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Large-scale online campaigns, malicious or otherwise, require a significant degree of
coordination among participants, which sparked interest in the study of coordinated
online behavior. State-of-the-art methods for detecting coordinated behavior perform
static analyses, disregarding the temporal dynamics of coordination. Here, we carry out
a dynamic analysis of coordinated behavior. To reach our goal, we build a multiplex
temporal network and we perform dynamic community detection to identify groups
of users that exhibited coordinated behaviors in time. We find that i) coordinated
communities (CCs) feature variable degrees of temporal instability; ii) dynamic analyses
are needed to account for such instability, and results of static analyses can be
unreliable and scarcely representative of unstable communities; iii) some users exhibit
distinct archetypal behaviors that have important practical implications; iv) content
and network characteristics contribute to explaining why users leave and join CCs. Our
results demonstrate the advantages of dynamic analyses and open up new directions
of research on the unfolding of online debates, on the strategies of CCs, and on the
patterns of online influence.
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Online platforms offer unprecedented opportunities to organize and carry out large-
scale activities, defying the constraints that limit physical interactions. A wide range of
activities benefit from such opportunities, including legitimate information campaigns
and political protests (1–3), as well as potentially nefarious ones such as disinformation
campaigns and targeted harassment (4–8). A common characteristic of large-scale online
campaigns is the significant degree of coordination among the users involved, which is
needed to spread content widely and to let the campaigns obtain significant outreach,
ultimately ensuring their success (9).

Due to the pervasiveness of coordinated online behavior and its relevance for the
effectiveness of both benign and malicious campaigns, the topic gained much scholarly
attention. For example, a few methods were recently proposed for detecting coordinated
communities (CCs) and for measuring the extent of coordination between users (9–11).
These studies define coordination as an unexpected or exceptional similarity between the
actions of two or more users. The analysis is carried out by building a user similarity
network based on common user activities (e.g., co-retweets) and by studying it with
network science techniques. A limitation of the existing methods is that they are based
on static analyses. For example, refs. 9–11 each build a single aggregated network that
encodes user behaviors occurred throughout many weeks. However, online behaviors are
dynamic (i.e., time-varying) (12, 13). As such, aggregating behaviors over many weeks
(or months) of time represents an oversimplification that risks overshadowing important
temporal dynamics. On the contrary, a minority of detection methods solely model
time (14, 15), disregarding other important facets of online coordination such as the
interactions between users. Due to the above methodological limitations, the temporal
dynamics of coordinated behavior are, so far, essentially unexplored. In addition, the
majority of the existing literature on coordinated behavior, especially from the area
of computer science, focus on inorganic and malicious coordination. This is because
of the nefarious consequences that such forms of coordination have on the online
environments and even on the society at large, which make inorganic and malicious
coordination worthy of particular attention. However, both foundational works on
offline coordination (16) as well as more recent works on online coordination (9, 17, 18)
remark that coordination can also be implicit rather than explicit, and spontaneous and
emergent rather than intentional, inorganic, and organized. In light of this literature,
here we refer to coordinated behavior in an intentionally broad and unbiased way. Our
choice to encompass all instances of online coordination—malicious and inorganic, or
otherwise—allows us to investigate both harmful coordinated groups and neutral ones.

Significance

Social media campaigns shape
public opinion in various domains
of society. Coordinated behavior
is at the heart of successful
campaigns, enabling outreach
through effective content
spreading. This study focuses on
the temporal dynamics of
coordinated campaigns and
characterizes their influence on
Twitter during two recent major
elections. Analyzing the temporal
changes of online behavior
uncovers complex dynamic
patterns that evolve over time.
We reveal different user
behaviors and archetypes,
measuring how they affect and
influence the online environment.
Investigating the temporal
dimension of online coordination
reveals the dynamics of online
debates, the strategies of
coordinated communities, and
the patterns of online influence,
with major practical implications
for research and policy of online
platforms and for the society at
large.
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Therefore, in addition to providing contributions to the study of
online information manipulation, our work also contributes to
the understanding of human dynamics and online interactions,
providing interesting findings from both computational and
social standpoints.

Contributions. We carry out a dynamic analysis of coordinated
behavior. Instead of working with static networks, we build and
analyze a multiplex temporal network (19) and we leverage state-
of-the-art dynamic community detection algorithms (20) to find
groups of users that exhibited coordinated behaviors in time. We
apply our method to two Twitter datasets (21, 22) of politically
polarized discussions covering the run up to the 2019 UK general
elections (9, 23) and the 2020 USA presidential elections. In
addition, we validate our method on a third Twitter dataset
(24) featuring known instances of malicious accounts involved
in a large information operation (see Materials and Methods for
details on the datasets and our methodology). We compare the
results of our dynamic analysis to the static ones, demonstrating
the advantages of the former. Most importantly however, our
innovative approach opens up additional directions of research
and allows answering to the following research questions:
RQ1. To what extent are CCs stable over time? So far, coordinated
behavior has been studied with static methods. However, some
CCs might exhibit temporal instability, meaning that, through
time, a significant portion of members leave the community while
others join it. In this case, time-aggregated static analyses would
yield unreliable results by overshadowing the temporal variations.
Here, we compare static and dynamic results, and we shed light
on the stability of CCs.
RQ2. What are the temporal dynamics of user behavior with respect
to the evolving CCs? In case a certain degree of instability existed,
some users would belong to different CCs at different points
in time. Here, we investigate the dynamics with which user
membership to CCs changes through time and their implications
on the effectiveness of online campaigns.
RQ3. Why do users belong to different CCs through time? Different
patterns of user membership to CCs are indicative of markedly
different situations. For instance, users who remain in the same
community for a long time might be strong supporters of that
community. Conversely, users who abandon a community in
favor of another might have been disappointed by the former or
persuaded by the latter. In any case, investigating the possible
reasons for user shifts between CCs (or lack thereof) is a novel
direction of research with important practical implications (e.g.,
the study of online influence). Here, we analyze users who exhibit
different behaviors and we compare them to their respective CCs,
gaining insights into why users change community.

Based on the results to the aforementioned RQs, our main
contributions are summarized as follows:

• We carry out a dynamic analysis of coordinated online
behavior.

• We show that the communities involved in both the UK 2019
and the USA 2020 electoral debates featured variable degrees
of instability, which motivates dynamic analyses.

• We find that the majority of user shifts from a community to
another occurred between similar (like-minded) communities,
while only a minority involved very different communities.

• We define and characterize three archetypes of users with
markedly different behaviors, namely, i) stationary, ii) influ-
enced, and iii) volatile users.

• We find that content and network characteristics are useful for
understanding why users move between communities.

Related Work
The majority of existing approaches for detecting coordinated
behavior are based on network science. These works model
common activities between users (e.g., co-retweets, temporal
and linguistic similarities, etc.) to build user similarity networks
and to subsequently analyze them, for example by means of
community detection algorithms (10, 11, 18). The typical
output of these methods is a network where the CCs are
identified. Some network-based methods do not only detect
coordination as in a binary classification task but also quantify
the extent of coordination between users and communities, thus
providing more nuanced results (9). Notably, all aforementioned
methods build static networks and employ static community
detection algorithms. A few works focused on describing and
even predicting temporal changes in online community structure.
However, these leveraged explicit communities, such as the
scholars belonging to a specific scientific community (25), or
the relationship between gamers and teams in certain team-based
online games (26). In our work instead, the online communities
are not known in advance. Other significant differences with
respect to the existing works are related to the temporal
granularity of the analysis. For example, some studies measured
user migrations between platforms after major events, such as
the bans of toxic communities from a certain platform (27, 28).
However, such analyses only considered before/after scenarios,
without providing a fine-grained temporal modeling of the
user migrations nor a nuanced network representation of the
communities involved in the event. So far, the dynamic analysis
of coordinated behavior is essentially unexplored. To this end,
however, several advances were proposed to model time-varying
behaviors with multiplex temporal networks (19) and to employ
dynamic community detection algorithms (20). Our work applies
these techniques to the study of coordinated behavior, thus mov-
ing beyond the current state-of-the-art. In addition to network-
based approaches, others proposed to detect coordination with
temporal point processes where user activities are modeled as the
realization of a stochastic process (14, 15). These methods are
capable of modeling the latent influence between the coordinated
accounts, their strongly organized nature, and possible prior
available knowledge. Finally, others adopted traditional feature
engineering approaches to find similarities between users (3), or
focused on specific user behaviors such as URL sharing (17).

Once coordinated behaviors are detected, subsequent efforts
are devoted to characterizing CCs. Characterization tasks are
typically aimed at distinguishing between malicious (e.g., dis-
information networks) and genuine (e.g., fandoms, activists)
forms of coordination (23, 29–31). This can be achieved by
analyzing the content shared by the CCs, as done by Hristakieva
et al. (23) that estimated the amount of shared propaganda.
Others analyzed the structural properties of the coordination
networks, finding differences between malicious and benign
CCs (9, 29). Finally, another interesting direction of research
revolves around estimating the influence that CCs have on other
users. However, existing results in this area are still scant and
contradictory. For example, Cinelli et al. (32) studied network
properties of information cascades on Twitter, finding that
coordinated users have a strong influence on the noncoordinated
ones that participate in the same cascade. Contrarily, Sharma et
al. (14) found that coordinated users have a strong influence
on other coordinated users and only a small influence on
noncoordinated ones. Here, we show that temporal coordination
networks are a valuable tool toward assessing the influence that
CCs exert on the users in a network.
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Results
The application of our method (see Materials and Methods for a
detailed discussion of our methodological approach) to the UK
2019 electoral debate produced a multiplex temporal network G
comprising 277 K nodes and 4.1M edges. On average, a layer
Gi ∈ G contains 11 K nodes (� = 169) and 164 K edges
(� = 19K). In total, '600 different CCs were part of G for
at least one time window. The analysis of the USA 2020 debate
resulted in a multiplex temporal network G comprising 526 K
nodes and 7.5M edges. On average, a layer Gi ∈ G contains 21 K
nodes (� = 2 K) and 303 K edges (� = 79 K). In total, '2 K
different CCs were part of G for at least one time window. Out
of all the CCs identified in both the UK 2019 and the USA 2020
datasets, only a limited number persisted for all of the time. These
also include the vast majority of all users in the networks. For this
reason, in the following, we present detailed results only for the
top-10 largest CCs from both datasets (SI Appendix, Table S3).

Dynamic vs. Static Communities. We first present the results of
our dynamic analyses, and we subsequently compare them with
the static ones.
Dynamic UK 2019 communities. The dynamic communities that
dominated the 2019 UK electoral debate are as follows:

• LAB1: Laborists that supported the party and its leader Jeremy
Corbyn, in addition to traditional Labor themes such as
healthcare and climate change.

• LAB2: Another community of laborists. Their themes were
similar to those of LAB1, but their members exhibited different
temporal behaviors (SI Appendix, Fig. S1).

• RCH: Users who spread the laborist manifesto and urged others
to register for the vote. RCH is mostly similar to LAB2 but, again,
featured different temporal behaviors (SI Appendix, Fig. S1).

• B60: Activists that used the electoral debate to protest against a
pension age equalization law to the detriment of women born
in the 1950s (33).

• TVT: A community comprising multiple political parties that
pushed for a tactical vote in favor of the laborists, to oppose
the conservative party and to stop the Brexit.

• SNP: Supporters of the Scottish National Party (SNP), in favor
of the Scottish independence from the UK.

• ASE: Conservative supporters that were mainly engaged in
attacking the labor party and Jeremy Corbyn for anti-
semitism (34).

• SNPO: Users that debated and opposed Scotland’s intention of
pushing for a second independence referendum.

• BRX: A community in support of the former Brexit Party.
• CON: Conservatives that supported the party and its leader Boris

Johnson, as well as Brexit.

Adding to the content analysis of the themes discussed by
each community, we also characterize CCs by their political
orientation (Materials and Methods). Fig. 1A shows the position
of each CC within the continuous political spectrum. Overall,
the dynamic CCs identified with our method are in line with the
2019 UK political landscape and with the development of the
electoral debate (35). CCs represent both large and strongly
polarized parties (e.g., laborists and conservatives), as well as
smaller ones that teamed up against conservatives with tactical
voting. As shown in Fig. 1A, each CC also appears to be correctly
positioned within the 2019 UK political spectrum, with LAB1,
LAB2, and CON holding the extremes of the spectrum, and parties
such as liberal democrats and Scottish nationalists (TVT and SNP,
respectively) laying toward the middle.

A

B

Fig. 1. Position of the CCs in the political spectrum. (A) UK 2019. (B) USA
2020. The color scheme mirrors the political or ideological colors of the
corresponding country.

Dynamic USA 2020 communities. We again characterize the top
dynamic communities by analyzing their use of hashtags through
time (SI Appendix, Fig. S1). The dynamic communities that
dominated the 2020 USA electoral debate are as follows:

• DEM: Democrats that supported the party and its leader Joe
Biden.

• BFR: A community engaged in promoting Biafra’s indepen-
dence from Nigeria while also supporting Trump (36).

• PCO: Users engaged in Pandemic conspiracy theories and
other controversial narratives about the China government
responsibility in the COVID-19 pandemic.

• QCO: Users engaged in the QAnon conspiracy theory (37).
• ACH: Hong Kong protesters against China’s regime and in

support of Trump (38).
• EFC: Users discussing the allegation of election fraud due to

postal ballots.
• REP: Republicans that supported the party and its leader

Donald Trump.
• FRA: Far-right French users in support of Trump and the voting

fraud accusations.
• CRE: A community in support of the Republican party,

engaging in conspiracy theories.
• IRN: Users in support of the Restart movement, an Iranian

political opposition group, which supports Trump for his
policy against the Iranian regime (39).

We compute the political polarization of each CC with the
same technique adopted for the UK 2019 CCs (Materials and
Methods). Fig. 1B shows the position of each CC within the
continuous political spectrum. The dynamic CCs identified with
our method are consistent with the political environment in the
run up to the 2020 USA presidential elections (40). The main
differences between the results obtained for the USA 2020 versus
the UK 2019 dataset are due to the inherently different online
political environment at the time of the two elections. Specifically,
while the online debate about the UK 2019 political election
involved communities scattered throughout the whole political
spectrum, as shown in Fig. 1A, the one about the USA 2020 elec-
tion involved an overwhelming majority of Republican-aligned
communities and only an isolated community of Democrat users,
as shown in Fig. 1B. This result is also confirmed when analyzing
the topic-based pairwise similarities between CCs (SI Appendix,
Fig. S2).
Comparison with static CCs. Here, we compare the results of our
dynamic analyses with those obtained with static analyses on each
dataset. Previous studies (9) found 7 static CCs in the UK 2019
dataset, while we found 10 static CCs in the USA 2020 dataset.
Fig. 2 presents a heatmap of the overlap between the static CCs
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A B

Fig. 2. Mapping between the static CCs found in previous studies and the
dynamic CCs found with our method for UK 2019 (A) and USA 2020 (B). The
mapping is based on the overlap between community members. Overall
there is a good match between static and dynamic communities.

(y axis) and the dynamic ones (x axis) found with our method
for each dataset. In the figure, the overlap expresses the fraction
of users from a static CC that are members of a dynamic one.
As shown, there is overall a very good match between static and
dynamic CCs. Specifically, 5 out of 7 and 9 out of 10 static
CCs have overlap > 60% with a dynamic CC, for UK 2019
and USA 2020, respectively. This result supports the consistency
between static and dynamic analyses. Nonetheless, some static
communities from each dataset were split into multiple dynamic
communities. For UK 2019, the CON, LCH (a small community
of activists protesting against an unfair taxation), and LAB static
CCs were split, whereas for USA 2020 this occurred to EFC.
The results of the dynamic analyses are confirmed by the analysis
of the temporal behaviors of these CCs (SI Appendix, Fig. S1).
As an example, users of the LAB static CC belong to the LAB1,
LAB2, and RCH dynamic CCs, which all exhibit overall similar
but temporally different behaviors. To this regard, the larger
number of CCs found with the dynamic analysis are due to
the better modeling of the temporal dimension, which allows
identifying behavioral differences that were not observable with
static analyses.

RQ1: Temporal Stability of CCs. So far we highlighted that our
dynamic analyses provided overall similar—yet more nuanced
and fine-grained—results with respect to previous static analyses.
Now we leverage our innovative dynamic model of coordinated
behavior (Materials and Methods) to evaluate the temporal
stability of the CCs involved in the online electoral debates,
by investigating the extent to which they underwent changes
through time. This analysis is relevant for multiple reasons: i) it
sheds light on how CCs evolve in time, and ii) it allows assessing
how representative are static analyses of coordinated behavior,
with respect to the temporal variations of the CCs.
Temporal evolution of CCs. To assess how CCs changed through
time we measured temporal fluctuations in their size, member-
ship, as well as their cumulative influx and outflux of users
(Materials and Methods). Figs. 3 and 4 present the results of
these analyses. Regarding community size, Figs. 3A and 4A
highlight major differences in the temporal evolution of the CCs.
Some communities such as SNP, TVT, ASE, IRN, and CRE appear
as relatively stable in time, with only limited size fluctuations
represented by mostly flat lines. Contrarily, other communities
such as LAB1, LAB2, CON, EFC, and ACH exhibit marked
variations. In particular for UK 2019, LAB2 almost doubled its
initial size between November 21 and 26. CON exhibits a similar
trend, albeit with reduced magnitude. For USA 2020 instead,
EFC initially expanded and subsequently shrank significantly,
while ACH lost more than 50% of its original size in the last couple
of weeks before the election. This result demonstrates that some

A B

C D

Fig. 3. UK 2019: Temporal stability of the CCs measured in terms of their
evolving size (A), membership (B), and influx (C) and outflux (D) of users
to/from the community. Each tick on the x axis corresponds to a 1-wk-long
time window. Time windows are offset by one day. Dates on the x axis
represent the start date of the corresponding time window.

CCs were rather unstable, as they experienced major temporal
variations in size. Moreover, our results also demonstrate that
some CCs evolved in time in opposite ways. For example, while
LAB2 and CON increased their size until around November 23,
LAB1 presents an opposite trend. Similar considerations can
be made for SNPO, which increased its size until election day,
with respect to RCH that progressively shrank, and for other
communities involved in the USA 2020 debate.

Figs. 3B and 4B provide additional results by tracking how
the membership—that is, the set of users that belong to a
community at a given time—and not just the size, of each CC
changes through time. As expected, CCs that experienced major
size variations (e.g., LAB2, CON, EFC, ACH) present the largest
differences in membership. Interestingly however, also CCs that
exhibited moderate size variations (LAB1), or that appeared as
overall stable when only considering their size (TVT and ASE),
nonetheless feature marked membership differences in time. This
result tells us that a stationary size does not necessarily imply
stability in terms of members of the community. In fact, some
CCs maintained a relatively stable number of members not
because of lack of user shifts between CCs, but as a result of
a balanced inflow and outflow of members. Fig. 3 C and D
provide detailed results on this aspect for UK 2019, while Fig. 4
C and D do for USA 2020. As shown, some CCs (B60) had a
limited influx and outflux for all the time, which is reflected in
Fig. 3B by a relatively stable membership. On the flip side, other
CCs (RCH, CON) were much more unstable, with a massive influx
and outflux of users that translates into unstable membership.
Interestingly, there also exist less straightforward situations, such
as those of TVT and CRE that featured strong influx and outflux,
but a relatively stable size and membership. This result implies
that many users joined and left TVT and CRE every time window,
but that those who left were likely to come back at a later
time and vice versa. In other words, both TVT and CRE were
characterized by a restricted set of users who repeatedly joined
and left the communities. Overall, our results provide evidence
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A B

C D

Fig. 4. USA 2020: Temporal stability of the CCs measured in terms of their
evolving size (A), membership (B), and influx (C) and outflux (D) of users
to/from the community. Each tick on the x axis corresponds to a 1-wk-long
time window. Time windows are offset by 1 d. Dates on the x axis represent
the start date of the corresponding time window.

of temporal instability and highlight marked differences in the
temporal dynamics of some CCs.
Representativeness of static CCs. We conclude our analysis of
RQ1 by discussing the implications of our findings about the
instability of the CCs, with respect to the static analyses of
coordinated behavior. In particular, results in both Figs. 3 and 4
highlighted that some CCs underwent marked changes in time
that cannot be captured with time-aggregated static analyses.
Figs. 5 and 6 dig deeper into this aspect by comparing the time-
evolving size and membership of each dynamic CC to those
of its corresponding static CC. In particular, to be strongly
representative of a dynamic community, a static CC must have
relative size S and membership similarity J both close to 1. The
mapping between static and dynamic CCs is in Fig. 2. The
results in Figs. 5 and 6 surface some of the drawbacks of static
analyses. The only static CCs that are strongly representative
of their dynamic counterparts are ASE and SNP for UK 2019,
and CRE for USA 2020, as reflected by relative size S ' 1 and
membership similarity J > 0.6. The same can be concluded also
for TVT, REP, and QCO, although to a much lower extent. Instead,

A B

Fig. 5. UK 2019: Comparison between the time-evolving size (A) and mem-
bership (B) of each dynamic CC, and the static size and membership of the
corresponding static CC.

A B

Fig. 6. USA 2020: Comparison between the time-evolving size (A) and
membership (B) of each dynamic CC, and the static size and membership
of the corresponding static CC.

all other static CCs are weakly representative of the corresponding
dynamic CCs. In fact, all have relative size far from 1 (e.g., S ' 5
on October 14 for FRA), and membership similarity J < 0.4.
Overall, we found several static CCs that are poorly representative
of the temporal evolution of the corresponding communities,
which could possibly lead to inaccurate or unreliable results.

RQ2: Temporal dynamics of user behavior. The different tem-
poral evolution of the CCs that we observed in RQ1 are due
to different user behaviors, which we investigate in this section.
Fig. 7 shows the joint and marginal distributions of the number
of distinct CCs to which users belonged and the number of user
shifts between CCs. As shown, 72% of all UK 2019 users and
50% of all USA 2020 users belonged to two or less CCs for all the
time, which is also represented by all marginal distributions being
skewed toward small numbers of distinct memberships and shifts.
In fact, all four marginal distributions in Fig. 7 are heavy-tailed,
as highlighted by the accurate power-law fitting shown with red
lines in the marginal histograms. At the same time, however, a
minority of users belonged to many CCs, which explains our
previous results on the instability of some communities. Fig. 7
also allows evaluating the behavior that we observed in Fig. 3 for
TVT and in Fig. 4 for CRE: users repeatedly leaving and rejoining
the same community. Such behavior is reflected in Fig. 7 with
users having many shifts but few memberships. Fig. 7A shows
few users with this behavior and, in fact, the distributions of
memberships and shifts for UK 2019 are strongly correlated
(Pearson’s � = 0.73) meaning that the behavior observed for
members of TVT is overall marginal in the whole dataset. On the
contrary, Fig. 7B depicts a slightly different situation for USA
2020, as demonstrated by the relatively dense (hot) region of
the heatmap below the main diagonal of the plot. This means
that the behavior observed for CRE is more prominent, albeit
still related to a minority of users as reflected by the moderate
correlation between the distributions of memberships and shifts
for USA 2020 (Pearson’s � = 0.38).

The analysis of Fig. 7 only considers the number of mem-
berships and shifts between CCs. However, not all shifts are
the same, as moving between two opposite communities (e.g.,
at the extremes of the political spectrum) entails a much bigger
change—a farther leap—than moving between two similar ones.
To account for this facet we assign a weight wk,j to all shifts
sk→ j between any origin community Ck and any destination
community Cj, based on the (dis)similarity between Ck and Cj
(Materials and Methods). When considering also the distance
between the origin and destination CCs involved in user shifts,
results show that the majority of shifts occur between politically
similar communities. This finding is in line with the theories
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A

B

Fig. 7. Joint discrete distribution of the number of user shifts between CCs
and user memberships to CCs, with marginal univariate distributions. (A)
UK 2019. (B) USA 2020. Notably: i) 51% and 93% of all users belonged to
more than one CC for UK 2019 and USA 2020, respectively, ii) memberships
and shifts are strongly correlated (� = 0.73) in UK 2019 and moderately so
(� = 0.38) in USA 2020, iii) the marginal distributions of memberships and
shifts are heavy-tailed in both datasets.

about political polarization and echo chambers (41). Nonetheless,
a minority of users experienced major ideological shifts by moving
across the political spectrum, for both the UK 2019 and the
USA 2020 election (SI Appendix, Fig. S3). Another interesting
observation derived from this analysis is that the vast majority
of shifts for UK 2019 occurred toward the left of the political
spectrum. This means that, overall, the users involved in the
UK 2019 online electoral debate ideologically moved toward
the left as the debate unfolded (see SI Appendix, Fig. S3 and
corresponding discussion).

RQ3: Archetypes and Drivers of User Behavior. When inves-
tigating user behaviors in RQ2, Fig. 7 surfaced heavy-tailed
distributions for both user memberships to CCs and shifts
between CCs, which imply heterogeneous user behaviors. On
one hand, these distributions represent a bulk of stationary users
with few shifts and memberships. On the other hand, however,
their long tails also admit the existence of some volatile users
characterized by a multitude of shifts, and of all other behaviors
in between the “stationary” and “volatile” extremes. Following
this observation, we introduce three archetypes of users, each
corresponding to different temporal behaviors with important
practical implications. For each archetype, we i) propose an
operative definition, ii) apply the definition to measure the
presence of such users in our CCs, and iii) explore possible
motivations for their behavior.
Archetype 1: Stationary. Stationary users are those who belong to the
same community for all the time. This archetype straightforwardly
emerges from Fig. 7 and the above discussion. The analysis of
stationary users is relevant because their behavior could imply that

they are strong supporters and core members of their CC (42).
Fig. 8 shows the proportion of stationary users, as well as of
the users of the remaining archetypes, in the CCs. Users that
do not match the definition of any archetype introduced in this
section are grouped as “others.” As shown, the proportion of
stationary users is in the region of 50% for UK 2019, while
it varies significantly for the CCs involved in USA 2020. In
detail, center-leaning communities in UK 2019—such as B60,
TVT, and SNP—featured a large share of stationary users: between
68% and 79% of all community members. Contrarily, stationary
users constituted only'42% of the strongly polarized CCs such
as LAB1, LAB2, and CON. This finding suggests that politically
polarized communities were more unstable than moderate ones
during the UK 2019 online electoral debate. Interestingly, also
our results in Fig. 3 support this conclusion, with politically
extreme CCs appearing as overall more unstable. This result
is particularly relevant also in light of the many studies that
specifically focus on strongly polarized communities, such as
those on political polarization, fringe and extreme behaviors, and
far-right online groups (43–45). The main difference between
UK 2019 and USA 2020 is represented by the overall lower
fraction of stationary users in the former online debate. Within
this context, the two Republican CCs were the most stable ones
with REP (Republicans) containing 39% stationary users and
CRE (Conspiracist Republicans) containing as much as 62%.
This result is again consistent with those reported in Fig. 4 A
and B about the temporal stability of CCs. Stationary users for
all other CCs were in the region of 18%. This marked difference
between UK 2019 and USA 2020 is motivated by the different
political polarization of the communities that took part in the two
online debates, shown in Fig. 1. Indeed, while the UK 2019 CCs
almost uniformly spanned the whole political spectrum, eight
out of ten of those involved in USA 2020 laid on the right-hand
side of the spectrum. In turn, this resulted in more shifts between
communities and consequently in less stationary users.

To gain insights into why stationary users never leave their
CC, we analyze their use of hashtags as a proxy for their interests
and viewpoints, in relation to those of their CC and of all other
communities (see SI Appendix, Fig. S4 and related discussion).
The rationale for this analysis stems from the literature on
echo chambers and political polarization as these users might
be disincentivized to change community because they already
belong to the CC that mostly represents their interests and
viewpoints (41). Results show that 94% of all UK 2019 stationary
users and 97% of all USA 2020 stationary users are mostly
similar to the CC to which they belong, as highlighted in the
figure by the great prevalence of users along the main diagonal.

A B

Fig. 8. Membership composition of the UK 2019 (A) and USA 2020 (B) CCs
in terms of the different archetypes of users. CCs are ordered on the x axis
according to their political leaning.
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Overall, our results confirm the similarity between the interests
and viewpoints of stationary users and those of the CC to which
they belong, consistently with the established literature on echo
chambers (46).
Archetype 2: Influenced. Influenced users are those who change
community and remain in the destination community for a relatively
long time. One of the advantages of our dynamic analysis lies in the
possibility to investigate user shifts between CCs. In the case of
polarized or controversial online debates, shifts—disregarded in
previous studies—provide valuable information on the evolving
stance of the users with respect to the sides involved in the debate.
To this end, users who abandon a community to join another
one for a long time might have been persuaded or influenced
by the latter. Hence, detecting and characterizing influenced
users could have important practical implications for the study
of online campaigns. For our subsequent analyses, we consider
as influenced all those users who never left the destination
community Cj after a shift sk→ j. Moreover, we also impose
that each influenced user remained in Cj for at least one third
of the time covered in the dataset, so as to avoid considering as
influenced those users who stayed in the destination community
for just a few days before the election. Fig. 8A shows marked
differences in the proportion of influenced users within the UK
2019 CCs. Out of all the communities, LAB2 was the one with
the highest share (18%), followed by LAB1, B60, and RCH. These
are all left and center-left leaning communities. Opposite results
emerge for right-leaning communities, where CON had the lowest
share of influenced users, followed by BRX, TVT, and SNPO. These
results extend and reinforce those related to the net flows of users
between CCs (SI Appendix, Fig. S3). Together, they surface a
strong political imbalance, in favor of the left, in the capacity
to attract and hold users by the CCs involved in the electoral
debate. The proportion of influenced users reveals interesting
patterns also for the USA 2020 scenario, as shown in Fig. 8B.
Here, the CCs with the highest share of influenced users were
PCO and ACH, followed by BFR, QCO, and EFC. In the context of
the USA 2020 online debate, these were the most center-leaning
communities. Similarly to the UK 2019 case, the analysis of
influenced users in USA 2020 unveiled an interesting pattern in
the capacity of some CCs to pull and hold users.

Next, we explore possible drivers for the behavior of influenced
users. For each influenced user u, we investigate whether there
exist signals capable of explaining its shift sk→ j from the origin
community Ck to the destination community Cj. For this
analysis, we consider the time-evolving relationship between u,
Ck, and Cj from a twofold perspective: i) topic-based similarity
and ii) topological position in the network. With the former,
we assess whether influenced users exhibited a time-increasing
topic-based similarity with their destination communities. With
the latter, we evaluate whether the position of the influenced
users in the temporal network became gradually closer to their
destination community. The temporal trends (see SI Appendix,
Figs. S5 and S6, and related discussions) reveal that influenced
users indeed exhibited an increasing similarity—be it topic-
or network-based—to their destination community as time
went by. Meanwhile, they also became increasingly dissimilar
to their origin community. This finding is confirmed in both
datasets and holds under all the viewpoints considered in our
analyses, revealing that content and network characteristics
provide insights into why users shift between CCs (see SI
Appendix for details).
Archetype 3: Volatile. Volatile users are those who repeatedly change
community, staying in each community only for a limited amount of

time. At the opposite of stationary users are those whose behavior
is very erratic. Volatile users often shift between CCs without
attaching to any, if not for a very limited time. The identification
and characterization of volatile users in online debates are
relevant, as they might represent undecided users who have not
already taken a definitive position about the discussed topic (47).
Here, we operationalize volatile users as those who performed
three or more shifts, and that spent less than one third of the total
time in each CC to which they belonged. Fig. 8A shows that the
proportion of volatile users in the UK 2019 CCs is skewed toward
the right-hand side of the political spectrum. In detail, CON had
by far the largest share of volatile users (18%), followed by SNPO,
BRX, and ASE—which are all right-leaning communities. Volatile
users in each of the remaining CCs accounted for less than 5%
of each community’s members. This result is the counterpart of
what we discussed about influenced users for the left-leaning CCs.
In fact, while we previously found evidence of the effectiveness
of the left-leaning communities in attracting (i.e., influencing)
users as the electoral debate unfolded, here we find evidence of
the weakness of the right-leaning CCs. Interestingly, this result
appears to be in contrast to the majority of the existing literature
on the use of online platforms by political groups, where right-
leaning communities were described as tech-savvy and capable
of making the most out of social media campaigning (45, 48).
The distribution of volatile users within the USA 2020 CCs is
relatively uniform, with the exception of CRE and FRA. About
the former, all the results are consistent in highlighting that CC
as the overall more stable. This result is particularly relevant
in comparison to the overall instability of the majority of CCs
involved in the USA 2020 debate. The latter community instead
features an opposite behavior, as it is characterized by a marked
instability (Fig. 6A), emphasized by a majority of volatile users
and very few stationary ones (Fig. 8B). All other CCs involved
in the USA 2020 debate have a considerable fraction of volatile
users in the region of 40%. Overall, these results indicate that
the USA 2020 online debate was characterized by much more
instability than the UK 2019 one, as demonstrated by both the
results on the fraction of stationary, influenced, and volatile users
(Fig. 8) as well as by the analysis of temporal stability of the CCs
involved in the two debates (Fig. 5 vs. Fig. 6).

When analyzing possible drivers for the behavior of volatile
users, we found that the shifts by volatile users are typically very
short (SI Appendix, Fig. S7). This result is again consistent with
the echo chamber theory (46) and explains why volatile users
change community so often. Interestingly, the same analysis also
shows that some influenced users permanently join politically
distant communities.

Validation. As a final case study, we apply our method to a
Twitter dataset related to a large-scale information operation (see
Materials and Methods and SI Appendix for details on the dataset).
The dataset is composed of the inauthentic accounts that took
part in the operation and of a comparable set of genuine accounts.
As such, it represents a labeled benchmark suitable for validating
the efficacy of our method at distinguishing between inauthentic
and inorganic forms of coordination versus genuine ones.
Specifically, we run our method with different combinations
of parameters, evaluating at each run the extent to which the
inauthentic accounts are grouped in distinct communities with
respect to the genuine ones. To measure the extent of separation
between inauthentic and genuine accounts, we adapt the well-
known F1 score to our problem (Materials and Methods). Fig. 9A
shows an excerpt of the results that we obtained with a grid search
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A

B

Fig. 9. Honduras 2019. (A) Efficacy (F1 score) of our method at detecting
CCs involved in an information operation, based on the choice of parameters
time window length and time window step. The resolution parameter  of the
community detection algorithm is set to the optimal value  = 10−5. (B)
Snapshot (layer) of the Honduras 2019 multiplex temporal network showing
that all inauthentic accounts (orange-colored) are clustered in a single CC,
together with only a few genuine accounts (blue-colored).

over the two main parameters of our method (i.e., the length and
step of the time windows), when fixing the resolution parameter
of the community detection algorithm. As shown, the application
of our method yields CCs in which the inauthentic accounts are
generally separated from the genuine ones, as testified by 0.75 ≤
F1 ≤ 0.91. The analysis reveals a trend where larger F1 scores are
obtained for small values of the two parameters. In fact, the best
F1 score is obtained with time window length = 3 d and step = 2 d.
Fig. 9B shows one layer of the multiplex temporal network where
the nodes are colored so as to represent the inauthentic (orange-
colored) and genuine (blue-colored) accounts, and where the
different CCs are highlighted. The network in the figure shows a
good separation between the inauthentic and genuine accounts,
where the former are all grouped in a single community with
only a few genuine nodes. For reference, applying the traditional
static coordination detection approach to this problem would
result in F1 = 0.82, demonstrating the advantage of a properly
configured dynamic approach.

Discussion
We investigated the temporal dynamics of coordinated online
behavior in the context of two recent major elections and an
information operation. Our approach, grounded on a multiplex
temporal network and dynamic community detection, identified
more CCs than those found in previous works, surfacing temporal
nuances of coordination that would not be observable with the
traditional static approach. Our analysis produced key findings
in multiple areas. Regarding CCs, we found that the majority
were rather unstable and experienced significant changes in size
and membership through time. Regarding user membership to
CCs, we found evidence of heavy-tailed distributions implying
the existence of a bulk of relatively stationary users and of a long
tail of volatile ones. The majority of user shifts from a community
to another occurred between politically aligned communities ac-
cording to the echo chamber theory, although we found a subset
of users who crossed the political spectrum. Finally, we found that
content and network characteristics convey useful information
for understanding why users move between certain CCs.

Implications. Our results bear important implications about the
limitations of static analyses of online coordination, the strategies

of CCs, the patterns of online influence, and for the research and
policy of online platforms.
Instability and influence. The first major implication of our study
is the increased awareness of the instability of CCs. To this
end, our results open up new directions of research on the
temporal dynamics of coordinated online behavior, which was so
far almost exclusively analyzed from a static rather than a dynamic
standpoint (10, 32). However, our results show the limitations
of the former approach, suggesting that additional efforts should
be devoted to devising nuanced and reliable dynamic analyses.
Then, our results about the broad array of diverse user behaviors,
and the resulting user archetypes that we identified, have
significant implications for the study of online interactions and
influence (49). For example, future computational and social
research should extensively investigate the motivations for such
heterogeneous behaviors, for which we provided but some initial
explanations. Our results in this area can be particularly useful
toward the ongoing research on online influence and persuasion,
as the shifts detected via dynamic analyses of coordination could
contribute to identifying successful cases of influence over users or
communities in a network (50). Similarly, our scientific approach
could be carried over to investigate the temporal dynamics
of online polarization and the possible temporal evolution
of echo chambers (46, 51). Our findings are also particularly
impactful toward understanding, and possibly even predicting,
the outcome of polarized and controversial online debates, such
as those preceding major elections (52). Specifically, if verified in
other contexts and platforms, our results could provide useful
information for nowcasting and forecasting the dynamics of
group influence in online debates.
From observational to predictive studies. In the future, it would
be possible to progressively shift from observational to predictive
analyses, provided the availability of adequate ground-truths,
which currently represents a limiting factor for all studies in the
area of coordinated online behavior (29). In addition to opening
up the possibility to predict the dynamics of online influence, our
results show interesting temporal correlations between significant
changes in the structure of CCs and real-world events (see
SI Appendix, Fig. S8 and related discussion). Therefore, while
additional research is needed to design the methods and validate
the approach, our results open the door to i) leveraging external
knowledge about real-world events to estimate their online
impact in terms of the changes experienced by the interested
communities; ii) leveraging significant changes in community
structure to identify events that have been noteworthy in a specific
period of time and for a specific audience (53).

Validation. The lack of reference datasets and authoritative
ground truths on coordinated online behavior currently rep-
resents one of the strongest limiting factors to the research
in this area. In addition to carrying out manual investigations
(see SI Appendix, Fig. S8 and the related analysis), here we
circumvented this problem by validating our approach on a
labeled dataset that contains both inauthentic accounts involved
in an information operation and genuine ones. This is a favorable
approach to validating coordination detection methods for
multiple reasons. First, it provides a way to test the efficacy
of a method at capturing the behavioral patterns of different
accounts, including the inauthentic ones that should stand out
from the rest. To this end, our results revealed that our method
allows distinguishing inorganic CCs from organic ones, to a large
extent. Second, the same analysis can also inform the choice of
parameters of the method, which represents a further outstanding
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challenge in the field. Finally, it demonstrates the practical
usefulness of the dynamic analysis of coordinated behavior for a
relevant computational social science task.

Profiling. While we provided multiple findings toward improving
our understanding of online debates and online human dynamics
at large (54), we only scratched the surface of a complex and
multifaceted phenomenon. Another aspect worthy of discussion
is the potential for using our proposed methodology to study
and contrast online information manipulation or other nefarious
instances of online coordination (4). Profiling coordination—that
is, inferring the main characteristics, peculiarities, and possibly
even the intent behind different groups of coordinated users,
turns out to be particularly challenging (29). However, a certain
degree of success at profiling coordination is needed for being
able to tell the difference between inauthentic or harmful coordi-
nation and unintentional coordination among independent users
(e.g., fandoms or other grassroots movements). Here, we inten-
tionally kept a neutral stance with respect to the many existing
forms of online coordination, enabling the study of diverse
instances of coordination without any inherent bias. This was
because our main goal for this study was to investigate the tem-
poral dynamics of coordination, leaving the task of distinguishing
between inauthentic/harmful and authentic/harmless coordina-
tion for subsequent analyses. These would ideally be conducted
by human analysts, possibly domain experts, who could draw
upon the insights and characteristics of the detected communities,
as provided by this and other studies (9, 10). Nevertheless, we
acknowledge the importance of investigating inauthentic and
harmful communities as part of future dynamic analyses on
online coordination. For example, many harmful instances of
coordination, such as strategic information operations, exploit
multiple tactics and resources to boost their chances of success (5).
Studying online debates by means of dynamic analyses could
allow spotting early signals of harmful coordination, possibly
enhancing timely responses to what threatens the safety and
integrity of the online environment (55).

Limitations and Future Work. The main drawback of our study
stems from its relatively limited scope, with respect to the
breadth and depth of a complex phenomenon such as online
coordination. For example, we do not make any assumption on
the possible inauthenticity or harmfulness of the identified CCs
of UK 2019 and USA 2020. However, inauthentic and harmful
coordination could be used in the context of online political
debates as a means to influence the electoral outcome (56).
Here, our results for the USA 2020 presidential election surfaced
the activity of multiple coordinated groups supporting election
fraud narratives and other conspiracy theories (57). Likewise, we
also investigated the behavior of foreign influence groups that
participated in the electoral debate. Nevertheless, our results do
not specifically address the impact that inauthentic and harmful
groups could have had on the analyzed online debates, for
which our study does not provide conclusive results, but rather
calls for additional research. Moreover, our validation of the
methodology, while showing limited sensitivity to small varia-
tions in the time window length and step parameters, revealed our
method’s sensitivity to the resolution parameter of the underlying
community detection algorithm (SI Appendix). However, this is
a widely recognized phenomenon in the literature (58, 59). In
fact, the optimal value for the resolution parameter varies based
on network characteristics and the goal of the analysis, leaving
its selection to the analyst discretion. Finally, our analysis is

based on data collected from a single platform, while online
coordination often involves activities intertwined across multiple
platforms (60). As such, we might have missed significant
coordinated efforts that have occurred on platforms other than
Twitter. This limitation is shared with the vast majority of the
existing literature on the subject, mainly due to the challenges
of acquiring related and comparable datasets across multiple
platforms. In light of this widespread limitation, however, future
research on coordinated online behavior should strive to collect
and analyze multiplatform datasets, for that could reveal patterns
of coordination that would otherwise remain hidden. Unfortu-
nately, however, the limitations related to data availability extend
beyond the challenges of studying multiplatform coordination.
The recent changes in API availability enforced by Twitter (61),
particularly after its transition to X.com, represent a paramount
example. The discontinuation of Twitter Academic APIs and the
prohibitive costs of all other options pose significant obstacles
to data availability, with nefarious consequences in terms of
greatly reduced platform transparency and reproducibility of
scientific results. While the general outlook on social media
data availability remains grim at the time of writing, the
European Digital Services Act (DSA) could turn the tide in
the struggle for access to platform data, by providing legal and
technical facilities for submitting data access requests for research
purposes (62). Finally, future research should also deviate from
the traditional focus of online coordination studies (e.g., political
discussions and inauthentic coordination) to encompass topics,
temporal dynamics, and coordination patterns that are typical of
nonpolarized or noncontroversial online interactions.

Materials and Methods
Data. The data for our study cover two recent major political events—the 2019
UK general elections and the 2020 USA presidential elections—and a large-scale
information operation.
UK 2019 General Election. We leverage a publicly available reference dataset
related to the online Twitter debate about the 2019 UK general election.* This
dataset is relevant for our present study since it has already been the subject of
static analyses of coordinated behavior (9, 23). The dataset was built in ref. 9 via
the Twitter Streaming API during the last month before the UK 2019 election day,
namely between November 12 and December 12, 2019. It contains 11,264,820
distinct tweets (left- and right-leaning, as well as neutral) about the 2019 UK
general election published by 1,179,659 distinct users. The tweets were selected
according to a set of hashtags or relationships to party accounts (see SI Appendix
for details).
USA 2020 Presidential Election. To assess the generalizability of our findings we
collected and publicly shared a second dataset of tweets related to the USA 2020
presidential election.† Similarly to the UK 2019 dataset, this data collection
spanned the month leading up to the election day, encompassing the period
from October 4 to November 3, 2020. Likewise, this collection process relied
on a combination of election-related hashtags, party hashtags, and official party
and leader accounts (see SI Appendix for details). In total, this dataset comprises
263,518,037 distinct tweets that pertain to the online discourse surrounding
the election. The tweets were generated by 15,288,527 distinct users.
Honduras 2019 information operation. To validate our method we use
a publicly available dataset related to a large-scale information operation
promoted by the government of Honduras in 2019.‡ The dataset includes
both the inauthentic accounts who took part in the operation, as detected by
Twitter Moderation Research Consortium,§ and a comparable set of legitimate
accounts (see SI Appendix for details). As such, it can be used as a ground-truth

*http://doi.org/10.5281/zenodo.4647893.
†http://doi.org/10.5281/zenodo.7358386.
‡https://doi.org/10.5281/zenodo.10650967.
§https://transparency.twitter.com/en/reports/moderation-research.html.
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and benchmark to test the efficacy of our method at detecting the coordinated
inauthentic accounts. Similarly to the previous cases, we used one month of
data, spanning from November 11 to December 11, 2019. This portion of the
dataset contains 251,191 tweets shared by 75,845 distinct users.

Dynamic Analysis of Coordinated Online Behavior. To detect and study
coordinated behavior, we broadly follow the state-of-the-art network analysis
frameworks recently proposed by refs. 9–11, which consider repeated similarities
in user behaviors as a proxy for coordination. However, we differentiate from the
existing methods by building a dynamic multiplex network instead of a static
one, and by analyzing it with a dynamic community detection algorithm. Our
detailed methodology is presented in the following.
Preliminaries. To enable comparisons with previous works, we compute user
similarity based on co-retweets—the action of retweeting the same tweet by
different users, and we analyze superspreaders—the top 1% users with the most
retweets.¶ We computed user similarities based on co-retweets also because our
study specifically focuses on superspreaders, who are characterized by a marked
retweeting behavior (63), and because of the excellent results obtained with
co-retweets in recent related literature (10, 11, 64) and in our previous static
analyses of online coordination (9).
Dynamic network modeling. We build our dynamic user similarity network as a
multiplex temporal network G = 〈G0, . . . , GN−1〉 where each layer Gi models
user behaviors occurred during a given time window ti. We adopted this network
representation over other options, such as discrete-time dynamic graphs and
embeddings methods, since multiplex temporal networks are state-of-the-art
for observational and descriptive tasks (20). For example, this representation
makes detecting and interpreting perturbations of the network topology (i.e.,
investigating the stability of CCs) advantageous. We work with a sequence of
discrete and overlapping time windows: each ti has a duration d = 7 days
and an offset (step) � = 1 day from ti−1. After a set of preliminary tests, we
ended up using overlapping time windows instead of nonoverlapping ones,
because the latter neglect all interactions occurring across any two adjacent
windows. On the contrary, overlapping time windows allow to consider all
relevant interactions, while also guaranteeing smooth transitions between
different time steps. Regarding the size of the time window, the larger it is, the
smoother are the transitions between the different snapshots of the multiplex
temporal network. However, very large windows hide changes that occur within
that time frame, up to the point that particularly large ones make the dynamic
analysis collapse to a static one, negating the advantages of the former. On the
contrary, particularly small windows may fail to collect meaningful statistics at
each time step. Here, our choice of time window length and step is supported
by the favorable results obtained for that parameter configuration in our grid
search validation. As sketched in Fig. 10, for each ti, we build a weighted
undirected user similarity network Gi = (V, E, W). To obtain Gi, we first model
each user v ∈ V with the TF-IDF weighted vector of the tweets it retweeted
during ti. An edge e ∈ E between two users exists if they retweeted at least
one common tweet during ti. Edge weights w ∈ W are computed as the cosine
similarity between pairs of user vectors. The TF-IDF weighting scheme discounts
retweets of viral tweets and emphasizes user similarities due to unpopular tweets,
contributing to highlighting interesting behaviors. Finally, for each network Gi,
we retain only the statistically significant edges by computing its multiscale
backbone (65).
Dynamic community detection. The multiplex temporal network G =
〈G0, . . . , GN−1〉 is suitable for being analyzed with a dynamic community
detection algorithm. Leiden is a state-of-the-art community detection algorithm
for multiplex networks that improves the well-known Louvain algorithm by
identifying higher quality and well-connected communities (66). It allows
community detection on multiplex networks by jointly considering the internal
edges in each layer (solid edges in Fig. 10), as well as the edges that connect
nodes across layers (dashed edges in Fig. 10). Leiden is therefore a cross-time
algorithm that identifies communities based on the full temporal evolution of
the network (20). An important implication is the possibility to assign nodes to
different communities depending on the time window. As such, it is particularly
suitable for studying the temporal evolution of user behaviors and of the CCs.

¶Despite accounting for only 1% of all users, superspreaders produced∼39% of all tweets
and ∼44% of all retweets.

Fig. 10. Overview of our methodological approach for building the multiplex
temporal network G. Data from the overlapping time windows ti yield the
weighted undirected user similarity networks Gi that constitute the layers
of G. Then, dynamic community detection is performed on the multiplex
temporal network G.

Notably, it would have been possible to use a static community detection
algorithm such as Louvain on each snapshot (i.e., layer) of our multiplex temporal
network. However, such an approach would have later required the application
of a community tracking algorithm, which would have made the overall process
more convoluted and error-prone.

Political Polarization. We compute a polarization score for each CC based
on the political polarization of the hashtags used by its members. We obtain a
polarization score for each hashtag in the dataset by applying a label propagation
algorithm. In detail, the score for any given hashtag is iteratively inferred from its
co-occurrences with other hashtags of known polarity. We initialize the algorithm
with the hashtags used for collecting the tweets as the seeds of known polarity
(SI Appendix, Tables S1 and S2). Once hashtag polarities are computed, the
polarity of a CC is obtained as the TF weighted average of the polarities of the
hashtags used by members of that community. As a result, each CC is assigned
a polarity score p ∈ [−1,+1]. Finally, the scores are normalized so that the
rightmost-leaning CC in each dataset has p = +1 and the leftmost-leaning one
has p = −1. The most polarized communities are CON (p = +1) and LAB1
(p = −1) for UK 2019, and IRN (p = +1) and DEM (p = −1) for USA 2020.

Temporal CommunityMonitoring. To assess how CCs changed through time
we measure, for each community Ck , and for each ti with i = 0, . . . , N− 1:

• the size of Ck relative to t0: S(k, i) =
sizek(ti)
sizek(t0)

;

• the Jaccard similarity of the membership of Ck relative to t0: J(k, i) =
|memk(ti) ∩ memk(t0)|
|memk(ti) ∪ memk(t0)|

, where memk(ti) is the set of users that belong to Ck
at time ti;

• the influx Fin(k, i) and outflux Fout(k, i) of Ck , respectively expressed as the
cumulative number of users who joined and left the community up to ti.

Similarities between Communities. We assign a weight wk,j to all shifts
sk→ j between any origin community Ck and any destination community Cj,
based on the (dis)similarity between Ck and Cj. We compute the similarity
between two CCs as the cosine similarity of the TF weighted vectors of the
hashtags used by the communities. Then, we weight shifts proportionally to
the dissimilarity of the involved CCs: wk,j = 1 − sim(k, j). We also compute
net shifts between CCs, as in SI Appendix, Fig. S3 where an edge Ck → Cj
exists only if there is a positive net user flow Fk→ j from Ck to Cj: Fk→ j =∑

sk→ j −
∑

sj→ k > 0. Then, edge thickness in the figure is proportional
to wk,j × Fk→ j.

Detecting Accounts Involved in an Information Operation. We measure
the extent to which our method is capable of detecting the inauthentic accounts
who took part in an information operation by adapting the well-known F1 score
to our problem. For each layer Gn of the multiplex temporal network G, we
first discard all communities that do not contain any inauthentic account. For
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each remaining community Cni with i = 1, . . . , M, we compute the Precision

Pni , Recall Rni , and F1 score F1ni = 2
Pni ×R

n
i

Pni +Rni
. F1 score is the harmonic mean

of Precision and Recall and measures the extent to which the community Cni
contains all and only the inauthentic accounts. The F1 score for Gn is the
weighted mean of the F1 scores of its communities: F1n = 1

M
∑M

i=1 wiF1ni ,
wherewi is proportional to the fraction of users in Cni over all users inGn, so that
larger communities contribute more toward F1n. Finally, the overall F1 score is
computed as the mean of the F1n scores of each layer Gn ∈ G.

Data, Materials, and Software Availability. Previously published data were
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