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ABSTRACT
We report the first use of constraint-based microbial community modeling on a single individual with 
episodic inflammation of the gastrointestinal tract, who has a well documented set of colonic 
inflammatory biomarkers, as well as metagenomically-sequenced fecal time series covering seven 
dates over 16 months. Between the first two time steps the individual was treated with both steroids 
and antibiotics. Our methodology enabled us to identify numerous time-correlated microbial species 
and metabolites. We found that the individual’s dynamical microbial ecology in the disease state led 
to time-varying in silico overproduction, compared to healthy controls, of more than 24 biologically 
important metabolites, including methane, thiamine, formaldehyde, trimethylamine N-oxide, folic 
acid, serotonin, histamine, and tryptamine. The microbe-metabolite contribution analysis revealed 
that some Dialister species changed metabolic pathways according to the inflammation phases. At 
the first time point, characterized by the highest levels of serum (complex reactive protein) and fecal 
(calprotectin) inflammation biomarkers, they produced L-serine or formate. The production of the 
compounds, through a cascade effect, was mediated by the interaction with pathogenic Escherichia 
coli strains and Desulfovibrio piger. We integrated the microbial community metabolic models of each 
time point with a male whole-body, organ-resolved model of human metabolism to track the 
metabolic consequences of dysbiosis at different body sites. The presence of D. piger in the gut 
microbiome influenced the sulfur metabolism with a domino effect affecting the liver. These results 
revealed large longitudinal variations in an individual’s gut microbiome ecology and metabolite 
production, potentially impacting other organs in the body. Future simulations with more time 
points from an individual could permit us to assess how external drivers, such as diet change or 
medical interventions, drive microbial community dynamics.
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Introduction

The human gut microbiome performs essential 
functions in shaping the host immune system, 
host cell proliferation, and is involved in the main
tenance of endocrine functions.1 The human 
microbiome consists of a large number of archaeal 
and bacterial species,2 with the composition of the 
microbiome depending on host factors, such as 
age, sex, location, ethnicity, and lifestyle (e.g., 
diet, exercise, and medication). Between healthy 
individuals, the relative abundances of taxa are 
highly variable, while the functional capabilities 
are more stable. In contrast, many multifactorial 
diseases are characterized by a dysbiotic 
microbiome.3

An individual’s gut microbiome has a variable 
composition in different parts of the digestive tract 
and can undergo extensive modifications through
out life.4 Therefore, combining single time points 
from a range of people does not reveal the 
dynamics of an individual dysbiotic gut micro
biome. In contrast, by following a time series of 
the microbiome ecology of an individual, one can 
trace the interaction of the host symptomatology 
and inflammation with the time-shifting gut 
microbiome ecology.5 The host immune system 
creates a variety of anti-microbial proteins, with 
different functions. In our individual’s time series, 
we can follow four measurable fecal biomarkers: 
calprotectin and lactoferrin (shed from white blood 
cells), lysozyme (innate immune system), and 
secretory IgA (adaptive immune system)6 as indi
cators of levels of severity of episodic colonic 
inflammation. This time-varying inflammation is 
the by-product of the constant interaction between 
the human host’s immune system and the changing 
ecological profile of the host’s gut microbiome.7 

Historically, IBD has been considered to have two 
main subtypes: ulcerative colitis (UC) and Crohn’s 
disease (CD). However, a large (30,000 patients) 
human genotype study in 20168 demonstrated 
that the human genetic predisposition is best 
explained by three subtypes: ileal Crohn’s disease 
(ICD), colonic Crohn’s disease (CCD), and UC. 
This same IBD tripartite division is seen when the 
gut microbiome ecology is clustered.9 This separa
tion into three subtypes is even clearer when using 
the Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) database to cluster the gut microbiome of 
patients.10

Recently, the study of the microbiome has 
moved from “Who is there?” to “What are they 
doing?”. In particular, the constraint-based 
reconstruction and analysis (COBRA) framework, 
which relies on a genome-scale reconstruction of 
a target organism’s metabolism and the applica
tion of condition-specific constraints, e.g., meta- 
omics data and allowed uptake of nutrients,11 has 
moved these questions further to “What do they 
produce?”, and “How do they interact?”.12–15 

Genome-scale reconstructions are assembled 
using organisms’ genome sequences and bio
chemical, genetic, and physiological evidence.16 

COBRA assumes the biological systems to be at 
a steady state, i.e., the change in metabolite con
centration over time is zero.

Flux balance analysis (FBA),15 a frequently used 
COBRA method, assumes in addition that the bio
logical system tries to achieve an objective, e.g., 
maximal biomass yield.17 FBA has been success
fully applied to investigate the role of the human 
gut microbiome in various complex diseases, 
including Parkinson’s disease,18,19 and inflamma
tory bowel disease.20–22 To facilitate the application 
of constraint-based modeling to research on the 
human gut microbiome, the AGORA (Assembly 
of Gut Organisms through Reconstruction and 
Analysis) collection was established,23 and recently 
expanded to cover over 7,200 semi-manually 
curated microbial genome-scale metabolic 
reconstructions.24

In prior studies, FBA was used on a set of micro
biome samples comparing healthy individuals with 
IBD patients at a single time per patient. COBRA 
modeling has been used to link mechanistically 
host-microbiome-environment interactions to 
IBD-related changes.11 The potential of 818 micro
bial strains to deconjugate primary bile acids into 
secondary bile acids has been investigated with 
a combined approach based on comparative geno
mics followed by FBA.25 In that study, it has been 
reported that microbial species can complement 
each other’s bile acid pathway to achieve the 
broader bile acid production repertoire observed 
in fecal samples.25
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In this paper, we investigate how extreme time 
changes of the gut microbiome ecology in a single 
individual with large episodic colonic inflamma
tion are associated with large time variations in 
a number of key metabolites. To explore the inter
action between host metabolism and the com
pounds produced by the normal and the dysbiotic 
gut microbiome, we performed an additional 
investigation using sex-specific, organ-resolved, 
whole-body metabolic models of human metabo
lism, which account for 28 organs, tissues, and cell 
types.26

The present study used FBA to analyze the meta
bolic evolution of the gut microbiome community 
in a single individual (“LS”) affected by left-sided 
colonic inflammation across seven time points cov
ering a period of 16 months in 2012/2013 
(Figure 1). We have chosen to investigate the use 
of FBA in this case study because the LS gut micro
biome time series has been carefully studied in 
several prior papers. The metagenomic data for 
these seven time points have been previously 
compared10,27 with a set of metagenomic data 
from healthy individuals drawn from the NIH 
Human Microbiome Project,28 as well as selected 
metagenomic data from patients with ICD and 
with UC.10 Another study21 investigates metage
nomics of an extension of the LS fecal time series 
from the 7 discussed here to 27 time points, with 
a particular emphasis on E. coli strain evolution. An 
even longer time period, although more sparsely 

sampled, was examined for metaproteomics.29 

Finally, a detailed analysis of LS daily samples30 

over a month has shown that LS’s gut microbiome 
taxonomic profile deviated substantially from the 
healthy individuals exhibiting major taxonomic 
shifts over short time intervals.

In this paper, we found that LS’s major gut 
microbiome taxonomic shifts over time led to cor
respondingly large FBA metabolic shifts from the 
personalized microbial community models. Since 
we also computed the metabolite production from 
each of the 34 healthy controls’ microbiome, we 
could compare LS’s metabolite production at each 
time point to the average value (HeAve) of the 
healthy controls. The results of our models showed 
that several biologically important metabolites 
were highly (10–10,000×) overproduced, compared 
to HeAve, at various time points in LS’s samples, 
including oxygen, methane, thiamine, formalde
hyde, trimethylamine N-oxide, folic acid, seroto
nin, histamine, and tryptamine. Furthermore, our 
results suggest that through the production of few 
metabolites, i.e., L-serine and formate, species of 
the Dialister genus cooperate with many patho
genic strains, such as adherent invasive 
Escherichia coli strains, archaeal species, and 
Desulfovibrio piger ATCC2. The interactions trig
ger inflammatory responses and enhance methane 
production. Finally, D. piger ATCC2 plays an 
important role in the production of the host-toxic 
SO3

−2. Additionally, we investigated host- 

Figure 1. Timeline with metadata of the different samples. In the timeline, generated with BioRender, the collection date, the 
measured blood concentration of complex reactive protein (CRP), as well as the measured fecal lactoferrin, lysozyme, calprotectin, and 
secretory IgA (SecIGA) are reported. LS has episodic major increases in all these inflammatory/immune biomarkers, as healthy values 
for each are CRP < 1, lactoferrin < 7.3, lysozyme < 600, calprotectin < 50, and SecIGA (30-275). These four inflammatory biomarkers are 
graphed in Supplementary Materials. The medical intervention between LS1 and LS2 consisted of ciprofloxacin, metronidazole, and 
prednisone. “Microbes” refers to the number of metabolic models identified in the metagenomic samples according to the threshold 
selected (see Methods) and that were included in each time point-specific microbial community model. The number of reactions and 
metabolites refers to the size of the condition-specific microbial community models at each time point.
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microbiome co-metabolism during these time 
points.

In conclusion, we demonstrate that microbial 
community metabolic models can reflect a single 
individual’s gut microbiome’s dynamics, which 
resulted in significant changes in metabolite pro
duction, and which affected host organs. More 
studies with multiple time points are needed to 
understand how the host-microbiome co- 
metabolism reacts to changes in diet and medical 
interventions.

Results and discussion

Characterisation of the time points

The n = 1 patient “LS” with episodic colonic 
inflammation was a nonsmoker male, 63 years old 
at baseline. A detailed description of his medical 
history is reported in Supplementary Materials, 
with his physicians diagnosing LS with 
a combination of CCD and Segmental Colitis 
Associated with Diverticulosis (SCAD), 
a condition where the inflammation of the colonic 
mucosa occurs in the same segments that are 
affected by diverticulosis.31

As part of an earlier study, the J. Craig Venter 
Institute carried out (see Methods) deep (~100 M 
reads per sample) shotgun metagenomic 
sequencing,27 yielding 510 species and 790 strains 
relative abundance, on frozen fecal samples for 
seven time points, deemed LS1 to LS7 
(Supplementary Table S1, sheets 
“Abundances_metagenomics_species” and 
“Abundances_metagenomics”) according to the 
time of collection. All time points were character
ized by abnormal concentrations of hematic and 
fecal immune or inflammatory biomarkers, with 
LS1 having both the highest hematic complex reac
tive protein (CRP) and the highest fecal calprotec
tin concentration (Figure 1), (Supplementary Table 
S1 sheet “Metadata”). In contrast, lactoferrin, lyso
zyme, and secretory IGA had their highest values at 
LS4 and LS7.

The medical intervention between LS1 and LS2 
(Figure 1) consisted of two months of daily 40 mg 
oral prednisone, a drug used to suppress the 
immune system and decrease colon inflammation, 

starting January 31, 2012. In addition, during the 
first of these two months, LS was prescribed two 
antibiotics (500 mg ciprofloxacin administered 
orally twice a day and 250 mg metronidazole admi
nistered orally three times per day).29 The com
bined treatment was suggested to reduce the colon 
inflammation, while also reducing the high level of 
blood CRP inflammation (Supplementary material, 
LS Medical History).

In addition to LS time series of gut microbiome 
metagenomics, we obtained shotgun metagenomic 
data (~100 M reads per person) for the gut micro
biome from 34 healthy individuals in the Human 
Microbiome Project32 (Methods, Supplementary 
Table S1 sheet “rawreads”). This control dataset 
allowed for the comparison of the LS microbiome 
with healthy individuals and for the identification 
of microbial and functional differences associated 
with the disease status at each time point.

Analysis of metagenomic data with microbiome-level 
metabolic models

First, we investigated the time evolution of the meta
genomic phyla abundances in the healthy and disease 
microbiomes. We identified major differences over 
time between the seven LS time samples and the 
healthy microbiomes across the most abundant 
phyla: Actinobacteria, Bacteroidetes, Euryarchaeota, 
Firmicutes, Fusobacteria, Proteobacteria, and 
Verrucomicrobia (Figure 2a), (Supplementary Table 
S1 sheet “Abundances_metagenomics”). Then, we 
used the strains identified in the shotgun metage
nomic data of LS (Supplementary Table S1 sheet 
“Abundances_metagenomics”) as input to the 
AGORA2 collection of microbial metabolic 
reconstructions24 (see Methods). This process led to 
the creation of seven in silico microbial community 
models (Supplementary Table S1 sheet 
“Abundances_AGORA2”) accounting for a total of 
213 distinct microbes, covering both bacterial and 
archaeal species. We used the seven ecological models 
to compute the metabolites produced by the microbial 
communities (Methods). ITherefore, the maximal 
production and uptake fluxes of each metabolite 
from all the microbial species was computed, using 
the procedure outlined by Orth and colleagues.15 In 
the following sections, we will state when we are 
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Figure 2. Graphical representation of the time evolution of the gut microbiome ecology in the microbial community model. (a) 
Stacked barplot representing the metagenomic phyla abundance of the gut microbiome, as computed from the AGORA2 mapped 
abundances, in the different LS samples with a comparison to the Healthy Average (HeAve). For a similar barplot, which also shows the 
time variation of 10 abundant species from the metagenomically sequenced time series superimposed on the LS phyla bars, see 
Figure 2 in Ref 30. (b) 3D principal component analysis computed on the species abundances mapped onto AGORA2 involved in the 
metabolic modelling for each LS samples and HeAve, and reflecting differential microbial compositions and abundances is shown 
(more details in the Method section). For a 2D PCA of the metagenomic species relative abundances of the seven LS samples and the 
34 HE samples, see Figure 4a of Ref. 10.
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referring to the input metagenomic microbial abun
dances or to the AGORA2 mapped abundances.

Using the metagenomic relative abundances, we 
compared LS microbial species composition at each 
time point and with those of the 34 healthy controls, 
including calculating both the maximum (HeMax) 
and average (HeAve) abundance of each microbial 
species across the healthy individuals 
(Supplementary Table S1 sheet 
“HealthyInd_metagenomics_species”). We 
observed cases where LSMax > HeAve, meaning 
that the disease state associated microbiome fluctu
ated over time and exceeded the average relative 
abundance in the healthy population. Additionally, 
we identified cases with LSMax > HeMax, meaning 
that the relative abundance in the disease state could 
be greater than the largest cross-population varia
tion. Using this comparison, the dysbiosis experi
enced by LS was characterized by a major decrease in 
microbe species that were dominant in the healthy 
individuals, thereby allowing for the time-dependent 
bloom of typically less abundant microbes in LS1-7 
(Supplementary Fig. S3-S9).

In more detail, the average healthy control’s gut 
microbiomes were found to be predominantly 
composed of Bacteroidetes (65.6%) and a lower 
fraction of Firmicutes (30%) (Figure 2a). In con
trast, the most abundant LS microbiome phylum at 
all seven time points was Firmicutes, which ranged 
from 1.4 to 2.5× the HeAve abundance (Figure 2a), 
(Supplementary Table S1 sheet “Phyla abun
dances”). The overabundance of Firmicutes was 
driven by the blooming of normally rare 
Firmicutes species from classes Bacilli and 
Clostridia, with overabundances ranging from 
100–1,000× HeAve for those species. In particular, 
the family Lachnospiraceae (in class Clostridia) was 
2.6–3.7× HeAve, mainly represented by Dorea 
longicatena DSM 13,814, normally rare, but 25× 
HeAve in LS4 (Figure 3), (Supplementary Table 
S1 sheet “Abundances_AGORA2”). In contrast, 
the other dominant microbial phylum in healthy 
individuals, Bacteroidetes, was depleted by more 
than 10× in all LS time points except LS6 when it 
bounced back to half the abundance of HeAve.

The ecological absence of the normally domi
nant phylum Bacteroidetes allowed other, normally 
rare phyla in the healthy individuals, to dynami
cally bloom. In particular, the phylum 

Euryarchaeota was elevated by at least three times 
in all samples when compared with the HeAve, 
with an extreme overabundance in LS1 and LS6, 
which are 137× HeAve and 57× HeAve, respec
tively (Supplementary Table S1 sheet “Phyla abun
dances”). The observed high archaeal relative 
abundances in all the phases are typical of CD- 
associated dysbiosis.33 In particular, the presence 
of the family Methanobacteriaceae (dominated by 
Methanobrevibacter smithii) was strongly influ
enced by the disease, varying between 3-170× 
HeAve (Supplementary Fig. S13), with the highest 
value occurring at LS1. The phylum Proteobacteria 
was also overabundant, compared to healthy indi
viduals, at all seven time points. For LS1–3, it was 
approximately seven times higher, and for LS7, it 
was 10 times higher than HeAve. Within this phy
lum, the family Enterobacteriaceae reached a peak 
of > 150× HeAve in LS7 (Supplementary Table S1 
sheet “Abundances_metagenomics”, 
Supplementary Fig. S10). The abundance of family 
Enterobacteriaceae species E. coli in LS1 was 187× 
(Supplementary Table S1 sheet 
“Abundances_metagenomics”, Supplementary Fig. 
S11). Phylum Actinobacteria had a higher abun
dance (4-50× HeAve) at all time points and 
a higher diversity with 58 different species present 
at time point LS5 compared to the healthy average 
(36 species).30 Among these species, 
Bifidobacterium longum climaxed to seven times 
the HeAve. Finally, there were also isolated blooms 
of the phyla Fusobacteria (40× and 11× HeAve at 
LS1 and LS6) and Verrucomicrobia (seven times 
the HeAve at LS5).

To assess the diversity within each microbial 
community model, we calculated the alpha diver
sity based on the AGORA2 taxonomic assign
ments for both LS1-7 and HeAve. The highest 
LS alpha diversity was obtained for LS6 (Table 1). 
Although LS2 was the time point with the highest 
number of species, it was not the one with the 
highest alpha diversity, when the taxonomic dif
ferences of the different samples were weighted 
with a hierarchical tree based on the 
taxonomies.34 This result was mainly due to the 
algorithm used to calculate the alpha diversity, 
which considered the taxonomic diversity among 
the strains present in the samples. It reflects the 
presence of many species, which were, however, 
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Figure 3. Correlations between microbial abundances and secretion fluxes of key metabolites. Top square: Class I microbe-metabolite 
relationships. Bottom square: Class II. Each pair of graphs represents representative specific gut microbiome species relative 
abundance over LS1–7 (top of pair) and a matched metabolite flux over LS1–7 (bottom of pair). For the species graph, the red line 
represents the relative abundance of the microbe over LS1–7, while the blue dot represents the relative abundance of that microbe for 
HEAve. Numbers in parentheses next to each metabolite name corresponds to the flux ratio of the minimum and maximum flux 
calculated for the LS samples. For insights on subclasses of Classes I and II, please refer to Supplementary Fig. S15-S21.
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taxonomically highly related (e.g., belonging to 
the same phylum). Indeed, LS2 was mainly com
posed of Firmicutes and Actinobacteria, which 
covered more than 70% of the relative abundance 
in the sample (Figure 1, Table 1), (Supplementary 
Table S1 sheet “Phyla abundances” and “alpha 
diversity”).

To assess the changes in diversity between the 
time points, we calculated the beta diversity using 
the Bray-Curtis dissimilarity index.34 The average 
beta diversity between samples was 58.00. The two 
most dissimilar samples were LS1 and LS2 (84.1%), 
likeliest reflecting the effect of the antibiotic treat
ment before LS2 collection. The two lowest beta 
diversities were between LS3 with LS4, which had 
a beta diversity of 23.44, and LS5 with LS7 of 35.76. 
The diversity between LS1 and LS6 was 79.50 
(Supplementary Table S1 sheet “beta diversity”).

In the Principal Component Analysis (PCA) 
performed on microbial composition and 

abundances (Figure 2b), (Supplementary Fig. S1, 
S2), the first component accounted for 47.6% of 
the total variability, while both the second and 
the third components each accounted for 
approximately 13% of the total variability. The 
different PCA components were mainly driven 
by the differential abundance of two archaeal 
species, i.e., the already mentioned M. smithii 
ATCC 35,061, and Methanosphaera stadtmanae 
DSM 3091 (LSMax = 542× HeAve). Both archaea 
were more abundant in LS1 and LS6 in compar
ison to the other time points (Figure 2a), 
(Supplementary Fig. S2, S17). In the PCA cluster 
plot, LS6 was clearly separated from the other six 
LS time points (Figure 2b) being closer to HeAve, 
consistent with the higher alpha diversity of the 
LS6 microbiome (Table 1) compared to the other 
time points.

As aforementioned, the LS1 gut microbiome 
was severely depleted in almost all of the most 

Figure 4. Metabolites net flux variation. Line plot of the net flux production (mmol/gDWh) of metabolites having a marked change 
over the different time points. For each metabolite, the respective chemical structure is reported.

Table 1. Information about the species filtering performed through AGORA2 mapping.
Features LS1 LS2 LS3 LS4 LS5 LS6 LS7 HeAve

Total number of strains identified 1,041 1,055 1,532 1,110 1,037 1,112 1,039 939
Strains covered in the in silico microbial community models 76 125 102 91 87 101 106 198
Fraction of total abundance covered 0.923 0.937 0.902 0.904 0.926 0.925 0.923 0.98
Alpha diversity 74.86 77.86 76.85 77.11 74.5 80.18 77.46 75.56

The total number of strains identified, and the strains covered by the AGORA2 mapping are reported. The abundance based on AGORA2 mapping, using 
a cutoff threshold abundance of 0.0001 is reported as well, together with the alpha diversity of the samples. For details on the calculation of the Alpha 
diversity, please refer to the method section.
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abundant HeAve species (Figure 1a), 
(Supplementary Fig. S3-S9). We found 21 
microbe species with relative abundance > 1% in 
HeAve, yet they were very rare (HeAve/LS1 > 10) 
in LS1 (Figure 1b), (Supplementary Fig. S3A), 
including the phylum Bacteroidetes species 
Prevotella copri (1436×), Bacteroides stercoris 
(152×), Bacteroides caccae (43×), Bacteroides ova
tus (40×), Bacteroides vulgatus (28×), Bacteroides 
dorei (20×), Alistipes putredinis (15×) and the 
phylum Firmicutes species Eubacterium rectale 
(43×) and Ruminococcus bromii (11×). Only 
three of the 21 HeAve most abundant species 
had relative abundances in LS1 that were compar
able (1<HeAve/LS1 < 5) to HeAve: 
Faecalibacterium prausnitzii (4.5×), and Alistipes 
finegoldii (3×), Dialister invisus (1.5×). We note 
that F. prausnitzii is a well-known anti- 
inflammatory bacterium. Its high level at LS1 
may be an indication of the microbiome attempt
ing to counter the high level of host inflammation 
at LS1.

A complementary analysis identified microbial 
species with the highest relative abundance (>1%) 
in the gut microbiome of LS1 (Supplementary Fig. 
S3B). Not only were there fewer microbe species that 
had a relative abundance > 1% than in HeAve, but 
also the most abundant microbes in LS1 were nor
mally extremely rare in the healthy gut microbiome. 
Except for Dialister invisus (to which we will return 
later), all of the dominant LS1 microbiome species 
ranged from 100 to almost 1,000 times more abun
dant than in the healthy gut microbiome. A number 
of these normally rare species (e.g., E. coli, 
M. smithii, M. stadtmanae, and P. micra) will have 
major impacts on key metabolite production, as we 
will discuss later in this paper. This illustrates 
a classic ecological dynamics result: when formerly 
dominant species are wiped out, normally rarer spe
cies can bloom and become the dominant ones.

Taken together, our metagenomic time series 
analysis demonstrated that the microbial composi
tion varied substantially between the LS time points, 
as well as compared to the healthy average. The 
strong differences between LS and healthy samples 
in microbial abundance motivated the use of meta
bolic modeling to understand how these metage
nomic differences over time could influence 

metabolite production as the gut microbiome ecol
ogy shifts.

Microbial and metabolic changes over time

To investigate potential changes in metabolic activ
ity associated with the dysbiotic microbiome com
position at each time point, we performed 
metabolic modeling and FBA15 assuming 
a Western diet.35 For each metabolite, we com
puted the net metabolite production potential 
(Methods, Supplementary Table S2). The resulting 
in silico metabolite production profiles represent 
the potential of all microbial community members 
to uptake dietary metabolites and secrete metabolic 
end products. We also predicted microbe-specific 
contributions to the overall fluxes in each microbial 
community model (Methods). To allow for the 
comparison between the LS microbiome and the 
healthy gut microbiome, we calculated the healthy 
average of the fluxes (HeAveFluxes) from 34 
healthy controls microbial community models gen
erated using the healthy controls’ metagenomic 
data (Supplementary Table S2). The resulting 
HeAveFluxes enabled us to discover that over 20 
metabolites had a predicted maximum value over 
the LS1–7 LS dysbiotic gut microbiome, which 
ranged from 10 to 750 times higher than the max
imum values across the healthy controls 
(Supplementary Table S2).

Next, we examined in detail the strong time 
variations of a number of key gut microbially pro
duced metabolites. Specifically, we selected 24 
metabolite exchange reactions with LSMax/LSMin 
flux ratios > 10 [or if LSMin = 0, the ratio is large 
(technically divided by 0)] to examine in more 
depth (Supplementary Table in Supplementary 
Materials). All but five of these 24 were greatly 
overproduced by LS, with LSMax from 5× to 
750× times the highest value (HeMax) found across 
the 34 healthy controls. For each of these 24 meta
bolites, we then visually pattern-matched the meta
bolite time graph to microbial species relative 
abundance graphs over time. This approach 
allowed for the identification of several microbe- 
metabolite relationship time variation patterns 
over LS1–7 (Figure 3), (Supplementary Fig. S15- 
S21). The microbe-metabolite relationships were 
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characterized by two distinct microbe/metabolite 
classes: Class I, with a peak value at LS1 and dra
matically lower values in the other time points (e.g., 
the M. smithii/methane, Figure 3), (Supplementary 
Fig. S17), and Class II, which were low in LS1 and 
higher values in the subsequent time points (e.g., 
Dorea longicatena DSM 13,814/Pyridoxal, 
Figure 3). We give archetypal examples of each 
Class in Figure 3 with subclasses of Classes I and 
II defined with matching metabolite examples in 
Supplementary Fig. S15-S21.

Among the two dozen microbe species- 
metabolite pairs, a deeper biochemical pathway 
analysis was required to determine whether 
a causal relationship may exist between the bacteria 
and the metabolite they produce. Because of our 
discovery of the extreme overproduction in the 
disease state compared to the inter-population 
variability in healthy individuals, these metabolites 
are all potential candidates to be biomarkers for 
tracking the episodic development of the disease. 
Below, we take a first look at this hypothesis.

Methane and Methanobacteriaceae
The average methane production in healthy gut 
microbiomes (HeAveFluxes) computed using the 
corresponding microbial community model was 
0.26 mmol/gDW/day (Supplementary Table S2). 
In contrast, in the LS diseased state, the production 
of methane was highest in LS1 (40.19 mmol/gDW/ 
day) and decreased in LS2–7 (1 mmol/gDW/day at 
LS2) closely following Methanobacteriaceae abun
dance in the corresponding microbiome samples 
(Figure 3, top). Linear regression analysis was per
formed to determine if the methane metabolite 
production correlated with inflammation mea
sured in terms of fecal calprotectin and blood 
CRP. Two independent models were analyzed 
using calprotectin and blood CRP as quantitative 
independent variables. In the first model, the 
R-squared (R2) was 0.193 (p-value 0.324), in 
the second model, it was 0.311 (p-value 0.193) 
(Supplementary Table S2). Therefore, methane 
production does not seem to correlate with inflam
mation, but rather with the large overabundance in 
LS1 of Methanobacteriaceae archaea species. 
However, the small number of time points may 
be limiting in determining a real correlation. As 

shown in the LS medical history (SM), there was no 
imaging or colonoscopy indication that LS had 
small intestinal bacterial overgrowth (SIBO), 
which could also be a source of methane.36 

However, we do not exclude that by enhancing 
the number of timepoints, we could find 
a possible correlation. This aspect will need to be 
covered during future studies.

The relationship between Methanobacteriaceae 
abundance and methane production was also 
reflected in the microbe-metabolite simulations 
(Supplementary Table S3). At its peak, M. smithii 
was the most abundant species in LS1 
(Supplementary Fig. S3B) and methane production 
in the disease state was 155× the highest value 
computed (HeMax) for methane across the healthy 
controls. This result agrees with prior findings that 
methanogenic archaea are the major biological 
source of methane in humans with a single species, 
M. smithii, accounting for up to 94% of methano
genic activity in most colonized individuals.37 In 
addition, chorismate followed the same time evo
lution as methane, peaking at 141× HeMax.

Oxygen and E. coli
The in silico average healthy level (HeAveFluxes) of 
the oxygen production fluxes was 0.003 mmol/ 
gDW/day. In contrast, the extreme value of LS1 
was over 2,000 times higher (8.3 mmol/gDW/day) 
than HeAve and 165× HeMax (we note only two of 
the 34 healthy controls had any significant oxygen 
production). This enormous increase in the dys
biotic production of free oxygen was found to 
follow the time variation of E. coli, being highest 
at L1-L3 (where E. coli was ~ 10% of the gut micro
biome ecology or 187× HeAve relative abundance), 
normal at LS5 and LS7, and an additional increase 
at LS6. It is remarkable how large the change in 
oxygen production was as the dysbiotic evolution 
progressed. The ratio of the oxygen production 
from its high in LS1 (8.3) to its low in LS7 
(0.00075 or 0.25× HeAve) was over 10,000 fold 
(11,116×).

These large fluctuations suggest an obligate 
syntrophy with one of the oxygen-producing 
bacteria present in the consortium. Many recon
structions of microbial species included in the 
simulations (e.g., Eggerthella lenta DSM 2243, 
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Bacteroides vulgatus ATCC 8482, and 
Megasphaera elsdenii DSM 20,460) have 
a superoxide dismutase (VMH ID: SPODM) 
converting reactive oxygen species to oxygen 
and oxygen peroxide (2.0 h[c] + 2.0 o2s[c] -> 
h2o2[c] + o2[c]), as well as an oxygen exchange 
(VMH ID: EX_o2) reaction. The simulations, 
therefore, suggested a novel, unidirectional 
interaction among these species boosting 
E. coli bloom with superoxide dismutase pro
ducts. Our hypothesis is novel, yet consistent 
with the “oxygen hypothesis” that posits that 
some aspects of IBD symptoms may result 
from an increase of oxygen and reactive oxygen 
species into the intestinal lumen competitively 
favoring facultative anaerobic species over 
strictly anaerobic ones.38 Indeed, 
Enterobacteriaceae bacteria, such as E. coli, can 
absorb and utilize oxygen being facultative aero
bic species.39

In addition to the likely increased anaerobic 
respiration, which was induced by inflammation 
in LS (Figure 1),39 the dysbiotic shifts in the 
microbiome ecology itself produced, according 
to our microbial community models, copious 
amounts of free oxygen, which came from the 
detoxification of reactive oxygen species. E. coli 
could then utilize this oxygen to increase its 
relative abundance directly via aerobic respira
tion. In addition to the production of free oxy
gen, our microbial community models predicted 
that the flux of trimethylamine N-oxide 
(TMAO) for LS1 was 3,082× HeAveFluxes 
(Supplementary Table S2). In previous studies, 
TMAO has been highlighted as a metabolite, 
which alters systemic homeostasis and partici
pates in the first inflammatory states.40 

Furthermore, TMAO production is known to 
boost aerobic respiration, which favors 
Enterobacteriaceae, e.g., E. coli, over Clostridia 
and Bacteroides species.41 Therefore, we con
clude that there appeared to be two separate 
mechanisms (inflammation-induced aerobic 
respiration and dysbiotic microbiome ecology 
creating free oxygen) that both provided E. coli 
with a selective energy advantage over the other
wise dominant Firmicutes and Bacteroides, 
which can do neither anaerobic nor aerobic 
respiration.

Thiamine and E. coli
Vitamin synthesis by gut microbes is one of their 
essential ecological services to the health of the 
host. Our microbial community model predicted 
that, in the extreme of the disease state (LS1), the 
thiamine (vitamin B1) flux (17.1 mmol/gDW/day 
in LS1) was 18,318× higher than the HeAveFluxes 
(0.00093 mmol/gDW/day) (Supplementary Table 
S2). The thiamine production flux computed by 
the LS microbial community models was highly 
variable, fluctuating across LS1–7 by a factor of 
15,000×, while across the population of healthy 
patients, each sampled at one time point, there 
was a variation in thiamine production of only 
23 × . Furthermore, the maximum value of thia
mine (at LS1) was 7,472× greater than HeMax for 
thiamine (Supplementary Table S2), meaning that 
the disease state drove thiamine production almost 
four orders of magnitude beyond what was seen in 
the cross-population production.

In addition, we also predicted other B vitamins 
to be overproduced in LS compared to HeAve 
(Supplementary Table S2). Our microbial commu
nity model predicted LSMax/HeAve for riboflavin 
(vitamin B2, 8×), pyridoxal (vitamin B6, 98×), and 
folic acid (vitamin B9, 39×). For niacinamide (vita
min B3) and biotin (vitamin B7), the healthy con
trols were all zero, but there was substantial 
production of each in LS1–7. This result highlights 
the value of measuring the dysbiotic time variation 
within a single patient instead of only reporting 
population averages.

Other metabolites that vary with E. coli
Several other metabolite exchange fluxes (Figure 3) 
(Supplementary Fig. S18), which closely followed 
the time variation in E. coli relative abundance, 
were also found to have an LSMax value far above 
cross-population HeMax value. Specifically, the 
ratio of LSMax/HeMax for some of these included 
the polyamine metabolism-related metabolites 
ortho-hydroxyphenylacetic acid (164×), 
5’methylthioadenosine (142×), spermidine (12×), 
and histamine (13×) consistent with previously 
reported results.42 In particular, dysbiosis can pre
dispose overgrowth of E. coli, which in turn leads to 
increased production of histamine, thus contribut
ing to the symptomatology of histamine 
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intolerance.3 The LS1–7 variation predicted for 
histamine was 170×, with a maximum flux of 
46.95 mmol/gDW/day in LS1, while the HeAve 
was 0.32 mmol/gDW/day (Supplementary 
Table S2).

TMAO and Fusobacterium species
TMAO has been recently hypothesized to be 
a possible link mediating between red meat intake 
and vascular inflammation, leading to poor cardi
ometabolic health.43 Separately, Fusobacteria have 
been discussed as being involved in the onset of 
colon cancer.44 Intriguingly, at the height of LS 
inflammation, as measured by calprotectin and 
serum CRP, LS1 had nearly a 1,000× overabun
dance of the dominant phylum Fusobacteria spe
cies Fusobacterium sp. 12_1B, compared to HeAve. 
This coincided with our microbial community 
models predicting a similar level of overproduction 
of TMAO (LS1/HeAve = 3082×) and LS1/HeMax  
= 91×.

Serotonin and B. longum
The microbial production of the neurotransmitter 
serotonin, which had a variation across LS1–7 of 
25× and whose maximum at LS5 was 3× the 
HeMax, mimicked the fluctuations of 
Bifidobacterium longum abundances 
(Supplementary Fig. S19). It is known that 
B. longum supernatants upregulate the serotonin 
transporter expression in intestinal epithelial 
cells.45 Deregulation of gut-produced serotonin 
has also been associated with diarrhea or constipa
tion symptoms.46 Furthermore, according to 
Minderhaud and colleagues,47 the severity of 
intestinal inflammation can depend on the avail
ability of gut serotonin. Another metabolite, which 
followed the variation of B. longum and is also 
involved in the gut-brain axis, was tryptamine, 
which varied by 103× across LS1–7 and whose 
peak at LS1 was 25× HeMax.

Dorea longicatena and Ruminococcus obeum 
were the 1st and 2nd most abundant Firmicutes 
species in the Lachnospiraceae family in LS, respec
tively. Their time evolution aligned with a number 
of metabolites with large ratios of LSMax/HeMax: 
formaldehyde (3,477×), 5-methyltetrahydrofolic 
acid (311×), tetrahydrofolic acid (260×), folic acid 
(12×), pyridoxal (7×), and riboflavin (3×).

Normally rare Firmicutes species
An unusual aspect of LS dysbiosis was that at LS1 
several normally quite rare Firmicutes species 
(Peptostreptococcus stomatis, LS’s most abundant 
species in Firmicutes family 
Peptostreptococcaceae; Solobacterium moorei, LS’s 
most abundant species in Firmicutes family 
Erysipelotrichaceae; and Parvimonas micra, LS’s 
most abundant species in Firmicutes family 
Clostridiales Family XI. Incertae Sedis) were from 
250 to 1,000× more abundant than in HeAve. Their 
graphs over LS1–7 closely matched metabolites 
with high ratios of LSMax/HeMax: acetoin (38×), 
trimethylamine (13×), and 1,2-diacyl-sn-glycerol 
(8×) (Supplementary Fig. S15).

Taken together, we observed that dozens of 
metabolites were greatly overproduced by LS in 
the disease state compared to our healthy controls 
and we discovered numerous microbe-metabolite 
pairs showing similar changes over time. For 
a causal explanation of these observed patterns, it 
will be necessary to examine a larger number of 
time points. Overall, our analyses at the different 
time points as well as longitudinally illustrate that 
the dysbiotic microbial composition changes were 
associated with significant changes in metabolic 
function.

Metabolic and subsystem signature of each phase

After analyzing metabolites strongly diverging 
between LS and healthy average patients, we 
focused on reactions subsystem and metabolites 
characterizing the different phases of the disease 
development. The constraint-based modeling 
approach revealed that the reaction subsystems 
strongly changed during the disease progress, 
which was associated with changes in metabolic 
production potential by the microbial communities 
(Supplementary Table S2). It has been reported 
that the prevalence or absence of reaction subsys
tems in microbial community models can reflect 
healthy or dysbiotic microbial communities.48

First, we investigated which metabolite produc
tion potentials followed the observed proximity of 
LS3 with LS4, and LS5 with LS7 in the PCA plot 
(Figure 2a). The net production of some metabo
lites increased or decreased constantly from LS3 to 
LS5 but were predicted to be very high 
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(isobutyrate) or very low in LS6 (Figure 4). The net 
flux production of L-isoleucine, ethanol, and 
L-lactate was low in LS1 and LS6 (HeAveFluxes 
130.48 mmol/gDW/day), while it increased in the 
other time points (HeAveFluxes 234.93 mmol/ 
gDW/day). In contrast, the production of isobuty
rate followed an opposite trend and had a higher 
simulated accumulation in LS1 and LS6 
(HeAveFluxes 106.87 mmol/gDW/day) compared 
to the other samples (HeAveFluxes 30.14 mmol/ 
gDW/day). With the exception of isobutyrate, for 
each of the metabolites in Figure 4, the ratio of the 
maximum values in LS1–7 (LSMax) was greater 
than the maximum value (HeMax) in any of the 
34 healthy individuals: butyrate (2.7×), ethanol 
(2.6×), L-isoleucine (7.3×), and L-lactate (3×). 
These results suggest that monitoring the fluctua
tions of key microbial species and key metabolites 
together with the processes of bioconversion could 
help to identify transitions of inflammation 
(Figure 4).

To identify metabolite signatures at each time 
point, Euclidean clustering49 was performed con
sidering all the metabolites predicted with net flux 
production higher than 10 mmol/gDW/day. The 
results revealed the existence of three main clusters 
(Figure 5a). The threshold of 10 was selected arbi
trarily for graphical purposes. The first cluster, 
named low fluxes (LF), grouped together all the 
metabolites with a very low net production; 
the second cluster had the metabolites with inter
mediate net production (IF); and the third included 
the metabolites with high net production (HF). The 
three clusters were heterogeneous in metabolic 
subsystem composition. Some metabolites, whose 
flux rates were variable among the different phases 
of the disease, will be discussed more in detail and 
the roles of the microbial species mainly involved 
in their production. The prevalence of subsystems 
including reactions related to the metabolites will 
also be discussed.

As expected, “Methane metabolism” was 
strongly increased in LS1 and LS6 compared to 
the other phases (Supplementary Table S2) and 
was due to the higher abundance of methano
genic Archaea in LS1 and LS6. Accordingly, the 
predicted production of methane enhanced in 
LS1 and LS6 (log fold change (LogFC) 1.42 
and 0.84, respectively, Supplementary Table 

S2). In contrast, some subsystems were phase- 
specific (Supplementary Table S2). This was the 
case for the “Stickland reaction” (Figure 5b), 
which couples oxidation and reduction of 
amino acids to organic acids50 and characterized 
LS1. In a study exploring the subproducts of 
common degradation pathways, 80% (8/10) of 
Stickland reaction products have been fre
quently detected in IBD patient stool.51 Since 
all microbial community models for the seven 
time points received the same in silico diet, the 
observed differences were a direct result of the 
difference in microbial composition. The 
increase in hydrogen production could be an 
additional cause of the bloating event experi
enced as one of the IBD symptoms. Levitt and 
Olsson have already linked hydrogen production 
to the adverse bloating event.52 LS6 was char
acterized by an increased abundance of E. coli 
strains, e.g., E. coli 042, E. coli B354, and E. coli 
FVEC1302, whose genomes encode enzymes 
belonging to lipopolysaccharide (LPS) biosynth
esis subsystems. LPSs are produced and secreted 
by gram-negative bacteria (e.g., Salmonella 
typhimurium53 and E. coli,54) and can provoke 
an immune response. LPSs are generally soluble 
as monomers but they can aggregate into 
fibrous, highly insoluble lipoproteins and lead 
to inflammation.55 It has been reported that 
the concentration of LPS is increased in the 
acute phases of the disease compared to relap
sing ones.56

Butyrate is a key energy source for the host’s 
colonic epithelial cells.57 Our microbial community 
models predicted that the butyrate secretion rate in 
LS7 (flux of 152.164 mmol/gDW/day) was more 
than twice as high as the LS6 butyrate secretion 
rate (70.58 mmol/gDW/day). This jump was con
firmed by the laboratory-measured butyrate con
centration in the LS6 and LS7 fecal samples 
(Supplementary Table S1 sheet “Metadata”, Fig. 
S14), which also more than doubled from 0.7 to 
1.7 mg/mL. This large increase in butyrate produc
tion is likely driven by the 8-fold increase, from 
3.99% (LS6) to 31.5% (LS7) (Figure 3), 
(Supplementary Table S1 sheet “Metadata”), of 
the relative abundance of Faecalibacterium praus
nitzii, one of the major butyrate-producing 
microbes in the human gut. Butyrate increase is 
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also known to play an anti-inflammatory role in 
the gastrointestinal tract in CD patients.58

Furthermore, the production of L-serine was 
increased in LS6 (Figure 3) compared to the other 
time points (Supplementary Table S2). L-serine has 
been shown to interact with the gut microbiome 
and is known to elicit the secretion of antimicrobial 
molecules, such as bacteriocins.59 This amino acid 
is mainly produced by species of the Dialister genus 

and its importance will be discussed in the follow
ing paragraph. E. coli pathogenic strains have been 
proposed to use L-serine anabolism to enhance 
their fitness in the inflamed gut.60 In contrast, this 
pathway has a minor role in the pathogenic bacter
ial growth of healthy guts,61 suggesting that the 
signals or transduction pathways necessary for 
L-serine catabolism activation could be responsible 
for pathogen-specific adaptation to the 

Figure 5. Overview of metabolites produced and reactions subsystems across the different time points. (a) Heatmap of the net flux 
production of all metabolites with a summed net flux higher than 10 mmol/gDW/day. Key metabolites commented on in the text have 
been highlighted in the heatmap. LF - Low flux; IF - Intermediate flux; HF - High flux (see text for more information). (b) Geom plot of 
reaction subsystem prevalence across the different time points. The colours of the circles refer to the “manually-attributed” group of 
each subsystem. The diameter of the circles is proportional to the abundance of the reactions in the modelled microbial communities.
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inflammatory microenvironment. Intestinal 
inflammation can result in the generation of 
a microenvironment that is conducive to the 
growth of Enterobacteriaceae, allowing the out
compete of obligate anaerobes.62 Therefore, enter
obacterial blooms, such as those seen in LS 
(Supplementary Fig. S10), and more generally in 
CD, are a hallmark of inflammation-associated 
dysbiosis.63 Accordingly, E. coli can catabolize 
L-serine converting it to pyruvate, a crucial sub
strate for gluconeogenesis and tricarboxylic acid 
cycle pathways.64 L-serine also plays a role as 
a signaling molecule targeting the expression of 
stress response genes.59 Furthermore, it can be 
used as a precursor in the synthesis of gene pro
ducts involved in stress adaptation.60 In this con
text, it is known that L-serine catabolism is 
increased in E. coli under heat shock conditions 
and L-serine is used for the generation of heat 
shock proteins.60 L-serine uptake during inflam
matory conditions is probably a conserved 
mechanism utilized by pathogenic bacteria for 
their competitive fitness.65

Finally, the production of primary, conjugated 
bile acids and secondary bile acids were analyzed 
following the work of Heinken and colleagues.25 

Primary bile acids did not fluctuate over the differ
ent time points, while secondary bile acids showed 
dynamic changes peaking at the less inflamed 
stages of LS2, LS3, LS4, and LS6. This result is in 
agreement with previous studies reporting that 
secondary bile acids are lower in IBD-associated 
microbiomes66 (Supplementary Fig. S22). The 
deconjugation was driven by the activity of Dorea 
formicigenerans ATCC 27,75567 and Ruminococcus 
lactaris ATCC 29,17668 (Supplementary Table 3).

Taken together, our results revealed that numer
ous metabolite production fluxes were altered dur
ing the seven time points. Generalising our results 
for IBD will require validation in other patients or 
hypothesis testing in model organisms.

Insight into Dialister spp. metabolism and net of 
interactions

Next, we aimed at elucidating which microbes were 
driving the metabolic changes at each phase, 
thereby, shedding light onto the potential mechan
isms of the disease onset. Therefore, we calculated 

the microbe-metabolite contribution using the 
cooperative trade-off algorithm.69 Briefly, this algo
rithm assumes that the growth rate of an individual 
microbe in the community is maximized, while 
a sub-optimal growth rate of the remaining micro
bial community is maintained. The microbe- 
metabolite contribution identified that, in LS6, the 
production of L-serine was mediated mainly by two 
members of the Dialister genus, i.e., Dialister succi
natiphilus YIT 11,850 (Max (LS1–7) = 19× HeAve) 
and Dialister invisus DSM 15,470 (Max (LS1–7) =  
0.9× HeAve).

D. invisus DSM 15,470 has been shown to be 
involved in the establishment of dysbiosis typical 
for the IBD gut microbiome.70 Hence, metabolites 
produced by species of this genus were inspected in 
detail. D. invisus DSM 15,470 was identified in all 
time points except LS5, but its metabolic activity, 
measured in terms of the number of exchanged 
compounds, was very different in these time points. 
In LS1, D. invisus produced as many as 12 metabo
lites and consumed 52, while in the other time points, 
it consumed an average of ten metabolites. Notably, 
D. invisus and D. succinatiphilus YIT 11,850 pro
duced L-serine and formate during LS1, and glycine 
in the other phases (Figure 6), (Supplementary Table 
S3). Dietary glycine is known to prevent chemical- 
induced colitis by inhibiting the induction of inflam
matory cytokines and chemokines.71

Both L-serine and formic acid have been pro
posed to mediate proinflammatory mechanisms.61 

In LS6, L-serine uptake was mainly mediated by 
members of the Enterobacteriaceae family (e.g., 
E. coli 042, B354, FVEC1302, and H299). 
Additionally, formate production in LS1 was 
assigned a key role in the microbial interaction 
(Figure 6). Indeed, formate in LS1 fueled the pro
liferation of E. coli F11, M. smithii ATCC 35,061, 
and D. piger ATCC 29,098 (Figure 6), 
(Supplementary Table S3). E. coli F11 is an adher
ent invasive and pathogenic strain, which takes 
advantage of the leaking gut to replace strictly 
anaerobic bacteria.72 M. smithii ATCC 35,061 is 
a hydrogenotrophic archaeon that can use either 
CO2 and H2 or formate alone for methane 
production.37 The increase in methane production, 
and, therefore, constipation and bloating events, is 
known to be partially caused by the increase of this 
archaeal species (Figure 6), (Supplementary Table 
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S3).73 The prevalence of D. piger is higher in 
patients hospitalized for IBD in comparison to 
healthy individuals or patients hospitalized for 
other pathologies.74

The multifaceted role of Desulfovibrio piger ATTC2

The microbial composition varies between 
individuals,75 which may not necessarily translate 
into functional or metabolic differences.76 

However, certain metabolic functions may require 
the presence of specific microbial species.77 Hence, 
we investigated whether there were any function- 
specific microbes in the microbial community 
models at the different time points, whose presence 
was required for the production of specific meta
bolites. The analysis revealed that the 
Proteobacteria D. piger ATCC2 was the only 
microbial species involved in the production of 
sulfite (SO3

2−) in the microbial community models 
(Supplementary Table S3). We found that D. piger 
at its peak in LS was nearly four times more abun
dant than in the maximum relative abundance 
found across the healthy controls (LSMax/HeMax  

= 3.7). Patients affected by IBD, such as ulcerative 
colitis, are strongly discouraged to consume foods 
with high SO3

2- levels as being harmful and favor
ing tightening of inflammation.75 Furthermore, 
sodium sulfite, a common food additive, inhibits 
the activity of commensal and anti-inflammatory 
bacteria, such as F. prausnitzii.77 A large part of the 
SO3

2- present in the gut comes from dietary 
intake,78 however, some microbial species are 
known to produce SO3

2-. D. piger ATTC2 was not 
able to synthesize SO3

2- in single-species simula
tions. However, the pairwise simulations revealed 
that this species interacted with the Archaea 
M. stadtmanae DSM3091. Only when in synergy 
with the archaeal partner, D. piger ATTC2 could 
produce SO3

2-. This metabolic dependency 
reflected a cooperative behavior culminating in 
the production of the host-toxic SO3

2-. In support 
of this hypothesis, it is worth noting that the flux 
production of SO3

2− in the LS time points strongly 
reflected the abundance fluctuations of both 
M. stadtmanae and M. smithii, the two archaea in 
the community under investigation 
(Supplementary Fig. S17).

Figure 6. Map of species interactions. The map shows the most relevant microbial species and their interconnection in a dependency 
network. The figure was created with BioRender.
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The pairwise simulations revealed that D. piger 
ATCC 29,098 absorbed ethanol, converted it into 
acetate, and, finally, secreted it. The acetate was 
then taken up by the acetoclastic Archaea 
M. stadtmanae DSM 3091. D. piger ATCC 2909 
can metabolize ethanol using two alternative anae
robic pathways: in one case, the ethanol is oxidized 
to acetate via acetaldehyde as an intermediate. In 
the second case, other intermediates between acet
aldehyde and acetate are generated, namely acetyl- 
CoA and acetyl-P.79 In the simulations, the con
version of ethanol to acetate had a yield of approxi
mately 1 (0.93), as expected from experimental 
data.80 The nearly 1:1 ethanol-to-acetate ratio 
reflected the release of an excess of reducing 
equivalents, such as methane, by syntrophic 
partners.79 The ability of D. piger ATCC 29,098 to 
synthesize and export SO3

2- may also be recovered 
through the interaction with other archaeal part
ners. Accordingly, due to the commensalism, when 
M. stadtmanae DSM 3091 and D. piger ATCC 
29,098 were co-occurrent, the net flux production 
of methane was higher (Supplementary Table S2). 
The abundance of D. piger strains in IBD patients 
has already been reported.74

Taken together, our results indicate that through 
the production of two metabolites, i.e., L-serine 
and formate, species of the Dialister genus coop
erated with many pathogenic strains, such as 
adherent invasive E. coli strains, archaeal species, 
and D. piger ATCC2. The interactions could trigger 
inflammatory responses and enhance methane 
production. Furthermore, D. piger ATCC2 plays 
an important role in enhancing the production of 
host-toxic SO3

2- in microbial communities.

Whole-body modeling suggests a role of D. piger in 
the transsulfuration pathway

We then integrated the microbial community 
metabolic models of each time point with a male 
organ-resolved whole-body model of human 
metabolism26 to track the metabolic consequences 
of gut microbiome dysbiosis on different body 
sites, organs, and tissues on the host metabolism. 
In this simulation, we inspected the microbial 
metabolic influence on a range of different organs 
and tissues of the host as the only variable was the 
gut microbiome ecology composition, which 

changed over time. We found that the dysbiosis 
resulted in greater flux changes in some organs or 
cell types than in others. In fact, red blood cells, 
platelets, and the retina showed the most pro
nounced changes in predicted fluxes (Figure 7a), 
(Supplementary Table S4). Indeed, episcleritis, 
a disease involving the eyes, is one of the most 
common extraintestinal IBD manifestations.81 

The retina is currently the only eye organ included 
in the whole-body metabolic model; however, it 
would be interesting to account for additional 
body sites including other eye layers, e.g., the epi
sclera, in a future release. The predicted flux 
through the metabolism of the prostaglandin E2 
was altered in the pancreas in LS2 and LS7. 
Prostaglandin release is one of the first triggering 
factors of the inflammatory cascade typical of 
CD.82 Finally, many drugs, such as mesalazine, 
are used to inhibit the release of prostaglandins 
and leukotrienes in different body sites83 under
lying the key role of these molecules in the estab
lishment of CD.

Notably, the sulfite metabolism in the liver was 
dependent on the presence of D. piger ATCC 2909 
(Figure 7), (Supplementary Table S4) in the gut. In 
the microbiome-associated whole-body model, sul
fite from the small and large intestine could be 
either transported directly to the liver through the 
portal vein or as cysteine-S-sulfate (VMH ID: 
slfcys). In the liver, cysteine-S-sulfate can then be 
metabolized to cysteine (VMH ID: cys_L) and 
SO3

−2.84 In our simulations, SO3
2- was oxidized to 

SO4
2- through sulfite oxidase activity (VMH ID: 

SULFOX). This reaction produced hydrogen per
oxide in the model and thus, could contribute to 
oxidative stress, which we do not model as such. At 
the same time, sulfur metabolism was linked to the 
metabolism of bile acids in the simulations in LS2 
and LS7. Indeed, cysteine-S-sulfate is a precursor of 
hypotaurine and taurine. The flux through the 
reactions involved in this pathway (e.g., the reac
tions HYPTROX, r0539, and r0381) changed with 
the time points, being increased in LS2 and LS7. 
Around 85% of bile acid reactions were affected by 
the presence of D. piger ATCC 2909 (Figure 7b), 
(Supplementary Table S4). The increase of these 
compounds led to an increase in fecal H2S, which 
has been reported to be increased in IBD patients 
compared to healthy controls,85 in LS2 and LS7. 
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Cysteine was converted to L-cystine 
(Supplementary Fig. S20) by a state transition reac
tion named Glutathione:Cystine Oxidoreductase 
(VMH ID: CYSGLTH). CYSGLTH enabled the 
oxidation of glutathione, which acted as 
a scavenger molecule. Thus, based on our predic
tions, the presence of D. piger changed the fluxes in 
the transsulfuration pathway leading to higher 
cysteine to glutathione turnover.

In conclusion, the analysis of the microbiome- 
associated whole-body model has the potential to 
shed light on the alteration in the metabolism of 
different body sites caused by the dynamic dysbio
tic microbiome. The alteration of the sulfur meta
bolism in the liver and its link with the presence or 
absence of D. piger ATCC 2909 in the large intes
tine reflected the intercommunication among the 
different body sites. This network and its influence 

on the disease onset has been so far largely over
looked. However, this connection could reveal 
understudied pathobiology mechanisms.

Conclusions

The time course analysis performed on a patient 
affected by episodic colonic inflammation enabled 
the analysis of how net metabolite production 
fluxes were induced by the change of the gut micro
bial community composition during a time course 
covering more than one year. To date, this is the 
first analysis inspecting the gut microbiome dys
biosis evolution in a patient with time-varying 
colonic inflammation with metabolic modeling.

The study revealed that substantial metabolic 
changes were associated with the disease evolution 

Figure 7. Overview of the alteration of the microbiome-associated whole-body models. (a) Fraction of reactions changing flux 
direction due to the dysbiosis divided by body sites. (b) Key reactions in the sulphur metabolism in the liver are altered by dysbiosis 
(Supplementary Table S4).
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as a direct consequence of the patient’s changing 
gut microbiome composition, notably involving 
archaeal species. A number of biologically impor
tant metabolites were found to be highly overpro
duced over time in the patient, compared to 
healthy controls. This list includes oxygen, 
methane, thiamine, formaldehyde, TMAO, folic 
acid, serotonin, histamine, and tryptamine, which 
may yield new biomarkers of disease progression.

The analyses with microbiome-associated 
whole-body models revealed that the presence of 
D. piger could alter the metabolism of sulfur in the 
liver. This finding could be validated with func
tional experimental studies, e.g., with D. piger 
administration in murine models of colitis or 
germ-free mice and measurement of sulfur meta
bolism in liver.

Since the microbial composition is variable 
among individuals, to obtain a wide and general 
representation of the microbiome the time 
course inspection of a higher number of patients 
will be needed. Despite confounding effects of 
antibiotic use being a major limitation of the 
study, we demonstrated that microbial commu
nity metabolic modeling is a very valuable in 
silico approach to track correspondence between 
metagenomic data and metabolite production 
and can yield testable novel hypotheses to be 
addressed with additional validation studies. 
These results underline the importance of track
ing an individual’s gut microbiome composition 
and metabolic production along a time course, 
paving the way to new analyses for personalized 
medicine.

Methods

Ethics statement

The stool samples of the patient were collected by 
consent under two protocols: HRPP 141,853 
(American Gut Project) and HRPP 150,275 
(Evaluating the Human Microbiome). The proto
cols include written informed consent concerning 
dissemination and scientific publication of the 
results. Both protocols were approved by the 
Human Research Protection Program (HRPP) of 
the University of California, San Diego.

Longitudinal sample collection

The LS samples have been collected from naturally 
passed feces and stored without a buffer at − 80°C. 
Seven samples were selected. A personal symptom 
log was recorded, along with a large number of 
serum and stool biomarker metadata at the time 
that each fecal sample was taken.

Metagenomics data generation

Metagenomic sequencing of the seven stool sam
ples (LS1-LS7) was performed at the J. Craig 
Venter Institute using Illumina HiSeq2000 plat
form. On average, 160 million paired-end reads at 
2 × 100base pairs were generated per sample. The 
raw reads for the healthy controls were down
loaded from National Center for Biotechnology 
Information (NCBI) Sequence Read Archives 
under BioProject ID PRJNA43021. The processing 
of the raw metagenomic sequence data for LS and 
for the healthy controls and the computation of 
species relative abundance were described in an 
earlier publication by Wu et al.27 Briefly, after low- 
quality reads, reads from humans and duplicated 
reads were removed, and the filtered reads were 
then aligned to our curated microbial genomic 
sequences. The reads were assigned to their top 
matched genomes and the depth of genome cover
age of each species was calculated and then normal
ized to relative abundance so that the total relative 
abundance was 1.0.

Butyrate and biomarkers measurement

The patient LS used the company Doctor’s Data 
Comprehensive Stool Analysis kit (www.doctors 
data.com/Comprehensive-Stool-Analysis-CSA21) 
to generate the values of lysozyme, lactoferrin, and 
secretory IgA (all ELISA) reported in Figure 1 and 
graphed in the Supplementary Materials. In addi
tion, total butyrate (Supplementary Material Figure 
S14) was measured from the LS stool sample by 
Doctor’s Data using gas chromatography. The 
values in Figure 1 of fecal calprotectin, generated 
by ARUP Laboratories using Immunoassay, and of 
serum CRP were from tests with UC San Diego 
Health.
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Definition of the average European diet

The in silico diet represented the nutrient intake of 
an average European individual; hence, representing 
a typical “Western” diet. Its description, along with 
the corresponding flux values, was obtained from 
the nutrition resource in the Virtual Metabolic 
Human database.35 The diet was supplemented 
with metabolites that have been previously23 deter
mined as necessary for the biomass production of at 
least one AGORA reconstruction. The dedicated 
function (adaptVMHDietToAGORA.m) of the 
Microbiome Modelling Toolbox86 was used to con
strain each microbial community model. The lower 
bounds on all other dietary exchange reactions were 
set to zero to prevent the uptake of other 
metabolites.

Simulations

Simulations were carried out using the COBRA 
Toolbox87 and the Microbiome Modelling 
Toolbox,88 which is part of the COBRA Toolbox, 
in MATLAB version 2018b (MathWorks, Inc.) as 
a programming environment. Microbes identified 
in the metagenomic samples were mapped onto the 
AGORA2 collection to create the microbial com
munity models for the simulation. For this pur
pose, the function translateMetagenome2AGORA 
from the COBRA Toolbox was used. Microbial 
species with relative abundance higher than 10−5 

were considered in the population analysis (i.e., for 
the alpha and beta analysis), while for the 
AGORA2 collection mapping and all microbial 
community models, a threshold of 10−4 was used. 
The precise total relative abundance covered for 
each time point is reported in Table 1. 
Abundances were normalized for the microbial 
community modeling. For the simulations and 
the net secretion and uptake fluxes predictions, 
the function initMgPipe, contained in the 
Microbiome Modeling Toolbox,88 was used. More 
specifically, the function initMgPipe contains the 
function microbiotaModelSimulator, which calcu
lates the net maximal production capability for 
each metabolite. This parameter indicates the max
imal production of each metabolite and is com
puted by summing the maximal secretion flux 
with the maximal uptake flux for each metabolite. 

Furthermore, the function initMgPipe contains the 
function adaptVMHDietToAGORA, which was 
used to apply the diet constraints to the microbial 
community model. Microbe-metabolite contribu
tions were performed following Basile et al.12 In 
brief, the MICOM software12 was used through the 
cooperative trade-off algorithm integrating the 
abundances as input. Subsystems were assigned 
following the procedure proposed by Heirendt et 
al.,87 and implemented in the function 
calculateSubsystemAbundance using as input the 
reaction abundances. The list of primary and sec
ondary bile acids, as well as the list of reactions 
catalyzing their production, were extracted from 
the Supplementary material of the work of 
Heinken and colleagues.25

The integration of the whole-body model was 
performed using the Harvey reconstruction.26 To 
create the personalized gut model, the function 
combineHarveyMicrotiota was used and the simula
tions were performed with the minNorm algorithm 
through the COBRA Toolbox (optimizeWBmodel).

For all simulations, the optimization solver used 
was CPLEX (IBM iLOG, Inc).

Statistical analysis

A cohort of 34 metagenomic samples from 34 
healthy individuals from the Human Microbiome 
Project32 was used to create a “healthy average” 
(HE Ave) value for each microbe species. Then, 
we computed the ratio of the relative abundance 
of the seven time points to the average health and 
reported the ratio of the maximum value at any of 
the seven time points, i.e., Max (LS1–7), to the 
healthy average. Alpha diversity and beta diversity 
analysis were calculated with the “vegan” package34 

and using R software v.4.0.3. The taxonomic differ
ences of the different samples were weighted with 
a hierarchical tree based on the taxonomies of 
AGORA224 with the function taxa2dist. The alpha 
diversity was calculated with taxondive.89 The 
score considered for the alpha diversity was ∆*. 
For the beta diversity, the function vegdist was 
applied. The values of beta diversity were converted 
to Newick format and used to generate a tree repre
senting the differences between samples with the 
function NJ of the ape package. The PCA was 
performed with the function princomp with the 
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parameters “cor=TRUE, scores=TRUE”. The 3D 
plot of the PCA was realized with the function 
plot3d of the package “rgl”. The Log2 Fold 
Change was adopted as a parameter to characterize 
metabolite production across samples. Linear 
regression analysis was performed using the soft
ware XLSTAT to determine if methane production 
correlated with inflammation in terms of fecal cal
protectin and blood CRP.

Acknowledgments

We thank staff at the J Craig Venter Institute for performing 
the metagenomic sequencing of stool samples and the San 
Diego Supercomputer for providing the CPU hours for pro
cessing the metagenomic sequencing data. WL thanks the 
Center for Research in Biological Systems (CRBS) for support 
during part of the metagenomic analysis. A final acknowl
edgement to the Italian Consortium for Biotechnologies (CIB) 
for the support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported by the “Budget Integrato 
della Ricerca Dipartimentale” (BIRD198423) PRID 2019 of 
the Department of Biology of the University of Padua, entitled 
“SyMMoBio: inspection of Syntrophies with Metabolic 
Modelling to optimise Biogas Production” to LT. 
Furthermore, this study was funded by grants from the 
European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation programme 
(grant agreement No 757922), by the National Institute on 
Aging grants (1RF1AG058942 and 1U19AG063744), and 
from the Science Foundation Ireland under Grant number 
12/RC/2273-P2 to IT. The Ph.D. fellowship of AB was sup
ported by “Progetto di Eccellenza DiBio” of the University of 
Padua. AB was the recipient of the EMBO short-term fellow
ship 8720. Larry Smarr thanks the UC San Diego Calit2 
Qualcomm Institute and the Center for Microbiome 
Innovation members for useful discussions and a private 
donor for financial support for this paper.

ORCID

Ines Thiele http://orcid.org/0000-0002-8071-7110

Author contributions

Arianna Basile: Funding acquisition, Conceptualisation, 
Investigation, Formal Analysis, Visualisation, Writing – 
Original Draft. Almut Heinken: Software, Methodology, 
Formal Analysis, Writing – view & Editing. Johannes Hertel: 
Supervision, Writing – Review & Editing. Larry Smarr: 
Funding acquisition, Formal Analysis, Writing – Review & 
Editing. Weizhong Li: Review & Editing. Laura Treu: 
Supervision, Writing – Review & Editing. Giorgio Valle: 
Writing – Review & Editing. Stefano Campanaro: 
Supervision, Conceptualisation, Writing – Review & Editing. 
Ines Thiele: Conceptualisation, Supervision, Funding acquisi
tion, Software, Writing – Review & Editing.

Data availability statement

The raw abundance data have been submitted as part of 
Supplementary Table I.

Two later publications resequenced some of the LS1–7 
samples, at a lower depth than reported herein, as part of 
research on a longer time series of LS fecal samples. The first 
publication21 resequenced LS 1–7 (12/28/2011 to 4/29/2013) 
as part of a longer time series of 27 LS samples (dates from 12/ 
28/2011 to 12/07/2014 are listed in their Supplementary Table 
S1, Sheet Metadata) analyzing the metagenomics of E. coli 
strain dynamics. The metagenomics sequence of these 27 
samples can be found in EBI under study PRJEB24161. 
The second publication30 sequenced eight LS time series sam
ples (dates from 12/28/2011 to 5/22/2016), including rese
quencing LS1–3, and added metaproteomic analysis for 
these eight time points. Metagenomic data are available 
through EBI under the study PRJEB28712 (ERP110957).

References

1. Heinken A, Hertel J, Thiele I. Metabolic modelling 
reveals broad changes in gut microbial metabolism in 
inflammatory bowel disease patients with dysbiosis. 
NPJ Syst Biol Appl. 2021;7(1):19. doi:10.1038/s41540- 
021-00178-6.

2. Almeida A, Nayfach S, Boland M, Strozzi F, 
Beracochea M, Shi ZJ, Pollard KS, Sakharova E, 
Parks DH, Hugenholtz P, et al. A unified catalog of 
204,938 reference genomes from the human gut 
microbiome. Nat Biotechnol. 2021;39(1):105–114. 
doi:10.1038/s41587-020-0603-3.

3. Schippa S, Conte MP. Dysbiotic events in gut micro
biota: impact on human health. Nutrients [Internet] 
2014;6(12):5786–5805. [accessed 2022 Nov 11]. 
https://www.mdpi.com/2072-6643/6/12/5786 .

4. Cheng M, Ning K. Stereotypes about enterotype: the old 
and new ideas. Genomics, Proteomics & Bioinf. 2019;17 
(1):4–12. doi:10.1016/j.gpb.2018.02.004.

GUT MICROBES 21

https://doi.org/10.1038/s41540-021-00178-6
https://doi.org/10.1038/s41540-021-00178-6
https://doi.org/10.1038/s41587-020-0603-3
https://www.mdpi.com/2072-6643/6/12/5786
https://doi.org/10.1016/j.gpb.2018.02.004


5. Cho I, Blaser MJ. The human microbiome: at the inter
face of health and disease. Nat Rev Genet. 2012;13 
(4):260–270. doi:10.1038/nrg3182.

6. Lopez RN, Leach ST, Lemberg DA, Duvoisin G, 
Gearry RB, Day AS. Fecal biomarkers in inflammatory 
bowel disease. J Gastroen Hepatol [Internet]. 2017;32 
(3):577–582. [accessed 2022 Aug 6]. https://onlineli 
brary.wiley.com/doi/abs/10.1111/jgh.13611 .

7. Yoo JY, Groer M, Dutra SVO, Sarkar A, 
McSkimming DI. Gut microbiota and immune system 
interactions. Microorganisms [Internet]. 2020;8 
(10):1587. [accessed 2022 Sep 21]. https://www.mdpi. 
com/2076-2607/8/10/1587 .

8. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, 
Ahmad T, Andersen V, Andrews JM, Annese V, 
Brand S, et al. Inherited determinants of Crohn’s dis
ease and ulcerative colitis phenotypes: a genetic associa
tion study. Lancet. 2016;387(10014):156–167. doi:10. 
1016/S0140-6736(15)00465-1.

9. Willing BP, Dicksved J, Halfvarson J, Andersson AF, 
Lucio M, Zheng Z, Järnerot G, Tysk C, Jansson JK, 
Engstrand L. A pyrosequencing study in twins shows 
that gastrointestinal microbial profiles vary with 
inflammatory bowel disease phenotypes. 
Gastroenterology. 2010;139(6):1844–1854.e1. doi:10. 
1053/j.gastro.2010.08.049.

10. Yazdani M, Taylor BC, Debelius JW, Li W, Knight R, 
Smarr L. Using machine learning to identify major 
shifts in human gut microbiome protein family abun
dance in disease. In: 2016 IEEE International 
Conference on Big Data (Big Data); 2016 December 5- 
8; Washington D.C., USA. p. 1272–1280.

11. Heinken A, Basile A, Thiele I. Advances in 
constraint-based modelling of microbial communities. 
Current Opinion Sys Biol. [Internet] 2021;27:100346. 
https://www.sciencedirect.com/science/article/pii/ 
S2452310021000317 .

12. Basile A, Campanaro S, Kovalovszki A, Zampieri G, 
Rossi A, Angelidaki I, Valle G, Treu L. Revealing 
metabolic mechanisms of interaction in the anaero
bic digestion microbiome by flux balance analysis. 
Metab Eng. 2020;62:138–149. doi:10.1016/j.ymben. 
2020.08.013.

13. Thiele I, Heinken A, Fleming RMT. A systems biology 
approach to studying the role of microbes in human 
health. Curr Opin Biotechnol. 2013;24(1):4–12. doi:10. 
1016/j.copbio.2012.10.001.

14. Heinken A, Basile A, Hertel J, Thinnes C, Thiele I. 
Genome-scale metabolic modeling of the human 
microbiome in the era of personalized medicine. 
Annu Rev Microbiol. 2021;75(1):199–222. doi:10. 
1146/annurev-micro-060221-012134.

15. Orth JD, Thiele I, Palsson BØ. What is flux balance 
analysis? Nat Biotechnol. 2010;28(3):245–248. doi:10. 
1038/nbt.1614.

16. Norsigian CJ, Fang X, Seif Y, Monk JM, Palsson BO. 
A workflow for generating multi-strain genome-scale 

metabolic models of prokaryotes. Nat Protoc. 2020;15 
(1):1–14. doi:10.1038/s41596-019-0254-3.

17. Feist AM, Palsson BO. The biomass objective function. 
Curr Opin Microbiol [Internet]. 2010; 13(3):344–349. 
doi:10.1016/j.mib.2010.03.003.

18. Baldini F, Hertel J, Sandt E, Thinnes CC, Neuberger- 
Castillo L, Pavelka L, Betsou F, Krüger R, Thiele I, 
Consortium N-P. Parkinson’s disease-associated altera
tions of the gut microbiome predict disease-relevant 
changes in metabolic functions. BMC Biol. 2020;18:62. 
doi:10.1186/s12915-020-00775-7.

19. Hertel J, Harms AC, Heinken A, Baldini F, Thinnes CC, 
Glaab E, Vasco DA, Pietzner M, Stewart ID, 
Wareham NJ, et al. Integrated analyses of microbiome 
and longitudinal metabolome data reveal microbial- 
host interactions on sulfur metabolism in Parkinson’s 
Disease. Cell Rep. 2019;29(7):1767–1777.e8. doi:10. 
1016/j.celrep.2019.10.035.

20. Fang X, Vázquez-Baeza Y, Elijah E, Vargas F, 
Ackermann G, Humphrey G, Lau R, Weldon KC, 
Sanders JG, Panitchpakdi M, et al. Gastrointestinal 
surgery for inflammatory bowel disease persistently 
lowers microbiome and metabolome diversity. 
Inflamm Bowel Dis. 2021;27(5):603–616. doi:10.1093/ 
ibd/izaa262.

21. Fang X, Monk JM, Nurk S, Akseshina M, Zhu Q, 
Gemmell C, Gianetto-Hill C, Leung N, Szubin R, 
Sanders J, et al. Metagenomics-based, strain-level ana
lysis of Escherichia coli from a time-series of micro
biome samples from a crohn’s disease patient. Front 
Microbiol. 2018;9:2559. doi:10.3389/fmicb.2018.02559.

22. Fang X, Monk JM, Mih N, Du B, Sastry AV, Kavvas E, 
Seif Y, Smarr L, Palsson BO. Escherichia coli B2 strains 
prevalent in inflammatory bowel disease patients have 
distinct metabolic capabilities that enable colonization 
of intestinal mucosa. BMC Syst Biol. 2018;12(1):66. 
doi:10.1186/s12918-018-0587-5.

23. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, 
Bauer E, Noronha A, Greenhalgh K, Jäger C, 
Baginska J, Wilmes P, et al. Generation of 
genome-scale metabolic reconstructions for 773 mem
bers of the human gut microbiota. Nat Biotechnol. 
2017;35(1):81–89. doi:10.1038/nbt.3703.

24. Heinken A, Hertel J, Acharya G, Ravcheev DA, 
Nyga M, Okpala OE, Hogan M, Magnúsdóttir S, 
Martinelli F, Nap B, et al. Genome-scale metabolic 
reconstruction of 7,302 human microorganisms for 
personalized medicine. Nat Biotechnol. 2023: 1–12. 
doi:10.1038/s41587-022-01628-0

25. Heinken A, Ravcheev DA, Baldini F, Heirendt L, 
Fleming RMT, Thiele I. Systematic assessment of sec
ondary bile acid metabolism in gut microbes reveals 
distinct metabolic capabilities in inflammatory bowel 
disease. Microbiome. 2019;7(1):75. doi:10.1186/s40168- 
019-0689-3.

26. Thiele I, Sahoo S, Heinken A, Hertel J, Heirendt L, 
Aurich MK, Fleming RM. Personalized whole-body 

22 A. BASILE ET AL.

https://doi.org/10.1038/nrg3182
https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.13611
https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.13611
https://www.mdpi.com/2076-2607/8/10/1587
https://www.mdpi.com/2076-2607/8/10/1587
https://doi.org/10.1016/S0140-6736(15)00465-1
https://doi.org/10.1016/S0140-6736(15)00465-1
https://doi.org/10.1053/j.gastro.2010.08.049
https://doi.org/10.1053/j.gastro.2010.08.049
https://www.sciencedirect.com/science/article/pii/S2452310021000317
https://www.sciencedirect.com/science/article/pii/S2452310021000317
https://doi.org/10.1016/j.ymben.2020.08.013
https://doi.org/10.1016/j.ymben.2020.08.013
https://doi.org/10.1016/j.copbio.2012.10.001
https://doi.org/10.1016/j.copbio.2012.10.001
https://doi.org/10.1146/annurev-micro-060221-012134
https://doi.org/10.1146/annurev-micro-060221-012134
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1038/s41596-019-0254-3
https://doi.org/10.1016/j.mib.2010.03.003
https://doi.org/10.1186/s12915-020-00775-7
https://doi.org/10.1016/j.celrep.2019.10.035
https://doi.org/10.1016/j.celrep.2019.10.035
https://doi.org/10.1093/ibd/izaa262
https://doi.org/10.1093/ibd/izaa262
https://doi.org/10.3389/fmicb.2018.02559
https://doi.org/10.1186/s12918-018-0587-5
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1038/s41587-022-01628-0
https://doi.org/10.1186/s40168-019-0689-3
https://doi.org/10.1186/s40168-019-0689-3


models integrate metabolism, physiology, and the gut 
microbiome. Mol Syst Biol. 2020;16(5):e8982. doi:10. 
15252/msb.20198982.

27. Wu S, Li W, Smarr L, Nelson K, Yooseph S, Torralba M 
Large memory high performance computing enables 
comparison across human gut microbiome of patients 
with autoimmune diseases and healthy subjects 
[Internet]. In: Proceedings of the Conference on 
Extreme Science and Engineering Discovery 
Environment: Gateway to Discovery. New York, NY, 
USA: Association for Computing Machinery; 2013:1–6. 
doi:10.1145/2484762.2484828.

28. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, 
Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, 
NIH HMP Working Group, et al. The NIH human 
microbiome project. Genome Res. 2009;19 
(12):2317–2323. doi:10.1101/gr.096651.109.

29. Mills RH, Vázquez-Baeza Y, Zhu Q, Jiang L, Gaffney J, 
Humphrey G, Smarr L, Knight R, Gonzalez DJ. 
Evaluating metagenomic prediction of the metapro
teome in a 4.5-year study of a patient with Crohn’s 
disease. mSystems. 2019;4:e00337–18. doi:10.1128/ 
mSystems.00337-18.

30. Smarr L, Hyde ER, McDonald D, Sandborn WJ, 
Knight R. Tracking human gut microbiome changes 
resulting from a colonoscopy. Methods Inf Med. 
2017;56(6):442–447. doi:10.3414/ME17-01-0036.

31. Schembri J, Bonello J, Christodoulou DK, 
Katsanos KH, Ellul P. Segmental colitis associated 
with diverticulosis: is it the coexistence of colonic diver
ticulosis and inflammatory bowel disease? Ann 
Gastroenterol. 2017;30:257–261. [accessed 2023 Apr 
19]. doi:10.20524/aog.2017.0126.

32. Integrative HMP (iHMP) research network consor
tium. The integrative human microbiome project. 
Nature. 2019;569(7758):641–648. doi:10.1038/s41586- 
019-1238-8.

33. Chibani CM, Mahnert A, Borrel G, Almeida A, 
Werner A, Brugère J-F, Gribaldo S, Finn RD, 
Schmitz RA, Moissl-Eichinger C. A catalogue of 1,167 
genomes from the human gut archaeome. Nat 
Microbiol [Internet]. 2022;7(1):48–61. [Internet] 
doi:10.1038/s41564-021-01020-9.

34. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, 
Holmes SP. Bioconductor workflow for microbiome 
data analysis: from raw reads to community analyses. 
F1000Res. 2016;5:1492. doi:10.12688/f1000research. 
8986.2.

35. Noronha A, Modamio J, Jarosz Y, Guerard E, 
Sompairac N, Preciat G, Daníelsdóttir AD, Krecke M, 
Merten D, Haraldsdóttir HS, et al. The virtual metabolic 
human database: integrating human and gut micro
biome metabolism with nutrition and disease. Nucleic 
Acids Res. 2019;47(D1):D614–24. doi:10.1093/nar/ 
gky992.

36. Shah A, Morrison M, Burger D, Martin N, Rich J, 
Jones M, Koloski N, Walker MM, Talley NJ, 

Holtmann GJ. Systematic review with meta-analysis: 
the prevalence of small intestinal bacterial overgrowth 
in inflammatory bowel disease. Aliment Pharmacol 
Ther. 2019;49(6):624–635. doi:10.1111/apt.15133.

37. Dridi B, Raoult D, Drancourt M. Archaea as emerging 
organisms in complex human microbiomes. Anaerobe. 
2011;17(2):56–63. doi:10.1016/j.anaerobe.2011.03.001.

38. Henson MA, Phalak P. Microbiota dysbiosis in inflam
matory bowel diseases: in silico investigation of the 
oxygen hypothesis. BMC Syst Biol. 2017;11(1):145. 
doi:10.1186/s12918-017-0522-1.

39. Winter SE, Lopez CA, Bäumler AJ. The dynamics of 
gut-associated microbial communities during 
inflammation. EMBO Rep. 2013;14(4):319–327. 
doi:10.1038/embor.2013.27.

40. Wilson A, Teft WA, Morse BL, Choi Y-H, Woolsey S, 
DeGorter MK, Hegele RA, Tirona RG, Kim RB. 
Trimethylamine-N-oxide: a novel biomarker for the 
identification of inflammatory bowel disease. Dig Dis 
Sci Available from. 2015;60(12):3620–3630. doi:10. 
1007/s10620-015-3797-3.

41. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut micro
biota: role in pathogen colonization, immune responses 
and inflammatory disease. Immunol Rev. 2017 [[cited 
2022 Nov 10]];279(1):70–89. doi:10.1111/imr.12567.

42. Sánchez-Pérez S, Comas-Basté O, Duelo A, Veciana- 
Nogués MT, Berlanga M, Latorre-Moratalla ML, Vidal- 
Carou MC. Intestinal dysbiosis in patients with hista
mine intolerance. Nutrients. 2022;14(9):1774. [accessed 
2022 Sep 22]. https://www.mdpi.com/2072-6643/14/9/ 
1774 .

43. Liu Y, Dai M. Trimethylamine N-Oxide generated by 
the gut microbiota is associated with vascular inflam
mation: new insights into atherosclerosis. Mediators 
Inflamm. 2020;2020:4634172. doi:10.1155/2020/ 
4634172.

44. Kelly D, Yang L, Gut Microbiota PZ. Fusobacteria, and 
colorectal cancer. Diseases [Internet]. 2018;6(4):109. 
https://www.mdpi.com/2079-9721/6/4/109 .

45. Cao Y-N, Feng L-J, Wang B-M, Jiang K, Li S, Xu X, 
Wang W-Q, Zhao J-W, Wang Y-M. Lactobacillus acid
ophilus and Bifidobacterium longum supernatants 
upregulate the serotonin transporter expression in 
intestinal epithelial cells. Saudi J Gastroenterol. 
2018;24(1):59–66. doi:10.4103/sjg.SJG_333_17.

46. Crowell MD. Role of serotonin in the pathophysiology 
of the irritable bowel syndrome. Br J Pharmacol. 
2004;141(8):1285–1293. doi:10.1038/sj.bjp.0705762.

47. Minderhoud IM, Oldenburg B, Schipper MEI, Ter 
LindeJJM, Samsom M, Ter Linde JJM. Serotonin 
synthesis and uptake in symptomatic patients with 
Crohn’s disease in remission. Clin Gastroenterol 
Hepatol. 2007;5(6):714–720. doi:10.1016/j.cgh.2007. 
02.013.

48. Heinken A, Thiele I. Systems biology of host–microbe 
metabolomics. Wiley Interdiscip Rev Syst Biol Med. 
2015;7(4):195–219. doi:10.1002/wsbm.1301.

GUT MICROBES 23

https://doi.org/10.15252/msb.20198982
https://doi.org/10.15252/msb.20198982
https://doi.org/10.1145/2484762.2484828
https://doi.org/10.1101/gr.096651.109
https://doi.org/10.1128/mSystems.00337-18
https://doi.org/10.1128/mSystems.00337-18
https://doi.org/10.3414/ME17-01-0036
https://doi.org/10.20524/aog.2017.0126
https://doi.org/10.1038/s41586-019-1238-8
https://doi.org/10.1038/s41586-019-1238-8
https://doi.org/10.1038/s41564-021-01020-9
https://doi.org/10.12688/f1000research.8986.2
https://doi.org/10.12688/f1000research.8986.2
https://doi.org/10.1093/nar/gky992
https://doi.org/10.1093/nar/gky992
https://doi.org/10.1111/apt.15133
https://doi.org/10.1016/j.anaerobe.2011.03.001
https://doi.org/10.1186/s12918-017-0522-1
https://doi.org/10.1038/embor.2013.27
https://doi.org/10.1007/s10620-015-3797-3
https://doi.org/10.1007/s10620-015-3797-3
https://doi.org/10.1111/imr.12567
https://www.mdpi.com/2072-6643/14/9/1774
https://www.mdpi.com/2072-6643/14/9/1774
https://doi.org/10.1155/2020/4634172
https://doi.org/10.1155/2020/4634172
https://www.mdpi.com/2079-9721/6/4/109
https://doi.org/10.4103/sjg.SJG_333_17
https://doi.org/10.1038/sj.bjp.0705762
https://doi.org/10.1016/j.cgh.2007.02.013
https://doi.org/10.1016/j.cgh.2007.02.013
https://doi.org/10.1002/wsbm.1301


49. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal 
patterns and correlations in multidimensional genomic 
data. Bioinformatics. 2016;32(18):2847–2849. doi:10. 
1093/bioinformatics/btw313.

50. de Vladar HP, de Vladar HP. Amino acid fermentation 
at the origin of the genetic code. Biol Direct. 2012;7 
(1):6. doi:10.1186/1745-6150-7-6.

51. Theriot CM, Fletcher JR. Human fecal metabolomic 
profiling could inform Clostridioides difficile infection 
diagnosis and treatment. J Clin Invest. 2019;129 
(9):3539–3541. doi:10.1172/JCI130008.

52. Levitt MD, Furne J, Olsson S. The relation of passage of 
gas an abdominal bloating to colonic gas production. 
Ann Intern Med. 1996;124(4):422–424. doi:10.7326/ 
0003-4819-124-4-199602150-00006.

53. Freudenberg MA, Merlin T, Gumenscheimer M, 
Kalis C, Landmann R, Galanos C. Role of lipopolysac
charide susceptibility in the innate immune response to 
Salmonella typhimurium infection: lPS, a primary tar
get for recognition of gram-negative bacteria. Microbes 
Infect. 2001;3(14–15):1213–1222. doi:10.1016/S1286- 
4579(01)01481-2.

54. Gronbach K, Flade I, Holst O, Lindner B, 
Ruscheweyh HJ, Wittmann A, Menz S, Schwiertz A, 
Adam P, Stecher B, et al. Endotoxicity of lipopolysac
charide as a determinant of T-Cell−Mediated colitis 
induction in mice. Gastroenterology. 2014;146 
(3):765–775. doi:10.1053/j.gastro.2013.11.033.

55. Deng Z, Liu S. Inflammation-responsive delivery sys
tems for the treatment of chronic inflammatory 
diseases. Drug Deliv Transl Res. 2021;11 
(4):1475–1497. doi:10.1007/s13346-021-00977-8.

56. Magro DO, Kotze PG, Martinez CAR, Camargo MG, 
Guadagnini D, Calixto AR, Vasques ACJ, de LS AM, 
Geloneze B, Pareja JC, et al. Changes in serum levels of 
lipopolysaccharides and CD26 in patients with Crohn’s 
disease. Intest Res. 2017;15:352–357. doi:10.5217/ir. 
2017.15.3.352.

57. Maynard CL, Elson CO, Hatton RD, Weaver CT. 
Reciprocal interactions of the intestinal microbiota 
and immune system. Nature. 2012;489(7415):231–241. 
doi:10.1038/nature11551.

58. Segain JP, Raingeard de la Blétière D, Bourreille A, 
Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, 
Blottière HM, Galmiche JP. Butyrate inhibits inflam
matory responses through NFkappaB inhibition: impli
cations for Crohn’s disease. Gut. 2000;47(3):397–403. 
doi:10.1136/gut.47.3.397.

59. Sassone-Corsi M, Nuccio S-P, Liu H, Hernandez D, 
Vu CT, Takahashi AA, Edwards RA, Raffatellu M. 
Microcins mediate competition among 
Enterobacteriaceae in the inflamed gut. Nature. 
2016;540(7632):280–283. doi:10.1038/nature20557.

60. Matthews RG, Neidhardt FC. Elevated serine catabo
lism is associated with the heat shock response in 
Escherichia coli. J Bacteriol. 1989;171(5):2619–2625. 
doi:10.1128/jb.171.5.2619-2625.1989.

61. Kitamoto S, Alteri CJ, Rodrigues M, Nagao-Kitamoto 
H, Sugihara K, Himpsl SD, Bazzi M, Miyoshi M, 
Nishioka T, Hayashi A, et al. Dietary L-serine confers 
a competitive fitness advantage to Enterobacteriaceae in 
the inflamed gut. Nature Microbiology. 2020;5 
(1):116–125. doi:10.1038/s41564-019-0591-6.

62. Zeng MY, Inohara N, Nuñez G. Mechanisms of 
inflammation-driven bacterial dysbiosis in the gut. 
Mucosal Immunol. 2017;10(1):18–26. doi:10.1038/mi. 
2016.75.

63. Stecher B, Conway T, Cohen P. The roles of inflamma
tion, nutrient availability and the commensal microbiota 
in enteric pathogen infection. Microbiol Spectr. 2015;3 
(3):3. doi:10.1128/microbiolspec.MBP-0008-2014.

64. Sawers G. The anaerobic degradation of L-serine and 
L-threonine in enterobacteria: networks of pathways 
and regulatory signals. Arch Microbiol. 1998;171 
(1):1–5. doi:10.1007/s002030050670.

65. Connolly JPR, Gabrielsen M, Goldstone RJ, Grinter R, 
Wang D, Cogdell RJ, Walker D, Smith DGE, Roe AJ, 
Mulvey MA. A highly conserved bacterial d-serine 
uptake system links host metabolism and virulence. 
PLoS Pathog. 2016;12(1):e1005359. doi:10.1371/jour 
nal.ppat.1005359.

66. Duboc H, Rajca S, Rainteau D, Benarous D, 
Maubert M-A, Quervain E, Thomas G, Barbu V, 
Humbert L, Despras G, et al. Connecting dysbiosis, 
bile-acid dysmetabolism and gut inflammation in 
inflammatory bowel diseases. Gut. 2013;62 
(4):531–539. doi:10.1136/gutjnl-2012-302578.

67. Li N, Koester ST, Lachance DM, Dutta M, Cui JY, 
Dey N. Microbiome-encoded bile acid metabolism 
modulates colonic transit times. iScience [Internet]. 
2021; 24:102508. doi:10.1016/j.isci.2021.102508.

68. Kean IRL, Wagner J, Wijeyesekera A, De Goffau M, 
Thurston S, Clark JA, White DK, Ridout J, Agrawal S, 
Kayani R, et al. Profiling gut microbiota and bile acid 
metabolism in critically ill children. Sci Rep [Internet]. 
2022; 12:10432. doi:10.1038/s41598-022-13640-0.

69. Diener C, Gibbons SM, Resendis-Antonio O, Chia N. 
MICOM: metagenome-scale modeling to infer meta
bolic interactions in the gut microbiota. mSystems. 
2020;5(1):e00606–19. doi:10.1128/mSystems.00606-19.

70. Joossens M, Huys G, Cnockaert M, De Preter V, 
Verbeke K, Rutgeerts P, Vandamme P, Vermeire S. 
Dysbiosis of the faecal microbiota in patients with 
Crohn’s disease and their unaffected relatives. Gut. 
2011;60:631–637. doi:10.1136/gut.2010.223263.

71. Tsune I, Ikejima K, Hirose M, Yoshikawa M, 
Enomoto N, Takei Y, Sato N. Dietary glycine prevents 
chemical-induced experimental colitis in the rat. 
Gastroenterology. 2003;125(3):775–785. doi:10.1016/ 
S0016-5085(03)01067-9.

72. Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, 
Petersen AM. Escherichia coli pathobionts associated 
with inflammatory bowel disease. Clin Microbiol Rev. 
2019;32(2):e00060–18. doi:10.1128/CMR.00060-18.

24 A. BASILE ET AL.

https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1186/1745-6150-7-6
https://doi.org/10.1172/JCI130008
https://doi.org/10.7326/0003-4819-124-4-199602150-00006
https://doi.org/10.7326/0003-4819-124-4-199602150-00006
https://doi.org/10.1016/S1286-4579(01)01481-2
https://doi.org/10.1016/S1286-4579(01)01481-2
https://doi.org/10.1053/j.gastro.2013.11.033
https://doi.org/10.1007/s13346-021-00977-8
https://doi.org/10.5217/ir.2017.15.3.352
https://doi.org/10.5217/ir.2017.15.3.352
https://doi.org/10.1038/nature11551
https://doi.org/10.1136/gut.47.3.397
https://doi.org/10.1038/nature20557
https://doi.org/10.1128/jb.171.5.2619-2625.1989
https://doi.org/10.1038/s41564-019-0591-6
https://doi.org/10.1038/mi.2016.75
https://doi.org/10.1038/mi.2016.75
https://doi.org/10.1128/microbiolspec.MBP-0008-2014
https://doi.org/10.1007/s002030050670
https://doi.org/10.1371/journal.ppat.1005359
https://doi.org/10.1371/journal.ppat.1005359
https://doi.org/10.1136/gutjnl-2012-302578
https://doi.org/10.1016/j.isci.2021.102508
https://doi.org/10.1038/s41598-022-13640-0
https://doi.org/10.1128/mSystems.00606-19
https://doi.org/10.1136/gut.2010.223263
https://doi.org/10.1016/S0016-5085(03)01067-9
https://doi.org/10.1016/S0016-5085(03)01067-9
https://doi.org/10.1128/CMR.00060-18


73. Ghoshal U, Shukla R, Srivastava D, Ghoshal UC. 
Irritable bowel syndrome, particularly the 
constipation-predominant form, involves an increase 
in methanobrevibacter smithii, which is associated 
with higher methane production. Gut Liver. 2016;10 
(6):932–938. doi:10.5009/gnl15588.

74. Loubinoux J, Bronowicki J-P, Pereira IAC, 
Mougenel J-L, Faou AE. Sulfate-reducing bacteria in 
human feces and their association with inflammatory 
bowel diseases. FEMS Microbiol Ecol. 2002;40 
(2):107–112. doi:10.1111/j.1574-6941.2002.tb00942.x.

75. Magee EA, Edmond LM, Tasker SM, Kong SC, 
Curno R, Cummings JH. Associations between diet 
and disease activity in ulcerative colitis patients using 
a novel method of data analysis. Nutr J. 2005;4(1):7. 
doi:10.1186/1475-2891-4-7.

76. Eng A, Borenstein E. Taxa-function robustness in 
microbial communities. Microbiome. 2018;6(1):45. 
doi:10.1186/s40168-018-0425-4.

77. Jimenez Loayza JJ, Berendsen EM, Teh J-J, Hoedt EC, 
Zhang J, Liu Q, Hamilton AL, Wilson-O’Brien A, 
Trakman GL, Lin W, et al. P837 the common food addi
tives sodium sulfite and polysorbate 80 have a profound 
inhibitory effect on the commensal, anti-inflammatory 
bacterium Faecalibacterium prausnitzii: the ENIGMA 
study. Journal Of Crohn’s And Colitis. 2019;13 
(Supplement_1):S542–3. doi:10.1093/ecco-jcc/jjy222.961.

78. Devkota S, Chang EB. Interactions between diet, bile acid 
metabolism, gut microbiota, and inflammatory bowel 
diseases. Dig Dis [Internet] Available from. 2015; 
33:351–356. doi:10.1159/000371687.

79. Keller A, Schink B, Müller N. Alternative pathways of 
acetogenic ethanol and methanol degradation in the ther
mophilic anaerobe thermacetogenium phaeum. Front 
Microbiol. 2019;10:423. doi:10.3389/fmicb.2019.00423.

80. Bertsch J, Siemund AL, Kremp F, Müller V. 
A novel route for ethanol oxidation in the aceto
genic bacterium Acetobacterium woodii: the acet
aldehyde/ethanol dehydrogenase pathway. Environ 
Microbiol. 2016;18(9):2913–2922. doi:10.1111/1462- 
2920.13082.

81. Levine JS, Burakoff R. Extraintestinal manifestations of 
inflammatory bowel disease. Gastroenterol Hepatol 
(N Y). [Internet] 2011Available from. cited 2022 Apr 
28.7. 235–241.https://www.ncbi.nlm.nih.gov/pmc/arti 
cles/PMC3127025/ .

82. Wallace JL. Prostaglandin biology in inflammatory 
bowel disease. Gastroenterol Clin North Am. 2001;30 
(4):971–980. doi:10.1016/S0889-8553(05)70223-5.

83. Tromm A, Griga T, May B. Oral mesalazine for the treat
ment of Crohn’s disease: clinical efficacy with respect to 
pharmacokinetic properties. Hepatogastroenterology. 
1999;46:3124–3135.

84. Stipanuk MH. Sulfur amino acid metabolism: pathways 
for production and removal of homocysteine and 
cysteine. Annu Rev Nutr. 2004;24(1):539–577. doi:10. 
1146/annurev.nutr.24.012003.132418.

85. Walker A, Schmitt-Kopplin P. The role of fecal sulfur 
metabolome in inflammatory bowel diseases. Int J Med 
Microbiol. 2021;311(5):151513. doi:10.1016/j.ijmm. 
2021.151513.

86. Heinken A, Thiele I, Wren J. Microbiome Modelling 
Toolbox 2.0: efficient, tractable modelling of micro
biome communities. Bioinformatics Available from. 
2022;38(8):2367–2368. [[cited 2023 Mar 28]]. doi:10. 
1093/bioinformatics/btac082.

87. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, 
Heinken A, Haraldsdóttir HS, Wachowiak J, 
Keating SM, Vlasov V, et al. Creation and analysis of 
biochemical constraint-based models using the COBRA 
Toolbox v.3.0. Nat Protoc. 2019;14(3):639–702. doi:10. 
1038/s41596-018-0098-2.

88. Baldini F, Heinken A, Heirendt L, Magnusdottir S, 
Fleming RMT, Thiele I, Wren J. The microbiome 
modeling toolbox: from microbial interactions to 
personalized microbial communities. 
Bioinformatics. 2019;35(13):2332–2334. doi:10.1093/ 
bioinformatics/bty941.

89. Clarke KR, Warwick RM. The taxonomic distinct
ness measure of biodiversity: weighting of step 
lengths between hierarchical levels. Mar Ecol Prog 
Ser. 1999;184:21–29. doi:10.3354/meps184021.

GUT MICROBES 25

https://doi.org/10.5009/gnl15588
https://doi.org/10.1111/j.1574-6941.2002.tb00942.x
https://doi.org/10.1186/1475-2891-4-7
https://doi.org/10.1186/s40168-018-0425-4
https://doi.org/10.1093/ecco-jcc/jjy222.961
https://doi.org/10.1159/000371687
https://doi.org/10.3389/fmicb.2019.00423
https://doi.org/10.1111/1462-2920.13082
https://doi.org/10.1111/1462-2920.13082
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127025/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127025/
https://doi.org/10.1016/S0889-8553(05)70223-5
https://doi.org/10.1146/annurev.nutr.24.012003.132418
https://doi.org/10.1146/annurev.nutr.24.012003.132418
https://doi.org/10.1016/j.ijmm.2021.151513
https://doi.org/10.1016/j.ijmm.2021.151513
https://doi.org/10.1093/bioinformatics/btac082
https://doi.org/10.1093/bioinformatics/btac082
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1093/bioinformatics/bty941
https://doi.org/10.1093/bioinformatics/bty941
https://doi.org/10.3354/meps184021

	Abstract
	Introduction
	Results and discussion
	Characterisation of the time points
	Analysis of metagenomic data with microbiome-level metabolic models
	Microbial and metabolic changes over time
	Methane and Methanobacteriaceae
	<italic>Oxygen and</italic> E. coli
	<italic>Thiamine and</italic> E. coli
	<italic>Other metabolites that vary with</italic> E. coli
	TMAO and Fusobacterium species
	<italic>Serotonin and</italic> B. longum
	Normally rare Firmicutes species

	Metabolic and subsystem signature of each phase
	<italic>Insight into Dialister</italic> spp. <italic>metabolism and net of interactions</italic>
	<italic>The multifaceted role of Desulfovibrio</italic> piger <italic>ATTC2</italic>
	<italic>Whole-body modeling suggests a role of</italic> D. piger <italic>in the transsulfuration pathway</italic>

	Conclusions
	Methods
	Ethics statement
	Longitudinal sample collection
	Metagenomics data generation
	Butyrate and biomarkers measurement
	Definition of the average European diet
	Simulations
	Statistical analysis

	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	Author contributions
	Data availability statement
	References

