstacles on these layers, increasing their height up to the
maximum allowed. As a general trend, the urban environment
presents more restrictions on the drone flight path compared
to rural or suburban settings.

TABLE I
TABLE OF PARAMETERS.

Parameter Description
BL,BW ,BH Width, length, and height of the box B: 10 km, 10 km, and 90m
ℓL, ℓW , ℓH Width, length, and height of each cell within the box: 10m, 10m, and 30m

n,m Number of cells in the length and width: 1000 and 1000
h Number of cells in the height: 3

PFF Probability of obstacles in the no-fly zone/obstacle layer: 5% (rural), 15%
(suburban), 25% (urban)

Pevent Descent prob. events: 1
200

(ballistic), 1
200

(uncontrolled glide), 1
100

(parachute),
1

250
(fly-away)

Pimpact Impact prob. based on ρ and Aexp
rp, hp Radius and height of a person: 0.248m and 1.587m
ruav Radius of the vehicle: 0.88m
ψ Impact angle on the ground: 1.04

Pfatality Probability of fatality based on sheltering factors
S(c) Sheltering factors: 0 (no obstacles), 2.5 (sparse tree), 5 (vehicles and low

buildings), 7.5 (high buildings), 10 (industrial building)
τ Threshold energy for fatality: 100 kJ
η Energy absorbed per unit area: 34 J
δ Mass of the drone: 3.75 kg
vinit Initial velocity of the drone: 20m/s

G(t), G(c) Gains of the antennas: 1 (isotropic signal)
PW (t) Transmitted power at the tower t: 1–5W
PW (c, t) Normalized received power
PHSR(c, t) Handover-Success-Rate probability

λ Wavelength of the transmitted signal: 0.43–0.05m
α, β For PLoS: α = 0.1, β = 750 (rural), α = 0.3, β = 500 (suburban), α =

0.5, β = 300 (urban)
CW = ω Corridor width: 5, 11, 21, 31

About the risk-map layer, we used general parameters from
Primatesta et al. [8]. Four descent event types and Pevent
probabilities are considered (see Table I). Pimpact (see Eq. (2))
depends on ρ and on Aexp: ρ is publicly available depending on
the city we choose (see Table III), while for computing Aexp
we refer to Table I. Interestingly, with the used parameters
we have that the exposed lethal area Aexp ≈ 6m2 while our
area cell is 100m2. To simulate different environments, we
randomly select a sheltering factor for the rural environment
from 0, 2.5, 5, for the suburban environment from 2.5, 5, 7.5,
and for the urban environment from 5, 7.5, 10.

Moreover, with regard to the wireless infrastructure layer,
we used a real dataset [34] for retrieving the real GPS positions
of cellular towers. As mentioned above, we assume at most
one tower for each cell (in our case, a square of 100m2).
Since power and wavelength information is not available for
all towers, we randomized these values. We also assumed
isotropic antennas with unitary gains. In particular, knowing
that 2/4/5G towers have an average power PW of 1–5W
and frequencies in the range 0.7–6GHz, which correspond
to wavelengths λ between 0.43–0.05m, we randomized these
values within the ranges. Then, we normalize these values
according to Eq. (11). Furthermore, concerning the probability
of being LoS, we used the α and β parameters from Al-
Hourani et al. [30]. In particular, for the rural environment,
we set α = 0.1, β = 750, for the suburban environment, we
set α = 0.3, β = 500, and for the urban environment, we set
α = 0.5, β = 300. Note that the ground and slant distances are
Euclidean, although we discretized the positions. Finally, the

PHSR weights are computed according to Eqs. (12) and (13).
As just explained, we generate the edge weights on the

graph by considering three different components. For inter-
egdes, the weight is the product of the link-reliability (PLR)
and ground-safeness (PGS). For the intra-edges, the weight is
the handover-success-rate (PHSR). A component can be fixed
for each edge of the graph to 1 to disable it, i.e., if we do not
want that the path dependability depends on it. Hence, the edge
dependability can be selectively tuned through a mode M.
Table II reports the modes M that can be used, where 1 means
“enabled” and 0 means “disabled”. For instance, M = 5
considers only weights for PHSR and PLR, neglecting PGS
(risk-less environment). So, in this example, we set PGS = 1
to disable ground-safeness. The default mode is M = 7 with
all the components enabled.

TABLE II
COMBINATIONS OF PROBABILITIES WHEN SETTING THE EDGE WEIGHTS.

PHSR PGS PLR M PHSR PGS PLR M
0 0 0 0 1 0 0 4
0 0 1 1 1 0 1 5
0 1 0 2 1 1 0 6
0 1 1 3 1 1 1 7

Finally, we varied the visibility factor γ according to the
tower density. The whole construction asymptotically takes
O(nmγ2h3), and γ significantly impacts the generation of the
framework. We handle γ values up to 25 in rural area, while
we can only handle γ = 5 in very dense urban area.

B. Results with Optimal Strategy

In this section, we report the experimental results of our
proposed framework and solution. We propose three different
experiments. In the first one (Section VI-B1), we show the
running time and size of the framework when varying γ for
a given environment. In the second one (Section VI-B2), we
solve the MDP2 by tuning different edge weights. Finally,
in the third one (Section VI-B3), we investigate how the
maximum dependability path changes when varying γ.

1) Size of Multi-Layer Framework: In this experiment, we
compare the framework construction in different environments
considered according to the population density of the cities.
In particular, densities ρ around 200/ km2, 1000/ km2, and
6000/ km2, are assumed to be rural, suburban, and urban,
respectively. For each environment, we test 3 different in-
stances with relevant Italian cities from an available dataset
of towers [34]. For each instance, we also vary the visibility
factors depending on the number of towers. Finally, we save
some interesting indicators, as reported in Table III.

TABLE III
GENERATION OF THE FRAMEWORK UNDER DIFFERENT PARAMETERS:

RUNNING TIME AND FRAMEWORK’S SIZE.

Env. City ρ |T | γ W time G time |V | |E|

Rural
Caltanissetta 141 624

5 11 s 18 s 3.8M 28M
25 240 s 294 s 25M 0.7G

Grosseto 172 1161 20 179 s 294 s 29M 0.8G
Viterbo 162 1124 20 181 s 477 s 28M 0.8G

Suburb.
Modena 1010 4254 15 144 s 1445 s 55M 1.5G
Piacenza 866 2642 15 125 s 548 s 35M 0.9G
Verona 1287 6626 10 79 s 744 s 40M 1.0G

Urban
Milano 7430 27947 5 45 s 653 s 40M 1.0G
Roma 2135 21243 5 38 s 374 s 31M 0.7G
Torino 6526 15401 7 58 s 773 s 41M 1.0G
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In Table III, the first, second, and third groups of three
rows represent urban, suburban, and urban cities, respectively.
In particular, the city of Caltanissetta is reported with two
different values of γ (5 and 25) for a brief comparison.

The heavy computation time is mainly associated with the
creation of the wireless infrastructure layer W , and the graph
G. The running time results show that the value of γ has a
significant impact on the creation of W . In general, a larger
value of γ implies a longer time to create W regardless of
the number of towers. Moreover, having a large number of
towers also leads to a significant increase in the time required
to create G. In Table III, e.g., the running time and the number
of vertices and edges in the Caltanissetta city (which has 624
towers) vary greatly depending on whether γ is set to 5 or
25. In fact, when γ = 25 it takes around 20× more time to
build the whole structure than when γ = 5. On the other hand,
the Milano city (which has 27947 towers) takes 4× and 36×
more than Caltanissetta city with γ = 5 for building W and
G, respectively. This highlights the importance of the choice
of γ in determining the computational efficiency of the model.
Indeed, for the city of Modena, we managed to set γ = 15
obtaining a graph with 55 millions of vertices and more than
1.5 billions of edges.

2) Maximum Dependability Path Analysis: In this experi-
ment, we evaluate and analyze the generated paths by varying
a few parameters. We consider the city of Roma (|T | = 21243,
|V | = 31M, and |E| = 0.7G) with γ = 5 and M ∈ {2, 5, 7}.
In other words, we consider the scenarios where only ground
risk is considered (M = 2), only ground risk is neglected
(M = 5), and the general one (M = 7). We select
s = (500, 500, 1) as the source vertex (i.e., the center cell of
the box), and we consider any destination vertex g. Then, we
solve MDP2 by invoking the Dijkstra’s algorithm. Recall that
MDP2 aims to maximize Eq. (14) (maximum dependability
path), which is the same as to minimize Eq. (17) (shortest
path). We would like to remind the reader that Dijkstra’s
algorithm, when applied to a specific source vertex, calculates
all the shortest paths from that vertex to any other vertex
within the graph. However, in general, it can be terminated
once the desired destination has been determined.

In Figure 8, the y-axis represents the number of traversed
edges |Λ| (grouped per height, where the subscripts 1, 2, and
3 refer to a height of 30m, 60m, and 90m, respectively),
the number of adjacent height swaps, the count of handovers
(Hs), and the path dependability (Eq. (14)). These values are
illustrated in Figure 8a, Figure 8b, Figure 8c, and Figure 8d,
respectively. In the x-axis, we report the Euclidean distance
in kilometers among s and g (i.e., 1, 2, . . . , 6) grouped by
mode (i.e., M = 2, 5, 7). In Figure 8, we randomly select
50 destination vertices g at different Euclidean distances in
kilometers from s. Specifically, there are 50 vertices within
each annulus of width 1 km from s (see Figure 10).

In M = 2, only ground-safeness (PGS) is considered. As
expected, we observe paths mainly along the lowest height
because Pfatality depends on the height (higher speed of im-
pact), and so the drone is not incentivized to swap too many
times. In general, around 5% of the vertices are traversed at
h = 2, a very few at the highest level, and the remaining at the
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Fig. 8. Results when testing Roma fixing γ = 5 and varying M = 2, 5, 7.

lowest one. The number of swaps is really small compared to
the other modes. In M = 2, since PHSR = 1, changing tower
has no cost. As handovers are considered in our model to
be “ground-risk-less” events, the drone performs a significant
number of them. In principle, the dependability of the paths
slightly decreases when the Euclidean distance increases from
the source s. This is reasonable since the drone has to travel
along more edges.

When M = 5, both link-reliability (PLR) and handover-
success-rate (PHSR) are taken into account, while the environ-
ment is considered risk-free. So, the drone is highly motivated
to operate at higher altitudes where communication quality
is superior, as the associated ground-risk is not considered.
In fact, LoS probability (PLoS) increases with the drone’s
elevation. At higher altitudes, the drone can take advantage of
better tower visibility, potentially facilitating more handovers.
As a result, around half of the total vertices are located at
h = 2, with the remainder roughly split between h = 1 and
h = 3. So, the number of swaps also increases significantly,
with a greater emphasis on swaps between the highest altitudes
(2 ↔ 3) than the lowest ones (1 ↔ 2).

Finally, in M = 7, we consider all components together. In
general, these results present peculiarities from both M = 2
and M = 5. In fact, the number of traversed vertices is low
as for M = 2, but differently from it, the vertices at h > 1
are much more. Here, half of the vertices are at the lowest
height, and the other ones are equally split at the remaining
two heights. This is because M = 7 takes into account the
risk, so the drone is often constrained to fly at higher heights.
Interestingly, the number of handovers here is halved with
respect to the other evaluated modes. This is probably due to
the fact that the drone has to fly at the lowest heights, where
PHSR is lower. In conclusion, the dependability is lower in
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general because it is weighted by all the components, i.e.,
risk, link quality, and handover-success-rate.

Although we analyze the path dependability, we know that
dependability strongly depends on the assumptions. At the
moment, we mixed real and random inputs. For example,
the position of the tower is real, but the tower wavelength
is randomly selected. Clearly, this strongly affects our re-
sults. However, the contribution of our paper is to show that
the MDP2 can be solved polynomially on a very complex
framework that merges many layers and allows customization
of each layer. The relationship between the dependability
results and the assumptions done will be the object of further
investigations in the future.

3) Impact of Visibility Factor on Paths: In this experiment,
we want to see how the path changes when γ changes too. We
consider the city of Caltanissetta (|T | = 624) with M = 7 and
γ ∈ {10, 15, 20, 25}. We recorded |V | = 6M and |E| = 0.1G
with γ = 10, while when γ = 25 we have |V | = 24M and
|E| = 0.7G. We select s = (500, 500, 1) as the source vertex,
and as before, we consider any destination vertex g by solving
MDP2 by invoking the Dijkstra’s algorithm. In the x-axis, we
also report the used visibility factor γ.
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(d) Dependability.

Fig. 9. Results with Caltanissetta fixing M=7 and varying γ=10, 15, 20, 25.

In Figure 9, we report the experimental results. The Di-
jkstra’s algorithm took 18 s, 31 s, 50 s, and 64 s when γ =
10, 15, 20, 25, respectively.

In general, the results follow the previous trends. However,
here it is interesting to see that the path dependability values
with γ = 10 are only slightly worse than those with γ ≥ 15.
This is probably because the impact of γ saturates beyond
a certain threshold. This suggests that we should keep γ as
small as possible in order to minimize the required running
time for building the whole structure. We cannot neglect the
fact that when we decrease the visibility factor, the number of

unfeasible paths could significantly increase. In other words,
if the distribution of towers is very sparse, it can happen that
many destinations could be unreachable due to missing edges.
In general, when γ is small, the number of handovers is larger
because the drone can “see” fewer towers, and therefore it
necessarily has to connect with more antennas. For the same
reason, the number of traversed edges is also larger. On the
other hand, when γ increases, the drone tends to decrease
the number of handovers and fly at lower heights due to the
observations mentioned above: the lower the altitude, the lower
the risk, and the stronger the signal strength.

(a) Roma. (b) Caltanissetta.

Fig. 10. Distribution of towers.

Another interesting aspect is the dependability, that shows
a strange behavior. In fact, initially it smoothly decreases
until 5 km, then it starts to slightly increase. This depends
on the tower distribution (e.g., see Figure 10) and on the way
we group the destination vertices. Figure 10 shows that in
Caltanissetta the number of towers is small (|T | = 624) and
its distribution is unbalanced, while in Roma there are really
many towers (|T | = 21243) evenly distributed. However, the
way we group the results may be counter-intuitive. When
we group the destination vertices within a certain annulus,
we still consider the whole graph, and therefore the graph
can go beyond the outer part of the annulus. So, it could
happen that vertices at distance 5 km are only reachable going
beyond that distance and coming back, due to the unbalanced
distribution of towers that make impossible the flight of the
drone, since there are uncovered areas. Therefore, according
to the optimality property of the sub-paths of the shortest path
algorithm, vertices at further distances will have a smaller cost
(so, larger dependability) and are preferred as intermediate
vertices by the Dijkstra’s algorithm.

C. Results with Corridors Strategy

In this section, we report the experimental results of our pro-
posed framework when the corridors are employed. The goal
of this section is to compare, for the same source-destination
pairs, the dependability value returned by MDP2 invoked on
the complete graph and on the corridors. We trade the accuracy
of the dependability value for lower computational complexity.

In this case, we simply evaluate the path dependability
by proposing two different experiments: Roma (γ = 5 and
varying M = 2, 7) and Caltanissetta (M = 7 and varying
γ = 10, 20). The width of the corridors, which must be an
odd number, is CW = ω = {5, 11, 21, 31} cells.
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In these experiments, the number of unfeasible solutions can
be really large with narrow corridors due to the fact that the
straight or zig-zag corridors, from the source to the destination,
can traverse areas without towers or no-fly zones. So, in order
to present comparable results, we initially find 50 feasible
random instances on the most constrained scenario (e.g., in
Caltanissetta, it is with γ = 10 and ω = 5), and keep these
for the subsequent, and less constrained, scenarios.

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 5 5 5 5 5

Distance from s (km)

1
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

2
1

3
1

3
1

3
1

3
1

3
1

3
1

R

(a) M = 2.

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 5 5 5 5 5

Distance from s (km)

1
1

1
1

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

2
1

2
1

3
1

3
1

3
1

3
1

3
1

3
1

R
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Fig. 11. Corridor results in Roma fixing γ = 5 and varying M = 2, 7.

Figure 11 shows the experimental results for the city
of Roma when corridors of different widths are used (i.e.,
ω = 5, 11, 21, 31), with their corresponding values reported
on the x-axis. In the y-axis, instead, we report the ratio
R ∈ [0, 1] among the dependability of the corridor solution
and the optimal one. In general, we can observe the same
trend of the plots already seen in Figure 8 for increasing
values of the distances from the source s. Obviously, the
results in Figure 8 are optimal with respect to the whole
box area, while the ones in Figure 11 are a little bit worse
due to the fact that the drone flies only on a limited sub-
area formed by narrow corridors. However, in the presented
scenario the dependability obtained in the corridor solutions is
always above the 70% of the optimal solution in M = 7, and
above the 95% in M = 2. As expected, when we increase ω,
the path dependability does not decrease. Although the path
dependability is slightly affected, in the urban area, one can
see that it is not significantly impacted. On the other hand, we
were able to handle γ values up to 30 with a very reasonable
amount of memory and time required.
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Fig. 12. Corridor results in Caltanissetta fixing M=7 and varying γ=10, 20.

Finally, Figure 12 reports the corridor experiments on the
rural city of Caltanissetta. Recall that this city is small, and
the number of towers is very small (see Figure 10). So,
when a narrow corridor is employed (e.g., ω = 5), the

path dependability can dramatically drop. In these cases, the
dependability obtained in the corridor solutions when γ = 10
is at least 90% of the optimal solution for vertices within 2 km,
and then decreases to around 30% of the optimal. Instead,
when γ = 20 the results are a little bit better in the order
of 40% of the optimal for the farthest vertices up to 6 km.
Moreover, during the experiments, we noted many unfeasible
solutions, especially for narrow corridors, due to the limited
visibility of towers. In general, and as expected, the worst
results appear when γ is small, ω is small, and the distance
from the source increases. So, it is challenging to find a
suitable path from the source to a far destination just relying
on limited visibility and narrow corridors in the rural areas.

D. Towards a More Realistic Model
While our proposed framework is innovative, it currently

exhibits several limitations which, by the way, allowed us to
present concisely our framework. Our multi-layer model relies
on a discretized environment, where drones fly at the center of
cells, which does not always result in the best path with respect
to path length compared to a straight line joining the start and
destination points. We can incorporate a post-processing step
by computing the Euclidean path within the selected cells or
by connecting two adjacent cells with lines with different incli-
nations (but finite numbers) depending on the final destination.
Another area for improvement lies in the visibility factor for
drones. Currently, this is defined in a fixed and predetermined
number of squares due to their compatibility with cell-based
environments, but this implementation lacks realism as it is
surely related to tower technologies. For example, we could
compare dependability using 4G towers versus 5G towers,
directional antenna versus omnidirectional antenna, and single
tower versus multiple towers in a cell which possess different
characteristics like range and bandwidth. In general, the obsta-
cle layer can be enhanced in our framework by including real
maps obtained from public services. The height of the terrain,
which we neglected in our preliminary model, would also
impact drone path planning. All these aspects will increase
the graph’s complexity. It then will urge to find a dynamic
solution that extends the graph on demand.

VII. CONCLUSION AND NEXT STEPS

In this paper, we present a highly customizable novel
graph-based multi-layer framework for planning in advance
drone operations in BVLoS scenarios, based on real-world
challenges. Our framework considers no-fly zones, obstacles,
ground risk, and wireless communication infrastructure to
ensure a reliable link between the drone and the operator.
The customizability allows us to adjust various functions
such as handover-success-rate, signal strength, ground risk,
etc. The framework provides a polynomial graph construction
that enables to efficiently solve the MDP2. In addition, we
propose a lighter but sub-optimal solution based on corridors,
which can guarantee satisfactory results. We also evaluate the
applicability and feasibility of our framework on a real tower
dataset. While our framework is novel, it currently exhibits
several limitations, as outlined in Section VI-D. So, it is
imperative to evaluate more realistic models in future research.
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