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Introduction

Periodic sequences

Anatol Vieru’s serialism. In the context of 1960’s musical serialism, the Ro-
manian composer Anatol Vieru plays a prominent role. Heir of Aram Khacha-
turian, his opus consists of seven symphonies and three operas, plus several cham-
ber music composition and concertos. The compositional process of numerous
of his works is based on sequences of numbers and the manipulation of such se-
quences by algorithmic processes. The composer started from a sequence and
collected several others obtained from the őrst by applying a sum (resp. differ-
ence) operator. Then he assigned a musical meaning to each sequence (the melody,
the rhythm, the harmony, etc.) for each instrument or orchestral section. Vari-
ous of his compositions, like Symphony n. 2 (1973) and Zone d’Oubli, originated
from this approach. Later, in his Book of Modes ([18]), Anatol Vieru explains in
detail his compositional choices and the operations he performs on the sequences
of modular integers.

Mathematical studies and open questions. From the repeated application
of the sum operator to certain sequences, some mathematical properties and an
interesting behaviour in their length (which we will call period) arise. Some ob-
servations were made by Anatol Vieru himself in [18]: he noticed that the period
of the sequences generally increases when the sum operator is applied and for
certain sequences it is always a power of 2. More, for particular sequences there
are some values that proliferate. The őrst mathematical formalisation was done
by D.T. Vuza in 1982 ([19]) and in [2] were presented the main results regarding
the decomposition into nilpotent and idempotent sequences (called reducible and
reproducible respectively). In [4] the problem of the proliferation of certain values
in the primitives of the sequence [2, 1, 2, 8, 4, 1, 4, 8] ∈ P12 was studied in a com-
putational way. More recently, in [13] cellular automata formalism was deployed
to study the dual of the operator ∆.

Here, we give a complete overview of the theory of modular periodic sequences
developed until now and we present the results we obtained on the period of
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primitives and the proliferation of values. The main new results (Lemma 1.3.5,
Proposition 1.5.10, Theorems 1.5.6, 1.5.9 and 2.2.1, the recursive lemmas of Sec-
tion 2.3.2 and the results of Section 2.4) are part of a joint work with Luisa Fiorot
and Alberto Tonolo (see [8, 9]).

Persistent Homology and Harmonic Analysis

Topological Data Analysis. Persistent Homology is one of the main tools in
Topological Data Analysis, a domain that is quickly acquiring importance in data
analysis thanks to the deep geometrical information it provides. Its popularity
among data analysts has been growing since the early 2000’s, and it has been
employed to face classiőcation problems and feature extraction in several scientiőc
domains. Persistent homology is at the core of TDA and it allows to reconstruct the
topological features of a dataset. More speciőcally, given a őltration of simplicial
complexes, which usually approximates the underlying geometrical structure of a
set of points, persistent homology represents the evolution of simplicial homology
(precisely, of Betti numbers in the form of persistent diagrams or barcodes) in
the őltration. This allows one to gather topological information from the dataset
and features from the barcodes that can be further used in Machine Learning
algorithms for clustering and classiőcation purposes.

The main reference for persistent homology and its current implementation
is [42], which presents the mathematical setting and an efficient algorithm for
computing persistent homology, while a wide introduction to its use in topological
data analysis can be found in [28, 36]. An interesting review of Machine Learning
techniques applied to persistent barcodes is [35]. Persistent homology has been
successfully used in classiőcation problems, from őngerprint classiőcation ([31]) to
general image recognition ([21]).

Persistent homology and music. More recently, persistent homology has been
used also in math-music research, with the aim of linking the topological features
of barcodes to the musical properties of datasets. In particular, in [23] persistent
homology is used in conjunction with the Tonnetz for automatic style classiőcation.
In [24], Vietoris-Rips őltration is used to compute persistent homology of a musical
score and to visualise thematic features of musical pieces.

In this work, we focus on harmony and, more precisely, on harmonic complex-
ity. Similarly to [23], the aim is recognise the harmonic properties (the harmonic
density) of sequences of chords associated to musical pieces. To do so, we make
use of two main musical databases ([33, 26]) which contain the harmonic analy-
sis of respectively The Beatles corpus and several classical music corpora. With
respect to [23], we abandon the Tonnetz in favour of a more ŕexible object: a
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graph of chords. This allows us to freely adjust chord relations and also to con-
sider non-symmetric distances between chords. The latter plays, in our opinion, a
central role in harmonic progressions, as it well describes the temporal asymmetry
of human perception of harmony. To construct simplicial complexes over directed
graphs, so without a symmetric distance, we make use of the Dowker őltration,
whose beneőts have been shown in [22, 25].
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Introduzione

Sequenze periodiche

Il serialismo di Anatol Vieru. Nel contesto del serialismo musicale degli anni
’60, il compositore rumeno Anatol Vieru ha un ruolo di primaria importanza.
Pupillo di Aram Khachaturian, la sua opera conta sette sinfonie e tre opere, oltre
a varie composizioni per musica da camera e concerti. Il processo compositivo di
numerose sue composizioni si basa su sequenze di interi e sulla loro manipolazione
tramite algoritmi aritmetici. Il compositore parte da una sequenza e da questa
ne ottiene di nuove applicando un operatore di somma őnita o differenze őnite.
Successivamente, egli assegna a ciascuna sequenza un signiőcato musicale (melodia,
ritmo, armonia) per ciascuno strumento musicale o sezione orchestrale. Svariate
sue composizioni, come la Sinfonia n.2 del 1973 e Zone d’Oubli sono state composte
con questa tecnica. Successivamente, nel suo Book of Modes ([18]), Anatol Vieru
stesso spiega nel dettaglio le sue scelte compositive e le trasformazioni applicate
alle sequenze di interi modulari.

Studi matematici e problemi aperti. Dall’applicazione ripetuta dell’operatore
somma ad alcune sequenze, riguardo la loro lunghezza (detta periodo di sequito) si
osservano comportamenti interessanti e proprietà matematiche ricorrenti. Alcune
osservazioni furono fatte da Anatol Vieru stesso in [18]: egli osservò che il periodo
delle sequenze tende generalmente ad aumentare quando si applica l’operatore di
somma, e per alcune sequenze questo rimane sempre una potenza di 2. Inoltre,
per speciőche sequenze ci sono valori che tendono a proliferare. La prima for-
malizzazione matematica fu fatta da D.T. Vuza nel 1982 ([19]) e in [2] sono stati
presentati i risultati fondamentali sulla decomposizione in sequenze idempotenti
e nilpotenti (chiamate riducibili e riproducibili rispettivamente). In [4] è stato
studiato computazionalmente il problema della proliferazione di alcuni valori nelle
primitive della sequenza [2, 1, 2, 8, 4, 1, 4, 8] ∈ P12 was studied in a computational
way. Più recentemente, in [13] il formalismo degli automi (cellular automata) è
stato impiegato per studiare le proprietà del duale dell’operatore ∆.

Riassumiamo qui la teoria delle sequenze periodiche a valori modulari svilup-
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pata őnora e presentiamo i risultati ottenuti sul periodo delle primitive e sulla
proliferazione dei valori. I risultati principali (Lemma 1.3.5, Proposition 1.5.10,
Theorems 1.5.6, 1.5.9 and 2.2.1, Section 2.3.2, Section 2.4) sono parte di un lavoro
congiunto con Luisa Fiorot e Alberto Tonolo (vedi [8, 9]).

Omologia persistente ed analisi armonica

Analisi Topologica dei Dati L’omologia persistente è uno dei principali stru-
menti nell’Analisi Topologica dei Dati, un dominio che sta rapidamente acquisendo
importanza nell’analisi dei dati grazie alle profonde informazioni geometriche che
fornisce. La sua popolarità tra gli analisti è in crescita dai primi anni 2000, ed
è stata impiegata per affrontare problemi di classiőcazione ed estrazione di fea-
tures in diversi settori scientiőci. L’omologia persistente è al centro di TDA e
permette di ricostruire le funzionalità topologiche di un insieme di dati. Data
una őltrazione del complesso simpliciale, che tipicamente approssima la struttura
geometrica sottostante di un insieme di punti, l’omologia persistente rappresenta
l’evoluzione dell’omologia simpliciale (più precisamente, dei numeri di Betti sotto
forma di diagrammi di persistenza o di codici a barre) nella őltrazione. Questo
permette di raccogliere informazioni topologiche dal set di dati e features dai cod-
ici a barre che possono essere ulteriormente utilizzate negli algoritmi di Machine
Learning per scopi di clustering e classiőcazione.

Il principale riferimento per l’omologia persistente e la sua attuale implemen-
tazione è [42], che presenta la formalizzazione matematica e un algoritmo effi-
ciente per il calcolo dell’omologia persistente, mentre un’ampia introduzione al
suo uso nell’analisi dei dati può essere trovata in [28, 36]. Un’interessante rassegna
delle tecniche di Machine Learning applicate ai diagrammi di persistenza è [35].
L’omologia persistente è stata utilizzata con successo in problemi di classiőcazione,
dalla classiőcazione delle impronte digitali ([31]) al riconoscimento generale delle
immagini ([21]).

Omologia persistente e musica. Più recentemente, l’omologia persistente
è stata utilizzata anche nella ricerca matematico-musicale, con l’obiettivo di col-
legare le caratteristiche topologiche dei codici a barre alla proprietà musicali dei
dataset. In particolare, in [23] l’omologia persistente è usata insieme al Tonnetz
per la classiőcazione automatica degli stili. In [24], la őltrazione Vietoris-Rips
viene utilizzata per calcolare l’omologia persistente di una partitura musicale e
per visualizzare le caratteristiche tematiche dei brani musicali.

In questo lavoro ci concentriamo sull’armonia e, più precisamente, sulla com-
plessità armonica. Analogamente a [23], l’obiettivo è riconoscere le proprietà ar-
moniche (densità armonica) di sequenze di accordi associati a brani musicali. Per
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farlo, utilizziamo due principali database musicali ([33, 26]) che contengono l’analisi
armonica rispettivamente del corpus dei Beatles e di diversi corpora di musica clas-
sica. Rispetto [23], abbandoniamo il Tonnetz in favore di un oggetto più ŕessibile:
un grafo di accordi. Questo ci permette di modiőcare liberamente le relazioni tra
accordi e anche di considerare distanze non simmetriche tra di essi. Quest’ultimo
aspetto svolge, a nostro avviso, un ruolo centrale nelle progressioni armoniche, in
quanto descrive bene l’asimmetria temporale della percezione umana dell’armonia.
Per costruire complessi simpliciali su graő orientati, quindi senza una distanza sim-
metrica, sfruttiamo della őltrazione Dowker, i cui beneőci sono stati mostrati in
[22, 25].
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Resumé

Séquences périodiques

Le sérialisme de Anatol Vieru. Dans le contexte du sérialisme musical des
années 1960, le compositeur roumain Anatol Vieru joue un rôle de premier plan.
Élève d’Aram Khachaturian, son œuvre compte sept symphonies et trois opéras,
ainsi que diverses compositions pour musique de chambre et concerts. Le processus
de composition de plusieurs de ses compositions est basé sur des séquences d’entiers
et leur manipulation par des algorithmes arithmétiques. Le compositeur part d’une
séquence et en obtient de nouvelles en appliquant un opérateur de somme őnie ou
des différences őnies. Ensuite, il attribue à chaque séquence une signiőcation mu-
sicale (mélodie, rythme, harmonie) pour chaque instrument de musique ou section
orchestrale. Plusieurs de ses compositions, comme la Symphonie n.2 de 1973 et
Zone d’Oubli ont été composées avec cette technique. Ensuite, dans son Book of
Modes ([18]), Anatol Vieru lui-même explique en détail ses choix de composition
et les transformations appliquées aux séquences d’entiers modulaires.

Mathematical studies and open questions. À partir de l’application répétée
de l’opérateur somme à certaines séquences, en ce qui concerne leur longueur (ap-
pelée période), on observe des comportements intéressants et des propriétés math-
ématiques récurrentes. Certaines observations ont été faites par Anatol Vieru
lui-même dans [18] : il a observé que la période des séquences tend générale-
ment à augmenter quand on applique l’opérateur de somme, et pour certaines
séquences cela reste toujours une puissance de 2. En outre, pour des séquences
spéciőques, il y a des valeurs qui ont tendance à proliférer. La première formal-
isation mathématique a été faite par D.T. Vuza en 1982 ( [19]) et en [2] ont été
présentés les résultats fondamentaux sur la décomposition en séquences idempo-
tenti et nilpotente (appelées réductibles et reproductibles respectivement). Dans
[4] le problème de la prolifération de certaines valeurs dans les primitives de la
séquence [2, 1, 2, 8, 4, 4, 8] ∈ P12 was studied in a computational way a été étudié.
Plus récemment, in [13] le formalisme des automates (cellular automata) a été
utilisé pour étudier les propriétés duales de l’opérateur ∆.
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Nous résumons ici la théorie des séquences périodiques à valeurs modulaires
développée jusqu’à présent et présentons les résultats obtenus sur la période des
primitives et sur la prolifération des valeurs. Les résultats principaux (Lemma 1.3.5,
Proposition 1.5.10, Theorems 1.5.6, 1.5.9 and 2.2.1, Section 2.3.2, Section 2.4) font
partie d’un travail conjoint avec Luisa Fiorot et Alberto Tonolo (voir [8, 9]).

Homologie Persistent et Analyse Harmonique

Analyse topologique des données L’homologie persistante est l’un des prin-
cipaux outils de l’Analyse Topologique des Données, un domaine qui a aquis
rapidement de l’importance dans l’analyse des données grâce aux informations
géométriques profondes qu’il fournit. Sa popularité parmi les analystes a augmenté
depuis le début des années 2000, et a été utilisé pour traiter des problèmes de clas-
siőcation et d’extraction de caractéristiques dans différents domaines scientiőques.
L’homologie persistante est au cœur de la TDA et permet de reconstruire les fonc-
tionnalités topologiques d’un ensemble de données. Etant donné une őltration des
complexes simpliciaux, qui se rapproche typiquement à la structure géométrique
sous-jacente d’un ensemble de points, l’homologie persistante représente l’évolution
de l’homologie simpliciale (plus précisément, des nombres de Betti sous forme de
diagrammes de persistance ou de codes-barres) dans la őltration. Cela permet de
reconstituer des informations topologiques de l’ensemble de données et des carac-
téristiques, à partir des codes-barres, qui peuvent être utilisées dans les algorithmes
de Machine Learning à des őns de clustering et de classiőcation.

La principale référence pour l’homologie persistante et sa implémentation actuelle
est [42], qui présente la formalisation mathématique et un algorithme efficace pour
le calcul de l’homologie persistante, alors qu’une large introduction à son utilisation
dans l’analyse des données peut être trouvée dans [28, 36]. Une analyse intéres-
sante des techniques d’apprentissage automatique appliquées aux diagrammes de
persistance est [35]. L’homologie persistante a été utilisée avec succès dans les
problèmes de classiőcation, de la classiőcation des empreintes digitales ([31]) à la
reconnaissance générale des images ([21]).

Homologie persistante et musique. Plus récemment, l’homologie persis-
tante a également été utilisée dans la recherche mathématique et musicale, dans
le but de relier les caractéristiques topologiques des codes-barres aux propriétés
musicales des ensembles de données. En particulier, dans [23] l’homologie persis-
tante est utilisée avec le Tonnetz pour le classement automatique des styles. Dans
[24], la őltration Vietoris-Rips est utilisée pour calculer l’homologie persistante
d’une partition de musique et pour afficher les caractéristiques thématiques des
morceaux de musique.
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Nous nous concentrons sur l’harmonie et, plus précisément, sur la complex-
ité harmonique. Comme en [23], l’objectif est de reconstituer les propriétés har-
moniques (densité harmonique) des séquences d’accords associées à des morceaux
de musique. Nous utilisons deux bases de données musicales ([33, 26]) qui con-
tiennent l’analyse harmonique du corpus des Beatles et de plusieurs corpus de
musique classique respectivement. Par rapport à [23], nous abandonnons le Ton-
netz au proőt d’un objet plus souple : un graphe d’accords. Cela nous permet de
modiőer librement les relations entre les accords et aussi de considérer des distances
non symétriques entre eux. Ce dernier aspect joue, à notre avis, un rôle central
dans les progressions harmoniques, car il décrit bien l’asymétrie temporelle de la
perception humaine de l’harmonie. Pour construire des complexes simpliciaux sur
des graphes orientés, donc sans avoir une distance symétrique, nous utilisons la
őltration Dowker, dont les avantages ont été présentés dans [22, 25].
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Chapter 1

Periodic sequences

In this chapter we study periodic sequences with values over modular integers. We
will mainly focus on the period and its behaviour with respect to the main oper-
ators on such sequences: the differential operator ∆ and the primitive operator
Σ. In Section 1.1 we introduce the periodic sequences over Zm and the decompo-
sition in p-parts. In Section 1.2 we introduce the main operators and their őrst
properties. In Section 1.3 we study the properties of nilpotent and idempotent
sequences and their link with the base prime. In Section 1.4 we introduce the
notion of generating vector of a sequence and provide some basic results about it.
In Section 1.5 we provide a formula for the period of a deőnitive primitive (The-
orem 1.5.6) of a generic sequence, through the study of the period of primitives
of constant sequences. This completely answers the questions on the evolution of
the period of a periodic sequence when the operator Σ is repeatedly applied.

1.1 First deőnitions and properties

1.1.1 The shifting operator on sequences

Let us őx a positive integer m and denote by N the non-negative integers. Denote
Zm = Z/mZ the ring of integers modulo m and consider the Zm-algebra Sm = ZN

m

of all the functions from N to Zm, i.e. Sm is a Zm-module together with the
component-wise multiplication: if f, g ∈ Sn and a ∈ Zm, deőne

(a · f)(n) :=af(n)

(f + g)(n) :=f(n) + g(n)

(fg)(n) :=f(n)g(n).

The diagonal embedding of Zm into Sm is a ring morphism and its image is
given by constant sequences. Notice that an element f of Sm can be identiőed
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6 CHAPTER 1. PERIODIC SEQUENCES

with the sequence of its values:

(f(n))n≥0.

We will usually call sequences the elements of Sm and we will call f(n) the n-th
coefficient of f .

We denote by id ∈ End(Sm) the identity operator and by θ ∈ End(Sm) the
shifting operator, deőned as:

θ(f)(n) := f(n+ 1)

for every f ∈ Sm.

Example. Consider f ∈ Sm deőned by f(n) = n mod m for every n ∈ N. Then
f = (0, 1, 2, 3, 4, 5, . . . ) ∈ Sm and θf = (1, 2, 3, 4, 5, 6, . . . ). Here we wrote the
numbers 1, 2, 3 meaning their coset modulo m, as f(n) ∈ Zm for every n. Notice
that f(n + hm) = n + hm = n = f(n) for every h ∈ N, thus f is periodic. For
example if m = 3, the sequence f is (0, 1, 2, 0, 1, 2, ...). In this case, notice that if
we apply 3 times θ, we obtain again the sequence f :

θ3f = θ2(1, 2, 0, 1, 2, 0, . . . ) = θ(2, 0, 1, 2, , 0, 1, . . . ) = (0, 1, 2, 0, 1, 2, . . . ).

These kinds of sequences will be the ones of our interest and we formalize the
periodicity property in the following deőnition.

Deőnition. Given a sequence f ∈ Sm, we say that it is periodic if there exists
j ≥ 1 such that θj(f) = f , i.e. f ∈ ker(θj − id).

Let us denote P
j
m := ker(θj − id) and consider

Pm :=
⋃

j≥1

P
j
m ⊂ Sm

the set of all periodic sequences in Sm. It is a Zm-subalgebra of Sm, since if f ∈ P
j
m

and g ∈ P
i
m, then f + g, fg ∈ P

ℓ
m where ℓ = lcm(j, i).

Deőnition. Given a periodic sequence f ∈ Pm, we say that it has period τ if
f ∈ P

τ
m \P

d
m for every proper divisor d of τ , i.e. if τ is the minimum integer such

that θτf = f.

This deőnes the function:

p : Pm −→N>0

f 7−→p(f).
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Example. In our previous example f = (0, 1, 2, 0, 1, 2, . . . ) ∈ S3, the period of f is
3. More generally, the sequence (0, 1, 2, 3, 4, 5, 6, . . . ) in Sm has period m.

Remark. One could extend the deőnition of the period on all Sm considering the
function

p : Sm −→ N>0 ∪ {∞}

deőning
p(f) =∞ ∀f ∈ Sm \Pm.

We can extend the sum and the order of N>0 to N>0 ∪ {∞} with the usual
conventions regarding ∞.

Notation: a periodic sequence f ∈ Pm is clearly determined by its coefficients
{f(0), . . . , f(p(f)− 1)}, so we denote the sequence f as:

f =: [f(0), . . . , f(τ − 1)].

So [1] is the constant sequence with all coefficients equal to 1.

Sequences indexed in Z. One could be interested in working with sequences
indexed in Z instead of N, i.e. functions Z → Zm. In this case, one could easily
adapt what has previously been said and just consider sequences with unlimited
indices on both sides: on the left going to −∞ and on the right going to +∞.
However, once one restricts to the study of periodic sequences, this difference does
not matter, as all the information of a function is carried by just a őnite number
of indices. More formally, the truncating morphism

T : ZZ
m −→ZN

m = Sm

(f(n))n∈Z 7−→(f(n))n≥0

restricts to an isomorphism between the periodic sequences in ZZ
m and the periodic

sequences in ZN
m. Indeed the inverse of T restricted to periodic sequences can

be constructed by extending on the left periodic sequences by periodicity. More
precisely, if f ∈ Pm has period τ , one deőnes the extension f̃ ∈ ZZ

m of f setting:

f̃(n) =

{

f(n) if n ≥ 0

f(rn) if n < 0

where ri is the reminder of the euclidean division of −i by τ .
A good point of using sequences with indices in Z is that the shifting operator

θ is invertible as an endomorphism of ZZ
m, while it is just right-invertible on Sm.

Indeed when applied to a generic sequence f ∈ Sm, we loose the information
about the coefficient f(0). Anyway, as far as we are treating periodic sequences,
this difference will not be relevant, since θ gives an isomorphism on Pm.
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The shifting operator and the period. An easy result relates the period with
the shifting operator θ:

Lemma 1.1.1. Given f ∈ Pm, if j ≥ 1 is such that θjf = f , then p(f) | j.

Proof. We proceed by contradiction; suppose that τ := p(f) does not divide j. We
can perform the euclidean division j = τs+ r with 0 < r < τ . But now we have:

f = θj(f) = θr+τs(f) = θr(θτs(f)) = θr(f),

hence f ∈ ker(θr − id). This contradicts the minimality of τ .

Using that θ is a ring morphism one easily veriőes

p(f + g), p(fg) | lcm(p(f), p(g)).

One could hope that p(f + g) = lcm(p(f), p(g)) = p(fg); unfortunately this is not
always the case, as the next example shows.

Example. Consider the sequences [2, 1] and [1, 2] in P3: they have both period 2,
however their sum [2 + 1, 1 + 2] = [0] is the constant null sequence and has period
1. The constant null sequence [0] ∈ P6 is also obtained multiplying [2, 3] by [3, 2]
in P6.
More in general, for every m the sequences [1, 0], [0, 1] ∈ Pm have period 2 but
[1, 0] · [0, 1] = [0] has period 1.

Let us see őrstly a result about the sum, as it is the operation we will mostly
be interested in.

Lemma 1.1.2. Let f, g ∈ Pm be periodic sequences such that:

p(f) =
s∏

i=1

pdii p(g) =
s∏

i=1

peii

with pi distinct primes, di, ei non negative integers for every i. For every j such
that dj ̸= ej, we have

p
max{ dj ,ej }
j | p(f + g).

Proof. Set τ := p(f + g) for brevity; we know that

τ | lcm(p(f), p(g)) =
s∏

i=1

p
max(di,ei)
i .
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Fix an index j such that dj ̸= ej; without loss of generality, we may suppose
dj > ej thus max { dj, ej } = dj. Now suppose by contradiction that p

dj
j ∤ τ ; thus

the maximal power of pj that divides τ is p
dj−1
j . Hence:

τ | p
dj−1
j

∏

i ̸=j

p
max(di,ei)
i =: ξ.

Now p(g) | ξ so θξg = g; we obtain:

f + g = θξ(f + g) = θξ(f) + θξ(g) = θξ(f) + g

which gives f = θξ(f), forcing p(f) | ξ. This is a contradiction since p
dj
j | p(f) but

p
dj
j ∤ ξ.

Remark. By previous lemma, every prime in the factorization of p(f) which does
not divide p(g), divides p(f + g) with its power in the factorization of p(f). Hence
if f and g have coprime periods, the sum f + g has period precisely the product
of the periods.

We state a weaker version of the previous lemma for the product:

Lemma 1.1.3. Let f, g ∈ Pm be periodic sequences such that for each j ≥ 0, g(j)
is not a zero divisor in Zm. Let

p(f) = ph
s∏

i=0

αdi
i p(g) =

s∏

i=0

αei
i

with αi, p distinct primes, h, di, ei integers for every i ≤ s and h ̸= 0. Then
ph | p(fg).

Proof. The proof of the previous lemma works for this lemma by replacing every
sum of sequences with the multiplication. Notice that we need g(j) not to be a
zero divisor in Zm (i.e. invertible) for every j in order to have the implication

fg = θξ(f)g =⇒ f = θξ(f)

in the last part of the proof.

1.1.2 Decomposition in p-parts

If m ∈ N>0 is a positive integer, the factorization in primes

m =
s∏

i=1

pℓii
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gives a decomposition of the abelian group Z/mZ into the direct sum of the abelian
groups Z/pℓii Z; formally, there is an isomorphism of groups:

ϕ : Z/mZ −→
s⊕

i=1

Z

pℓii Z

x mod m 7−→(x mod pℓii )1≤i≤s

This is the well known Chinese Remainder Theorem. This result can be extended
to the sequences in Pm just taking the component-wise decomposition:

Φ : Pm −→
s⊕

i=1

P
p
ℓi
i

(f(j))0≤j<p(f) 7−→((f(j) mod pℓii )0≤j<p(f))1≤i≤s.

This is an isomorphism of abelian groups, so whenever we have a sequence f ∈ Pm

and we want to study it, we can study instead its projections in P
pℓ

j

j

. We denote
by

πi : Pm −→ P
p
ℓi
i

the projection and we call fpi := πi(f) the pi-part of f . One has f =
∑

f̃pi where
fpi = Φ−1(fpi). To keep a clean notation, we can omit the power index ℓi in the
deőnition of πi since ℓi is completely determined by m.

Example. Let us have a closer look at P12. Indeed Z12 is the most natural choice
in a musical context, as it represents the pitch classes of the notes in an octave.
With this correspondence, the decomposition in p-parts of Z12 (thus of P12) can
be translated in the decomposition of an octave as the three possible translations
of a diminished chord. Indeed if

Z4 ⊕ Z3 ≃ {0, 3, 6, 9} ⊕ {0, 4, 8},

we obtain the correspondence:

{0, 3, 6, 9} ↔ and {0, 4, 8} ↔
It is clear that every pitch class in Z12 can be uniquely described as a sum of a
note from the diminished 7th chord {0, 3, 6, 9} and a note from the augmented
chord {0, 4, 8}.

Notice that in general the pi-parts fpi of f ∈ Pm may not have the same period
of f , as the following example shows.
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Example. Consider the following sequence of period 16 in P12

f = [8, 10, 11, 1, 5, 1, 2, 10, 2, 4, 5, 7, 11, 7, 8, 4]

As 12 = 22 · 3, we know that

Z

12Z
≃

Z

22Z
⊕

Z

3Z

and the p-parts of f are respectively:

f2 =[0, 2, 3, 1, 1, 1, 2, 2, 2, 0, 1, 3, 3, 3, 0, 0] ∈ Z/4Z

f3 =[2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1] ∈ Z/3Z.

Notice that in fact f3 = [2, 1] is a sequence of period 2; so f projects to a sequence
of period 16 in P4 and to a sequence of period 2 in P3. The Chinese Remainder
Theorem gives:

f = f̃2 + f̃3 = [0, 6, 3, 9, 9, 9, 6, 6, 6, 0, 9, 3, 3, 3, 0, 0] + [8, 4].

We prove in the following lemma that the period of a sequence coincides with
the least common multiple of the periods of its p-parts.

Lemma 1.1.4. Consider m =
∏s

i=1 p
ℓi
i and take f ∈ Pm. Then p(f) = lcm { p(fpi) }1≤i≤s.

Proof. We denote shortly h := lcm { p(fpi) }. Since f =
∑s

i=1 f̃pi and p(f̃pi) =
p(fpi), by Lemma 1.1.2 one obtains p(f) | h.

For the converse: it is clear that the operator θ commutes with the projections
πi. So the following diagram is commutative:

Pm P
p
ℓi
i

Pm P
p
ℓi
i

πi

θp(f) θp(f)

πi

thus θp(f)fpi = fpi and by Lemma 1.1.1 we obtain p(fpi) | p(f). Since this holds
for every i = 0, . . . , s, we obtain h | p(f) as wanted.

This lemma, together with the isomorphism Pm ≃
⊕

P
p
ℓi
i

, allows us to reduce
to sequences in P

p
ℓi
i

in several cases.
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1.2 Differential and primitive operators

Similarly to the derivation and the integration of a real valued function, one may
consider the analogous operations for function deőned on N. One őnds respectively
the operator ∆ and the operator Σ. In this section we introduce these operators
and their őrst properties.

1.2.1 Differential operator

Deőnition. Given a positive integer m, we deőne the differential operator

∆ := θ − id ∈ End(Sm).

It is immediate to verify that ∆ commutes with θ, i.e. ∆ ◦ θ = θ ◦∆. Hence ∆
restricts to an endomorphism ∆ ∈ End(Pm). From now on, we will always consider
∆ as an operator on Pm.

Example. Consider the sequence f = [0, 1, 2, 3] ∈ P4; we have:

∆f = θf − f = [1, 2, 3, 0]− [0, 1, 2, 3] = [1].

Clearly ∆ does not preserve the period.

Example 1.2.1. Consider the following sequences:

j =[2, 11, 9, 7, 2, 2, 11, 9, 7, 4, 4, 0, 11, 9, 6, 2, 2, 0, 9, 11] ∈ P12

r =[1, 1, 1, 1, 4] ∈ P5.

Consider the correspondence:

Z12 ←→{C,C♯,D,D♯, E, F, F ♯,G,G♯, A,A♯, B}

Z5 ←→{0, ˇ “( , ˇ “, ˇ “‰ , ˘ “}

where 0 represents the null duration. Together, the sequences j and r provide the
őrst notes of Jingle Bells theme, as shown in Figure 1.1

Figure 1.1: Jingle Bells theme

Here j describes the pitch classes of the theme and r the duration of each
note. In musical terms, the operator ∆ gives the sequence of intervals of the input
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sequence. So ∆j is the sequence of the intervals between the pitch classes of j,
while ∆r is the sequence of differences of the durations of r. Hence, from a musical
point of view, the operator ∆ is quite natural, especially if one considers it acting
on pitch classes: a őxed theme can be described by the pitch classes of its notes,
or by the datum of a starting pitch class and the sequence of intervals. From a
compositional point of view, a natural idea is to consider the sequence of intervals
of a starting theme as a sequence of pitch classes that describes a new theme. So
for example, keeping the durations of r and using the sequence

∆j = [9, 10, 10, 7, 0, 9, 10, 10, 9, 0, 8, 11, 10, 9, 8, 0, 10, 9, 2, 3]

for the pitch classes, one obtains the theme shown in Figure 1.2

Figure 1.2: Theme obtained by deriving the pitch classes of Jingle Bells

Returning to the mathematical properties, a őrst observation is that the period
of ∆(f) divides the period of f . Indeed if f has period τ , we have:

∆f(n) = f(n+ 1)− f(n) = f(n+ 1 + τ)− f(n+ τ) = ∆f(n+ τ)

and we conclude with Lemma 1.1.1.
Notice that ∆ is linear and satisőes a sort of Leibniz rule, as we expect from a

derivation:

∆(f + g) =∆(f) + ∆(g)

∆(fg) =∆(f)θ(g) + f∆(g).

Even if the product formula seems asymmetric with respect to f and g, a quick
computation ensures that ∆(fg) = ∆(gf), as the interested reader can verify.

We introduce some deőnitions:

Deőnition. Fix a positive integer m and consider a periodic sequence f ∈ Pm.
We say that:

• f is ∆-nilpotent if there exists η ∈ N>0 such that ∆η(f) = 0. We call the
minimum η satisfying this property the nilpotency index of f .

• f is ∆-idempotent if there exists η ∈ N>0 such that ∆η(f) = f. We call the
minimum η satisfying this property the idempotency index of f .



14 CHAPTER 1. PERIODIC SEQUENCES

We will often write just nilpotent and idempotent, omitting ∆, as there is no
possible confusion.

Example. Any constant sequence is nilpotent of index 1: ∆[c] = θ[c]− [c] = 0.
A less trivial case is given by (2 1) ∈ P4:

∆[2, 1] =[1, 2]− [2, 1] = [3, 1]

∆[3, 1] =[1, 3]− [3, 1] = [2]

∆[2] = 0

i.e. ∆3[2, 1] = 0, so [2, 1] is nilpotent of index 3.
An example of an idempotent sequence is [2, 1] itself but considered in P3:

∆[2, 1] = [1, 2]− [2, 1] = [2, 1].

In this case [2, 1] is idempotent of index 1.

Remark. From a musical point of view, the meaning of nilpotent and idempotent
sequences is quite natural. Indeed if we consider the melodic interpretation of
periodic sequences, where the coefficients represent the pitch classes of a theme,
a theme is idempotent if it can be obtained as the interval sequence of one of
its derivatives. A theme is nilpotent if one obtains the constant sequence [0] af-
ter a suitable repetition of the interval operator ∆. In the context of Vieru’s
compositional approach of collecting sequences from an initial one by repeatedly
applying ∆, these concepts clearly play a relevant role, as idempotent and nilpo-
tent sequences both pose a limit in the number of sequences collectible with this
procedure. Unsurprisingly, the notation used in previous works ([1, 2, 3, 4, 19])
is more evocative from the musical point of view: idempotent (resp. nilpotent)
sequences have been named reproducible (resp. reducible). Here we chose to adopt
idempotent and nilpotent, which are more common in mathematics.

Deőnition. Fix a positive integer m =
∏s

i=1 p
ℓi
i . We deőne:

Nm :=
⋃

j≥1

ker(∆j) ⊂ Pm

Im :=
⋃

j≥1

ker(∆j − id) ⊂ Pm.

Nm is the set of the nilpotent sequences and Im is the set of idempotent se-
quences. In fact they are submodules of Pm, as the sum of two nilpotent (resp.
idempotent) sequences is again nilpotent (resp. idempotent), since the nilpotency
(resp. idempotency) index of a sum is less or equal than (resp. divides) the
maximum (resp. least common multiple) of the nilpotency (resp. idempotency)
indices.
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Lemma 1.2.2. ([3, Prop. 6, Prop. 13]) With the notation above, let us consider
a sequence f ∈ Pm with pi-parts fpi. Then f is nilpotent (resp. idempotent) if and
only if its pi-part fpi is nilpotent (resp. idempotent) for every i. The nilpotency
(resp. idempotency) index η coincides with the maximum (resp. least common
multiple) of the nilpotency (resp. idempotency) indices ηi of fpi.

Proof. From the decomposition in p-parts we have Pm ≃
⊕

P
p
ℓi
i

and the projec-
tions πi : Pm → P

p
ℓi
i

commute with θ. Thus they commute also with ∆ so:

∆jf = 0⇐⇒∆jfpi = 0 ∀i and

∆jf = f ⇐⇒∆jfpi = fpi ∀i.

The previous equation permits to easily prove the statement.

The Fitting Lemma. We look now at the Zm-module

P
j
m = ker(θj − id) ⊂ Sm.

It is a őnite module, hence in particular it is both artinian and Noetherian. Fur-
thermore, it is ∆-stable so we can consider the restriction of ∆ as an endomorphism
of Pj

m. In these hypotheses, Fitting Lemma holds:

Lemma 1.2.3. If f is an endomorphism of a left R-module M that is both artinian
and Noetherian, we have the decomposition:

M = f∞M ⊕ f−∞0

where f∞M =
⋂∞

i=0 f
iM and f−∞0 =

⋃∞
i=1 ker f

i. Furthermore, the restriction of
f to f∞M is an automorphism and the restriction of f to f−∞0 is nilpotent.

Proof. See Jacobson, Basic Algebra 2, pg. 114.

In our situation, we get the decomposition:

P
j
m = ∆∞

P
j
m ⊕∆−∞0

where in fact
∆−∞0 = Nm ∩P

j
m.

Furthermore, since P
j
m is őnite, every non zero element in ∆∞

P
j
m is idempotent

and clearly every idempotent element in P
j
m is in ∆∞

P
j
m, thus we get the equality

∆∞
P

j
m = Im ∩P

j
m.
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Moreover, the decomposition of the Fitting Lemma can be extended to the whole
Pm: indeed for every f ∈ Pm, there exists j such that f ∈ P

j
m and for this j the

Fitting Lemma holds. We have in fact:

Pm = Im ⊕Nm.

So every periodic sequence can be decomposed in a unique way as the sum of a
idempotent sequence and a nilpotent sequence.

This result can be proven also in a more direct and explicit way. Take f ∈ Pm

of period τ and consider the set A = {∆jf | j ∈ N}. A is a subset of the set of
sequences having the period dividing τ , hence A is őnite. So there must exist i ̸= j
such that ∆if = ∆jf . So take the minimal M ∈ N such that there exists u < M
satisfying

∆Mf = ∆uf.

If t := M − u then ∆t+uf = ∆uf . Deőne k̄ to be the minimal k ∈ N such that
kt ≥ u. Denote:

fI := ∆k̄tf fN := f − fI . (1.1)

Lemma 1.2.4. With the above notation, f = fI + fN is the unique decomposition
of f as a sum of an idempotent and a nilpotent sequence. The sequence fN (resp.
fI) has nilpotency (resp. idempotency) index u (resp. t).

Proof. The sequence fI is idempotent since

∆tfI = ∆t(∆k̄tf) = ∆k̄t−u(∆u+tf) = ∆k̄t−u(∆uf) = ∆k̄tf = fI .

The minimality of t comes from the fact that {∆x+if | 0 ≤ i ≤ t−1} has cardinality
t. The sequence fN is nilpotent since

∆ufN = ∆u(f − fI) = ∆uf −∆k̄t+uf = 0.

The minimality of u follows from the minimality of k̄.
This decomposition is unique: by contradiction take f = f ′

I + f ′
N . One has that

fI − f ′
I = f ′

N − fN is both nilpotent and idempotent thus it is equal to 0.

The primes decomposition, Lemma 1.2.2 and Lemma 1.2.4 imply the following
isomorphisms:

Pm =
t⊕

i=1

I
p
ℓi
i

⊕N
p
ℓi
i

Im =
t⊕

i=1

I
p
ℓi
i

Nm =
t⊕

i=1

N
p
ℓi
i

.

Let us see what happens to the period with respect to this decomposition:
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Lemma 1.2.5. Let f ∈ Pn be a period sequence of period τ. If

f = fI + fN

is the decomposition of f where fI ∈ In and fN ∈ Nn, then both fI and fN have
period dividing τ.

Proof. By Lemma 1.1.1, it is enough to show that θτ (fI) = fI and θτ (fN) = fN .
To do so, we apply θτ to the equality:

f = fI + fN ;

we get:

f = θτ (f) = θτ (fI + fN) = θτ (fI) + θτ (fN).

Since θ commutes with ∆, θτ (fN) is nilpotent and θτ (fI) is idempotent.This pro-
vides another decomposition of f into nilpotent and idempotent part and the
uniqueness of this decomposition forces:

θτ (fI) = fI θτ (fN) = fN .

1.2.2 Primitive operator

Deőnition. Given f ∈ Pm, we say that F is a discrete primitive of f if ∆(F ) = f.

Now we őx periodic sequence f ∈ Pm of period τ and a constant c ∈ Zm. We
deőne the primitive of f with constant c:

Σcf(n) =

{

c if n = 0

f(n− 1) + Σcf(n− 1) if n > 0.

Lemma 1.2.6. Given f ∈ Pn, we have that

Σcf(i+ 1) = c+
i∑

j=0

f(j) ∀ i ∈ N.

Proof. We proceed by induction on i ∈ N:

• i = 0: we have by deőnition Σcf(1) = f(0) + Σcf(0) = f(0) + c;
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• suppose that the statement is true for i, we prove it for i+ 1:

Σcf(i+ 1) = f(i) + Σcf(i) = f(i) +
i−1∑

j=0

f(j) + c = c+
i∑

j=0

f(j).

Remark. From the previous lemma we easily see that Σ := Σ0 is linear and that
the following identities hold:

Σcf =c+ Σf

Σc(f + g) =Σf + Σcg = Σcf + Σg.

We will call Σf the primitive of f . To avoid heavy notation, for every s ∈ N≥1 we
will denote by f s = Σsf the s-th primitive of f .

We would like to understand what is the behaviour of the period when we take
the primitive of a sequence: unfortunately it does not remain őxed, but it evolves
as shown in the following lemma, which requires a preliminary deőnition.

Deőnition. If f ∈ Pm has period τ , the trace of f is deőned as trf :=
∑τ−1

i=0 f(i).

Lemma 1.2.7. Given f ∈ Pm with period τ . The period of Σf is hτ , where h is
the additive order of trf in Zm.

Proof. First we verify that Σf(n+ hτ) = Σf(n) for every n ∈ N. By Lemma 1.2.6
we have:

Σf(n) =
n−1∑

i=0

f(i) Σf(n+ hτ) =
n+hτ−1∑

i=0

f(i).

Hence it suffices to show that for every n ∈ N

n+hτ−1∑

i=n

f(i) = 0.

Since f has period τ , the following equalities hold:

n+hτ−1∑

i=n

f(i) =
hτ∑

i=1

f(i) = h

τ∑

i=1

f(i) = htrf = 0.

Now we show that hτ is precisely the period of Σf. Let ℓ be the period of Σf .
Clearly ℓ | hτ . Furthermore, as ∆(Σf) = f , one has:

p(∆(Σf)) = p(f) = τ | p(Σf) = ℓ
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thus we can write ℓ = h′τ for some positive integer h′. Putting together the two
relations, one gets:

h′τ = ℓ | hτ

hence h′ | h. To conclude it suffices to show that h | h′. By deőnition of the period
ℓ, we have for every n ∈ N:

0 = Σf(n+ ℓ)− Σf(n) =
n+ℓ−1∑

i=n

f(i) =
n+h′τ−1∑

i=n

f(i) =
h′τ∑

i=1

f(i) = h′trf.

Since h is the order of trf , one has h | h′ thus h = h′ and ℓ = hτ , as wanted.

Example. As an example of computation of primitives, we consider the sequences

j =[2, 11, 9, 7, 2, 2, 11, 9, 7, 4, 4, 0, 11, 9, 6, 2, 2, 0, 9, 11] ∈ P12

r =[1, 1, 1, 1, 4] ∈ P5.

from Example 1.2.1. One has:

Σj =[0, 2, 1, 10, 5, 7, 9, 8, 5, 0, 4, 8, 8, 7, . . .] ∈ P12

Σr =[0, 1, 2, 3, 4, 3, 4, 0, 1, 2, 1, 2, 3, 4, 0, 4, 0, 1, 2, 3, 2, 3, 4, 0, 1] ∈ P5.

Since tr(j) = 10 has order 6 in Z12, by Lemma 1.2.7 the sequence Σj has period
120. The sequence r has trace equal to 3 ∈ Z5 which has order 5, thus Σr has
period 25.

From the musical point of view, the operator Σ can be interpreted as the
inverse of ∆: given the sequence j, we consider it as a sequence of intervals and
Σj provides the corresponding sequence of pitch classes with starting note 0, i.e.
C. For example, in Figure 1.3 the theme is obtained using Σj as pitch classes and
Σr as durations, where the value 0 corresponds to a 8th note rest.

Figure 1.3: Pitches given by Σj and durations by Σr.

1.3 On nilpotent and idempotent sequences.

The decomposition of Lemma 1.2.4 turns out to be a powerful tool for studying
periods of sequences. In this section, we present some fundamental links between
the period of nilpotent (resp. idempotent) sequences in Ppℓ and the base prime p.
We will make great use of these result in the following.
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1.3.1 Nilpotent sequences.

We now study in more detail the properties of nilpotent sequences. We will often
consider sequences on Ppℓ : nilpotency turns out to be strongly related to the base
prime, as the following theorem shows.

Theorem 1.3.1. Let f ∈ Ppℓ be a periodic sequence. Then:

1. f ∈ Npℓ if and only if p(f) = pt for t ∈ N;

2. if f ∈ Npℓ with period pt and nilpotency index η, then η ≤ ℓpt.

Proof. We proceed by induction on ℓ; we denote resp. by (1k) and (2k) the state-
ments 1. and 2. at the step k.

• (k = 1) We őrst show (11). If f ∈ Np then there exists h ≥ 1 such that
∆h(f) = 0 and if t is such that pt ≥ h we have ∆ptf = 0. But then:

0 = ∆ptf = (θ − id)p
t

f
(∗)
= (θp

t

− id)f = θp
t

f − f

where the equality (∗) holds since in Zp one has (a − b)p
s

= ap
s

− bp
s

. Now
we get θp

t

f = f , thus the period of f divides pt and so it is a power of p.

Now suppose p(f) = pt. Similarly to the previous part, we have:

0 = (θp
t

− id)f = (θ − id)p
t

f = ∆ptf

thus f ∈ Npk .

For (21): looking at the previous equivalence, we immediately get η ≤ pt as
η is the minimum integer satisfying ∆ηf = 0. Notice that in the case k = 1
we have also pt−1 < η, since pt−1 ≥ η would imply 0 = ∆pt−1

f = (θp
t−1
− id)f

and then p(f) = pt | pt−1, a contradiction.

• We suppose that (1k) and (2k) are true and we prove (1k+1) and (2k+1). We
show (1k+1):

(⇐=) Suppose f ∈ Ppk+1 of period p(f) = pt. We show that f is ∆-nilpotent
and if η is the nilpotency order, one has η ≤ (k+1)pt. First we consider the
usual projection ρ1 : Zpk+1 −→ Zp. This morphism gives a map:

ρ̄1 : Ppk+1 −→ Pp

f 7−→ ρ̄1(f) := ρ1 ◦ f.

If we denote by θp (resp. θpk+1) the shifting operator in Pp (resp. Ppk+1),
one notices immediately that

θp(ρ1 ◦ f) = ρ1(θpk+1(f)) (1.2)
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so p(ρ1 ◦ f) | p
t. So by the inductive hypothesis (11) we have ρ1 ◦ f ∈ Np

and by (21) we have ηρ1◦f ≤ p(ρ1 ◦ f) ≤ pt. Then

∆pt(ρ1 ◦ f) = 0.

Since ρ1 and ∆ commute by (1.2), we obtain that (ρ1 ◦∆
pt)f = 0 so

∆ptf ∈ ker ρ̄1 ≲ Ppk ,

i.e. ker ρ̄1 is isomorphic to a submodule of Ppk .

Hence we have ∆ptf ∈ Ppk and p(∆ptf) | p(f) = pt. Thus by inductive
hypothesis (1k), ∆ptf ∈ Npk holds and by (2k) holds also η∆ptf ≤ kpt. Then

0 = ∆kpt(∆ptf) = ∆(k+1)ptf

and we get that f ∈ Npk+1 . We obtain also η ≤ (k+1)pt so we proved (2k+1).

(=⇒) Let f ∈ Npk+1 be ∆-nilpotent. We show that p(f) = pt for a suitable
t ∈ Z. Take the projection ρk : Zpk+1 −→ Zpk and consider as above the
induced map:

ρ̄k : Ppk+1 −→ Ppk .

Similarly to the previous case, ρ̄k ◦ θpk+1 = θpk ◦ ρ̄k so we have that

0 = ρ̄k(∆
ηf) = ∆ηρ̄kf.

Thus ρ̄kf ∈ Npk and by inductive hypothesis (1k) one has p(ρ̄kf) = pt. Now
there exists n ∈ N such that both the following are true:

θp
n

(ρ̄kf) = ρ̄kf

∆pnf = 0.

Indeed it suffices to take n a multiple of m such that pn ≥ η. We have that

g := (θp
n

− id)f ∈ ker(ρ̄k) ≲ Pp.

Now g ∈ Np since

∆png = ∆pnθp
n

f −∆pnf = θp
n

∆pnf −∆pnf = 0.

Using the hypotheses (11) and (21) one obtains p(g) = ph and ph−1 < ηg ≤ ph
1. Since ∆png = 0, one has ηg ≤ pn thus ph−1 < ηg ≤ pn holds and so ph | pn.
In particular, θp

n

(g) = g. Then we can use the identities:
{

θp
n

g = g

θp
n

f = f + g

1In the case k = 1 we proved also ph−1 < ηg
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to develop the following:

θp
n+1

f = θpp
n

f =θ(p−1)pn ◦ θp
n

(f) = θ(p−1)pn(f + g)

=θ(p−2)pn ◦ θp
n

(f + g) = θ(p−2)pn(θp
n

f + θp
n

g)

=θ(p−2)pn(f + g + g) = . . . = f + pg = f

using pg = 0 as g ∈ Pp. Hence we conclude that p(f) | pn+1, as wanted.

The previous theorem and Lemma 1.2.2 allow to easily prove the following
corollary:

Corollary 1.3.2. Consider f ∈ Nm with m =
∏

pℓii and denote τi = p(fpi). Then
the nilpotency index η of f satisőes:

η ≤ max
i

ℓip
τi
i .

The őrst statement of Theorem 1.3.1 has been already proven in [2] and it
provides a powerful condition to describe and recognise nilpotent sequences over
a base prime p. The second statement of the theorem and the previous corollary
give an upper-bound for the nilpotent index: we will use it in Section 1.3.3.

The p-periodised sequence. Fix τ ∈ N>0 and let pr, r ≥ 0, be the maximum
power of p dividing τ , so τ = prq with p ∤ q. We consider the following operator
on Pm:

perτ,p :=

q−1
∑

j=0

θjp
r

: Pm → Pm.

Lemma 1.3.3. The operator perτ,p sends a sequence of period dividing τ to a
sequence whose period divides pr.

Proof. Take f of period dividing τ ; then θτf = f . Now:

θp
r

perτ,p(f) =θp
r

τ/pr−1
∑

j=0

θjp
r

f =

τ/pr−1
∑

j=0

θp
r

θjp
r

f =

τ/pr−1
∑

j=0

θ(j+1)prf

=

τ/pr
∑

j=1

θjp
r

f
(∗)
=

τ/pr−1
∑

j=0

θjp
r

f = perτ,p(f)

where the equality (∗) holds since for j = τ/pr we have

θ
τ
pr

prf = θτf = f = θ0f.

Thus the period of perτ,p(f) divides pr.
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Deőnition. If f ∈ Pm has period τ , perτ,p(f) is called the p-periodised sequence
of f .

It is possible to recover explicitly the nilpotent part of a sequence in Ppk using the
p-periodised sequence.

Lemma 1.3.4. Let f ∈ P (pℓ) be a sequence of period τ and let pr be the maximum
power of p dividing τ , i.e. τ = prq with p ∤ q. Then the pr-periodised sequence of
f coincides with its nilpotent component multiplied by the coefficient q mod pℓ.

Proof. We consider the decomposition

f = fI + fN

with fI ∈ Npℓ and fN ∈ Ipℓ ; notice that Lemma 1.3.1 forces p(fN) = ps with
s ∈ N and Lemma 1.2.5 gives p(fN) | p(f) = τ = prq with p ∤ q, so s ≤ r and
θp

r

(fN) = fN . We write just perp(f) for the p-periodised sequence of f as there is
no possible confusion. We get:

perp(f) = perp(fI) + perp(fN) =

q−1
∑

j=0

θjp
r

fI +

q−1
∑

j=0

θjp
r

fN .

Since θ commutes with ∆, we have that perτ,p(fI) is ∆-idempotent, by Lemma
1.3.3 it has order dividing pr and then it is also ∆-nilpotent by Lemma 1.3.1.
Thus we obtain

perp(fI) = 0.

On the other hand, since θp
r

fN = fN , we get:

perp(fN) =

q−1
∑

j=0

θjp
r

fN =

q−1
∑

j=0

fN = qfN .

So we proved perp(f) = qfN as wanted.

The following lemma gives a very useful description of nilpotent sequences using
primitives of constant sequences.

Lemma 1.3.5. Every sequence f ∈ Nn is a őnite sum of primitives of constant
sequences.

Proof. We construct such primitives of constant sequences. Let η be the nilpotency
order of f ; for all i = 1, . . . , η deőne

δif = ∆if(0).
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We state that:

f =

η−1
∑

i=0

Σiδif .

To prove this, we proceed by induction on η :

• η = 1 means ∆f = 0, so f = c constant. In this case, we correctly have

f = c = f(0).

• Suppose that the statement holds for η, we prove it for η + 1: if f has
nilpotency order η + 1, then ∆f has nilpotency order η and by inductive
hypothesis we have:

∆f =

η−1
∑

i=0

Σi(δi∆f ) =

η−1
∑

i=0

Σi(∆i(∆f)(0)) =

η−1
∑

i=0

Σi(∆i+1f(0)) =

η−1
∑

i=0

Σi(δi+1
f ).

But now we know that

f = Σf(0)∆f = f(0) + Σ∆f,

and substituting ∆f with the previous equation we get:

f =f(0) + Σ(

η−1
∑

i=0

Σi(δi+1
f )

=f(0) +

η−1
∑

i=0

Σi+1(δi+1
f )

=δ0f +

η
∑

i=1

Σi(δif )

=

η
∑

i=0

Σi(δif ).

Example. Consider the sequence f = [3, 1, 2, 0, 1, 3, 0, 2] ∈ P4; its derivatives are:

∆f = [2, 1] ∆2f = [3, 1] ∆3f = [2] ∆4f = [0].

Hence with the notation of the previous lemma, one has:

δ0f = [3] δ1f = [2] δ2f = [3] δ3f = [2]

and

f =δ0f + Σ1δ1f + Σ2δ2f + Σ3δ3f

=[3] + Σ1[2] + Σ2[3] + Σ3[2]

=[3] + [0, 2] + [0, 0, 3, 1, 2, 2, 1, 3] + [0, 0, 0, 2].
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1.3.2 Idempotent sequences.

We focus now on the idempotent sequences. Unfortunately we don’t have a general
result like Theorem 1.3.1. One could think that the idempotent sequences in Ppℓ

have period prime to p, but this is not true. Of course one has:

Lemma 1.3.6. Let f ∈ Ppℓ be a periodic sequence of period τ = prh with p ∤ h.
Then f ∈ Ipℓ if and only if the pr-periodised sequence of f is zero.

Proof. Easily comes from Lemma 1.3.4.

Example. The sequence

f = [1, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 1, 0, 0, 0] ∈ P3

has the 3-periodised sequence equal to zero. Hence it is idempotent and has period
18.

Lemma 1.3.7. If f ∈ Ipℓ, then trf = 0.

Proof. If η is the idempotency index of f , from ∆ηf = f one gets:

∆η−1f = Σf + γ

where γ = ∆η−1f(0). Now ∆jf has period τ for every j, as f is idempotent, and
from Lemma 1.2.7 Σf has period hτ where h is the additive order of trf in Zpℓ .
Thus h = 1 and trf = 0.

Corollary 1.3.8. If f ∈ Ppℓ is a sequence of period τ prime to p, then f ∈ Ipℓ if
and only if trf = 0.

Proof. One implication comes from the previous lemma. For the other implication,
suppose trf = 0 and let fI and fN the idempotent and the nilpotent part of f
respectively. Clearly trf = trfI + trfN and from the previous lemma trfI = 0, so
trfN = 0. Now from Lemma 1.3.4 fN has the same period of the p-periodised of f ,
which is a constant sequence since τ is prime to p. Thus fN is a constant sequence
and trfN = 0 forces fN = (0). Hence f is idempotent.

1.3.3 Ranks and indices

In view of the previous results, one question naturally rises: for a őxed period
τ , how many nilpotent and idempotent sequences exist in Ppℓ? Let us put this
in a more formal way. Let us consider P

t
pℓ

= ker(θt − id), the Zpℓ-module of
sequences having period dividing t. It is a free module and since Zpℓ is a PID,
every submodule of P

t
pℓ

is free. In particular the modules I
t
pℓ

:= Ipℓ ∩ P
t
pℓ

and
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N
t
pℓ

:= Ipℓ ∩ P
t
pℓ

of idempotent and nilpotent sequences with period dividing t
are free and we are interested in őnding their ranks and possibly canonical sets of
generators. We divide the study in three cases, based on the divisibility of t by p.

• If t = pj is a power of p, then from Theorem 1.3.1 all the sequences with
period dividing t are nilpotent. Thus for every j one has P

pj

pℓ
= N

pj

pℓ
and

I
pj

pℓ
= 0. In particular, Npj

pℓ
has rank pj and one can take the canonical set of

generators {εi}0≤i<pj where εi is the periodic sequence having as coefficients
1 in the position i and 0 otherwise.

• If t is prime to p, then by Corollary 1.3.8 the idempotent sequences are
precisely the ones having zero trace. Thus I

pj

pℓ
has rank t − 1 and one can

take the set of generators given by {εi − εt−1}0≤i<t−1.

• If t = pjq with q prime to p: again by Theorem 1.3.1 the nilpotent sequences
are exactly the ones with period dividing pj. Thus N

t
pℓ
≃ N

pj

pℓ
has rank pj

and hence I
t
pℓ

has rank t− pj = pj(q− 1). The generators can be taken as in
the őrst case.

1.3.4 Recurrence relations for idempotent sequences.

Consider f ∈ Ipℓ having period τ and idempotency order s, i.e. ∆sf = f . Ex-
panding the latter condition, one has for every 0 ≤ n < τ :

f(n) = ∆sf(n) =
s∑

i=0

(
s

i

)

(−1)s−if(n+ i).

If we denote xj := f(j), this gives a linear recurrence relation:

0 =

(
s∑

i=0

(
s

i

)

(−1)s−ixn+i

)

− xn

= c0xn + c1xn+1 + · · ·+ cs−1xn+s−1 + csxn+s

where c0 =
(
s
i

)
(−1)s − 1 and ci =

(
s
i

)
(−1)s−i. The characteristic polynomial

associated to this recurrence relation is:

χ(x) =
s∑

i=0

cix
i ∈ Zpℓ [x].

In [16], linear recurrence relations over R are studied in detail and it is proven
that all the solutions are linearly generated by the roots of the associated charac-
teristic polynomial.
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Case ℓ = 1: polynomials over őnite őeld Fp. Berlekamp’s algorithm, eventually
going to an extension of Fp. Case ℓ ≥ 2: Hensel’s lemma can lift a factorization
over Zp to a factorization over Zpℓ for every ℓ ≥ 2. In order to keep the results
from [16], one needs to restrict to non zero-divisors roots of the characteristic
polynomial.

1.3.5 Σ-idempotent sequences

Deőnition. Given f ∈ Pn, we say that f is Σ-idempotent if there is k ∈ N>0 such
that Σk

f(0)f = f. We will denote the subset of Σ-idempotent sequence of Pn with
IΣn ; in fact it is a submodule of Pn (using the linearity of Σ).

Lemma 1.3.9. Given f ∈ Pn, one has for every i:

Σi
f(0)f(j) = 2jf(0) ∀j ≤ i.

Proof. See Ancellotti Lemma 2.2.6.

The previous lemma helps us to describe the Σ-idempotent sequences: indeed
if f is Σ-idempotent, i.e. there exists n such that

Σn
f(0) = f,

for all j ≤ n we get:
f(j) = Σn

f(0)f(j) = 2jf(0).

This identity can be extended to all x, since we can take a multiple of n which
is greater than the period of f (and replace n with it in the previous equalities).
Thus a necessary condition for a periodic sequence f to be Σ-idempotent is to be
of the type:

f(j) = 2jf(0) ∀j.

Furthermore, one veriőes that a periodic sequence of the type 2jf(0) is ∆-idempotent
of order 1:

∆f = ∆(2jf(0)) = 2j+1f(0)− 2jf(0) = 2xf(0) = f.

But applying Σf(0) to both sides, we get:

f = Σf(0)∆f = Σf(0)f

hence we proved that if f is a Σ-idempotent periodic sequence, then its idempo-
tency order (with respect to both ∆ and Σ) must be 1. Thus to check that a
periodic sequence f is Σ-idempotent, it is enough to check if Σf(0)f = f.
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1.4 Generating vector

Consider the following map:

vect : Spℓ −→ Spℓ

f 7−→ vect(f) :=
(
∆if(0)

)

i≥0
.

We will call vect(f) the generating vector of f . By the properties of ∆, vect ∈
End(Spℓ). Moreover, it is an isomorphism, as the values ∆if(0) uniquely determine
the sequence f . This means that we can describe a sequence f ∈ Spℓ either by
using its coefficients

(f(0), f(1), f(2), . . . )

or using the coefficients of its generating vector:

(f(0),∆f(0),∆2f(0), . . . ).

Notice that f ∈ Ipℓ of index η if and only if vect(f) is a periodic sequence of period
η. Also, f ∈ Npℓ of index η if and only if vect(f) is null after η, i.e. vectf (i) = 0 for
every i ≥ η. We say that f ∈ Spℓ is a deőnitively null sequence if vectf (i) = 0 for
every i ≥M , for a suitable M ∈ N. Notice that vect sends idempotent sequences
in periodic sequences and nilpotent sequences in deőnitively null sequences. From
the decomposition of a generic periodic sequence in idempotent and nilpotent part,
one obtains that vect induces an isomorphism Ppℓ ≃ DPpℓ where:

DPpℓ := {f ∈ Spℓ | ∃ t,M ∈ N s.t. vectf (M + i) = vectf (M + i+ t) ∀ i ≥ 0}

is the set of deőnitively periodic sequences.

Spℓ Spℓ

Ppℓ DPpℓ

vect

∼

If f ∈ Ppℓ , we can express vectf with őnitely many coefficients:

vectf = [d0, . . . , dM−1, dM , . . . , dM+t−1]

where M is the nilpotency index of fN and t is the idempotency index of fI .
Indeed the coefficient dM+at+i coincides with dM+i for every a ∈ N and 0 ≤ i < t.
Notice that the coefficients of vectf correspond to the Discrete Taylor formula of
f centred in 0 (see [16, Theorem 6.53]).

Deőnition. Given f ∈ Ppℓ , we call leading component of f the last entry of vectf
with minimal p-adic valuation.
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1.5 Primitives of sequences and constants

In this section we will study the behaviour of the operator Σ acting on periodic
sequences. Lemma 1.1.1 gives already a useful result, but it does not allow to
compute immediately the period of the generic primitive Σsf of a sequence f ∈ Pm.
In this section, we will provide a more direct formula for the period. To do so, we
őrst prove a formula for the period of constant sequences, linking this problem to
the study of binomial coefficients modulo the power of a prime. Then we will reduce
the primitives of nilpotent and idempotent sequences to the sum of primitives of
constants and we will give a formula for the period of their deőnitive primitives.
Finally, we will put all the results together to have an explicit formula for the
deőnitive primitives of a generic sequence f ∈ Pm.

1.5.1 Constant sequences.

We proceed here to study the constant sequences in more detail. In particular we
give an explicit formula for their primitives, which is the origin of the link with
modular binomial coefficients.

Lemma 1.5.1. Given the constant sequence [1] ∈ Pn, one has:

Σk[1](x) =

(
x

k

)

.

Proof. We proceed by induction on k:

• (k = 1) We have:

ś for x = 0: trivially Σ[1](0) = 0;

ś for x > 0:

Σ[1](x) =
x∑

i=0

1 = x =

(
x

1

)

.

• Now we suppose true the statement for k and we prove it for k + 1. We
proceed by induction on x: for x = 0, we have:

Σk+1[1](0) = 0 =

(
0

k + 1

)

.

Now suppose that Σk+1[1](x) =
(

x
k+1

)
; we prove the statement for x+ 1 :

Σk+1[1](x+ 1) = Σk[1](x) + Σk+1[1](x) =

(
x

k

)

+

(
x

k + 1

)

=

(
x+ 1

k + 1

)

.
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Corollary 1.5.2. The constant sequence (a) ∈ Pn is such that:

Σk(a)(x) = a ·

(
x

k

)

.

Proof. The result is immediate: as (a) = a · [1] and since the primitive operator Σ
is linear, we have:

Σk(a)(x) = Σka · [1](x) = a · Σk[1](x) = a ·

(
x

k

)

using the previous lemma.

Lemma 1.5.3. If c = pmb with p ∤ b, then Σℓc is a sequence in pmZ/pnZ for every
l.

Lemma 1.5.4. Let (c) be a non zero constant sequence in Ppn with (c, p) = 1. Let
s ∈ N and

[akak−1 · · · a1a0]p

with ak ̸= 0 the representation of s in base p. If we denote f s = Σs(c) the s-th
primitive sequence of (c), then the following equalities hold:

pn+k−1
∑

x=0

f s(x) = 0 in
Z

pnZ
if s ̸=

k∑

i=0

(p− 1)pi

pn+k−1
∑

x=0

f s(x) = pn−1u in
Z

pnZ
, (p, u) = 1 if s =

k∑

i=0

(p− 1)pi.

Proof. We are going to use the Kummer’s theorem, which states that given a ≥
b ≥ 0 integers, p a prime number, then the p-adic valuation vp(

(
a
b

)
) (i.e. the largest

power of p dividing
(
a
b

)
) coincides with the number of remainders obtained when

performing the sum between b and a− b in base p.
First, from Corollary 1.5.2 we have:

pn+ks−1
∑

x=0

f s(x) =

pn+ks−1
∑

x=0

(
x

s

)

=

(
pn+k

s+ 1

)

;

for the last equality see [16]. Hence we reduced to study whether
(
pn+k

s+1

)
is divisible

by pn or by pn−1. If s ̸=
∑k

i=0(p− 1)pi, then s+ 1 < pk+1 so

s+ 1 =
k∑

i=0

bip
i.
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This means that in base p we can write s + 1 = [bk · · · b0]p, while clearly pn+k =
10 · · · 0p with n + k zeros. Suppose that h ≤ k is the smallest index such that
bh ̸= 0. We want to use Kummer’s theorem; we write pn+k − (s+ 1) in base p:

(p− 1) · · · (p− 1)
︸ ︷︷ ︸

n

(p− 1− bk)(p− 1− bk−1) · · · (p− 1− bh+1)(p− bh)
︸ ︷︷ ︸

k+1−h

0 · · · 0p
︸ ︷︷ ︸

h

and it is clear that performing (pn+k − (s+ 1)) + (s+ 1) in base p gives n+ k − h

reminders; thus Kummer’s theorem says that pn+k−h divides
(
pn+k

s+1

)
, hence also

pn |

(
pn+k

s+ 1

)

as h ≤ k. So we can conclude
(
pn+k

s+1

)
= 0 ∈ Z/pnZ as wanted.

Now suppose s =
∑k

i=0(p − 1)pi; in this case s + 1 = pk+1. Now we write
pn+k − pk+1 in base p:

(p− 1) · · · (p− 1)
︸ ︷︷ ︸

n−1

0 · · · 0p
︸ ︷︷ ︸

k+1

with k + 1 zeros and n − 1 times (p − 1). Now the number of reminder in the
computation (pn+k − pk+1) + pk+1 is n− 1, thus from Kummer’s theorem we get:

pn−1 |

(
pn+k

s+ 1

)

but pn ∤
(
pn+k

s+1

)
, as wanted.

Theorem 1.5.5. Let (c) be a non zero constant sequence in Ppn with c = pℓb,
p ∤ b. Let s ∈ N and [akak−1 · · · a1a0]p, ak ̸= 0, the representation of s in base p.
Then the sequence Σs[c] has period pn−ℓ+k.

Proof. Denote f = [c] so f s = Σs[c]. It is enough to show the case c prime to p.
Indeed take c = pℓb ∈ pℓZ/pnZ with (b, p) = 1 and suppose that the statement is
true for b; using the isomorphism

ϵ :
pℓZ

pnZ
−→

Z

pn−ℓZ

pℓb 7−→b.

Then the period of f s coincides with the period of Σs[b] in Z/pn−ℓZ which is equal
to pn−ℓpk.

So we can suppose that c is prime to p. We want to show that f s has period
pn+k where s =

∑k
i=0 aip

i.
We proceed by induction on s; we will write k = ks the index of the maximal

non zero coefficient in the p-adic expansion of s.
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• For s = 1 the statement is clear: in this case ks = 0 and

f s = c · (0, 1, 2, 3, . . . , pn − 1)

has period pn as we are supposing c prime to p.

• Suppose that the statement is true for s, we prove that it is true for s+ 1:

ś If s ̸=
∑ks

i=0(p− 1)pi, notice that ks = ks+1. Lemma 1.5.4 says

pn+ks−1
∑

x=0

f s(x) = 0

so by Lemma 1.2.7 one has

p(fs+1) = p(f s) = pn+ks = pn+ks+1

as wanted.

ś If s =
∑ks

i=0(p− 1)pi, then ks+1 = ks + 1. Lemma 1.5.4 says

pn+ks−1
∑

x=0

f s(x) = pn−1u

with u prime to p, hence again by Lemma 1.2.7 we have

p(fs+1) = pp(f s) = ppn+ks = pn+ks+1 = pn+ks+1 .

1.5.2 Leading terms

Now that we have a formula for the period of the primitives of constant sequences,
we provide a formula for the period of nilpotent and idempotent sequences and
őnally for generic sequences. Practically, we will need to study what happens to
the period when we sum primitives of constants. As already observed, the period
does not behave perfectly őne with respect to the sum, i.e. it is not enough to take
the least common multiple of the periods of the summands. The next example
gives a counterexample with primitives of constants:

Example. The sequences Σ[1] = [0, 1, 2, 3] and Σ2[2] = [0, 0, 2, 2] in P4 have both
period 4 but their sum is the sequence [0, 1], having period 2.
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Theorem 1.5.6. If eγ is the leading component of the generating vector vect(f)
of a nilpotent periodic sequence f ∈ Npℓ, then

p(Σsf) = p(Σs+γ [eγ]) for s≫ 0.

Proof. If vect(f) = (e0, . . . , eη−1), by Lemma 1.3.5

f =

η−1
∑

i=0

[ei]
i =

η−1
∑

i=0

Σi[ei].

If eγ is the leading component, then νp(eγ) ≤ νp(ei), 0 ≤ i < γ, and νp(eγ) < νp(ei),
γ < i < η. Let us prove that p(Σsf) = p(Σs+γ [eγ]) for s≫ 0. Let µ be the minimal
natural number such that η − γ − 1 < pµ(p − 1). Notice that for any k ≥ µ both
pk and pk + η − γ − 1 are strictly less than pk+1 and hence they have the same
number of digits in base p. In order to conclude the proof, we show that for any
k ≥ µ one has:

p(f s) = p([eγ]
s+γ) ∀ pk − γ ≤ s < pk+1 − γ

hence the statement holds for any s ≥ pµ − γ.
For s = pk − γ we have:

f pk−γ = [e0]
pk−γ + [e1]

1+pk−γ + · · ·+ [eγ]
γ+pk−γ + · · ·+ [eη−1]

η−1+pk−γ .

By Theorem 1.5.5, [eγ]p
k

has period pℓ−ν(eγ)+k. The other summands have period
strictly dividing pℓ−ν(eγ)+k:

• For every γ < i < η, pk + i− γ < pk+1 by construction and so pk + i− γ has
k+1 digits in base p, hence the period of [ei]p

k+i−γ is pℓ−νp(ei)+k | pℓ−νp(eγ)−1+k

(since νp(ei) > νp(eγ)).

• For every 0 ≤ i < γ, νp(eγ) ≤ νp(ei) and pk + i − γ < pk; hence pk + i − γ

has at most k digits in base p. Thus the period of [ei]p
k+i−γ is a divisor of

pℓ−νp(ei)+k−1 and so it divides pℓ−νp(eγ)+k−1.

Thus the period p(f pk−γ) is equal to pℓ−νp(eγ)+k.
For pk−γ < s < pk+1−γ, the period of [eγ]s+γ is pℓ−νp(eγ)+k, and by Lemma 1.2.7

p(f s) ≥ p(f pk−γ) = pℓ−νp(eγ)+k. Furthermore, since pk+1 + η − γ − 1 < pk+2 we
have

pk − γ < s ≤ s+ η − 1 < pk+1 − γ + η − 1 < pk+2.

Then p([ei]
s+i) ≤ pℓ−(νp(eγ)+1)+k+1 for γ < i ≤ η− 1, and p([ei]

s+i) ≤ pℓ−νp(eγ)+k for
0 ≤ i ≤ γ − 1. Thus p(f s) ≤ pℓ−νp(eγ)+k, and hence p(f s) = pℓ−νp(eγ)+k.
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Corollary 1.5.7. Denoted by eγ the leading component of the generating vector
of f ∈ Npℓ, one has that for t≫ 0:

p(
t∑

i=0

f i) = p([eγ]
t+γ).

Remark. In the proof of Theorem 1.5.6 we computed explicitly how big s has to
be for the statement to hold. Precisely we have s ≥ pµ − γ where µ is minimal
with respect to η − γ − 1 < pµ(p − 1). In particular if γ = η − 1, the condition
becomes s ≥ 0.

Example. Let us consider the sequence V2 = [2, 1, 2, 0, 0, 1, 0, 0] ∈ N4. It has
nilpotency index 5 and vect(V2) = (2, 3, 2, 3, 2). Then

V2 = [2] + Σ[3] + Σ2[2] + Σ3[3] + Σ4[2].

The leading component is e3 = 3 and by Theorem 1.5.6 one has p(ΣsV2) =
p(Σs+3[3]) for s ≫ 0. By Section 1.5.2 one easily checks that for any s ≥ 0, if
s+ 3 = ⌊ak · · · a1a0⌋2, ak > 0, we have p(ΣsV2) = p(Σs+3[3]) = 22+k.

Corollary 1.5.8. With the notation of the theorem above, if ℓ = 1, i.e. considering
sequences on the őnite őeld Zp, the leading component of a nilpotent sequence is
always eη−1. Hence p(Σsf) = p(Σs+η−1[eη−1]) for any s ≥ 0.

In the following theorem we show that constant sequences and their primitives
also have a key role in studying the primitives of idempotent sequences. For z ∈ Z
and 0 < η ∈ N, denote by 0 ≤ z̄ < η the remainder in the division of z by η.

Theorem 1.5.9. Consider f ∈ Ipℓ with idempotency index η and generating vector
vect(f) = (e0, ..., eη−1). For every s ≥ 1, one has:

Σsf = ∆−sf −
s−1∑

j=0

Σj[ej−s].

This provides the explicit decomposition in idempotent and nilpotent part. More-
over if eγ is the leading component of vect(f), one has

p(Σsf) = lcm
(
p(f), p(Σs−η+γ [eγ])

)
∀s≫ 0.

Proof. Observe that, by deőnition, the constants ei and ej coincide if i ≡η j. We
proceed by induction on s.

• For s = 1 one has Σf = Σ(∆ηf) = ∆η−1f − [eη−1] = ∆−1f − [e−1], hence the
thesis.
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• Suppose that the statement is true for 1 ≤ s = tη + s̄, t ≥ 0; let us prove it
for s + 1 = t′η + s+ 1. Notice that (t′, s+ 1) = (t + 1, 0) if s̄ = η − 1 and
(t′, s+ 1) = (t, s̄+ 1) otherwise. By inductive hypothesis we have:

f s+1 = Σ(f s) =Σ(∆−sf −
s−1∑

j=0

[ej−s]
j)

=∆−s−1f − [e−s−1]−
s∑

j=1

[ej−1−s]
j

=∆−(s+1)f −
s∑

j=0

[ej−(s+1)]
j.

This proves the őrst part of the statement.
For the period, őrst we have τ (∆jf) = p(f) for any j ∈ N (since f ∈ Ipℓ). Now

let us denote by g the nilpotent sequence
∑η−1

j=0 [ej]
j. The nilpotency index of g is

ηg := max{j : ej ̸= 0} + 1; clearly ηg ≤ η, but the leading component of vect(g)
and vect(f) is the same: [eγ]

γ. Notice that for any s ≥ η:
s−1∑

j=0

[ej−s]
j =

∑

0≤j<s

[ej−s]
j +

s−1∑

j=s̄

[ej−s]
j =

∑

0≤j<s

[ej−s]
j +

t−1∑

i=0

giη+s̄.

By Corollary 1.5.7, for s≫ 0 one has:

τ

(
s−1∑

j=0

[ej−s]
j

)

= τ

(
t−1∑

i=0

giη+s̄

)

= τ
(
[eγ]

(t−1)η+s̄+γ
)
= τ

(
[eγ]

s−η+γ
)
.

Setting w := η − γ one obtains the statement:

τ (Σsf) = lcm
(
p(f), τ

(
Σs−w[eγ]

))
.

Remark. In the proof of Theorem 1.5.9, to make the statement relative to the
period true, we did two assumptions about s. First s has to be greater or equal
than the idempotency index η, second (t − 1)η + s = s − η has to be greater or
equal than pµ − γ where µ is minimal with respect to η − γ − 1 < pµ(p − 1) to
have he possibility to apply Theorem 1.5.6 as observed in Section 1.5.2.
Example. Consider the sequence f = [1, 3, 0] ∈ P4. It is idempotent of index η = 6
and vect(f) = (1, 2, 3, 1, 0, 1). The leading constant is e5 = 1. By Theorem 1.5.9
for s = 8, one has:

Σ8f = ∆−8f −
7∑

j=0

Σj[ej−8] = ∆4f −
7∑

j=0

Σj[ej+4].
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Indeed Σ8f = [0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 0, 2, 2, 2, 0,
2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 0, 1, 3, 0], ∆4f = [0, 1, 3], and

7∑

j=0

Σj[ej+4] = [0, 1, 3, 0, 1, 3, 0, 1, 2, 1, 1, 2, 3, 3, 2, 3].

Finally, by Section 1.5.2 if s ≥ η = 6, and s − η = s − 6 ≥ 20 − 5 = −4, i.e.,
globally, s ≥ 6, we have

p(Σsf) = lcm
(
p(f), p(Σs−1[1])

)
= 3 · 22+k

where s− 1 = ⌊1ak−1 · · · a0⌋2. In particular for s = 8 we have

p(Σ8f) = lcm
(
p(f), p(Σ7[1])

)
= lcm (3, 16)) = 3 · 22+2 = 48.

Period of a generic primitive. As a consequence of the results of this sections,
we can provide an explicit formula for the period of the primitives of a generic
sequence f ∈ Pm. If m =

∏
pℓii , by Lemma 1.2.2 it is possible to reduce to the

pi-parts of f . Thus we can suppose f ∈ Ppℓ and we denote by fI (resp. fN) its
idempotent (resp. nilpotent) part and by ηI (resp. ηN) the idempotency (resp.
nilpotency) index. By Lemma 1.3.5 and Theorem 1.5.9 we can write:

Σsf = ΣsfI + ΣsfN = ∆ηI−s′fI +
s∑

i=1

Σs−i[εηI−i′ ] +

ηN−1
∑

j=0

Σs+j[δj] (1.3)

where εn = ∆nfI(0), δj = ∆jfN(0) and 0 ≤ i′, s′ < ηI are such that i = i′ mod pℓ

and s = s′ mod pℓ. Then the following result holds:

Proposition 1.5.10. With the notation above, there is one constant c ∈ {εi, δj}
such that it deőnitively leads the period of f , i.e. there exist M ∈ N and u ∈ Z
such that for any s ≥M :

p(Σsf) = lcm {p(fI), p(Σ
s+u[c])}.

Proof. From Equation (1.3) it is clear that

(Σsf)I = ∆ηI−s′fI (Σsf)N =
s∑

i=1

Σs−i[εηI−i′ ] +

ηN−1
∑

j=0

Σs+j[δj].

In particular the idempotent part of Σsf has always period p(fI). To conclude the
proof, by Lemma 1.2.2 it suffices to show that there is a őxed constant c that leads
the period of the nilpotent part of Σsf . Notice that we can rewrite the latter as:

(Σsf)N =
s∑

i=1−ηN

Σs−i[ci]
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where

ci =

{

δ−i if 1− ηN ≤ i ≤ 0

εηI−i′ with i = i′ mod pℓ.

Observe that for any i ≥ 0 one has ci = ci+ηI , thus for any s ≥ ηI we can
suppose c ∈ {c1−ηN , c2−ηN , . . . , cηI−1}. Indeed the following constants coincides
with these őrst ones but are integrated fewer times, therefore they generally have
smaller period (in light of Theorem 1.5.5). Now a reasoning similar to the proof
of Theorem 1.5.6 allows to conclude.

Vieru’s primitives with different constants We conclude this chapter with
a complete analysis of the period of the primitives of a speciőc sequence, which we
will call Vieru’s sequence:

V = (2, 1, 2, 4, 8, 1, 8, 4) ∈ P12.

Its idempotent part is V3 := [8, 4] which corresponds to the 3-part of V :

v3 = (2, 1) ∈ P3

while its nilpotent part is V2 := [6, 9, 6, 0, 0, 9, 0, 0] which corresponds to the 2-part

v2 = (2, 1, 2, 0, 0, 1, 0, 0) ∈ P4

whose primitives’ period has been already studied in Section 1.5.2.
We focus here on the period of the primitives of the sequence V , eventually

considering integration constants which are different from zero. This extends the
computational study done in [4] and provides a deőnitive answer to the question
of the periods, which dates back to Anatol Vieru himself.

The őrst case we study is the integration of V with the constant 8. One has:

Σ8V = Σ8(V2 + V3) = ΣV2 + ΣV3 + [8].

Now it is worth observing that ΣV3+[8] = Σ8V3 = V3, so for any s ∈ N≥1 one has:

Σs
8V = ΣsV2 + Σs

8V3 = ΣsV2 + V3.

Since V3 is idempotent and ΣsV2 is nilpotent ∀ s ≥ 1, by Lemma 1.2.5 one has:

p(Σs
8V ) = lcm(p(ΣsV2), p(V3)) = p(ΣsV2) = p(Σsv2).

For every c ∈ Z12 such that c ≡ 2 mod 3 one has a result similar to the case
c = 8. Indeed for example for c = 5 one has:

Σ5V = Σ5(V2 + V3) = ΣV2 + ΣV3 + [5] = ΣV2 + ΣV3 + [8] + [9].
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Hence for any s ∈ N≥1 one obtains:

Σs
5V = ΣsV2 +

s−1∑

i=0

Σi[9] + V3.

Now
∑s−1

i=0 Σ
i[9] is a nilpotent sequence that projects to 0 in P3, hence by The-

orem 1.3.1 it has period equal to a power of 2 for every s. Nonetheless, by The-
orem 1.5.6 the sequence ΣsV2 continues to lead the period of the nilpotent part,
hence again one obtains:

p(Σs
5V ) = p(ΣsV2) = p(Σsv2).

The computation for the cases c = 2, 11 are perfectly similar.
If one takes c ∈ Z12 as constant of integration with c ̸≡ 8 mod 3, then the

computation is slightly different. Indeed in this case we have:

ΣcV = ΣV2 + ΣV3 + [c].

Since ΣV3 = V3 + [4] one has:

Σs
cV = ΣsV2 + V3 +

s−1∑

i=0

Σi[c+ 4].

Now we reduce to study separately the 2-part and the 3-part. If c2 (resp. c3) is the
projection of c in Z4 (resp. in Z3), the 2-part and the 3-part coincide respectively
with:

Σsv2 +
s−1∑

i=0

Σi[c2] ∈ P4 v3 +
s−1∑

i=0

Σi[c3 + 1] ∈ P3.

By Theorem 1.5.6 the term Σsv2 continues to lead the period of the 2-part. For
the 3-part, v3 has period equal to 2, while the period of Σs−1[c3 + 1] is equal to 3t

for a suitable t ∈ N by Theorem 1.5.5. Hence:

p(ΣsV ) = lcm(p(Σsv2), 3
t).



Chapter 2

Proliferation of values

In this chapter we face another mathematical question arisen from Vieru’s obser-
vation: the proliferation of values. In particular, we explain why the values 4 and
8 proliferate in the primitives of the sequence

V = [2, 1, 2, 4, 8, 1, 8, 4] ∈ P12.

More explicitly, one notices that the values 4 and 8 appear more and more fre-
quently among the coefficients of ΣsV for s ∈ N≥1 (see [4, App. A] for more
details). We provide here an algebraic explanation for this behaviour.

First, notice that studying the proliferation of such values in V is equivalent
to studying the proliferation of zeros in the sequence

v2 = [2, 1, 2, 0, 0, 1, 0, 0] ∈ P4,

which corresponds to its 2-part. Indeed for every s ∈ N≥1 one has ΣsV (n) ∈ {4, 8}
if and only if Σsv2(n) = 0. Thus we can reduce to studying the proliferation of
zeros in the primitives of

v := v2 = [2] + Σ[3] + Σ2[2] + Σ3[3] + Σ4[2].

Let us denote Z(s) := |{0 ≤ n < p(vs) | vs(n) = 0}| the number of zeros among
the coefficients of the sequence vs. In Figure 2.1, the values of Z(s) are depicted.

The values of Z(s) tend to increase, as we can expect from the deőnition of
the operator Σ. But looking closely at the successive peaks, one can observe a
recursive pattern. Compare for example the values of Z(s) for 29 ≤ s < 61 with
the values for 93 ≤ s < 125, as well as the values for 61 ≤ s < 125 with the values
for 125 ≤ s < 192. One notices that there is a periodic structure in the peaks.

Also the quantity Z(s)
p(vs)

, depicted in Figure 2.2, has some interesting aspects. It
tends to increase periodically up to more than 90%, reaching its peak in 2k− 5 for
k ∈ N≥0, before immediately dropping down to around 10%.

39
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Figure 2.1: The values of Z(s) for 1 ≤ s ≤ 200.

Figure 2.2: The values of Z(s)
p(vs)

for 1 ≤ s ≤ 200.

This chapter is devoted to the explanation of these observations. We will need
to introduce some preliminary tools that will allow us to prove the őnal recursive
formula for the zeros of v.
In Section 2.1, we study the primitives of the sequence [2] ∈ P4.
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In Section 2.2, the primitives of the sequence v are studied in detail, giving a pre-
cise local description of the periodic peaks of Z(s).
In Section 2.3, we will study modular binomial functions and prove three funda-
mental recursive lemmas about them.
In Section 2.4, we get back to study the sequence v and we prove the main recursive
formula.

2.1 The primitives of [2] ∈ P4

Let us consider the constant sequence f = [2] in P4. The behaviour of its period
is the same as the one of the constant sequence [1] ∈ P2. We want to study f s,
the s-th primitive of f for every integer s ≥ 1. Let the expression of s in base 2
be:

s = ⌊akak−1 . . . a1a0⌋2

with ak = 1. By Theorem 1.5.5,the sequence f s has period 2k+1. Then the
following proposition holds:

Proposition 2.1.1. Given f and s = ⌊akak−1 . . . a1a0⌋2 as above, we have:

i. f s(n) = 0 for every 0 ≤ n ≤ s.

ii. if ak = ak−1 = · · · = a0 = 1, then f s(n) = 0 for all 0 ≤ n ≤ 2k+1 − 1 and
f s(2k+1 − 1) = 2.

iiik. if s = 2k = ⌊100 . . . 00⌋2, then f s(2k + n) = 2 for every 0 ≤ n < 2k;

ivk. f s(2k + n) = f s′(n) for every 0 ≤ n < 2k with s′ = ⌊ak−1 . . . a0⌋2.

Proof. i. By Corollary 1.5.2, one has:

f s(n) = 2 ∗

(
n

s

)

hence for every s < n we have f s(n) = 0.

ii. If ak = ak−1 = · · · = a0 = 1, by the previous point we have

f s(n) = 0 ∀ 0 ≤ n < 2k+1 − 1.

Notice that p(f s) = 2k+1 while the sequence f s+1 has period 2k+2 since
s+ 1 = 2k+1, hence by Lemma 1.2.7 one has

0 ̸= tr(f s) =
2k+1−1∑

i=0

f s(n) = f s(2k+1 − 1).

Thus f s(2k+1 − 1) = 2.
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iiik. We proceed by induction on k; the case k = 0 can be veriőed by hand. Now
suppose the statement holds for s = 2k−1, we prove that it holds for s = 2k;
we proceed by induction on n. For n = 0 we have by Corollary 1.5.2:

f 2k(2k) = 2 ∗

(
2k

2k

)

= 2.

Now suppose that the statement is true for n, we show it holds for n+ 1:

f 2k(2k + n+ 1) = f 2k−1(2k + n) + f 2k(2k + n) = 0 + 2 = 2.

ivk. Again by induction on k. Notice that the previous points already prove the
statement for s = 2k for every k. Now we suppose that the statement is true
for s′ = [akak−1 . . . a0]2 and we show that it is true for s = [ak+1ak . . . a0]2.
Now

s =
k+1∑

j=0

aj2
j = 2k+1 +

k∑

j=0

aj2
j =: 2k+1 + s′

and one has:

f s(2k+1 + n) = Σsf(2k + n) = Σs′f 2k+1(2k+1 + n) = Σs′f(n) = f s′(n).

For the number of zeros of the primitives of the constant sequence [2] in Z/4Z,
the following result shows an interesting link with the Hamming weight:

Proposition 2.1.2. Let s = [ak−1 . . . a0]2 be the index of the primitives of f =
[2] ∈ Z/4Z. Remember that f s has period 2k by Theorem 1.5.5. If we denote

wt(s) = | { 0 ≤ i < k | ai = 1 } |,

the Hamming weight of s, then the sequence f s has
∑wt(s)

i=1 2k−i zeros.

Proof. We proceed by induction on k. For k = 0, 1 the statement can be veriőed by
hand. Now suppose that the statement is true for every j < k−1, we prove it is true
for k−1. The őrst 2k−1 coefficients of f s are equal to zero, since f s(n) = 2∗

(
n
s

)
= 0

for every n < s. For the coefficients 2k−1 + n we can use the previous result:

f ⌊ak−1...a0⌋2(2k−1 + n) = f ⌊ak−2...a0⌋2(n)

and by induction we conclude that in the last 2k−1 coefficients there are
∑wt(⌊ak−2...a0⌋2)

j=1 2k−1−j

zeros. One has
wt(⌊ak−2 . . . a0⌋2) = wt(⌊1ak−2 . . . a0⌊2)− 1
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so
wt(⌊ak−2...a0⌋2)∑

j=1

2k−1−j =

wt(⌊1ak−2...a0⌋2)∑

h=2

2k−h

thus the number of zeros in f s is:

2k−1 +

wt(⌊1ak−2...a0⌋2)∑

h=2

2k−h =

wt(⌊ak−1ak−2...a0⌋2)∑

h=1

2k−h.

Lemma 2.1.3. Let f = [2] ∈ P4. For every s ∈ N, the sequence f s+ f s+2 has the
same number of zeros of the sequence f s+2.

Proof. As previously observed, we can consider f to be the constant sequence [1]
in P2. Let

s = ⌊ak . . . a0⌋2 s+ 2 = ⌊a′k . . . a
′
0⌋2

the expressions of the indices s and s + 2 in base 2, with a′k = 1; notice that we
took k to be the same index, as one can eventually consider ak to be 0. We are
going to study separately the cases when a1 = 0 and a1 = 1.

• a1 = 0: in this case one has ai = a′i for every i ̸= 1 and a′1 = 1. Now let b be
the index of a generic entry of f s+2; by Theorem 1.5.5, f s+2 has period 2k

so we can write b = ⌊bk . . . b0⌋2. We compute:

f s + f s+2(b) =(f ⌊ak...a0⌋2 + f ⌊a′
k
...a′0⌋2)(⌊bk . . . b0⌋2)

=
k∏

i=2

(
bi
ai

)

(

(
b1
a1

)

+

(
b1
a′1

)

)

(
b0
a0

)

using that ai = a′i for i ̸= 1. Now a1 = 0 and a′1 = 1, so:

f s + f s+2(b) =
k∏

i=2

(
bi
ai

)

(

(
b1
0

)

+

(
b1
1

)

)

(
b0
a0

)

.

Now if f s+2 has a zero in the entry b, then some of the coefficients
(
bj
a′j

)

must be 0 (remember that we are working in Z2). If this is the case for
some j ̸= 1, then from the expression above also f s + f s+2 has a zero in b.
If all the binomial coefficients (of f s+2) but

(
b1
1

)
are non-zero, we consider

b′ = ⌊bk . . . b21b0⌋2, i.e. b′ = b+2: in this entry f s+2 does not present a zero,
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since
(
b′1
a′1

)
=
(
1
1

)
= 1 and we supposed

(
bj
a′j

)
̸= 0 for every j ̸= 1; nevertheless,

the sequence f s + f s+2 has a zero in this position: indeed
(
b′1
a1

)

+

(
b′1
a′1

)

=

(
1

0

)

+

(
1

1

)

= 1 + 1 ≡2 0.

Hence we constructed a bijection between the set of zero entries of f s+2 and
the set of zero entries of f s + f s+2, so their cardinality is the same, i.e. f s+2

and f s + f s+2 have the same number of zeros.

• a1 = 1. We have:
s = ⌊ak . . . ah+30 1 . . . 1

h

1a0⌋2

for a suitable h ≤ k−3. When we add 2 in base 2, we have then h reminders
and we get:

s+ 2 = ⌊ak . . . ah+31 0 . . . 0
h

0a0⌋2.

As before, consider the index b of a generic entry of f s+2 and its expression
in base 2: b = ⌊bk . . . b0⌋2. Again, one has:

f s + f s+2(b) =(f ⌊ak...a0⌋2 + f ⌊a′
k
...a′0⌋2)(⌊bk . . . b0⌋2)

=

(
b0
a0

) k∏

i=h+3

(
bi
ai

)
(
(
bh+2

0

) h+1∏

i=1

(
bi
1

)

+

(
bh+2

1

) h+1∏

i=1

(
bi
0

)
)
.

Each zero entry of f s+2 given by a factor of

(
b0
a0

) k∏

i=h+3

(
bi
ai

)

gives a zero entry of the sum f s+f s+2. Suppose now that the product above
is non zero; the only possibility to have a zero entry of f s+2 is given by the
zeros of the coefficient (

bh+2

1

)

,

since for every i = 1, . . . , h + 1 the coefficient
(
bi
0

)
is always non zero. Now

the coefficient
(
bh+2

1

)
is zero when bh+2 = 0. Let us consider b′ = ⌊b′k . . . b

′
0]

with b′i = bi for i ∈ { 0 } ∪ {h+ 3, . . . , k } and b′i = 1 for i = 1, . . . , h + 2.
Notice now that by construction f s+2 does not have a zero in the entry b′,
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but the sequence f s + f s+2 has a zero in b′ since:

f s + f s+2(b′) =

(
b′0
a0

) k∏

i=h+3

(
b′i
ai

)
(
(
b′h+2

0

) h+1∏

i=1

(
b′i
1

)

+

(
b′h+2

1

) h+1∏

i=1

(
b′i
0

)
)

=1 ∗ (

(
1

0

)

+

(
1

1

)

) = 2 ≡2 0.

So again we constructed a bijection between the zero entries of f s+2 and the
zero entries of f s + f s+2.

2.2 The proliferation of values in Vieru’s sequence

2.2.1 Lucas’s Theorem generalisation

For what follows, we will need a powerful generalisation of Lucas’s Theorem ([6, 7]),
due to Davis and Webb ([5]), which is the main tool to study residue classes of
binomial coefficients modulo a prime power. Let us recall it. Let 0 ≤ B ≤ A
be integers and p be a prime. Denote by A = ⌊as...a1a0⌋p and B = ⌊bs...b1b0⌋p,
0 ≤ ai, bi < p, and as ̸= 0, the representations of A and B in base p.

• Lucas’s Theorem claims:
(
A

B

)

≡

(
as
bs

)(
as−1

bs−1

)

· · ·

(
a1
b1

)(
a0
b0

)

mod p.

In particular, p |
(
A
B

)
if and only if ai < bi for some 0 ≤ i ≤ s.

• Davis’s and Webb’s Theorem generalises this result for residue classes of a power
of a prime. Consider the numbers

Ai,j = [aiai−1 . . . aj+1aj]p, Bi,j = [bibi−1 . . . bj+1bj]p ∀0 ≤ j ≤ i ≤ s.

Deőne the following modiőed binomial coefficient:

ś if Bi,j ≤ Ai,j:
〈

Ai,j

Bi,j

〉

:=
(
[Ai,j ]p
[Bi,j ]p

)
.

ś if Bi,i > Ai,i:
〈

Ai,i

Bi,i

〉

:= p.

ś if Bi,j > Ai,j:
〈

Ai,j

Bi,j

〉

:= p
〈

Ai−1,j

Bi−1,j

〉

for all j ≤ i− 1.
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Let 2 ≤ r ≤ s+ 1. If
〈

Ai,j

Bi,j

〉

= ptα with p ∤ α, we deőne

〈
Ai,j

Bi,j

〉−1

= p−tα−1

where α−1 is such that αα−1 ≡ 1 mod pr. Then for each 2 ≤ r ≤ s+ 1:

(
A

B

)

≡
〈

Ar−1,0

Br−1,0

〉 s−r+1∏

j=1

〈
Aj+r−1,j

Bj+r−1,j

〉〈
Aj+r−2,j

Bj+r−2,j

〉−1

mod pr.

In the sequel, we denote by
〈〈

Ai,j

Bi,j

〉〉

:=
〈

Ai,j

Bi,j

〉〈
Ai−1,j

Bi−1,j

〉−1

.

Example. Consider 38 = [1102]3 and 12 = [0110]3; let us compute the residue class
of
(
32
12

)
modulo 9. We have p = 3, s = 3, r = 2. One gets

(
38

12

)

=

(
[1102]3
[0110]3

)

≡ ⟨ 0210 ⟩ ⟨
10
11 ⟩ ⟨

0
1 ⟩

−1 ⟨ 1101 ⟩ ⟨
1
1 ⟩

−1 mod 9

≡ 3×

(
2

0

)

× 3× 3× 3−1 ×

(
4

1

)

× 1−1 mod 9

≡ 36 ≡ 0 mod 9.

Now we can proceed to study the zeros of the sequence v ∈ P4. Given its
decomposition in constants:

v = [2] + Σ[3] + Σ2[2] + Σ3[3] + Σ4[2]

by Theorem 1.5.6 the leading term is Σ3[3]. If s + 3 = [ak · · · a1a0]2 is the repre-
sentation of s + 3 in base 2, we have p(vs) = 2k∗2. Σ3[3] being the leading term
suggests the following change of indexing of the primitives of v:

Deőnition. For every s ≥ 3, deőne gs := Σs−3V2 and denote by z(s) the number
of zeros among the coefficients in a period of gs.
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Figure 2.3: z(s) for 1 ≤ s ≤ 127.

In Figure 2.3, the function z(s) is represented using different colours to highlight
the change of period of gs.

Remark. The ratio z(s)/2k+2 represents the percentage of zeros in a period of
Σs−3v , hence the percentage of 4 and 8 in a period of (s− 3)-primitive Σs−3V of
Vieru’s sequence for 2k ≤ s < 2k+1.

As we are interested in the sequence gs ∈ P4, it is convenient to compute
preventively the quantities ⟨ abcd ⟩ and ⟨⟨ abcd ⟩⟩ for a, b, c, d ∈ {0, 1}. One has:

⟨⟨ 0000 ⟩⟩ = 1; ⟨⟨ 0001 ⟩⟩ = 2; ⟨⟨ 0010 ⟩⟩ = 2; ⟨⟨ 0011 ⟩⟩ = 2

⟨⟨ 0100 ⟩⟩ = 1; ⟨⟨ 0101 ⟩⟩ = 1; ⟨⟨ 0110 ⟩⟩ = 2; ⟨⟨ 0111 ⟩⟩ = 2

⟨⟨ 1000 ⟩⟩ = 1; ⟨⟨ 1001 ⟩⟩ = 1; ⟨⟨ 1010 ⟩⟩ = 1; ⟨⟨ 1011 ⟩⟩ = 2

⟨⟨ 1100 ⟩⟩ = 1; ⟨⟨ 1101 ⟩⟩ = 3; ⟨⟨ 1110 ⟩⟩ = 3; ⟨⟨ 1111 ⟩⟩ = 1

and
⟨ 0000 ⟩ = 1; ⟨ 0001 ⟩ = 0; ⟨ 0010 ⟩ = 2; ⟨ 0011 ⟩ = 0

⟨ 0100 ⟩ = 1; ⟨ 0101 ⟩ = 1; ⟨ 0110 ⟩ = 2; ⟨ 0111 ⟩ = 2

⟨ 1000 ⟩ = 1; ⟨ 1001 ⟩ = 2; ⟨ 1010 ⟩ = 1; ⟨ 1011 ⟩ = 0

⟨ 1100 ⟩ = 1; ⟨ 1101 ⟩ = 3; ⟨ 1110 ⟩ = 3; ⟨ 1111 ⟩ = 1
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2.2.2 Local and global peaks of z(s)

The following result shows that z(s) is not strictly increasing and if one restricts
to the values where gs has őxed period, i.e. when 2k ≤ s < 2k+1, it has maximum
value 2k+2 − 8 in the point s = 2k+1 − 2.

Theorem 2.2.1. For every k ≥ 3 we have:

2k+1 + 1 = z(2k+1 − 1) < z(2k+1 − 2) = 2k+2 − 8.

More precisely, one has:

g2
k+1−2 = Σ2k+1−5V2 = [0, . . . , 0

2k+1−5

, 2, 3, 1, 0, 0, 0, . . . , 0

2k−4

, 2, 2, 0, 0, 0, . . . , 0

2k−5

, 2, 1, 3, 0, 0].

Proof. Fix
s = 2k+1 − 2 = ⌊11 · · · 1

k

0⌋2

and look at the sequence

gs = Σ⌊1···1011]2 [2] + Σ⌊1···100]2 [3] + Σ⌊1···101]2 [2] + Σ⌊1···110]2 [3] + Σ⌊1···111]2 [2].

• Σ⌊1···1011]2 [2] has period 2k+1 and the coefficients are

2 ∗

(
n

⌊1 · · · 1011]2

)

for 0 ≤ n < ⌊1 · · · 1
k+1

⌋2.

Clearly the binomial is 0 for n < ⌊1 · · · 1011⌋2. One can use Lucas’s Theorem
to compute the remaining coefficients since the primitives of the sequence
(2) ∈ P4 correspond to the primitives of (1) ∈ P2. We get:

Σ⌊1···1011⌋2 [2] = [0, . . . , 0

2k+1−5

, 2, 0, 0, 0, 2].

• Σ⌊1···100⌋2 [3] has period 2k+2 and the coefficients are

3 ∗

(
n

⌊1 · · · 100⌋2

)

for 0 ≤ n < ⌊1 · · · 1
k+2

⌋2.

Again if n < ⌊1 · · · 1011⌋2 the binomial is zero, hence the őrst half of the
sequence is:

[0, . . . , 0

2k+1−4

, 1, ∗, ∗, ∗].
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For the second half of the sequence, we have n = ⌊1ak · · · a0⌋2 and we use
Kummer’s Theorem: the binomial coefficient

(
⌊1ak · · · a0⌋2
⌊01 · · · 100⌋2

)

is zero modulo 4 if there are at least two borrows in performing the difference

⌊1ak . . . a0⌋2 − ⌊01 · · · 100⌋2. (2.1)

Notice that for 2 ≤ j ≤ k− 1, the equality aj = 0 implies that there are two
borrows in performing the difference in Equation (2.1), thus the coefficient
is zero modulo 4. Hence the sequence Σ⌊1···100⌋2(3) is:

[0, . . . , 0

2k+1−4

, 3, ∗, ∗, ∗, 0, . . . , 0

2k−4

, ∗, ∗, ∗, ∗, 0, . . . , 0

2k−4

, ∗, ∗, ∗, ∗].

The remaining coefficients can be computed using the generalisation of Lu-
cas’s Theorem. For 2k+1 − 3 ≤ n ≤ 2k+1 − 1, one has:

3 ∗

(
⌊1 · · · 101⌋2
⌊1 · · · 100⌋2

)

= 3 ∗
(
k−2∏

i=1

⟨⟨ 1111 ⟩⟩
)
⟨⟨ 1010 ⟩⟩ ⟨

01
00 ⟩ = 3.

3 ∗

(
⌊1 · · · 110⌋2
⌊1 · · · 100⌋2

)

= 3 ∗ ⟨⟨ 1110 ⟩⟩ ⟨
10
00 ⟩ = 1.

3 ∗

(
⌊1 · · · 111⌋2
⌊1 · · · 100⌋2

)

= 3 ∗ ⟨⟨ 1110 ⟩⟩ ⟨
11
00 ⟩ = 1.

For 2k+2 − 2k − 4 ≤ n ≤ 2k+2 − 2k − 1, one has:

3 ∗

(
⌊101 · · · 100⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1001 ⟩⟩ ⟨⟨
01
11 ⟩⟩ = 3 ∗ 1 ∗ 2 = 2.

3 ∗

(
⌊101 · · · 101⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1001 ⟩⟩ ⟨⟨
01
11 ⟩⟩ ⟨

01
00 ⟩ = 2.

3 ∗

(
⌊101 · · · 110⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1001 ⟩⟩ ⟨⟨
01
11 ⟩⟩ ⟨⟨

11
10 ⟩⟩ = 2.

3 ∗

(
⌊101 · · · 111⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1001 ⟩⟩ ⟨⟨
01
11 ⟩⟩ ⟨⟨

11
10 ⟩⟩ ⟨

11
00 ⟩ = 2.



50 CHAPTER 2. PROLIFERATION OF VALUES

For 2k+2 − 4 ≤ n ≤ 2k+2 − 1, one has:

3 ∗

(
⌊111 · · · 100⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1101 ⟩⟩ = 3 ∗ 3 = 1.

3 ∗

(
⌊111 · · · 101⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1101 ⟩⟩ ⟨
01
00 ⟩ = 1.

3 ∗

(
⌊111 · · · 110⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1101 ⟩⟩ ⟨⟨
11
10 ⟩⟩ = 3.

3 ∗

(
⌊111 · · · 111⌋2
⌊011 · · · 100⌋2

)

=3 ∗ ⟨⟨ 1101 ⟩⟩ ⟨⟨
11
10 ⟩⟩ ⟨

11
00 ⟩ = 3.

Hence the sequence Σ⌊1···100⌋2 [3] is:

[0, . . . , 0

2k+1−4

, 3, 3, 1, 1, 0, . . . , 0

2k−4

, 2, 2, 2, 2, 0, . . . , 0

2k−4

, 1, 1, 3, 3].

• The sequences Σ⌊1···101⌋2 [2] and Σ⌊1···111⌋2 [3] can be treated as the őrst point:
their period is 2k+1 and they have respectively the following shape:

Σ⌊1···101⌋2 [2] = [0, . . . , 0

2k+1−3

, 2, 0, 2]

Σ⌊1···111⌋2 [2] = [0, . . . , 0

2k+1−3

, 0, 0, 2].

• We study the sequence Σ⌊1···110⌋2 [3] as we did for Σ⌊1···100⌋2 [3] previously. It
has period 2k+2. Using Kummer’s Theorem and the generalisation of Lucas’s
Theorem, one őnds:

Σ⌊1···110⌋2 [3] = [0, . . . , 0

2k+1−2

, 3, 1, 0, . . . , 0

2k−2

, 2, 2, 0, . . . , 0

2k−2

, 1, 3].

Now we are ready to study gs by looking at the sum of the single components.
Of course the primitives of [2], having half of the period of the primitives of [3],
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have to be repeated twice to perform the sum. Thus we őnd:

Σ⌊1···1011⌋2 [2] : [0, . . . , 0

2k+1−5

, 2, 0, 0, 0, 2 0, . . . . . . . . . . . . . . . . . . . . . 0

2k+1−5

, 2, 0, 0, 0, 2]+

Σ⌊1···100⌋2 [3] : [0, . . . , 0

2k+1−5

, 0, 3, 3, 1, 1, 0, . . . , 0

2k−4

, 2, 2, 2, 2, 0, . . . , 0

2k−5

, 0, 1, 1, 3, 3]+

Σ⌊1···101⌋2 [2] : [0, . . . , 0

2k+1−5

, 0, 0, 2, 0, 2, 0, . . . . . . . . . . . . . . . . . . . . . 0

2k+1−5

, 0, 0, 2, 0, 2]+

Σ⌊1···110⌋2 [3] : [0, . . . , 0

2k+1−5

, 0, 0, 0, 3, 1, 0, . . . , 0

2k−4

, 0, 0, 2, 2, 0, . . . , 0

2k−5

, 0, 0, 0, 1, 3]+

Σ⌊1···111⌋2 [2] : [0, . . . , 0

2k+1−5

, 0, 0, 0, 0, 2, 0, . . . . . . . . . . . . . . . . . . . . . 0

2k+1−5

, 0, 0, 0, 0, 2] =

gs : [0, . . . , 0

2k+1−5

, 2, 3, 1, 0, 0, 0, . . . , 0

2k−4

, 2, 2, 0, 0, 0, . . . , 0

2k−5

, 2, 1, 3, 0, 0]

So g2
k+1−2 has all but up to 8 entries equal to 0, hence we can conclude Z(s) =

2k+2 − 8.

To complete the proof, let us study the sequence gs+1:

gs+1 = Σ⌊1···100⌋2 [2] + Σ⌊1···101⌋2 [3] + Σ⌊1···110⌋2 [2] + Σ⌊1···111⌋2 [3] + Σ⌊10···000⌋2 [2].

Notice that the index ⌊10 · · · 000⌋2 of the last primitive in this sum has 2k+1 digits
in base 2, hence Σ⌊10···000⌋2 [2] has period 2k+2. As above, one can compute the
coefficients of Σ⌊10···000⌊2 [2] with Lucas’s Theorem and get:

[0 · · · 0
2k+1

, 2 · · · 2
2k+1

].

Now with the same considerations applied to the study of gs, we arrive to write
the sum deőning gs+1:
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Σ⌊1···100⌋2 [2] : [0, . . . , 0

2k+1−4

, 2, 2, 2, 2 0, . . . . . . . . . . . . . . . . . . 0

2k+1−4

, 2, 2, 2, 2]+

Σ⌊1···101⌋2 [3] : [0, . . . , 0

2k+1−4

, 0, 3, 2, 3, 0, . . . , 0

2k−3

, 2, 0, 2, 0, . . . , 0

2k−4

, 0, 1, 2, 1]+

Σ⌊1···110⌋2 [2] : [0, . . . , 0

2k+1−4

, 0, 0, 2, 2, 0, . . . . . . . . . . . . . . . . . . 0

2k+1−4

, 0, 0, 2, 2]+

Σ⌊1···111⌋2 [3] : [0, . . . , 0

2k+1−4

, 0, 0, 0, 3, 0, . . . , 0

2k−3

, 0, 0, 2, 0, . . . , 0

2k−4

, 0, 0, 0, 1]+

Σ⌊10···000⌋2 [2] : [0, . . . , 0

2k+1−4

, 0, 0, 0, 0, 2, . . . . . . . . . . . . . . . . . . 2

2k+1−3

, 2, 2, 2, 2] =

gs+1 : [0, . . . , 0

2k+1−4

, 2, 1, 2, 2, 2, . . . , 2

2k−3

, 2, 0, 0, 2, . . . , 2

2k−4

, 0, 1, 0, 0].

Thus in the sequence gs+1 we őnd 2k+1−4+2+3 = 2k+1+1 zeros. This completes
the proof.

Remark. It is interesting to study what happens when there is a change of period
in the primitives of g. By Theorem 1.5.5 and Theorem 1.5.6, this happens when
s = 2k with k ∈ N≥1. We can then study the coefficients of g2

k

as done in
Theorem 2.2.1, using the generalisation of Lucas’s Theorem. One obtains:

Σ⌊1···101⌋2 [2] : [0, . . . , 0

2k+1−3

, 2, 0, 2]+

Σ⌊1···110⌋2 [3] : [0, . . . , 0

2k+1−2

, 3, 1, 0, . . . , 0

2k−2

, 2, 2, 0, . . . , 0

2k−2

, 1, 3]+

Σ⌊1···111⌋2 [2] : [0, . . . , 0

2k+1−1

, 2]+

Σ⌊10···000⌋2 [3] : [0, . . . , 0

2k+1

, 3, . . . , 3

2k−1

, 1, . . . , 1

2k−1

, 2, . . . , 2

2k

, 1, . . . , 1

2k−1

, 3, . . . , 3

2k−1

] +

Σ⌊10···001⌋2 [2] : [0, . . . , 0

2k+1

, 0, 2, 0, 2, . . . , 0, 2

2k+1

] =

g2
k

: [0, . . . , 0

2k+1−3

, 2, 3, 1, 3, 1, . . . , 1

2k−1−1

, 1, 2, . . . , 2

2k−1

, 0, 1, 3, . . . , 3

2k−1

, 3, 1, . . . , 3

2k−1−1

, 3, 0, 0].

This observation, together with Theorem 2.2.1, proves the existence of a local
maximum for z(s) in s = 2k− 2, which is in fact a global maximum if one restricts
to the indices 2k ≤ s < 2k+1.
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Let us look at the percentage z(s)/p(gs) of zeros among the coefficients of
gs. The previous results shows that for a őxed period 2k+2 = p(gs), i.e. for
2k ≤ s < 2k+1, the maximum of the percentage is in s = 2k−2 with value 1−8/2k+2.
Thus if one considers the subsequence

(
z(2k−1)

)

k≥2
, the corresponding percentages

are:
(
1− 8/2k+2

)

k≥2

k→∞
−→ 1.

Remark. The previous results give a complete answer to the observations made
in [4, App. A]. In particular, one can compare the formula of Theorem 2.2.1 for
k = 3, 4, 6 with the explicit computation of the corresponding levels 5, 13, 61 done
in [4].

2.3 Modular binomial functions

2.3.1 First properties

In this section, we focus on the s-th binomial function:

bs : N −→ Zpℓ

n 7−→

(
n

s

)

.

As shown in previous section, this function coincides with the s-th primitives Σs[1]
of the constant sequence [1] ∈ Ppℓ . If the expression of s in base p is one of the
following:

⌊bk · · · bk−m (p− 1) · · · (p− 1)

ℓ

bk−m−ℓ−1 · · · b0⌋p

⌊bk · · · bk−m 0 · · · 0
ℓ

bk−m−ℓ−1 · · · b0⌋p

⌊bk · · · bk−m (p− 1) 0 · · · 0

ℓ

bk−m−ℓ−1 · · · b0⌋p

where k > ℓ and 0 ≤ m ≤ k − ℓ − 1, we prove that it is possible to link the s-th
binomial function bs to bs′ where s′ is obtained from s by removing one of the
explicit coefficients in its p-base expression. Of course, in the general case this
formula can be combined with the usual ones. Notice that when p = 2 and ℓ = 2,
this provides a complete recursive formula for the binomial function bs.

First we need some deőnitions.

Deőnition. Given a sequence f ∈ Sm := ZN
m, a prime q and an integer t ≥ 1, we

call the j-th qt-subsequence of f the element hj ∈ Zqt

m deőned as

hj = (f(jqt), f(jqt + 1), . . . , f((j + 1)qt − 1)) j ∈ N.
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We denote by R(f, qt) ∈ Sm the sequence obtained repeating q times the ordered
qt-subsequences of f :

R(f, qt) = (h0, . . . , h0

q

, h1, . . . , h1

q

, . . . ).

We denote by A(f, qt) ∈ Sm the sequence obtained alternating (q− 1)qt zeros and
the ordered qt-subsequences of f :

A(f, qt) = (0, . . . , 0

(q−1)qt

, h0, 0, . . . , 0

(q−1)qt

, h1, . . . ).

Proposition 2.3.1. For any f ∈ Sm, t ≥ 1, and n′ = ⌊ar . . . atat−1 . . . a0⌋q one
has

R(f, qt)(n) = f(n′) if n = ⌊ar . . . at α at−1 . . . a0⌋q, ∀ 0 ≤ α < q.

A(f, qt)(n) =

{

f(n′) if n = ⌊ar . . . at(q − 1)at−1 . . . a0⌋q

0 otherwise.

Proof. By Deőnition 2.3.1, given ξ ∈ N, 0 ≤ α < q, 0 ≤ i < qt, one has

R(f, qt)(ξqt+1 + αqt + i) = f(ξqt + i)

A(f, qt)(ξqt+1 + αqt + i) =

{

f(ξqt + i) if α = q − 1,

0 otherwise.

Translating in the q-adic representation, we get the claim.

Example. • The set of 2-subsequences of f = [0, 1, 2, 3, 4, 5] ∈ P7 is

{[0, 1], [2, 3], [4, 5]}.

• If h = [1, 2, 3, 4, 5, 6, 7, 8] ∈ P11, then:

R(h, 22) =[1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8]

A(h, 22) =[0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0, 5, 6, 7, 8].

Moreover

R(h, 22)(23 + 22 + 3) = 8 = h(22 + 3) R(h, 22)(23 + 2) = 7 = h(22 + 2)

A(h, 22)(23 + 22 + 3) = 8 = h(22 + 3) A(h, 22)(23 + 2) = 0.

Remark. Observe the following facts:
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• For any qt both R and A are linear operators: for any c1, c2 ∈ Zm and
f1, f2 ∈ Sm, it is

R(c1f1 + c2f2, q
t) =c1 R(f1, q

t) + c2 R(f2, q
t)

A(c1f1 + c2f2, q
t) =c1 A(f1, q

t) + c2 A(f2, q
t).

• If f ∈ Pm has period τ and qt | τ , then both R(f, qt) and A(f, qt) have
period qτ .

Deőnition. If f, g ∈ Ppℓ , we write:

• f ≡ν g if for any n ≥ 0, f(n) = 0 if and only if g(n) = 0, otherwise
νp(f(n)) = νp(g(n)) ∈ {0, · · · , ℓ− 1}.

• Πi(f) := #{f(x) | 0 ≤ x < p(f), νp(f(x)) = i} the number of coefficients
with p-adic valuation i, for every 0 ≤ i < ℓ.

• Z(f) := #{f(x) | 0 ≤ x < p(f), f(x) = 0} the number of zeros.

2.3.2 Recursive lemmas

Let us consider now the primitives Σs[1] = bs of the constant sequence [1] in
Ppℓ . Suppose that pk ≤ s < pk+1. The next results allow to link in certain
cases the quantities Πi(bs), Z(bs) to the quantities Πi(bs′), Z(bs′) for some s′ with
pk−1 ≤ s′ < pk.

Lemma 2.3.2. With the notation above, suppose that k > ℓ, 0 ≤ m ≤ k − ℓ− 1,
and that the expression of s in base p is:

s = ⌊bk · · · bk−m (p− 1) · · · (p− 1)

ℓ

bk−m−ℓ−1 · · · b0⌋p.

Denote by

s′ : = s−
(
bkp

k + (bk−1 − bk)p
k−1 + · · ·+ (p− 1− bk−m)p

k−m−1
)

= ⌊bk · · · bk−m (p− 1) · · · (p− 1)

ℓ−1

bk−m−ℓ−1 · · · b0⌋p.

Then bs ≡ν A(bs′ , p
k−m−ℓ). In particular Πi(bs) = Πi(bs′) and Z(bs) = Z(bs′) +

(p− 1)pk+ℓ−1.
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Proof. The sequence bs has period pℓ+k by Theorem 1.5.5. For any 0 ≤ n < pℓ+k,
let n = ⌊ak+ℓ−1 . . . a0⌋p be its expression in base p. The n-th coefficient of bs is:





ak+ℓ−1 · · · ak+1 ak · · · ak−m ak−m−1 · · · ak−m−ℓ ak−m−ℓ−1 · · · a0
bk · · · bk−m (p− 1) · · · (p− 1)

ℓ

bk−m−ℓ−1 · · · b0



 .

Let n′ be obtained from n by removing the coefficient ak−m−ℓ. The n′-th coefficient
of bs′ is:




ak+ℓ−1 · · · ak+1 ak · · · ak−m ak−m−1 · · · ak−m−ℓ+1 ak−m−ℓ−1 · · · a0
bk · · · bk−m (p− 1) · · · (p− 1)

ℓ−1

bk−m−ℓ−1 · · · b0



 .

By Proposition 2.3.1, to conclude that bs ≡ν A(bs′ , p
k−m−ℓ), it is enough to show

that νp(bs(n)) = νp(bs′(n
′)) if ak−m−ℓ = p − 1 and bs(n) = 0 otherwise. To

prove this, we use Kummer’s Theorem studying the number of borrows in the
subtractions n− s and n′ − s′ in base p:

• If ak−m−ℓ = p− 1:

ś If ak−m−ℓ lends, the number of borrows in s is one more than the number
of borrows in s′. However in both binomials there are at least ℓ borrows
(given by the remaining (ℓ− 1) coefficients equal to p− 1), hence both
binomials are zero modulo pℓ.

ś If ak−m−ℓ does not lend, the number of borrows is the same for s and
s′.

• If ak−m−ℓ < p − 1: the binomial bs(n) = 0 since again there are at least ℓ
borrows.

From the considerations above, we conclude that bs ≡ν A(bs′ , p
k−m−ℓ). Then

immediately follows

Πi(bs) = Πi(bs′) Z(bs) = Z(bs′) + (p− 1)p(bs′) = Z(bs′) + (p− 1)pk+ℓ−1.

Remark. With the notation above, it is possible to verify that the proof of the
previous lemma holds also for the case s = ⌊(p− 1) · · · (p− 1)

ℓ

bk−ℓ · · · b0⌋p (which

corresponds to m = −1).
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Lemma 2.3.3. With the notation above, suppose that k > ℓ, 0 ≤ m ≤ k − ℓ − 1
and that the expression of s in base p is:

s = ⌊bk · · · bk−m 0 · · · 0
ℓ

bk−m−ℓ−1 · · · b0⌋p.

Denote by

s′ : = s−
(
bkp

k + (bk−1 − bk)p
k−1 + · · ·+ (bk−m − bk−m+1)p

k−m − bk−mp
k−m−1

)

= ⌊bk · · · bk−m 0 · · · 0
ℓ−1

bk−m−ℓ−1 · · · b0⌋p.

Then bs ≡ν R(bs′ , p
k−m−1). In particular, Πi(bs) = p · Πi(bs′) and Z(bs) =

p · Z(bs′).

Proof. The sequence bs has period pℓ+k by Theorem 1.5.5. Similarly to the previ-
ous lemma, for 0 ≤ n < pℓ+k with n = ⌊ak+ℓ−1 . . . a0⌋p, the coefficient bs(n) =

(
n
s

)

is:
(
ak+ℓ−1 · · · ak+1 ak · · · ak−m ak−m−1 · · · ak−m−ℓ ak−m−ℓ−1 · · · a0

bk · · · bk−m 0 · · · 0
ℓ

bk−m−ℓ−1 · · · b0

)

.

Let n′ be obtained from n by removing the coefficient ak−m−1, hence the n′-th
coefficient of bs′ is:
(
ak+ℓ−1 · · · ak+1 ak · · · ak−m ak−m−2 · · · ak−m−ℓ ak−m−ℓ−1 · · · a0

bk · · · bk−m 0 · · · 0
ℓ−1

bk−m−ℓ−1 · · · b0

)

.

By Proposition 2.3.1, to conclude that bs ≡ν R(bs′ , p
k−m−1), it is enough to

show that, for any value of ak−m−1, bs′(n
′) = 0 whenever bs(n) = 0, otherwise

νp(bs(n)) = νp(bs′(n
′)). To prove this, we use Kummer’s Theorem studying the

number of borrows in the subtractions n− s and n′ − s′ in base p:

• If ak−m−1 lends, then ak−m−2 = · · · = ak−m−ℓ = 0 and they all lend. So in
this case in both s and s′ there are at least ℓ borrows (notice that ak−m lends
in s′); so the binomials are both equal to zero.

• If ak−m−1 does not lend, then the number of borrows remains the same in
both the binomials.

Henceforth we can conclude that bs ≡ν R(bs′ , p
k−m−1), thus:

Πi(bs) = p · Πi(bs′) Z(bs) = p · Z(bs′).
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Remark. Observe that if ℓ = 1, i.e. the base ring Z/pZ is a őeld, Lemma 2.3.3
(resp. Lemma 2.3.2) reduces to removing a coefficient equal to 0 (resp. equal
to p − 1) in the expression of s in base p. This is just a consequence of Lucas’s
theorem on binomial coefficients modulo p.

In order to present the last result of this section, we need some preliminary
deőnitions.

Deőnition. Given s = ⌊bk · · · bk−m (p− 1) 0 · · · 0

ℓ

bk−m−ℓ−1 · · · b0⌋p ∈ N with k > ℓ

and 0 ≤ m ≤ k− ℓ− 1, we denote by Es the following subset of {0, . . . , pk+ℓ − 1}:

Es :=
{

n ∈ N : 0 ≤ n < pk+ℓ, n = ⌊ak+ℓ−1 . . . a0⌋p such that:

ak−m−1 = p− 1 ak−m−2 ̸= 0

ak−m−i = 0 ∀ 3 ≤ i ≤ ℓ ak−m−ℓ−1 < bk−m−ℓ−1

aj ≥ bj ∀ j ∈ {0, . . . , k −m− ℓ− 2} ∪ {k −m, . . . , k}
}

.

We denote by χEs
∈ Ppℓ the sequence:

χEs
= [e0, . . . , epk+ℓ−1] where ei =

{

1 if i ∈ Es

0 otherwise.

The deőnition above makes sense also for m = −1: in such a way we include
also the case s = ⌊(p− 1) 0 · · · 0

ℓ

bk−ℓ · · · b0⌋p. It is easy to check that

|Es| = pℓ−1

(
k∏

j=k−m

(p− bj)

)

(p− 1) bk−m−ℓ−1

(
k−ℓ−m−2∏

i=0

(p− bi)

)

and hence Es = ∅ if bk−m−ℓ−1 = 0.

Lemma 2.3.4. With the notation above, suppose that k > ℓ, 0 ≤ m ≤ k − ℓ − 1
and that the expression of s in base p is:

s = ⌊bk · · · bk−m (p− 1) 0 · · · 0

ℓ

bk−m−ℓ−1 · · · b0⌋p.

Denote by

s′ : = s−
(
bkp

k + (bk−1 − bk)p
k−1 + · · ·+ (p− 1− bk−m)p

k−m−1 − (p− 1)pk−m−2
)

= ⌊bk · · · bk−m (p− 1) 0 · · · 0

ℓ−1

bk−m−ℓ−1 · · · b0⌋p.
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Then bs ≡ν R(bs′ , p
k−m−2) + pℓ−1χEs

and thus

Πi(bs) = p · Πi(bs′) 0 ≤ i ≤ ℓ− 2

Πℓ−1(bs) = p · Πℓ−1(bs′) + |Es|

Z(bs) = p · Z(bs′)− |Es|.

Proof. The sequence bs has period pℓ+k by Theorem 1.5.5. Similarly to the previ-
ous lemmas, for 0 ≤ n < pℓ+k with n = ⌊ak+ℓ−1 . . . a0⌋p, the coefficient bs(n) =

(
n
s

)

is:
(
ak+ℓ−1 · · · ak+1 ak · · · ak−m ak−m−1 ak−m−2 · · · ak−m−ℓ ak−m−ℓ−1 · · · a0

bk · · · bk−m p− 1 0 · · · 0
ℓ−1

bk−m−ℓ−1 · · · b0

)

.

Let n′ be obtained from n by removing the coefficient ak−m−2, hence the n′-th
coefficient of bs′ is:
(
ak+ℓ−1 · · · ak+1 ak · · · ak−m ak−m−1 ak−m−3 · · · ak−m−ℓ ak−m−ℓ−1 · · · a0

bk · · · bk−m p− 1 0 · · · 0
ℓ−2

bk−m−ℓ−1 · · · b0

)

.

Let us use Kummer’s Theorem to study the number of borrows in the subtractions
n− s and n′ − s′ in base p:

• if ak−m−ℓ−1 does not lend, the two binomials have the same number of bor-
rows.

• if ak−m−ℓ−1 lends, we have the following cases:

ś if ak−m−2 = ak−m−3 = · · · = ak−m−ℓ = 0, then both binomials have at
least ℓ borrows and hence they are zero.

ś If ak−m−3 = · · · = ak−m−ℓ = 0 but ak−m−2 ̸= 0, there are at least ℓ
borrows in s′. In this situation there are at least ℓ− 1 borrows in s and
they are precisely ℓ− 1 when n ∈ Es.

ś In the remaining cases, there exists an index k−m− ℓ ≤ i ≤ k −m− 3
such that ai ̸= 0, thus ak−m−2 does not lend, so the borrows in s and s′

are the same.

This proves the statement.

Remark. With the notation above, it is possible to verify that the proof of the pre-
vious lemma holds also for the case s = ⌊(p− 1) 0 · · · 0

ℓ

bk−ℓ · · · b0⌋p (which corre-

sponds to m = −1). Moreover, observe that Lemma 2.3.4 generalises Lemma 2.3.3
if p = 2: indeed the hypotheses of Lemma 2.3.3 imply bk−m−ℓ−1 = 0 in Lemma 2.3.4
and hence Es = ∅.
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Remark. Let s = ⌊bk · · · b0⌋. The construction of s′ in Lemmas 2.3.2 to 2.3.4 does
not depend on the (k − m − ℓ)-tail bk−m−ℓ−1...b0. Therefore if s and s + i differ
only on their (k −m− ℓ)-tails, then (s+ i)′ = s′ + i.

2.4 The case of Z4 and Vieru’s sequence

Let us focus on Z4: with the notation of the previous section, we are considering
p = 2 and ℓ = 2. Notice that in this case Lemmas 2.3.2 and 2.3.4 allow us to reduce
each binomial coefficient to a smaller one, permitting one to link any primitive [1]s

with 2k ≤ s < 2k+1 to a primitive [1]s
′

with 2k−1 ≤ s′ < 2k.
As an example we provide a recursive formula for the zeros Z(s) := Z(vs) of

the primitives vs := Σsv of Vieru’s sequence

v = [2, 1, 2, 0, 0, 1, 0, 0] ∈ P4,

when 2k ≤ s < 2k+1 for k ≥ 5. The zeros of speciőc primitives of the sequence v
were already studied in Section 2.2

The sequence Z(s) is clearly a sequence of natural numbers.

2.4.1 Preliminary results

To state our formula, we need some technical results. First observe that since
2 · 2 = 0 in Z4, if 2k ≤ s, t < 2k+1, then

2χEs△Et
:= 2(χEs

+ χEt
)(n) =

{

2 if n ∈ Es△Et,

0 otherwise.

Furthermore if s = ⌊10bk−2 . . . b0⌋2, the quantity |Es| is linked with the number
z(s) of 0’s in the binary expansion of s in the following way:

|Es| = 2 · bk−2 · 2
z(⌊bk−3···b0⌋2)

= bk−2 · 2
z(s) =

{

2z(s) if bk−2 = 1,

0 otherwise.

The coefficients Π0(f), Π1(f), Z(f) introduced in Section 2.3.1 represent the
number of 1 or 3, the number of 2, and the number of 0 in f , respectively.

If s = ⌊1bk−1 · · · b0⌋2 and t = ⌊1b′k−1 · · · b
′
0⌋2, denote by (s | t) the bitwise OR

of s and t, i.e., the number whose 2-adic representation has 1 in each bit position
for which the corresponding bit of either s or t is 1.
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Lemma 2.4.1. Let k ≥ 5 and 2k + 2k−2 ≤ s < 2k + 2k−1 − 4. Set dk equal to the
(2k−2 − 4)-sequence dk(s) := Π1(2(χEs+1△Es+3)). Then

dk(s) = 2z(s+1) + 2z(s+3) − 2× 2z((s+1|s+3))

and

d5 = (4, 8, 4, 4) and dk+1 = (2× dk, 4, 2
k−1, 2k−2, 2k−2, dk) ∀k ≥ 5.

Proof. Observe that, by Remark 2.3.2

dk(s) = |Es+1|+ |Es+3| − 2× |Es+1 ∩ Es+3| = 2z(s+1) + 2z(s+3) − 2× 2z((s+1|s+3))

since |Es+1 ∩Es+3| = 2z((s+1|s+3)) (see deőnition of Es in the proof of Lemma 2.3.4
which, in our case, reduces aj ≥ bj).

If k = 5, then s ∈ {40, 41, 42, 43}. It is easy to verify that

d5 = (2z(41) + 2z(43) − 2z(41|43)+1, ..., 2z(44) + 2z(46) − 2z(44|46)+1) = (4, 8, 4, 4).

Fixed k, the binary representation of the numbers s between 2k + 2k−2 and 2k +
2k−1 − 4 are of the following three types

• Ik: 2k + 2k−2 ≤ s < 2k + 2k−2 + 2k−3 − 4,

• IIk: 2k + 2k−2 + 2k−3 − 4 ≤ s < 2k + 2k−2 + 2k−3,

• IIIk: 2k + 2k−2 + 2k−3 ≤ s < 2k + 2k−1 − 4.

Given s′ ∈ IIIk+1, hence s′ = 2k+1 +2k−1 +2k−2 + t with 0 ≤ t < 2k−2− 4. Set
s = 2k + 2k−2 + t, we get

(z(s′ + 1), z(s′ + 3), z(s′ + 1 | s′ + 3)) = (z(s+ 1), z(s+ 3), z(s+ 1 | s+ 3)).

Given s′ ∈ Ik+1, hence s′ = 2k+1 + 2k−1 + t with 0 ≤ t < 2k−2 − 4. Set
s = 2k + 2k−2 + t, we get

(z(s′+1), z(s′+3), z(s′+1 | s′+3)) = (1+z(s+1), 1+z(s+3), 1+z(s+1 | s+3)).

Finally the binary representation of s′ in the group IIk+1 is the following:

s′ : ⌊10101k+1−500⌋2, ⌊10101k+1−501⌋2, ⌊10101k+1−510⌋2, ⌊10101k+1−511⌋2.

Therefore (z(s′ + 1), z(s′ + 3), z(s′ + 1 | s′ + 3)) are

1. (3, 2, 2) for s′ = ⌊10101k+1−500⌋2,
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2. (3, k − 1, 2) for s′ = ⌊10101k+1−501⌋2,

3. (2, k − 2, 1) for s′ = ⌊10101k+1−510⌋2,

4. (k − 1, k − 2, k − 2) for s′ = ⌊10101k+1−511⌋2.

Thus we get the wanted claim.

Remark. Let us link the sequence dk to two well known integer sequences. Fixed
k ≥ 5 the sequence dk coincides with

(2k−a(4), 2k−a(5)..., 2k−a(2k−2−1))

where a(2t) = t + 1 and a(2t + i) = 1 + a(i) for t ≥ 0 and 0 < i < 2t (see
A063787 in the OEIS, the online encyclopedia of integer sequences). Noticed that
a(2t1 + · · · + 2th) = h + th for t1 > · · · > th ≥ 0, one can directly prove that
dk(2

k + 2k−2 + 2t1 + · · · 2th − 4) = 2k−h−th .
Denoted by wt(n) the Hamming weight of n, i.e. the number of 1’s in the

binary expansion of n, we have, for 2k + 2k−2 ≤ s < 2k + 2k−1 − 4

dk(s) = 2wt(2k+2k−1−4−s)+1.

The recurrence relation for dk(s) permits to compute a recurrence relation for the
Hamming weight. Denoted by wh the Hamming weight of the numbers ⌊1⌋2, ...,
⌊2h+1 − 4⌋2, we have

w2 = (1, 1, 2, 1), wh+1 = (wh, h, h, h+ 1, 1, wh + 1) ∀h ≥ 2

where wh + 1 is the sequence obtained by wh increasing by one each entrance.

2.4.2 Main Recursive Formula

Now we are ready to state the theorem on the zeros of the primitives of Vieru’s
sequence:

Theorem 2.4.2. For k ≥ 5 and 2k ≤ s < 2k+1, denote:

(c1, c2, c3, c4) := 2k−5(48, 32, 40, 44)

(c′1, c
′
2, c

′
3, c

′
4) := 2k−5(48, 40, 44, 48)

(c′′1, c
′′
2, c

′′
3, c

′′
4) := 2k−5(32, 32, 48, 64)

Zk :=
(
Z(s)

)

2k≤s<2k+1 .
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The initial condition is

Z5 = (32, 48, 64,88, 64, 80, 88, 92, 64, 80, 88, 104, 92, 104, 108, 94,

78, 88, 96, 108, 96, 104, 108, 110, 102, 108, 112, 118, 114, 118, 120, 64).

For k ≥ 6, the 2k-tuple Zk coincides with

Z(s) =







2Z(s− 2k−1) if 2k ≤ s ≤ 2k + 2k−2 − 5 (A)

Z(s− 2k−1 − 2k−3) + ci if s = 2k + 2k−2 − 5 + i, i = 1, 2, 3, 4 (B)

2Z(s− 2k−1)− dk(s) if 2k + 2k−2 ≤ s ≤ 2k + 2k−1 − 5 (C)

Z(s− 2k−1 − 2k−2) + c′i if s = 2k + 2k−1 − 5 + i, i = 1, 2, 3, 4 (D)

Z(s− 2k) + 2k+1 if 2k + 2k−1 ≤ s ≤ 2k+1 − 5 (E)

Z(s− 2k) + c′′i if s = 2k+1 − 5 + i, i = 1, 2, 3, 4 (F).

Proof. The s-primitive of the sequence v = [2, 1, 2, 0, 0, 1, 0, 0] is equal to

vs = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs ∀s ≥ 0. (2.2)

In base 2 we have
2k = ⌊10k⌋2 := ⌊1 0 · · · 0

k times

⌋2,

therefore ⌊10k⌋2 ≤ [s]2 ≤ ⌊11k⌋2. Set h = k − 5, we will consider in order the
following cases:

A : ⌊1000h000⌋2 ≤ s ≤ ⌊1001h011⌋2;

C : ⌊1010h000⌋2 ≤ s ≤ ⌊1011h011⌋2;

E : ⌊1100h000⌋2 ≤ s ≤ ⌊1111h011⌋2;

B : ⌊1001h100⌋2 ≤ s ≤ ⌊1001h111⌋2;

D : ⌊1011h100⌋2 ≤ s ≤ ⌊1011h111⌋2;

F : ⌊1111h100⌋2 ≤ s ≤ ⌊1111h111⌋2.

In the cases A, C and E, the primitive indices of all the summands in Equa-
tion (2.2) have the same preőx: 10 in the őrst two cases, and 11 in the last. This
allows to apply in parallel the recursive lemmas of Section 2.3. The remaining
twelve cases require ad hoc analysis.

Using a generic computer algebra system one can easily compute the sequence
Z5, the initial condition for the recursive formula.
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Cases A and C. In both the cases s, s+1, s+2, s+3, and s+4 have a binary
representation ⌊10bk−2...b0⌋ with the two most representative őgures equal to 10.
If f ∈ P4, we denote shortly

R f s := R(f s, 2k−1), A f s := A(f s, 2k−1).

Using Lemma 2.3.4, we reduce the study of bs, ..., bs+4 to the study of bs′ , ...,
bs′+4 where s′ = s− (2k − 2k−1) = s− 2k−1. It is

vs = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs

≡ν 2
(
Rbs′+4 +2χEs+4

)
+ 3

(
Rbs′+3 +2χEs+3

)
+ 2

(
Rbs′+2 +2χEs+2

)
+

+ 3
(
Rbs′+1 +2χEs+1

)
+ 2 (Rbs′ +2χEs

)

≡ν R vs
′

+ 3 · 2χEs+1 + 3 · 2χEs+3

≡ν R vs
′

+ 2χEs+1△Es+3 .

In case A it is Es+1 = ∅ = Es+3 and hence vs ≡ν R vs
′

. Therefore

Z(vs) = Z
(

R vs
′

)

= 2× Z(vs
′

).

In case C, if n ∈ Es+1△Es+3, then R vs
′

(n) is equal to zero. Indeed it is easy to
check that n = ⌊ak+1 . . . a0⌋2 ∈ Es+1△Es+3 implies ak = 1, ak−1 = 1 and ak−2 = 0.
Since the binary representation of t ∈ {s, s+1, s+2, s+3, s+4} is ⌊101bk−3 . . . b0⌋2,
using Kummer’s Theorem one has for t′ = t− 2k−1:

Rbt′(n) = bt′(n
′) =

(
⌊ak+110ak−3 . . . a0⌋2

⌊11bk−3 . . . b0⌋2

)

= 0,

hence R vs
′

(n) = 0. Therefore, we have

Z(vs) = Z
(

R vs
′

)

− Π1(2χEs+1△Es+3) = 2× Z(vs
′

)− dk(s).

Case E. The numbers s, s+1, s+2, s+3, and s+4 have a binary representation
⌊11bk−2...b0⌋ with the two most representative őgures equal to 11. If f ∈ P4, we
denote shortly

R f s := R(f s, 2k−1), A f s := A(f s, 2k−1).

Using Lemma 2.3.2, we reduce the study of bs, ..., bs+4 to the study of bs′ , ...,
bs′+4 where s′ = s− 2k. Thanks to the linearity of A we have:

vs = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs

≡ν 2Abs′+4 +3Abs′+3 +2Abs′+2 +3Abs′+1 +2Abs′

≡ν A(2bs′+4 +3bs′+3 +2bs′+2 +3bs′+1 +2bs′)

≡ν A vs
′

.
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Therefore
Z(vs) = Z

(

A vs
′

)

= Z(vs
′

) + 2k+1.

Case B and D. The number s has a binary representation ⌊10bk−21h1b1b0⌋ with
b0, b1, bk−2 ∈ {0, 1}. If f ∈ P4, we denote shortly

R f s := R(f s, 2k−4), A f s := A(f s, 2k−4).

B. Using Lemma 2.3.2 with m = 2 and Lemma 2.3.3 with m = 3, we lead back
the study of bs, ..., bs+4 to the study of bs′ , ..., bs′+4 where s′ = s − 2k−1 − 2k−3

in case B, and s′ = s− 2k−1 − 2k−2 in case D.

• If (b1b0) = (00), then we have

s+ 1 = ⌊10bk−21h101⌋2, s+ 2 = ⌊10bk−21h110⌋2, s+ 3 = ⌊10bk−21h111⌋2,

and s+ 4 = ⌊1b′k−1b
′
k−20h000⌋2 with b′k−1b

′
k−2 = 01 in case B and b′k−1b

′
k−2 = 10 in

case D. By Lemma 2.3.2 with m = 2 for s+ i, i = 0, 1, 2, 3 and Lemma 2.3.3 with
m = 3 for s+ 4 we have

bs+i ≡ν Abs′+i, i = 0, 1, 2, 3, and bs+4 ≡ν Rbs′+4 .

Then
vs ≡ν 2Rbs′+4 +3Abs′+3 +2Abs′+2 +3Abs′+1 +2Abs′ .

Analysing the previous equation in blocks of length 2k−4, one obtains:

Z(vs) = Z(vs
′

) + Z (2bs′+4) .

Since s′ + 4 = ⌊1b′k−1b
′
k−20h−1000⌋2, applying h-times Lemma 2.3.3, we get

Z (2bs′+4) = Z (bs′+4) + Π1 (bs′+4)

=







2h
(

Z (b20) + Π1 (b20)
)

= 48 · 2k−5 in case B ,

2h−1
(

Z (b24) + Π1 (b24)
)

= 48 · 2k−5 in case D

Therefore in both the cases B and D we have Z(vs) = Z(vs
′

) + 2k−5 × 48.

• If (b1b0) = (01), then we have Z(vs) =

{

Z(vs
′

) + 2k−5 × 32 in case B,

Z(vs
′

) + 2k−5 × 40 in case D.

• If (b1b0) = (10), then we have Z(vs) =

{

Z(vs
′

) + 2k−5 × 40 in case B,

Z(vs
′

) + 2k−5 × 44 in case D.

• If (b1b0) = (11), then we have Z(vs) =

{

Z(vs
′

) + 2k−5 × 44 in case B,

Z(vs
′

) + 2k−5 × 48 in case D.
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Case F. The number s has a binary representation ⌊1111h1b1b0⌋ with b0, b1 ∈
{0, 1}. If f ∈ P4, and 2k ≤ t < 2k+1we denote shortly

R f t := R(f t, 2k−2), A f t := A(f t, 2k−1).

We lead back the study of bs, ..., bs+4 to the study of bs′ , ..., bs′+4 where s′ = s−2k

• If (b1b0) = (00), then we have

s+1 = ⌊1111h101⌋2, s+2 = ⌊1111h110⌋2, s+3 = ⌊1111h111⌋2, s+4 = ⌊10000h000⌋2.

For 0 ≤ i ≤ 3 the sequence bs+i has period 2k+2, while bs+4 has period 2k+3.
Nevertheless, the period of

vs = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs

is 2k+2: indeed the sequence 2bs+4 has period 2k+2 by Theorem 1.5.5. By Lemma 2.3.2
with m = −1, Lemma 2.3.3 with m = 1, and Section 2.3.2 we have

vs = 2Rbs′+4 +3Abs′+3 +2Abs′+2 +3Abs′+1 +2Abs′

where s′ = s− 2k. Then one gets

Z(vs) = Z(vs
′

) + Z(2bs′+4).

Notice that Z(2bs′+4) =
1
2

(
Z (bs′+4)+Π1 (bs′+4)

)
. Indeed 2bs′+4 has period equal

to one half of the period of bs′+4 and the 0s of 2bs′+4 correspond to the 0s and 2s
of bs′+4. Applying h-times Lemma 2.3.3 with m = 1, we get

Z (bs′+4) + Π1 (bs′+4) = 2h
(
Z(b32) + Π1(b32)

)
= 2k−5 · 64.

Hence Z(vs) = Z(vs
′

) + 2k−5 · 32.

• If (b1b0) = (01), we have

s+1 = ⌊1111h110⌋2, s+2⌊1111h111⌋2, s+3 = ⌊10000h000⌋2, s+4 = ⌊10000h001⌋2.

By Lemma 2.3.2 with m = −1, Lemma 2.3.3 with m = 1, and Section 2.3.2 we
have

vs = 2Rbs′+4 +3Rbs′+3 +2Abs′+2 +3Abs′+1 +2Abs′ .

Observe that 3Rbs′+3 has period 2k+3, while 2Rbs′+4, Abs′+i, i = 0, 1, 2, have
period 2k+2. We have that

Z(vs) = Z(vs
′

) + Z(2bs′+4 +3bs′+3).

Applying h times Lemma 2.3.3 with m = 1, we get

Z(2bs′+4 +3bs′+3) = Z(2Rh
b33 +3Rh

b32) = 2hZ(2b33 +3b32) = 2k−5 · 32.

Therefore Z(vs) = Z(vs
′

) + 2k−5 · 32.
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• If (b1b0) = (10), then we have Z(vs) = Z(vs
′

) + 2k−5 · 48.

• If (b1b0) = (11), then we have Z(vs) = Z(vs
′

) + 2k−5 · 64.

In conclusion, we can write in the following compact way the recursive result
for Z(vs) when 2k ≤ s < 2k+1. Denote:

ui := 2r−i i = 1, 2, 3

s′ :=s− u1

(c1, c2, c3, c4) := 2k−3(12, 8, 10, 11)

(c′1, c
′
2, c

′
3, c

′
4) := 2k−3(12, 10, 11, 12).

The initial condition for the recursive formula is the 25-tuple (Z(s))s for k = 5,
i.e., 25 ≤ s < 26:

(32, 48, 64,88, 64, 80, 88, 92, 64, 80, 88, 104, 92, 104, 108, 94,

78, 88, 96, 108, 96, 104, 108, 110, 102, 108, 112, 118, 114, 118, 120, 64).

For k ≥ 6, the 2k-tuple (Z(s))2k≤s<2k+1 coincides with:

( 2Z(s′), . . . , 2Z(s′)

2k−2−1

, Z(s′ − u3) + c1, . . . , Z(s
′ − u3) + c4

4

, 2Z(s′)− dr(s), . . . , 2Z(s
′)− dr(s)

2k−2−4

,

Z(s′ − u2) + c′1, . . . , Z(s
′ − u2) + c′4

4

, Z(s′ − u1) + 2k+1, . . . , Z(s′ − u1) + 2k+1

2k−1−4

, 2Z(s′ − u1)

1

).

Recall that s′ = s−2k−1 and so in the tuple above the őrst coefficient is computed
using s = 2k, the second one using s = 2k + 1, the last one using s = 2k+1 − 1.

2.4.3 Interpretation of the formula.

In order to visualise the previous result, one can have a look at the following
graphs. In Figure 2.4, it is depicted the sequence Z(s) for 26 ≤ s < 27 while
in Figure 2.5, the same sequence is represented for 27 ≤ s < 28. In the latter
we have used different colours to highlight the six cases of Theorem 2.4.2, where
the recursive formula has different deőnitions. As the recursive formula states,
in the case A we recognise the őrst half of the graph of Figure 2.4 with doubled
values, while in the case E we recognise the entire graph of Figure 2.4 with values
augmented by 28 = 256. In the case C, one can recognise again the őrst half of
the graph of Figure 2.4, where we notice that the translation given by d7 does not
drastically modify the behaviour of the sequence Z(s).
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Figure 2.4: The values Z(s) for 26 ≤ s < 27.

Figure 2.5: The values Z(s) for 26 ≤ s < 27.
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Chapter 3

Introduction to persistent homology

and harmonic analysis

In this chapter we brieŕy introduce persistent homology and we attempt to present
some fundamental concepts of musical harmonic analysis in a formal language. In
Section 3.1 we introduce simplicial complexes and the persistent homology of a
őltration of complexes. In Section 3.2 we present two kind of constructions that can
be used to build a őltration of simplicial complexes from a dataset: the Vietoris-
Rips őltration and the Dowker őltration. Finally, in Section 3.3 we formalise
some basic notions of music theory and we deőne, at least intuitively, harmonic
complexity and tonality.

3.1 Simplicial complexes

Where not differently speciőed, we consider m to be an integer bigger than every
integer index we will introduce in the rest of the section.

3.1.1 First deőnitions

Deőnition. Consider the category SCpx of őnite simplicial complexes deőned as
follows:

• an object of SCpx is a őnite set K together with a collection of non-empty
subsets ∆ ⊂ P(K) that contains all the singletons and is closed under the
operation of taking subsets, i.e. if σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆.

• a morphism from (K,∆) to (T,Γ) is a set-theoretic map f : K → T such
that for any σ ∈ ∆, f(σ) ∈ Γ.

71
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A set σ ∈ ∆ with cardinality #σ = j +1 is called a simplex of dimension j, or
a j-simplex for brevity. The dimension of the simplicial complex (K,∆) is deőned
as max{dim σ | σ ∈ ∆}. We will denote a simplicial complex just by K if the
datum of ∆ can be omitted.

Deőnition. Given a simplicial complex (K,∆), we say that (K ′,∆′) is a sub-
complex of (K,∆) if it is a simplicial complex, K ′ ⊂ K and ∆′ ⊂ ∆. Minimal
sub-complexes (i.e. singletons) are called vertices and maximal sub-complexes are
called faces, having dimension respectively 0 and dim(∆)− 1.

On simplices we can deőne an orientation: given a simplex σ = {p1, . . . , ps} ∈ ∆,
an orientation is a class of equivalence of σs where (p1, . . . , ps) ∼ (pα(1), . . . , pα(s))
if α is a permutation of the indices with signature 1. A simplex (resp. simplicial
complex) with an orientation is called oriented simplices (resp. oriented simplicial
complex ).

Example. Consider a őnite set of points K = {p1, . . . , pk} ⊂ Rn. Given an integer
j ≤ k and a set J ∈ P(K) of cardinality j, we can uniquely associate to J the
j-simplex generated by its points in Rn, i.e. the j-dimensional polytope obtained
by the convex hull of the points pi ∈ J , which we denote by [pi]i. For example,
[p1, p2] denotes the line in Rn connecting p1 and p2, while [p1, p2, p3] denotes the
triangle having those points as vertices. If k = 3 and we denote ∆ = P(K), one
has that (K,∆) is a simplicial complex and the associate set

D = {[p1, p2, p3], [p1, p2], [p1, p3], [p2, p3], [p1], [p2], [p3]}

describes the triangle [p1, p2, p3] in Rn together with all its faces and vertices.

We call the standard j-simplex the convex hull of the basis vector e0, . . . , ej
in Rj+1. To each simplicial complex (K,∆) one can associate a topological space
called its geometric realisation and denoted by |K|. This is done by associating
to each abstract j-simplex σ ∈ ∆ a copy of a standard j-simplex in Rn, and then
gluing together according to the structure of ∆. More formally, the following result
holds:

Theorem 3.1.1. [34, sec. 4.3] Every (eventually oriented) simplicial complex has
a geometrical realisation.

We will not use the notion of geometrical realisation in detail, but it is some-
times convenient to visualise an abstract simplicial complex through its realisation,
i.e. an object in a suitable Rn obtained by gluing together standard j-simplices.

Let us őx an oriented simplicial complex K of dimension m. For every 0 ≤
k ≤ m, let us denote by Ck the free abelian group generated by the oriented k-
simplices of K. Consider the boundary morphism ∂k : Ck −→ Ck−1 obtained by
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linear extension of the map deőned on a k-simplex σ = (p0, . . . , pk) by:

∂k(σ) =
∑

(−1)i(p0, . . . , p̂i, pk)

where (p0, . . . , p̂i, pk) is the (k − 1)-simplex obtained from σ by removing pi. Ob-
serve that these maps satisfy the null-composition property: ∂k ◦ ∂k+1 = 0.

Deőnition. Given a simplicial complex K, the groups Ck together with the maps
∂k deőne the associated chain complex C•:

· · · −→ Ck+1
∂k+1
−→ Ck

∂k−→ Ck−1 −→ · · ·

With a little abuse, we will sometimes call simplicial complex also the chain
complex C• associated to a complex K. Following the usual notation in algebraic
topology, we deőne the cycle group Zk and the boundary group Bk as follows:

Zk := ker ∂k Bk := im ∂k+1

The property ∂k ◦ ∂k+1 = 0 ensures that for any k one has Bk ⊂ Zk. Thus for any
k we can consider the k-th homology group Hk := Zk/Bk.

More generally, given a simplicial complex K and a commutative ring R with
identity, we can deőne Ck as the free R-module generated by the k-simplices of K.
In this context, Zk, Bk, Hk are R-modules and if D is a PID, Hk decomposes as
a direct sum of cyclic R-modules (see [42, Theorem 2.1]). Hence for β ∈ Z and
suitable di ∈ R one has:

Hk ≃ Rβ ⊕

(
t⊕

i=1

R/diR

)

.

The rank β of the torsion-free part is called the k-th Betti number of the complex
C•. In the abelian group setting, i.e. when R = Z, the previous decomposition
becomes:

Hk = Zβ ⊕

(
t⊕

i=0

(Z/pi)
mi

)

where pi are primes. If R is a őeld, the torsion part disappears and one gets
Hk = Rβ. In the applications, R will be almost always Z,R or the őnite őeld F2.

3.1.2 Filtration of complexes

Deőnition. A persistence complex is a family of chain complexes {Ci•} over R
together with chain maps f i : Ci• → C

i+1
• . If the maps fi are inclusions, we call

(Ci•, f
i)i a őltration of complexes.
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By the deőnition of chain maps, the maps f i and the maps ∂k are compatible
for any i, k: if we denote f i

k : Cik → C
i+1
k the k-th component of f i for any k, one

has:
f i
k ◦ ∂k+1 = ∂k+1 ◦ f

i
k+1.

Thus the chain map f i sends cycles to cycles and boundaries to boundaries and
induces maps on the homology groups:

f ∗
k : Hk(C

i
•) −→ Hk(C

i+1
• ).

Deőnition. Given a őltration of simplicial complexes (Ci•, f
i)i≥0, we deőne the

p-persistent k-th homology group of Ci• to be:

H i,p
k :=

Zi
k

Bi+p
k ∩ Zi

k

and its rank βi,k
k is called the p-persistent k-th Betti number of Ci•.

In order to compute the persistence in the őltration, one needs to őnd a com-
patible basis for all the persistent k-th homology groups. A fundamental result is
the Correspondence Theorem, that provides an elegant and abstract equivalence
of categories which turns out to be very useful in the applications as well. Here we
brieŕy summarise the construction and state this result, which is fundamental in
order to understand the meaning of persistence barcodes and persistence diagrams
that will be extensively used.

Deőnition. A persistence module M is a family of R-modules M i together with
homomorphisms ϕi : M i → M i+1. A persistence module is of őnite type if for
every i the module M i is őnitely generated and the maps ϕi are isomorphisms for
i ≥ N for some integer N .

In the case of our interest, the modules M i are the chain complexes Ci• and the
maps ϕi will be the inclusions of the őltration. This gives a persistence module of
őnite type.

Now consider the polynomial ring R[t] with the standard grading and deőne a
graded module over R[t] as:

α(M) :=
∞⊕

i=0

M i

where the action of the variable t is the translation of the components:

t · (m0,m1,m2,m3, . . . ) = (0, ϕ0m0, ϕ1m1, ϕ2m2, . . . ).
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Theorem 3.1.2 (Correspondence). The map α above deőnes an equivalence of
categories between persistence modules of őnite type over R and őnitely generated
graded modules over R[t].

If R is a őeld, the graded ring R[t] is a PID and its ideals are generated by tj,
hence a őnitely generated graded R[t]-module M can be decomposed as:

M ≃

(
n⊕

ℓ=1

θβℓR[t]

)

⊕

(
m⊕

j=1

θγj
R[t]

(tϵj)

)

(3.1)

where θα denotes the upward shift of the grading of M and βi, γj, ϵj are positive
integers.

Let us spend a moment to understand the relationship between this decompo-
sition and the evolution of Betti numbers in a őltration of simplicial complexes.
Deeper analysis and proofs can be found in [42]. Let us consider F as base őeld,
(Ci•, ι

i)i a őltration of simplicial complexes and
(
Hk(C

i
•), (ι

i
k)

∗) the induced chain
of morphisms on the k-th homology groups (which in fact are F-vector spaces), for
any k. By construction,

(
Hk(C

i
•), (ι

i
k)

∗) is a persistence module of őnite type, hence
thanks to the correspondence theorem we can uniquely associate to it a őnitely
generated graded module over F[t], which has a decomposition as in Equation (3.1).

In this setting, the integer βℓ represents a generator of the homology group
Hβℓ

k that is not in the image of (ιβℓ−1
k )∗. For brevity, we say that this generator is

born in the őltration at the index βℓ. βℓ coming from the torsion-free part of the
decomposition, this generator is mapped to a generator of the groups Ha

k for every
a ≥ βℓ via the (composition of the) maps (ιak). We also say that this generator dies
at index ∞. In particular, it is a generator of the p-persistent homology groups
Hβℓ,p

k for any p.
Similarly, the integers γj and ϵj represent a generator that is born in the group

H
γj
k and that lives in the őltration up to the index ϵj, where it dies as it becomes

trivial in H
ϵj
k .

Henceforth, the points of the type (βℓ,∞) ∈ R2 ∪ {∞} completely describe
the torsion-free part of the őltration, while the points (γj, ϵj) ∈ R describe the
torsion part. Ultimately, the set of these points provides all the information about
persistence in the őltration and it is the object we are going to analyse in the rest
of the chapter.

3.1.3 Representations and distances

We now consider the set of points in the extended real plane which have on the x-
axis (resp. y-axis) the index of birth (resp. death) of a generator of the persistent
homology groups associated to a őltration of complexes. Such a subset of R2∪{∞}
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is called the persistence diagram associated to the őltration. In the applications,
it is common to consider the persistence diagram in order to proceed to further
analysis.

Another way of representing the (birth, death) points associated to a őltration
is a persistence barcode. This is deőned as the multi-set of real intervals [bg, dg)
where (bg, dg) is the point of the persistence diagram associated to the generator
g of the homology groups.

One can deőne a distance between persistence diagrams:

Deőnition. Fix p ∈ [1,∞) and consider two persistence diagrams X, Y ⊂ R2 and
a distance d on R2. The p-th Wasserstein distance between X and Y on (R2, d) is
deőned as:

W d
p (X, Y ) := inf

ϕ:X→Y

(∑

x∈X
d(x, ϕ(x))p

)1/p

where ϕ ranges over the matchings between X and Y . For p =∞, we deőne:

W d
∞(X, Y ) := inf

ϕ:X→Y
sup
x∈X

d(x, ϕ(x)).

In particular, for d = L∞, one has that WL∞

∞ is the so-called bottleneck distance.

Deőnition. Given a persistence diagram X = {(xi, yi) | xi < yi, xi, yi ∈ R}, if we
denote S =

∑
(yi − xi), the entropy of X is deőned as:

εX =
∑

i

−
yi − xi

S
log
(yi − xi

S

)
.

3.2 Construction of őltrations

Now that we introduced the basic concepts of persistent homology, we are ready
to focus on its use for Topological Data Analysis. The starting point in TDA
is a set S that represents the data we want to study. Depending on the data,
this set may be endowed with extra structures that can be used in the analysis.
For example, one may typically be interested in deőning a distance on S that
well describes the features of the data in that speciőc context. Another common
setting is S being a graph, eventually directed and weighted. In this section, we
present two constructions that allow to obtain a simplicial complex from such
structures (metric space and directed graph). This procedure allow us to use
persistent homology to reconstruct the topological properties of the dataset and
extract useful geometric features.
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3.2.1 Vietoris-Rips őltration

The Vietoris-Rips őltration is named after Leopold Vietoris, who introduced the
construction in [40] and Eliyahu Rips, who applied it to the study of hyperbolic
groups. It allows us to build a őltration of simplicial complexes associated to a
metric space.

Let us consider (S, d) a metric space and őx an order on the indices of the
points x1, . . . , xn ∈ S. The associated Vietoris-Rips complex of parameter t ≥ 0
is the oriented simplicial complex Rt whose oriented k-simplices are of the type
σ = (x0, . . . , xk) such that d(xi, xj) ≤ t for every 0 ≤ i < j ≤ k. It is easy to verify
that this actually gives a simplicial complex and for t1 < t2 one has Rt1 →֒ Rt2 ,
hence the chain of inclusions provides a őltration of complexes (Rt)t≥0.

The following is a visual example of the construction, with

S = {(1, 2), (1, 3), (2, 2), (2, 4), (3, 1), (4, 3)}.

t = 0.3

t = 0.6 t = 0.8 t = 1.3

Example. A simple example that shows the effectiveness of Vietoris-Rips construc-
tion on recovering the topological properties of the data set is the case of a point
cloud on a surface. Consider a torus T immersed in R3 and őx a set of points
S ⊂ T on the torus. Now let us pretend to forget that the set S is a subset of
the torus: we would like to recover this information directly from S itself. This is
a simpliőcation of the common problem of having a point cloud and wanting to
reconstruct its topological features. Persistent homology of Vietoris-Rips complex
associated to S (with respect to the euclidean distance induced by R3) addresses
precisely this problem.

Indeed, the őltration at parameter t = 0 coincides with the set of points S
and as t increases we start to add geometric structure and to recover the shape of
the torus. When t becomes big enough, we lose accuracy as the simplices become
all homologically equivalent. The information that we are interested in retaining
is the persistence of the topological features in the őltration: the longer lasting
properties are the most valuable and representative ones.

As the previous example suggests, the Vietoris-Rips complex is in fact an ap-
proximation of the Čech complex, which is widely used in algebraic geometry.
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Theorem 3.2.1. [29, pag. 74] Given S a subset of an Euclidean space, denote
Rt (resp. Ct) the Vietoris-Rips complex (resp. the Čech complex) associated to S
with parameter t ≥ 0. Then one has:

Ct ⊆ Rt ⊆ C√2t.

The Vietoris-Rips construction is preferred because of computational aspects:
while being a good approximation of Čech complex, it is signiőcantly simpler and
quicker to compute, making it much more efficient to use in practical problems.

Non-directed graphs. Consider now the case where the dataset is a őnite non-
directed graph G, eventually with weighted edges. If G is a non-directed graph,
one can use the Vietoris-Rips construction to associate a simplicial complex to G.
Indeed given two vertices u, v ∈ G, one can collect the set Γu,v of all the paths γ
in G connecting u and v. Then, if Σγ denotes the total cost of the path γ, i.e. the
sum of the weights of its edges, one looks for the path γ̄ ∈ Γu,v that minimises Σ
and deőnes:

d(u, v) := Σγ̄. (3.2)

The map d deőnes a distance on set of vertices of G, hence we can use it to
build the Vietoris-Rips complex as shown above for metric spaces. We will use
this construction in Section 4.2.

3.2.2 Dowker őltration

What if we want to study a directed graph? This could be the case in many real
life problems, like asymmetric networks, road maps, etc. In Section 4.1.3 , we
will model the musical chords as a directed graph and we will need to associate
a őltration of simplicial complexes to it. Notice that in the case of digraphs, the
minimal path distance is not well deőned, as it lacks symmetry. There is the
possibility to symmetrize the deőnition in Equation (3.2) in order to obtain a
well deőned distance, but this causes the loss of the information regarding the
asymmetry of the digraph.

Another option is to abandon Vietoris-Rips construction and use another ől-
tration. Here we focus on Dowker őltration. This őltration manages to retain the
information associated to the asymmetry of the digraph, hence it suits better the
study of cases where asymmetry plays an important role for the dataset. In [25,
Section 5.2], a family of digraphs is provided as an example of the efficacy of the
Dowker őltration and its capability to reconstruct signiőcant features of the graph,
in comparison with Vietoris-Rips őltration that remains blind to asymmetry.
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First, let us consider a directed weighted graph (G,ωG), where ωG : G×G→ R
denotes the weights function. We deőne the function:

ω̄G : G×G −→R

(v, v′) 7−→max{ωG(v, v
′), ωG(v, v), ωG(v

′, v′)}.

Given a parameter t ≥ 0, we deőne:

Rt,G := {(v, v′) ∈ G×G | ω̄G(v, v
′) ≤ t}

Clearly if t1 ≤ t2, one has Rt1,G ⊂ Rt2,G. We deőne the Dowker t-sink simplicial
complex Dsi

t,G to be:

Dsi

t,G = {σ = (v0, . . . , vk) | ∃ v
′ ∈ G s.t. (vi, v

′) ∈ Rt,G for all vi}.

If v′ satisőes the condition above for σ, we say that it is a t-sink for σ. The
őltration (Rt,G)t≥0 gives rise to the őltration

(Dsi

t,G)t≥0

of which we can study the persistent homology.
The dual construction is the Dowker source őltration, deőned as follows:

Dso

t,G = {σ = (v0, . . . , vk) | ∃ v
′ ∈ G s.t. (v′, vi) ∈ Rt,G for all vi}.

Here v′ is called a t-source of σ.
In what follows, we will simply say Dowker őltration without specifying if we are

using the sink or the source construction. In fact, this does not lead to confusion,
as the homologies of the sink and the source őltrations have been proven to be
equivalent:

Theorem 3.2.2. [25, Theorem 17] Let us denote by Dgmsi

k (G) (resp. Dgmso

k (G))
the persistence diagram associated to the k-th homology groups of the sink (resp.
source) Dowker őltration of the weighted directed graph G. Then one has:

Dgmsi

k (G) ≃ Dgmso

k (G).

Another important result is the stability of Dowker őltration with respect to
perturbation on data. We need some deőnitions.

Deőnition. Given two weighted digraphs (G,ωG) and (H,ωH), consider a corre-
spondence R between them, i.e. a relation R ⊂ G×H such that πG(R) = G and
πH(R) = H where πG : G×H → G and πH : G×H → H denote the projections.
We deőne the distortion of R to be:

dis(R) := max
(x,y),(x′,y′)∈R

|ωG(x, x
′)− ωH(y, y

′)|.

As it is clear from the deőnition, the distortion measures how much the correspon-
dence R modiőes the path-distances of the graphs.
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One can deőne a distance between digraphs as:

dN (G,H) :=
1

2
min
R∈R

dis(R)

where R denotes the set of all correspondences between G and H. Then the
bottleneck distance dB between the persistence diagrams associated to G and H
is controlled by the graph distance dN , as the following result states:

Theorem 3.2.3 (Stability). [25, Prop. 4] With the notation above, for any degree
k one has:

dB(Dgmsi
k (G), Dgmsi

k (H)) ≤ 2dN (G,H).

3.3 Harmonic analysis programme

In what follows, we will focus on tonal music. But what is tonal music? Tonal
music is the music composed around a central chord, which deőnes the tonality of
a musical piece. In this section, we will introduce the basic concepts of chord and
tonality and roughly present the main ideas of the functional relation of chords in
a tonality. This will lead us to deőne, at least intuitively, harmony and harmonic
complexity, which will be the case of study in the next chapter. We will try to be
as rigorous as possible, yet trying to avoid some of the thorny questions regarding
tonality and functional relations. The reader with a background in music theory
can safely skip this section.

We call pitch a key of a standard 88-keys keyboard. We will use the scientiőc
pitch notation:

A0, A♯0, B0, C1, . . .

with the indices as superscripts instead of subscripts, in order to avoid confusion
with the usual notation of mathematical indices. As it is well known, the set P of
pitches can be divided in octaves:

O0 ={A0, A♯0, B0}

O1 ={C1, C♯1, D1, D♯1, E1, F 1, F ♯1, G1, G♯1, A1, A♯1, B1}

O2 ={C2, C♯2, D2, . . . , B2}

...

O7 ={C7, C♯7, D7, . . . , B7}

O8 ={C8}

We deőne the function f : P → R that associates to every pitch its audio frequency,
so for example f(A4) = 440. Notice that for every pitch P i ∈ P with i ≥ 1, one
has f(P i) = 2f(P i−1).
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Deőnition. We deőne the set P̄ of pitch classes to be the set of pitches modulo
octave:

P̄ = {C,C♯,D,D♯, . . . , B}.

where, for example, C denotes the class {Ci}1≤i≤8.
The bijection ι : P̄ → Z12 deőned as:

C 7−→ 0 C♯ 7−→ 1 . . . B 7−→ 11

allows to endow the set P̄ with a sum operation. Given P̄1, P̄2 ∈ P̄ , the interval
between P̄1 and P̄2 is deőned as int(P̄1, P̄2) := P̄2 − P̄1.

Remark. Given P̄ ∈ P̄ and n ∈ Z12, we will often use the notation P̄ + n meaning
ι−1(ι(P̄ ) + n). We are sure that this will cause no confusion.

Deőnition. A chord C is a subset of P of cardinality |C| ≥ 3. We will say that
C = {P1, P2, P3, . . . } is non-degenerate if

C̄ := {P̄1, P̄2, P̄3, . . . } ⊂ P̄

has cardinality ≥ 3, where P̄i ∈ P̄ denotes the pitch class of the pitch Pi. We will
say that C̄ is the abstract chord associated to C and C is a realisation of C̄.

Example. The abstract chord {C,E,G} ⊂ P̄ represents what in music theory one
usually refers to as C Major chord, without considering its disposition on the
keyboard. The chord {C4, E3, G3} ⊂ P is one realisation of it, providing what
a musicologist would call C Major in őrst inversion, as the lowest pitch on the
keyboard is E3 and not the fundamental C4.

In what follows we always suppose every chord considered to be non-degenerate.
This is a common assumption also in traditional harmony theory. In any case, this
is in fact a non restrictive hypothesis. For brevity, we will sometimes say just chord
instead of abstract chord. This is a little abuse of notation with what we introduced
above, but we are sure that this will not lead to any misunderstanding.

Deőnition. Given an abstract chord C̄ = {P̄i}i and n ∈ Z12, we denote by C̄+n :=
{P̄i + n} the abstract chord obtained by transposing all the pitch classes of C̄ by
n. We say that C̄ + n is the transposition of C̄ by n.

3.3.1 Main types of chords

We proceed by introducing the main types of chords we will focus on. In music
tradition, and especially in tonal music, there are some classes of chords that are
recurrent and very commonly used in compositions, like major and minor chords,
dominant chords, augmented chords, etc. We introduce them using the previous
notation.
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Major and minor chords The őrst type of chords we consider are major and
minor chords. These can be consider the foundation of tonal music and maybe
even of western music in general.

The set of major chords is deőned as:

M = {{C,E,G}+ n | n ∈ Z12}.

So for example {C + 4, E + 4, G + 4} = {E,G♯,B} is a major chord, as well as
{G,B,D}. The pitch class C + n is called fundamental pitch of the major chord
and we denote the major chord as (C+n)M . So for example the chord {E,G♯,B}
is denoted as EM , standing for E major. The pitch class E + n (resp. G + n) is
called the third (resp. őfth) of the chord.

Similarly, we deőne the set of minor chords as:

m = {{C,D♯,G}+ n | n ∈ Z12}.

The deőnitions of fundamental, third and őfth is the same as for major chords
and if P̄ is the fundamental of a minor chord, we denote the chord by P̄m. So for
example Em is the chord {E,G,B}.

Seventh chords Seventh chords are chords consisting of 4 pitches, often ob-
tained from major or minor chords with by adding a pitch class called the seventh
of the chord. Here we present the ones we will consider:

• Major seventh chords:

M7 := {{C,E,G,B}+ n | n ∈ Z12}

are obtained by adding to major chords a major seventh, i.e. the pitch
class obtained by the transposition of the fundamental by 11. If P̄ is the
fundamental, we denote them by P̄M7.

• Dominant seventh chords:

do := {{C,E,G,A♯}+ n | n ∈ Z12}

are obtained by adding to minor chords a minor seventh, i.e. the pitch
class obtained by the transposition of the fundamental by 10. If P̄ is the
fundamental, we denote them by P̄Mm7.

• Minor seventh chords:

m7 := {{C,D♯,G,A♯}+ n | n ∈ Z12}

are obtained by adding to minor chords a minor seventh. If P̄ is the funda-
mental, we denote them by P̄mm7.
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• Major-seventh minor chords:

m7̂ := {{C,D♯,G,B}+ n | n ∈ Z12}

are obtained by adding to minor chords a major seventh. If P̄ is the funda-
mental, we denote them by P̄mM7.

• Diminished seventh chords:

di := {{C,D♯, F ♯, A}+ n | n ∈ Z12}.

If P̄ is the fundamental, we denote them by P̄◦. Notice that there are only
3 types of diminished chords, as

P̄◦ = (P̄ + 3)◦ = (P̄ + 6)◦ = (P̄ + 9) ◦ .

• Half-diminished chords:

dih := {{C,D♯, F ♯, A♯}+ n | n ∈ Z12}.

If P̄ is the fundamental, we denote them by P̄%.

Other chords. For the purpose of analysing classical tonal music and contempo-
rary music, several other categories of chords are to be considered. The following
list does not pretend to be exhaustive and sum-up all the possible chords that one
can őnd in western music: for the sake of brevity, we will write here only the most
common ones.

• Augmented chords:
{{C,E,G♯}+ n | n ∈ Z12}.

If P̄ is the fundamental, we denote them by P̄+. Notice that there are only
4 types of diminished chords, as

P̄+ = (P̄ + 4)+ = (P̄ + 8)+.

• 4-suspended chords:
{{C, F,G}+ n | n ∈ Z12}.

If P̄ is the fundamental, we denote them by P̄ sus4.

• 2-suspended chords:

{{C,D,G♯}+ n | n ∈ Z12}.

If P̄ is the fundamental, we denote them by P̄ sus2.
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• augmented sixths: there are several types of augmented sixths. We introduce
the so-called German, Italian and French.

Ger :={{C,E,G,A♯}+ n | n ∈ Z12}.

It :={{C,E,A♯}+ n | n ∈ Z12}.

F r :={{C,E, F♯, A♯}+ n | n ∈ Z12}.

The careful reader will notice that the deőnition of German augmented sixths
coincides with the dominant sevenths one. While having the same chords in two
different classes results strange from the formal point of view, it turns out to
be very useful in the musical context. Indeed in classical music theory dominant
chords and German augmented sixths chords appear in different chord progressions
and in particular augmented sixths have a very distinctive behaviour. Indeed the
chord C Ger is followed in most cases by BM , while the chord CMm7 is (almost)
never followed by BM . This difference essentially deőnes German augmented sixth
chords and allows one to distinguish them from the otherwise identical dominant
seventh chords. Here, the choice of having two different classes of chords for the
same pitch sets aims to reŕect the different use of such chords made by composers.
From the mathematical point of view, this choice does not create any problem for
the purpose of the present work.

3.3.2 Other musical considerations

Tonality. Music tradition deőnes relations between chords: some chords are
considered strictly related to some of the others. These relations depend from
several factors, ranging from historically stable ones (as acoustic reasons) to rather
mutable ones (as style of the periods and preferences of the composers). In an effort
to maintain a useful ŕexibility of the concept, yet avoiding excessive relativism,
we will assume the following simpliőcation: two chords can be considered more
strictly related the more frequently they appear close to each other in a given
music corpus.

So for example, given almost any modern music corpus, the chords CM (i.e.
{C,E,G}) and GM ({G,B,D}) will appear very often close to each other inside
the chord progressions of the pieces, hence we will consider them closely related.
By converse, the chords CM and D♯m (i.e. {D♯, F♯, A♯}) appear very rarely close
to each other, thus we will consider them to be very distantly related. In what
follows, we will őx every time a corpus of reference, often called testing corpus,
which all the relations between chords refer to. When we do not explicitly refer
to a testing corpus, we intend to consider the corpus of all tonal music, or more
precisely a theoretic corpus that respects all the traditional conventions about
tonal music.
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Fixed a testing corpus, the choice of a base chord induces a hierarchy on the
other chords, based on how strong their relations are with the base chord with
respect to the testing corpus. This hierarchy will be modelled as a graph, in the
following chapters.

We say that a musical piece is tonal if there is a chord, typically either a major
chord or a minor chord, that plays the role of fundamental chord of the piece. The
fundamental chord is often both the őrst and the last chord of the composition
and the hierarchy it deőnes reŕects the frequency of chords in the piece: chords
that are in closer relation to the fundamental chord tend to be more present in the
chord progression of the piece.

The fundamental chord of a tonal piece is called the tonality of the piece. So
for example if we consider a Sonata in the tonality of DM (D major), one would
expect the chord of DM to be the őrst and the last chord of the piece, and the
chords more strictly related to DM (for example GM , AM , etc.) to be more
common than the less related ones. Notice that almost all classical music in the
range XVśXIX century and a great part of contemporary music (jazz, pop, rock)
can be considered tonal music: that’s why harmonic analysis, which is the study
of chord progressions and of relations between chords, plays a prominent role in
music analysis and in music theory more generally.

The role of time and harmonic density. Rather than overall harmonic com-
plexity, we will focus on local harmonic complexity, i.e. harmonic density. Indeed
the concept of harmonic complexity in music theory is strictly related (even if
often implicitly) to a local consideration of the evolution of chords, such as the
amount or variety of chords in a given time. This reŕects the human perception
of harmony, which tends to highlight relations between chords that are close in
the timeline. For simplicity, we will consider the chords of a piece as a sequence
(Ci)0≤i≤k, thus ignoring the duration of each chord and possible overlaps of two
chords. This allows us to consider time-chords as the couple (Ci, i) and deőne a
distance function that takes the time i into consideration.
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Chapter 4

Barcodes of chord sequences

4.1 Graph of chords

In this chapter, we present two possibilities for the construction of a graph that
represents the chords of a musical piece (or corpus, in general) and that retains
the tonal relations between the chords. Both these constructions provide in fact
a sort of generalisation of the Tonnetz, which is one of the main tools for chords
analysis in math-music research.

In Section 4.1.1, we brieŕy discuss the limits of the Tonnetz and the reasons that
motivated the present investigation. In Section 4.1.2, we present the construction
of a non-directed graph with manually deőned basic distances between chords.

In Section 4.1.3, we provide the construction of a directed graph whose dis-
tances are extracted from a given musical corpus.

4.1.1 The Tonnetz(e)

One of the main tools for chords representation in math-music theory is the Ton-
netz(e). For a recent review, see [41]. Given the aim of characterising tonal music,
so considering chords that are largely based on major and minor chords, the Ton-
netz (3,4,5) seems the most reasonable one to consider and it is the one we focus
on (see Figure 4.1).

In particular, we are focusing on its dual, where minor and major chords are
represented in a lattice that originates a torus when the equivalence modulo octave
is considered. This has been extensively and successfully used to represent major
and minor chords. It has been also extended (see [39]) to represent other classes
of chords, like diminished seventh chords.

If we want to consider a distance between chords, we can use the Tonnetz and
take the minimal path distance (as in Equation (3.2)). Then, one can use the
Vietoris-Rips construction to associate a simplicial complex to a musical piece.

87
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1

Figure 4.1: T. Piesk, July 2014, Neo-Riemannian Tonnetz with generators (3,4,5),
from en.wikipedia.org/wiki/Tonnetz/.

However, the rich but rigid geometric structure of the Tonnetz limits the possibil-
ity of deforming it arbitrarily. For example, it is not easy to get two chords closer
to each other or, for example, pushing one chord inőnitely far away from the oth-
ers. Yet, these operations could sometimes appear quite natural from the musical
point of view, for example if we want to adapt our representation to various mu-
sical genres or styles. For example, it could be desirable to be able to consider
two different chords to be very similar from the harmonic point of view, which
translates to squeeze them close in the Tonnetz, or to consider one chord to be
very bizarre and harmonically distant from the others, which would correspond to
send it to inőnity in the Tonnetz. In performing these deformations, the Tonnetz
turns out to be neither ŕexible nor easy to work with.

Hence we substitute for the Tonnetz a simpler object, that manages to represent
the chords and their relations without the limitations of the Tonnetz’s rigidity and
duality. This leads us to consider a graph of chords, whose weighted edges provide
a ŕexible tool for adapting chords’ relations to various contexts.

4.1.2 Non-directed graph and basic relations

The őrst construction we used is a non-directed graph with manually deőned basic
relations between chords.

As a őrst step, we consider only major, minor and dominant chords. So let G
be a weighted graph whose vertices are the points M ∪m ∪ do (with the notation
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of Section 3.3.1) and whose edges are D ∪ F ∪H ∪R where:

D =
{
{PM, (P + 7)M7} | PM ∈M} ∪ {(Pm, (P + 7)M7) | Pm ∈ m

}

F =
{
{PM, (P + 7)M} | PM ∈M} ∪ {(Pm, (P + 7)m) | Pm ∈ m

}

H =
{
{PM,PM7} | PM ∈M

}

R =
{
{PM, (P + 9)m} | PM ∈M

}
.

Musically, D provides the edges connecting each major and minor chord to its
dominant, F connects each major and minor chord to its őfth,H connects each
major chord to itself with added minor seventh and R connects each major chord
to its relative minor chord.

Given d, f, h, r ∈ R and denoted by ωG the weights function associate to G, we
deőne the following weights:

ωG(v) = d ∀v ∈ D, ωG(v) = f ∀v ∈ F,

ωG(v) = h ∀v ∈ H, ωG(v) = r ∀v ∈ R.

We refer to the edges in D,F,H,R and the respective choices of weights d, f, h, r
as basic relations.

As one can notice, this is a very similar construction to the Tonnetz, where
instead of the generating translations (3,4,5) we choose a set of generating relations
in the graph. This permits to easily tweak the graph in order to match certain
expected musical behaviour. For example, by modifying the parameters d, f, h, r
or by adding new basic relations, it is possible to adapt the graph to different
music styles.

Clearly, one can add other families of chords to the graph G as vertices. Since
we need G to be connected to be able to deőne the minimal path distance, one also
needs to deőne a corresponding basic relation that connects the added vertices to
the others.

4.1.3 Directed graph and database extraction

Another construction is using a directed graph. The interest for directed edges
arises from the desire to model also the idea of directionality of a chord progression.
Indeed, the traditional theory of functional harmonic analysis suggests that in a
chord progression each chord plays a role that strongly depends on the progression
itself, which involves in particular the temporal order of the chords. For example,
in the tonality of C major the progression GM → CM (a descending őfth) is
considered to be very stable, often conclusive of the harmonic progression of a
phrase or theme or section. In this case, it is usually called perfect cadence. Instead,
the cadence CM → GM is considered less stable and it is called imperfect or
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suspended cadence. This asymmetry, which is well known and recognised in music
theory, suggests to consider separately the progressions GM → CM and CM →
GM and possibly with different weights. This leads to consider directed graphs,
where we can consider distinct edges (GM,CM) and (GM,CM) with different
weights.

Another aspect is how to deőne the weights of the edges of the graph. Indeed,
while deőning them by hand (as done in the non-directed case) provides the max-
imal ŕexibility, it requires the choice of at least two parameters for every class of
chords, in order to have G connected. This results in a considerable complexity,
where the use of several independent parameters causes a rapid increase in the
difficulty of őne-tweaking the model.

A natural choice is to extract these values directly from a given musical corpus,
in order to inherit the relations of that corpus and somehow encode the chord
progressions style of it in the graph.

Deőnition. A musical corpus M is a set of chord sequences of the type S =
(Ci)0≤i≤τS where τ ∈ N and for every i, Ci is a chord as described in Section 3.3.1.
In this case we write Ci ∈ M. τS is the number of chords in the sequence S and
the total number of chords inM is denoted as τM :=

∑

S∈M τS.
For every pair of chords C1,C2 ∈ G, we write (C1,C2) ∈ M if there exists

S ∈ M that contains the chord progression (C1,C2). If (C1,C2) ∈ M , we deőne
the frequency ν(C1,C2) as the total number of instances of the chord progression
inM, divided by τM.

Deőnition. Given a musical corpusM, we deőne the associate directed weighted
graph GM as follows:

• as vertices, we consider the set of all the chords contained inM.

• As directed edges, we consider the set of all the couples (C1,C2) ∈M .

• As weights, we take ωG(C1,C2) =
1

ν(C1,C2)
.

We denote by ḠM the extended graph associated to GM, where we consider vertices
as in GM and edges:

(Ci,Cj) if (Ci + n,Cj + n) is edge of GM, ∃n ∈ Z12.

Remark. Notice that the graph GM retains the precise information about the
chords used in the corpus M, hence including the choice of tonalities. The ex-
tended graph ḠM ŕattens down the data about the tonalities and which chords
are used, and preserves only the informations about the progressions of chords as
mutual degree (see [38] for details). This turns out to be very useful in practice,
as it allows to analyse a certain musical piece using a corpus M even if the piece
and the corpus don’t possess chords in common.
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4.2 The Beatles with non-directed graph

In this section we describe the őrst attempt to associate to a musical piece a
barcode representing its harmonic content. The aim is to manage to őnd a corre-
spondence between the mathematical properties of the barcodes and the musical
properties of the musical piece form the harmonic point of view, as the harmonic
complexity of the piece.

To do this, we used as database the annotations of The Beatles’s discography
and a graph as anticipated in Section 4.1.2.

4.2.1 The database

In order to consider a graph of chords, we need a database containing musical
pieces as sequences of chords. The problem of (automatically) extracting the
sequence of chords from a musical piece, usually called harmonic analysis of the
piece in music theory, is a non-trivial one in math-music literature (see [27] for a
comprehensive discussion). Indeed there are several delicate aspects in designing
an algorithm that produces sequences of chords (or labels) associated to audio
őles or musical scores. Among the algorithmic ones, there are several musical
techniques like anticipation and suspension, which contribute to the complexity of
correctly analysing a musical piece. From the music theory point of view, there is
also the problem regarding the not unique choices in associating a label to a chord,
especially in more harmonically rich settings. This is well known to musicologists,
who sometimes debate on which label is the more correct one, given a chord as set
of pitches.

The database is the online database on The Beatles’s discography of the Centre
for Digital Music at Queen Mary, University of London (see [33]). It is built using
the algorithm for automatic harmonic labels presented in [32]. In order to be
used in the model, some pre-processing functions has been applied to the csv őles
associated. In particular, since we used only major, minor and dominant chords,
we simpliőed to these three categories the various chords of the original database.
In particular, following the notation of Section 3.3.1, we converted:

• diminished and half-diminished chords into dominants;

• minor seventh and major-seventh minor chords into minors;

• augmented chords and major seventh into majors;

• all the added notes (like 9ths, 11ths etc.) were ignored.

Finally, we set the time duration of each chord to 1, hence we model each song
as a sequence (Ci, i)0≤i≤k.
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4.2.2 Barcodes and analysis

We deepen here the algorithm we used to associate a set of barcodes to each musical
piece of The Beatles. First, we deőned the graph G of all the chords considered:
major, minor and dominant chords. We used the construction for non-directed
graphs presented in Section 4.1.2, with the following choices of parameters:

d = 10 f = 11 h = 7 r = 12.

With these values, the graph G has diameter 51 and we denote by d the minimal-
path distance associated. The graph G is plotted in Figure 4.2.

Figure 4.2: The graph of chords G.

Given a Beatles song as the sequence of chords S = (Ci)1≤i≤τS , we denote the
sequence of time-chords as S̄ = (Ci, i)1≤i≤τS . Given two time-chords (Ci, i), (Cj, j)
in S̄, we deőne the following function:

d̄
(
(Ci, i), (Cj, j)

)
= |j − i|+

d(Ci,Cj)

log(e+ |j − i|)
.

Indeed, as anticipated in Section 3.3, we are mainly interested in harmonic density
and the function d̄ serves the purpose of balancing the distance between chords



4.2. THE BEATLES WITH NON-DIRECTED GRAPH 93

obtain from G with the time distance, on a logarithmic scale. We built the Vietoris-
Rips őltration on S̄ with respect to d̄ using the package persil on SageMath, over
the őeld F2. The same package allows to compute the homology of the őltration
and get the persistent barcodes associated.

(a) Degree 0. (b) Degree 1.

Figure 4.3: Barcodes of Love Me Do, from Please Please Me.

(a) Degree 0. (b) Degree 1.

Figure 4.4: Barcodes of She’s Leaving Home, from Sgt. Pepper’s.

In Figure 4.3 and Figure 4.4 we plot the barcodes of two songs as an example. In
order to gather some features from the barcodes, we selected a group of particular
values, suspected to be able to describe the concept of harmonic complexity that
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we are trying to model. In particular, considering only the bars with őnite length
in the barcodes associated to degree 0 and 1, we focused on the following:

• the maximal length;

• the average length;

• the variance of lengths.

As an example, we depict these values extracted from the album Please Please
Me in Table 4.1 and from the album Sgt. Pepper’s Lonely Hearts Club Band in
Table 4.2.

Song Name 0-M 0-A 0-V 1-M 1-A 1-V

01 I Saw Her Standing There 16.3 4.0 9.4 0.9 0.3 0.1
02 Misery 10.1 4.2 6.6 0.7 0.4 0.1
03 Anna (Go To Him) 10.3 3.9 10.5 5.6 1.4 4.6
04 Chains 12.6 4.4 6.3 2.0 0.7 0.3
05 Boys 9.5 3.3 2.2 0.2 0.2 0.0
06 Ask Me Why 13.3 5.7 12.9 6.2 2.4 5.1
07 Please Please Me 16.3 4.7 12.7 6.8 1.2 4.2
08 Love Me Do 9.5 2.6 3.6 0.2 0.2 0.0
09 P. S. I Love You 16.9 5.6 22.3 4.9 1.6 2.7
10 Baby It’s You 10.1 4.5 6.9 6.6 1.3 4.2
11 Do You Want To Know A Secret 16.9 7.0 11.7 7.4 1.6 4.7
12 A Taste Of Honey 11.0 4.4 12.1 5.5 1.4 2.7
13 There’s A Place 12.5 5.2 8.5 6.6 1.6 4.5
14 Twist And Shout 9.5 3.3 1.6 0.2 0.2 0.0

Table 4.1: Maximal length, Average and Variance in 0 and 1 degree barcodes of
the album Please Please Me.
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Song Name 0-M 0-A 0-V 1-M 1-A 1-V

01 Sgt. Pepper’s L. H. C. B. 13.1 5.0 7.9 3.0 0.8 0.9
02 With a Little Help 16.9 4.9 15.4 5.1 0.9 1.3
03 Lucy in the Sky with Diamonds 12.5 5.1 7.4 6.0 1.1 2.5
04 Getting Better 10.2 3.5 7.2 1.3 0.7 0.2
05 Fixing a Hole 13.1 3.7 14.4 3.4 1.4 1.8
06 She’s Leaving Home 19.0 6.1 13.5 6.2 2.0 2.3
07 Being for the Beneőt of Mr. Kite! 15.3 6.0 13.9 4.8 1.5 1.6
08 Within You Without You 18.9 3.2 21.0 0.3 0.3 0.0
09 When I’m Sixty-Four 16.9 6.2 19.5 6.2 2.0 2.7
10 Lovely Rita 9.5 5.4 6.4 5.7 1.4 2.4
11 Good Morning Good Morning 10.3 4.5 8.3 3.1 1.2 0.9
12 Sgt. Pepper’s L. H. C. B. (Rep) 15.3 5.0 11.0 1.0 0.4 0.1
13 A Day in the Life 9.5 6.0 5.1 6.5 2.3 4.4

Table 4.2: Maximal length, Average and Variance in 0 and 1 degree barcodes of
the album Sgt Pepper’s Lonely Hearts Club Band.

These two albums are particularly suited to distinguish the relations between
these coefficients and the intuitive harmonic complexity. Indeed, Please Please Me
(which we will shortly denote by PPM ) is the őrst of the group, and it is often
considered its simplest one, for the ’50s rock-and-roll inŕuence being still very
strong in the album. On the other hand, Sgt. Pepper’s Lonely Hearts Club Band
(which we will denote by SGP), is usually considered the most experimental album
and among the richest ones from the harmonic and structural point of view. While
the clear musical distinction is not evidently reŕected by the barcodes coefficients,
it is worth noticing that lower scores in maximal length and average length, both
in degree 0 and 1, are associated to songs which can be considered very simple from
the harmonic point of view. Indeed observe that the songs with low scores in 0-
maximal lengths, as 05,08,14 of PPM and 10,13 of SGP, have very basic harmonic
progression. In particular for PPM, the songs have the typical rock-and-roll static
harmonic structure and notice that their score also in 0-average length is very low.

On the other hand, songs with more complex harmonic structure, such as 07,11
in PPM and several ones in SGP, are associated to higher scores for maximal length
and average, both in degree 0 and degree 1.

These naive correspondences are conőrmed also in the other album analysed,
with higher scores for maximal lengths and average generally associated to richer
harmonic content.

It is interesting also observing the case of I saw her standing there, which has
a very basic harmonic structure and a rock-and-roll style, but has a good score in
0-maximal lengths, perhaps inŕuenced by the non-standard cadence (with respect
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to the chord distance used) at the end of the chorus.
Of course, there are several aspects that inŕuence the barcodes and that can

be considered as disturbing elements. First, the chord sequences associated to
the various songs have different lengths, a lack of homogeneity that affects the
consistency of the scores, considering that chords distant in time are pushed apart
in the simplicial complex. Moreover, the high approximation of the chords, reduced
to only three types (major, minor, dominants), often artiőcially alters the result
with respect to the perceived harmonic complexity of the songs. Indeed the latter
not rarely is strongly related to added notes (7ths, 9ths, etc.) that are present
in the original score but not taken into consideration here. Finally, the arbitrary
choice of the parameters of the chords graph, even if quite reasonable a priori, can
have unexpected results in practice.

4.3 Classical Music with directed graph

In this section we describe the second attempt to associate to a musical piece
a barcode representing its harmonic content. This time, we focused on classical
music using the database of the Digital and Cognitive Musicology Lab at École
Polytechnique Fédérale de Lausanne. Considered the richer harmonic structure of
this corpus, we included all the types of chords listed in Section 3.3.1 and we built
the graph of chords as in Section 4.1.3.

4.3.1 The database

The composers. The database we used has been created by the Digital and
Cognitive Musicology Lab at École Polytechnique Fédérale de Lausanne (see [26]).
This database contains several music corpora, with a complete analysis of the
measures, chords and harmonies. We focused speciőcally on the following:

• Annotated Beethoven Corpus, containing all Beethoven’s string quartets.

• Beethoven’s Piano Sonatas.

• Chopin’s Mazurkas.

• Corelli’s Trio Sonatas.

• Debussy’s Suite Bergamasque.

• Liszt’s Pelegrinage.

• Mozart’s Piano Sonatas.



4.3. CLASSICAL MUSIC WITH DIRECTED GRAPH 97

• Schumann’s Kinderszenen op. 15.

• Tchaikovsky’s Seasons op. 37a.

In particular, we used the analysis from the harmonies section of the database.
It is worth stressing out that this contains the harmonic annotations of the musical
pieces instead of the sequence of chords. This is a non-trivial difference from the
music theory point of view, but we preferred to ignore these aspects and consider
the analysis conducted from Lausanne Lab as sequences of chords. We are sure
that even the most careful reader agrees that harmonic annotations are at least
an acceptable approximation of chords analysis. More in detail, the notation used
in the database, based on global/local tonalities and scale degrees, was converted
in the simpler notation as in Section 3.3.1, with a number n ∈ Z12 expressing the
fundamental and a short string (“Mž, “mž, “Mm7ž) to denote the type of chord.
We denote byM the musical corpus of the chord sequences obtained by the union
of the musical compositions listed above. We usedM both to construct the graph
of chords GM as shown in Section 4.1.3 and as a testing set of chord sequences.

Frequencies extraction and composers’ balance. When extracting the fre-
quencies related to chord progression, we took into account the remarkable dif-
ference of dimension of the various composers’ corpora. For example, the corpus
of Beethoven’s piano sonatas (resp. string quartets) has a total of 18928 (resp.
24303) chords, while the corpus of Debussy’s Suite Bergamasque only contributes
with 920 chords. We decided to balance the contribution of each composer by
multiplying the frequencies deriving from each composer by a suitable correction
factor. We preferred to apply this correction instead of just restricting the total
number of chords of each composer to a őxed (forcedly small) upper-bound in
order to retain the maximum amount of information from the corpora.

The possibility of adjusting the balance of the various contributions to M
highlights the ŕexibility of the construction: it is very simple to modify how much
a certain composer inŕuences the corpus by changing the correspondent correction
factor.

4.3.2 Barcodes and analysis

The construction of Section 4.1.3 provided the group GM of chords and relations.
We denote by d the minimal-path weight function that associate to every couple
of chords (C1, C2) the weight of the minimal directed path in G from C1 to C2.
Remember that here d is not a distance, as it lacks symmetry. In Table 4.3 we
report some of the signiőcant values of d, for comparison with the deőnitions used
in Section 4.2.2.
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Chord progression Weight

CM → GM 25.72
CM → GMm7 21.47
CM → FM 17.57

CMm7→ FM 13.11
CM → Am 118.39

Table 4.3: Some signiőcant weights of the graph of chords GM

As one can notice, the values are very close for very common chord progressions,
but quickly increase for rarer ones. For example, the weight of the progression
CM7→ BmM7 is 10737.29, as major-seventh minor chords are quite scarce in the
corpus. It is interesting to observe also some unexpected results: the progression
CM → Am, which one could expect to be very common, has already weight
118.39, bigger than the tritone CM → G♯M , which stops at 105.47.

In order to build a testing set, we divided each musical piece in the corpus
in several parts having the same number of chords, in order to have comparable
results. To do this, we used thresholds τ equal to 5, 10 and 20 chords and obtained
chord sequences S = (Ci)1≤i≤τ .

Similarly to The Beatles case, we included time into consideration, so to have
a local description of the harmonic content rather than the overall harmonic com-
plexity to The Beatles case, we included time into consideration, so to have a local
description of the harmonic content rather than the overall harmonic complexity.
In this case, we extended the function d on time-chords (Ci, i) as follows:

d̄
(
(Ci, i), (Cj, j)

)
=







0 if i = j

log(|j − i|α) if Ci = Cj

max{1, log(d(Ci,Cj)|j − i|α)} otherwise.

Here the parameter α ∈ R allows to tweak the importance of time in the compu-
tation: by increasing its value one gets a more local harmonic description, while
α = 0 gives the overall harmonic complexity. In what follows, we consider α = 1.

Then, for every music piece S, together with the weight function d̄, we built
a simplicial complex using the Dowker őltration and we computed the persistent
homology. To do so, we used the package Simplicial, available in Julia, which
is one of the few implementations of the Dowker őltration. Thus, for every chord
sequence S we get the barcodes of degree 0 and 1.

As done in Section 4.2.2, we associate to each barcode a set of values (features)
that allows to conduct further analysis on the barcodes. In particular, restricting
to őnite length bars of the barcode, we deőne: maximal length, second maximal
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length, average length and variance length. One can consider barcode entropy as
well as a feature.

In Table 4.4 we depict some of these values of barcodes obtained from musical
pieces having chord threshold τ = 20. More precisely, one can read the features
0-ML, 0-A, 0-V, 1-ML, 1-A and 1-V, corresponding to maximal length, average
length and variance length for degrees 0 and 1. For maximal length and average,
we wrote both the mean and the maximum (with respect to the corpus), while for
variance we wrote only the mean.

Corpus 0-ML 0-A 0-V 1-ML 1-A 1-V

Beeth. Quart. 39.6, 125 9.6, 24 152 8, 51 4.8, 31.5 12.5
Beeth. Son. 41.5, 112 9.4, 23.9 159 7.8, 69 4.6, 26.3 10.9

Chopin 34.3, 106 8.5, 25.4 125 7, 41 4.3, 21 8.9
Corelli 43.8, 138 10.6, 27.9 187 9.7, 49 5.1, 26 20.6

Debussy 46.8, 106 11.0, 22.1 200 11.3, 34 5.9, 18 23.4
Liszt 38.2, 99 10.0, 22.7 156 7.7, 40 4.3, 21.5 12.7

Mozart 42.7, 138 9.9, 25.1 169 7.5, 48 4.5, 28 10.6
Schumann 40.6, 100 10.3, 15.6 142 8.6, 17 4.7, 8.5 8.7

Tchaikovsky 43.6, 106 10.2, 20.3 176 10.3, 40 6, 29 19.6

Table 4.4: Values associated to the barcodes from each corpus.

As expected, to higher values (0-ML, 0-A, 1-ML, 1-A) correspond more
harmonically complex corpora. In the case of Debussy (which has the highest
values) and Tchaikovsky, the high complexity probably comes from the wide range
of chords used in the corpus, and in particular for Debussy also from the frequent
use of non-standard chord progressions from the tonal point of view. Notice that
Debussy has high mean values, both in degree 0 and 1, while keeping relatively low
maximal values, somehow showing a high average harmonic complexity throughout
the corpus without many harmonic density peaks.

Corelli’s corpus also has interestingly high values, this time probably caused
by the considerable density of harmony and the quick changes of tonality (so
called modulations), typical of Baroque period and polyphonic music, rather than
tonally unusual chord progressions. This interpretation is supported by Corelli’s
high scores in maximal values, which would suggest the presence of very dense
harmonic sections in the corpus.

On the other side of the spectrum, Chopin’s corpus are characterised by very
low scores, which well describe the limited overall harmonic complexity and the
low density of harmonic changes of Mazurkas.

Non surprisingly, Beethoven’s corpora have very similar scores and both occupy
the middle of the spectrum with respect to almost every value. Also Schumann
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can be placed more or less in the middle. Liszt’s corpus seems more complex to
analyse: it has quite low scores in all the indicators except 0-A. In any case, it is
worth noticing that Pelegrinage is a very heterogeneous collection of pieces, with
remarkably different artistic choices and musical structures.

4.4 Further Analysis

4.4.1 Machine Learning Techniques

The analysis on the barcodes presented until now is limited to some general con-
siderations, trying to link the values obtained from the barcodes with the intuition
of the musical properties of the corpora. In order to have stronger and more objec-
tive results, we employed some machine learning techniques to further analyse the
barcodes and, more speciőcally, the features extracted from them. We focused on
two main tools, whose use in machine learning is well established: support vector
machine (SVM) and multi-linear regression. We present these approaches in the
following sections.

Support Vector Machine. Support Vector Machine is one of the most common
techniques for classiőcation in machine learning. We brieŕy present here the basic
deőnitions. Consider a training set of parameters {xi}i ⊂ Rn with a corresponding
set of values {yi}i ∈ Rn. Here typically yi ∈ {−1, 1} and represents the property
function that one wants to predict. For example, in our case §i is the vector
of features associated to a barcode of a musical piece and yi has value 1 if the
musical piece has a őxed property, for example being composed by Beethoven,
and -1 otherwise. We say that xi is a positive (resp. negative) training point if
the corresponding yi = 1 (resp. yi = −1. The aim of the algorithm is to őnd an
hyperplane H of Rn (or an algebraic hyper-surface, more generally) that divides
the set of positive training points from the one of negative training points. Then
one can use H to estimate the value yj ∈ {−1, 1} of a testing point x′

j ∈ Rn. More
formally, the goal is to őnd w ∈ Rn and b ∈ R solving the following problem:

min
w,b,ζ

1

2
wTw + C

s∑

i=1

ζi

yi(w
Tϕ(xi) + b) ≥ 1− ζi

ζi ≥ 0 for i = 1, . . . , s

where s is the cardinality of the training set, ϕ is a linear transformation, ζi is
the error we admit on the training point i and C is a penalty term that forces to
stay next to the margin boundary. Indeed with a perfect prediction, i.e. if the two
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subsets of positive and negative training points are actually perfectly separable
by an hyperplane, one has yi(w

Tϕ(xi) + b) ≥ 1. In applications, this situation is
very rare, and one usually accepts to miss-classify the point xi by introducing the
parameter ζi, which expresses the distance of the point from the boundary of the
hyperplane H.

We used SVM to attack the problem of automatic composer classiőcation.
We divided the barcodes obtained in Section 4.3.2 in two subsets: Beethoven’s
chord sequences and non-Beethoven ones. Using the previous notation, we took
as parameters xi the vectors

(0-E,0-ML,0-A,0-V,1-E,1-ML,1-A,1-V) ∈ R8

where 0-E (resp. 1-E) denotes the entropy of the barcode of degree 0 (resp. degree
1). As anticipated, we set yi = 1 if xi is a positive point (i.e. corresponds to a
Beethoven’s chord sequence) and yi = 0 otherwise.

To perform the computations, we used the package SVM provided by SciKit

(see [37]) in Python. In particular, we used the function StandardScaler to
properly scale the coefficients and the built-in SVC algorithm. However, we did not
obtain particularly interesting results: we never managed to obtain a score higher
than 0.56, where 0.5 denotes the score of a random classiőcation function. This
remained the case even applying some tweaks to the input: we modiőed the chord
threshold of the chord sequences used to extract the barcodes (τ = 5, 10, 20), and
the best result (a score of 0.558) was obtained with τ = 20. We also tried to use an
enlarged database composed of the barcodes associated to chord sequences having
all three possible thresholds, but this did not signiőcantly improve the accuracy.
There are still many tweaks that can be explored, as adjusting the parameter α of
time in the computation of time-chord distances, or manually modify the graph of
chords to suit it to an expected outcome.

Multi-linear regression. We obtained slightly better results using another ma-
chine learning tool: linear regression. The mathematical setting is similar to SVM:
given training set (xi, yi) ∈ Rn+1, one wants to determine β0 ∈ R and β ∈ Rn such
that

yi = β0 + βT
xi + ϵi ∀ i

where ϵi denotes an error variable. This allows to use (β0, β) to predict the value
yj of a test point xj.

Again, we used SciKit (see [37]) in Python with its Linear Regression models.
Similarly to SVM, we deőne the features vector as:

xi = (0-E,0-ML,0-A,0-V,1-E,1-ML,1-A,1-V) ∈ R8
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and the corresponding value yi = 1 if the chord sequence is composed by Beethoven,
yi = 0 otherwise. We considered several possibilities for the chord sequences con-
stituting the database: we tried with chord threshold τ = 5, 10, 20 and even all
the three choices combined. When considering a positive database given by all
Beethoven’s compositions and a negative database composed by all non-Beethoven
compositions, we did not get particularly interesting results: the best score was
obtained with τ = 20 and it was equal to 0.010, where 0 is the random prediction
and 1 is the perfect prediction. Better results were obtained by restricting the
dataset. For example, we reduced the positive database to Beethoven’s Sonatas
only and the negative database to Debussy’s, Schumann’s and Tchaikovsky’s com-
positions. We made a random selection of Beethoven’s barcodes in order to have
an even cardinality of positive and negative part. With these modiőcations, the
score was consistently around 0.2 with a peak of 0.27. Of course these results are
still too low to get accurate predictions, but they suggest that it is possible to őne
tweak the model to increase the accuracy of the regression.

4.4.2 Experiment on perception

In collaboration with Dr. Andrew Milne from MARCS Institute for Brain, Be-
haviour and Development at Western Sydney University, we conducted an exper-
iment on human perception of harmonic complexity. The aim of the experiment
was to gather some information regarding how harmony is perceived by people
and to verify a possible correlation with the mathematical characterisation of the
chord progressions based on persistent homology analysis. Moreover, considering
the big ŕexibility of the model we used, real world data on perception can be used
to tweak the various parameters involved and adjust the algorithmic predictions
to better suit the empirical results. The őrst part of experiment involved psychol-
ogy students from Western Sydney University, which were considered naive from
the musical point of view. A second part is currently underway and it involves
students from Italian music conservatory, which can be considered experts.

We brieŕy describe the design of the experiment. A database of musical com-
position was selected, evenly balanced between classical music (Bach, Beethoven,
Debussy, Scriabin, Rachmaninov, Prokoőev) and pop-rock music (The Beatles and
several other well-known bands), for a total of 48 musical pieces. From each mu-
sical piece the sequence of chords was manually extracted and reduced to a őxed
length range (between 15 and 23 chords), in order to have sufficiently even exam-
ples for persistent homology analysis, yet maintaining the length of the original
theme/phrase of the piece. Then the sequence was analysed using Dowker ől-
tration with respect to the directed graph as in Section 4.3.2, obtaining barcode
features a previously described. From each chord in the sequence, a 4-notes reali-
sation (as in Section 3.3) was chosen with the aim of respecting the disposition of
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the original musical piece. The sequence of realised chords was then converted in
an MP3 audio őle, via the software MuseScore.

In order to have a direct comparison between couple of samples, we presented
to the participants two examples, randomly chosen, we asked them to rate their
similarity and to choose the most interesting, unusual and enjoyable. Also, to
control in-test learning, after every sample we asked if the participant had already
heard that example. The question regarding interestingness and unusualness were
designed to express indirectly the concept of harmonic complexity, which can be
too complicated to present to naive audience. The rate of similarity was intended
to analyse a correlation with the barcode distance. In short, the participants were
tested with the following scheme (repeated 35 times):

• Listening to the őrst examples + already-heard question.

• Second examples + already-heard question.

• Rate similarity of the two examples.

• Which one is more unusual/interesting/enjoyable.

We are still analysing the results, again using linear regression to highlight corre-
lated indicators. These are the observations arising from the őrst tests:

• The participants tended to prefer the second example (unusual, interesting,
enjoyable).

• Little inverse correlation between the entropy of barcode in degree 0 and un-
usualness preference: examples with higher entropy tended to be less chosen
as more unusual (correlation factor of 0.14).

• Chord sequence from classical music tended to be considered more unusual
than chord sequences with simple structure from pop/rock music.

With further analysis, we will attempt to tweak the predictions arising from
persistent homology analysis in order to reŕect human perception. In doing this,
an important step will be involving music experts in this sort of test, which will
hopefully provide more accurate responses on which modelling persistent homology
parameters.
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