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ABSTRACT

Diffuser/nozzle pipes produce a directional flow resistance that is often exploited in microcirculation to generate a pumping action. This
work presents an approximate time-dependent theoretical solution based on the mechanical energy conservation equation to predict the lam-
inar flow rate through an ideal diffuser/nozzle pump. The theoretical solution is then used to characterize the dimensionless parameters that
control the dynamics of the valveless pump in the pulsatile flow regime. A suitable numerical model is also implemented to solve the flow in
a parametrized two-dimensional axial-symmetric domain subjected to an oscillating pressure, and its results are used to assess the theoretical
solution. The pump dynamics and the main model parameters, such as the energy-loss coefficients, result in the following dependence on the
ratios between the viscous force, the advective inertia, and the temporal inertia, i.e., the Reynolds (Red), Womersley (Wod), and Strouhal (St)
numbers referred to throat diameter. In particular, The Womersley number plays an essential role in controlling the global energy loss when
Red < 100. The flow transition is also investigated and found when Red exceeds a critical value, which increases with Wod. Finally, the pump
efficiency is found to reach its maximum when the convective and temporal inertia become comparable, i.e., St ¼ Oð1Þ, consistent with the
observed range of St in real-world diffuser/nozzle pumps. This optimum range of functioning of the pump is also observed for cerebrospinal
pulsatile flow in the Sylvius aqueduct, suggesting that the modeled mechanism is used to promote or enhance cerebrospinal fluid circulation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169657

I. INTRODUCTION

Several fluidic applications of mechanical engineering, medicine,
and chemistry use microcirculation flow systems.1 The development of
microelectromechanical systems (MEMSs) has encouraged the wide-
spread of micropumps and, more recently, their application to drug
delivery in the medical field.2,3 Moreover, pulsatile microcirculation is
observed in biological systems; physiological processes, such as oxygen
transport into the fetuses cardiovascular apparatus, or cerebrospinal
fluid circulation, occur indeed also at the microscale.4–10

Circulation systems, either biological or man-made, are typically
designed to avoid local backward flows; however, check valves, com-
monly adopted in engineering applications to intercept undesired
backward flow, often do not work efficiently at small scales. Therefore,
in the mechanical design of microsystems, different solutions are
exploited to guarantee the one-directional flow under pumping condi-
tions.11 Pulsatile microcirculation often uses hydraulic principles based
on the asymmetry of either the impedance, the so-called Libeau

effect,12–15 or the shape of some elements according to the direction of
the flow.16–18 In the latter case, the pump that feeds the circuit includes
one, or more than one, diffuser/nozzle elements that force the flow
toward a preferential direction.19,20 In this type of pump (Fig. 1), pulsa-
tile overpressure is typically transmitted by an actuator into a chamber,
which cyclically empties (pump mode) and fills (supply mode).
Consequently, the fluid flows in the diverging-wall (diffuser) and
converging-wall (nozzle) direction, alternatively. Flow resistance along
the diffuser direction is typically lower than that experienced in the
opposite direction, resulting in a flow that, on average, prevails in the
diffuser verse.

The literature reports many studies that focus on optimizing the
diffuser/nozzle geometry. These studies investigate the role of pipe
geometry in energy dissipation at different hydraulic regimes through
experimental and numerical approaches.21–25 The pipe shape primarily
controls the difference in flow rate between the diverging and converg-
ing flow modes and then the pump efficiency.26 In particular, tapering/
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sharpening the inlet reduces/increases pressure loss. Moreover, the
pump efficiency increases when the angle of the cone increases to an
optimum value that ranges between 5� and 10�, depending on the
geometry of the diffuser.27,28

Most of these studies aimed at characterizing a specific device.
Only a few works propose a general framework for the micropumps
dynamics developing closed-form solutions to estimate the flow
rate.29–31 In particular, many efforts have been devoted to estimating
the maximum volume flux through the nozzle/diffuser by using
lumped-mass models or strongly simplified pump dynamics.19,32,33

A more accurate model considering fluid inertia has been devel-
oped by Eames, Azarbadegan, and Zangeneh,34 who found that the
average flow rate is proportional to the external pressure drop; how-
ever, the role of temporal inertia remains generally elusive. Indeed, the
criteria adopted in the literature to design micropumps often assume
quasi-steady flow conditions.22,26,27 Nevertheless, the temporal flow
acceleration likely contrasts the laminar to turbulent transition within
a pipe, influences the velocity profile, and, hence energy losses.
Therefore, the results provided by the current literature should be used
with some caution since the temporal acceleration may strongly affect
the pump dynamics.

This work aims to bridge this knowledge gap and clarify the role
of temporal inertia on the flow regime transition within diffuser/nozzle
elements and on energy losses.

For this purpose, the phenomenology of the oscillating flow
through a diffuser/nozzle is first described, highlighting the different
flow features and regimes. Second, a theoretical solution of the 1D
incompressible Newtonian flow equation is proposed to model the

laminar flow through a nozzle/diffuser element under idealized oscil-
lating pressure forcing. Third, the solution is used to estimate the
dimensionless parameters that control the dynamics of the valveless
pump in the pulsatile flow regime. Finally, a suitable numerical model
describing the above flow is implemented and its results are compared
with the theoretical predictions. This comparison allowed one to: (i)
assess the capability of the theoretical solution to describe the oscillat-
ing flow rate of the pump; (ii) determine the condition for pulsatile
flows to be laminar; (iii) unravel the dependence of the model parame-
ters on the fundamental dimensionless groups, and (iv) find the condi-
tions for the optimum pump performance.

II. DIFFUSER/NOZZLE HYDRODYNAMICS

In the literature, an organic and coherent treatment of the fluid
dynamic is limited to the steady flow within a diffuser.35 For this rea-
son, in this section, a preliminary numerical analysis of the pump
dynamics subjected to an oscillating flow is presented with the intent
of helping the reader to approach the problem.

To illustrate the hydrodynamics of a valveless pump, a series of
large eddy simulations (LES) with a Smagorinsky subfilter model is
performed. A three-dimensional (3D) conical diffuser/nozzle element
is solicited by a pressure gradient between two chambers according to
the scheme shown in Fig. 2(a), in which flows water with density
q ¼ 1000 kg/m3 and dynamic viscosity l ¼ 0.001Pa s. Specifically, the
duct has a length L¼ 10mm and the minimum and maximum diame-
ter d ¼ 0.75mm and D ¼ 2.0mm, respectively, resulting in a cone
angle h ¼ 7.2�; the chambers have a radius a ¼ 10mm. Overall, the
model grid consisted of 940 000 tetrahedral elements, indicatively.

The difference between pressure p1 and p2 in the two chambers
periodically changes over time as

p1ðtÞ � p2ðtÞ ¼ p0 sin ðxtÞ; (1)

where p0 is the maximum pressure difference across the duct, x is the
angular frequency, and t is the time. The flow rate, Q, is positive when
the pump works in the diffuser mode, whereas it is negative in the noz-
zle mode [Fig. 2(b)].

The hydrodynamics through the duct shows different regimes
and flow patterns according to the pumping frequency, f (or period
T ¼ 1=f ), as shown in the three exemplifying cases of Fig. 3, in which
p1 ¼ p0 sin ðxtÞ and p2 ¼ 0 Pa, with p0 ¼ 5.0 kPa.

At a frequency of 1Hz [panel (a)], the flow pattern in the diffuser
modality reveals bistable stall regions that can switch from one side of

FIG. 1. Schematic of a diffuser/nozzle pump driven by an oscillating pressure:
pump mode (a) and supply mode (b). Red arrows indicate the pressure solicitation;
blue arrows indicate the resulting flow rate (arrow length indicates the flow inten-
sity). Adapted from Ref. 7.

FIG. 2. Sketch of the diffuser/nozzle model. (a) Geometry of the valveless pump consisting of a diffuser/nozzle element of length L connecting chambers 1 and 2 whose pres-
sure is p1 and p2; D and d are the largest and smallest diameter of the diffuser/nozzle element, respectively, and h is the cone angle. (b) Temporal distribution of the pressure
forcing, p, (blue dashed line) and volume flux, Q, through the diffuser/nozzle (solid red line). The volume flux is expected to be higher in the diffuser direction than in the nozzle
direction.
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the pipe to the other, as seen in steady flow.35 This creates velocity pro-
files within the duct that display both positive and negative velocities.
However, in the nozzle modality, we do not observe any flow separa-
tion. When we increase the frequency to 20Hz [panel (b)], the flow
displays a central high-velocity region with non-symmetric profiles
during the diffuser modality, but the velocity profiles in the nozzle
modality remain largely unchanged. Finally, at a frequency of 100Hz
[panel (c)], the flow pattern remains constant in the time series analy-
sis. We observe a small stable backflow region that exists for a short
period of the diffuser modality. In this case, the velocity profiles are
self-similar along the duct, indicating a different response to the oscil-
latory pressure in the bulk region and near the wall.

In microfluidics, to define the hydraulic regime within the pump,
the comparison of the characteristic Reynolds number (Red estimated
in the throat of the diffuser in this problem) with the transitional value
of 2000–2300 is often ineffective. Specifically, in steady flows when the
ducts are relatively short (1 < L=d < 70), one can distinguish the flow
regime by introducing the critical Reynolds number Rec0 ¼ 30L=d.1,26

For Red < Rec0, the flow is dominated by the viscous loss, and the
regime is laminar. On the other hand, for Red > Rec0, the flow is
driven by the inertia; however, the regime cannot be said turbulent as
the duct is shorter than the entrance length needed to fully develop the
turbulence.

The criterion illustrated can be extended in pulsatile flows only
when the frequency, f, is low enough that the flow can be treated as
quasi-steady [e.g., Fig. 3(a)].36 In this case, Red > Rec0 at the velocity
peak, and the velocity field is not stable in the diffuser modality.
Inconsistent with reality, the Smagorinsky model results in non-zero
eddy viscosity, �t, even when the flow is fully resolved. In the current
analysis, the value of �t is approximately 10–6 m2/s in the vicinity of
the wall of the diffuser throat and ranges from 10–9 to 10–7 m2/s in the
bulk flow region. These values are relatively small and do not seem
representative of actual turbulent processes. At higher frequencies, the
temporal acceleration is expected to broaden the laminar regime simi-
larly to the laminar-turbulent transition observed in long pipes with
constant diameter.37 The flow condition of panel (c) seems to confirm

FIG. 3. Velocity magnitude, juj, within a diffuser/nozzle with L¼ 10 mm, d¼ 0.75 mm, and D¼ 2.0 mm 2 in four instants of time (t/T¼ 0, 0.25, 0.5, and 0.75) and correspond-
ing axial velocity, u, distributions in three characteristics sections placed at L=4; L=2, and 3L=4 for (a) f¼ 1 Hz, (b) f¼ 20 Hz, and (c) f¼ 100 Hz. The profile in the radial direc-
tion, r, is normalized by the local radius of the pipe, r0. The pressure amplitude is p0¼ 5 kPa in the three cases.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 102020 (2023); doi: 10.1063/5.0169657 35, 102020-3

Published under an exclusive license by AIP Publishing

 18 O
ctober 2023 13:51:10

pubs.aip.org/aip/phf


this hypothesis. In this case, the model estimated a value at the velocity
peak higher than the threshold limit of steady flow (Red > Rec0).
Nevertheless, the velocity profiles are self-similar and kept regular in
time, suggesting that the regime is still laminar. Clearly, the relation
proposed to determine the regime transition for long pipes cannot be
straightforwardly extended to short channels with variable diameters
treated here.

In any case, these preliminary numerical experiments prefigure
that the transition of an oscillatory flow through a diffuser is not exclu-
sively led by the comparison between advective inertia and viscous
force, i.e., by the Reynolds number, but also by the ratios of these two
terms with the temporal inertia, which are expressed through the
Strouhal andWomersley number, respectively.

In Secs. VA, these three parameters are analyzed to assess the
transition condition into a diffuser/nozzle pump. For this purpose,
we exploit the property of regularity and self-similarity of the veloc-
ity profile in the laminar regime that lends to being represented
through a two-dimensional (2D) axial-symmetric scheme. Using a
2D model has significantly reduced the computational costs and
allowed one to carry out several numerical experiments, which
were used to frame the problem. The proper definition of the lami-
nar regime is fundamental in the diffuser/nozzle pump design
because, as we will see in Sec. V C, the maximum performances are
achieved in this regime.

III. THEORY
A. The 1Dmodel

The laminar flow in a diffuser/nozzle pipe illustrated in Fig. 3(c)
can be described according to a one-dimensional (1D) model, pro-
vided that the degree of divergence of the pipe walls is small, such that
radial velocity is significantly smaller than the axial one.

In this setting, the pump dynamics can be described by assuming
the mechanical energy conservation equation for an incompressible
Newtonian fluid, which reads (see Appendix A)

@Hðs; tÞ
@s

¼ � bðtÞ
g

@Uðs; tÞ
@t

� jðs; tÞ; (2)

where H ¼ p=cþ aU2=2g is the mechanical energy of the fluid per
unit weight (hereinafter denoted simply as energy or total head), U is
the cross-sectional average velocity, a and b the correction factors, g
the gravity acceleration, c the specific gravity, and j the internal head
loss per unit length. The model is based on the following assumptions:

(1) the cross sections of the chambers are significantly larger than
the pipe cross section, so that the flow velocity within the two
chambers can be neglected, and the total head is essentially due
to the pressure;

(2) the wall of the pipe is rigid and then the cross-sectional area
of the diffuser/nozzle depends only on s;

(3) the velocity profiles are almost self-similar along the pipe, con-
sequently the correction factors depend only on t, i.e., aðs; tÞ
� aðtÞ and bðs; tÞ � bðtÞ;

(4) the energy loss can be related to the mean flow velocity of the
narrowest section of the diffuser/nozzle, according to the defini-
tion provided by the literature within a diffuser/nozzle
channel.22,27

With these assumptions, a quasi-linear differential equation of
the volume flow rate, Q, in the pipe can be obtained by integrating Eq.
(2) between the two chambers (see Appendix B)

p0
c
sin ðxtÞ ¼ bðtÞ

g
4L
pdD

dQðtÞ
dt

þ fðtÞ
g

2�
pd3

QðtÞ: (3)

Here, � is the kinematic viscosity and f is a coefficient that controls the
overall energy loss due to friction and possible flow separation.

The parameter f depends on the flow direction, and it is significantly
different when the pipe operates as a diffuser or a nozzle. Q is defined as
positive in the diffuser mode, hence for the parameter f, as well as for all
parameters that depend on f, the subscript “6” is starting now used to
denote the diffuser (subscriptþ) and nozzle modes (subscript –).

Equation (3) is rewritten as

dQðtÞ
dt

þ w6ðtÞQðtÞ � Q0
x
bðtÞ sin ðxtÞ ¼ 0 (4)

with

Q0 ¼ p0
qx

pdD
4L

(5)

the characteristic flow rate of the problem and

w6ðtÞ ¼
f6ðtÞ
bðtÞ

�D
2Ld2

(6)

two characteristic frequencies that depend on the tube shape and the
energy dissipation.

B. Model parameters

Before proposing a closed-form solution of Eq. (4), a brief analy-
sis of the parameters is helpful to explore the results of the theoretical
model. Equation (3) describes the flow dynamics through the diffuser/
nozzle element. The term on the left-hand side is the forcing factor,
while the first and second on the right-hand side are associated with
temporal inertia and energy loss, respectively.

To evaluate the relative importance of each term, we introduce
two geometrical, one temporal, and one kinematic scale quantities.
Specifically, d and L are the two fundamental lengths of the problem.
The temporal scale of the problem is related to the forcing pressure
period 1=x, whereas the intensity of the flow can be quantified by
means of the velocity U0. The latter is calculated in the pipe throat for
the characteristic flow rate Q0 of Eq. (5), and it is defined as

U0 ¼ 4Q0

pd2
: (7)

We can then introduce the dimensionless time ~t , the dimension-
less volume flux ~Q, and the dimensionless pressure ~p as
~t ¼ xt; ~Q ¼ Q= ðU0 d2Þ, and ~p ¼ p0= ðqU2

0 Þ. Consequently, the
dimensionless form of Eq. (3) reads

~p sin ð~tÞ|fflfflfflffl{zfflfflfflffl}
forcing term

¼ 4
p
d
D

b St
d~Q

d~t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
inertia

þ 2
p
f6
Red

~Q|fflfflfflffl{zfflfflfflffl}
viscous force

: (8)

Here, St ¼ xL=U0 is the Strouhal number and Red ¼ ðU0dÞ=� is the
throat Reynolds number.
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Alternatively, St can be expressed as

St ¼ 4
L
d
Wo2d
Red

; (9)

whereWod ¼ d
ffiffiffiffiffiffiffiffiffiffiffi
x=4�

p
is the Womersley number referred to d.

According to Eqs. (8) and (9), the flow rate through a diffuser/
nozzle pipe depends on two of the three dimensionless numbers St,
Red, andWod, which express, respectively, the ratio between i) tempo-
ral and convective inertia, ii) convective inertia and viscous force, and
iii) temporal inertia and viscous force. In the present work, the work-
ing of the diffuser/nozzle pump is investigated as a function of these
dimensionless numbers (Sec. V).

Furthermore, the dimensional analysis shows that the pump also
depends on two geometric parameters, namely, the slenderness of the
pipe, L/d, and the ratio of the diameters d/D. Nevertheless, it is conve-
nient to replace the latter parameter with tan h, being h¼ 2arctan[(D
� d)/L].

C. Closed form solutions

A straightforward solution of Eq. (4) can be obtained after replac-
ing fþðtÞ; fðtÞ, and bðtÞ with three time-independent calibration fac-
tors, �fþ; �f�, and �b, which depend on the Reynolds and Womersely
number. This simplification allows one to obtain a closed-form solu-
tion of Eq. (4) that, as discussed below, still provides a fairly accurate
description of the flow. With this simplification, Eq. (4) reduces to the
following linear ordinary differential equation:

dQðtÞ
dt

þ w6QðtÞ � x
Q0

�b
sin ðxtÞ ¼ 0; (10)

with

w6 ¼
�f6
�b

�D
2Ld2

: (11)

Furthermore, it is convenient to rewrite the two frequencies w6

as wþ ¼ w� Dw and w� ¼w þ Dw, with w ¼ ðwþ þ w�Þ=2 and
Dw¼ (w� � wþ)/2. With this, Eq. (4) reads

dQðtÞ
dt

þ wQðtÞ � DwjQðtÞj � x
Q0

�b
sin ðxtÞ ¼ 0: (12)

Here, the prevailing flow rate in the diffuser verse is due to the term
DwjQðtÞj. This viscous contribution can be approximately treated as a
constant during the pumping cycle and related to an equivalent posi-
tive volume flux. Consequently, in Eq. (12), we can replace jQðtÞj with
a time-independent flow rate, eQ0=�b, being e� 1 a suitable calibration
coefficient. With this, Eq. (12) reads

dQðtÞ
dt

þ wQðtÞ ¼ eDw
Q0

�b
þ x

Q0

�b
sin ðxtÞ: (13)

The general solution of this equation reads

QðtÞ ¼ Ce�wt þ e
Dw
w

Q0

�b
þ xQ0

�bðw2 þ x2Þ w sin ðxtÞ � x cos ðxtÞ½ �;

(14)

where C is an integration constant.

In the present analysis, the first term in the right-hand side of Eq.
(14) can be neglected, as it describes the transition to the equilibrium
and vanishes exponentially in time, with timescale 1=w. Both the
amplitude and the phase of the flow are affected by the frequencies x
and w; thereby in the analysis of the pump dynamics, the dominance
of one term to the other can be measured by the ratio r¼w=x.

The steady periodic flow in the valveless pump is characterized
by a volumetric flux described by the relation

QðtÞ ¼ e
D�f
�f

Q0

�b
þ Q0

�b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p sin ðxt � uÞ; (15)

here u ¼ tan�1ð1=rÞ and the ratio Dw=w is replaced with D�f=�f,
where �f ¼ ð�fþ þ �f�Þ=2 and D�f ¼ ð�f� � �fþÞ=2.

The flow is the sum of an oscillating component of amplitude
Q0=�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ r2Þp
and a steady component in the diffuser direction,

due to the asymmetry of the geometry, which depends on the ratio
D�f=�f. The average pump flow rate, hereinafter denoted as Qnet, is then
given by the first term on right-hand side of Eq. (15).

The dimensional analysis (Sec. III B) suggests that the diffuser/
nozzle pump has two limit work conditions. The first is when the vis-
cous term is negligibly small, i.e., when Red � 1 and Wod � 1. In
this case the governing Eq. (3) reduces to

p0
c
sin ðxtÞ ¼ b

g
4L
pdD

dQ
dt

(16)

and its solution yields

QðtÞ ¼ Q0

�b
sin xt � p

2

� �
: (17)

In the second case, the inertial term is negligibly small, i.e., when
Red � 1 andWod � 1, and the governing Eq. (3) reduces to

p0
c
sin ðxtÞ ¼ f

g
2�
pd3

Q; (18)

whose solution reads

QðtÞ ¼ Q0

�br
sin ðxtÞ: (19)

D. Pump efficiency

The efficiency of the pump, g, is defined as

g ¼ Vþ � V�
Vþ þ V�

; (20)

where Vþ and V� are the total volumes flowing, respectively, in the
diffuser and nozzle direction during one pumping cycle. A value of g
equal to 0 means null net flux, on the contrary, g ¼ 61 indicates that
the fluid flows in only one direction.

The limit conditions of the diffuser/nozzle pump given by Eqs.
(17) and (19) deserve careful analysis. In both cases, the net flux is null,
and the efficiency, g, is equal to 0. It should be noted that, in Eq. (17),
Q(t) is in quadrature phase with the forcing pressure, i.e., u ¼ p=2,
and thus r ! 0, being tanu ¼ 1=r. On the contrary, in the second
case reported in Eq. (19), the external pressure, p0 sin ðxtÞ, and the
flow rate,Q, are in phase so that u ¼ 0, resulting in r! 1.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 102020 (2023); doi: 10.1063/5.0169657 35, 102020-5

Published under an exclusive license by AIP Publishing

 18 O
ctober 2023 13:51:10

pubs.aip.org/aip/phf


The limits of Eq. (20) in the space r 2 ð0;1Þ are then 0. Hence,
an operating condition that maximizes g must exist. The present anal-
ysis suggests that such a maximum condition should be intermediate
between the two limit cases reported in Eqs. (17) and (19), i.e., when
the phase u is far from the values of 0 and p=2. This means the maxi-
mum is achieved when tanu is equal to

tanu ¼ 1
r
¼ x

w
¼ j; (21)

where j is a Oð1Þ � Oð10Þ coefficient. By replacing Eq. (6) into Eq.
(21), and recalling that St ¼ xL=U0 with U0 given by Eqs. (5) and (7),
the optimal efficiency is reached when

St ¼ j
2
�f
L
d
lxmax

p0;max
(22)

with xmax and p0;max , respectively, the pair of pulsatility and pressure
that maximize the efficiency.

IV. NUMERICAL SIMULATIONS

To assess the robustness of the proposed theoretical framework,
the flow through a diffuser/nozzle pump has been computed numeri-
cally. The hydrodynamics has been solved in a parametrized 2D axi-
symmetric domain subjected to an oscillating pressure. The numerical
model has been implemented in the computational fluid dynamics
(CFD) module of COMSOL Multiphysics 5.5 (Comsol, Inc.,
Stockholm). The software adopted a backward differentiation formula-
tion to solve implicitly the Navier–Stokes equations. The laminar flow
conditions have been assumed in the entire domain, i.e., not including
any closure turbulence scheme.

The computational domain consisted of a conical diffuser con-
necting two cylindrical chambers of diameter a (Fig. 4). The throat of
the cone was tapered with a fillet of radius equal to d=2, whereas the
connection with the outlet chamber was sharp. Such inlet/outlet geom-
etry should have favored the asymmetrical behavior of the flow in the
diffuser/nozzle phases.26 The mesh used to discretize the domain con-
sisted of an unstructured triangular grid in the bulk region, while a
structured quadrangular grid was adopted near the rigid wall (see
green box in Fig. 4). The accuracy of the numerical results remained
unaffected by the grid resolution, due to the utilization of over 30 000
elements (see Appendix C).

A first series of numerical experiments to evaluate the effective-
ness of the theoretical solution used ten configurations of the cone
with tube diameters d and D in the range from 0.1 to 10mm, and the
cone angle h varying between 7� and 30�. In all cases, the diffuser

slenderness L/d was kept greater than 10. The chambers had a diame-
ter a¼ 10D, large enough to ensure that the flow velocity was negligi-
bly small in these portions of the domain. The numerical tests were
carried out for water, hence prescribing q¼ 1000 kg/m3 and
�¼ 1.0� 10–6 m2/s. The pressure boundary conditions were pre-
scribed in two sections inside the chambers far from the cone (initial
and final sections of the domain of Fig. 4). A sinusoidal pressure of
magnitude p0 and frequency f was imposed at the inlet, and a constant
pressure equal to 0 Pa was prescribed at the outlet. Once the system
reached a steady periodic state, the results of the last cycle were used in
the analysis. The total runs analyzed counts 74 experiments. The stud-
ied configurations and the applied forcing conditions are summarized
in Table I.

A second series of numerical simulations, aimed at investigating
in detail the space of the parameters, was performed for configurations
1, 8, and 10 of the first series of tests. For these configurations, three
different frequencies were considered, and for each combination con-
figuration/frequency, the pressure p0 was varied within a specific range
of values. This series of experiments counts overall 92 runs. Details of
this series of simulations are reported in Table II.

V. RESULTS AND DISCUSSION
A. Model assessment and definition of the laminar
regime

We compared the time-varying flow rate Qðt=TÞ predicted by
the theoretical model and computed numerically through the CFD

FIG. 4. Sketch of the geometry and
boundary conditions used in the CFD sim-
ulations. An example of the numerical grid
is reported in the zoom (green box). The
throat of the diffuser/nozzle element is
tapered with a fillet of radius equal to d/2.

TABLE I. The geometrical configurations of the duct and the characteristics of the
sinusoidal forcing used in the first series of numerical experiments simulating the dif-
fuser/nozzle pump.

Configuration d (mm) D (mm) L (mm) h (deg) p0 (Pa) f (Hz)

1 1.50 4.00 20 7.2 500–2000 1–100
2 0.75 2.00 10 7.2 1000 10–100
3 0.15 0.4 2 7.2 500–2000 1–500
4 0.75 3.25 20 7.2 500–4000 1–100
5 0.75 4.50 30 7.2 250–1000 1–100
6 0.75 3.00 10 12.8 1000 5–200
7 0.38 1.50 5 12.8 100–250 1–200
8 0.75 4.00 10 18.5 50–1000 5–200
9 0.75 5.00 10 24.0 25–1000 5–150
10 0.75 11.25 20 29.4 50–1500 5–100
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approach (Fig. 5). To fit the computed flow cycles, the parameters
�f6; �b, and e of Eq. (15) are assessed by a trial and error procedure.
For the case with a high Strouhal number [St¼ 42.6 in Fig. 5(b)], the
theoretical solutions match very well the numerical results.
Interestingly, for low St, only the case shown in Fig. 5(c) (St¼ 1.7) is
well predicted by Eq. (15), whereas, for St¼ 0.4 [Fig. 5(a)], some sub-
stantial differences are observed between the two solutions.

We foresee that the proposed theoretical scheme properly pre-
dicts the pump flow rate when the hydrodynamics within the diffuser/
nozzle is laminar during the entire pumping cycle. As discussed in Sec.
II, the oscillatory flow preserves the laminarity for higher Reynolds
number, Red, than those observed for the steady case (Red=Rec0 > 1).
This means that the transition between viscous loss and inertia-
dominated regimes—and then the validity of the solution of Eq. (15)—
is somehow controlled by the Strouhal number St.

For St< 1, according to Eq. (9) and recalling that Rec0 ¼ 30L=d,
the condition of flow regime transition Red=Rec0 ¼ 1, valid for steady
flows, can be extended with minor approximations whenWod results

St ¼ 4
L
d
Wo2d
Red

< 1 ! Wod � 2:7: (23)

In addition, the linearized solution in the laminar regime is
appropriate when temporal acceleration prevails over advective accel-
eration,38 i.e., St � 1. With this constraint, expressed as the ratio

between the squared Womersley number and the Reynolds number,
the flow is laminar as long as Red � Rec0 Wo2d , thus suggesting that
the regime transition occurs for Reynolds numbers which scale
with the squared of the Womersley number.

To define this threshold Reynolds number, Rec, at varying work-
ing conditions, we plotted, for the series of tests reported in Table I,
the points representative of CFD simulations in the plane Red=Rec0 vs
Wod (Fig. 6) distinguishing between those for which the flow field is
well or poorly described by the solution given by Eq. (15). The solution
of Eq. (15) was considered to fit satisfactorily the CFD simulation, if
both the differences between the theoretical and computational maxi-
mum and minimum flow rate, Qmax and Qmin, and the volumes Vþ
and V� were less than 5%.

For low values of Wod (i.e., Wod � 3), the condition for which
Q(t) given by Eq. (15) is remarkably similar to the computed one is

TABLE II. Geometrical configurations and characteristics of the sinusoidal forcing of
the nozzle/diffuser pump simulated in the second numerical analysis.

Configuration h (deg) f (Hz) p0 (Pa)

10 1–500
1 7.2 20 50–2000

50 200–12 000
20 20–200

8 18.5 50 100–1000
200 500–12 000
20 20–200

10 29.4 50 50–750
100 100–3000

FIG. 5. Comparison between the time-varying flow rates estimated by Eq. (15) (solid blue line) and by CFD simulations (white circles) for (a) configuration 4 with f¼ 10 Hz and
p0¼ 1 kPa, (b) configuration 4 with f¼ 100 Hz and p0¼ 1 kPa, and (c) configuration 3 with f¼ 100 Hz and p0¼ 0.5 kPa.

FIG. 6. The points representative of CFD simulations plotted in the plane
Red=Rec0 �Wod for the first series of experiments (see Table I). White circles rep-
resent numerically computed flow conditions which are well described even by Eq.
(15). Gray circles represent flow conditions for which the numerical and the analyti-
cal solutions differ considerably. Green and red areas, which include the white and
gray circles, respectively, indicate where the flow is expected to be laminar and
dominated by inertia; the transition condition is located within the yellow area in
between.
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close to Red=Rec0 � 1. Hence, Rec ¼ Rec0 correctly identifies the vis-
cous/inertia-dominated regime transition. As expected, a not negligible
number of numerical tests with Red=Rec0 > 1 are still accurately
described by the laminar flow solution (i.e., those falling in the green
area of Fig. 6), revealing the existence of a superlinear relationship
between Rec andWod trigging to the flow transition.

According to the analysis, one argues that the transition occurs
within the yellow region of Fig. 6. However, this is only the first
attempt to relate the flow transition in diffuser/nozzle pipes to a Rec for
Wod low-moderate. Additional extensive CFD simulations and experi-
mental tests are needed to evaluate Rec for the diffuser/nozzle operat-
ing at moderate-high Wod. The analysis should also account for the
cone angle since it may favor the detachment of the boundary layer
when the fluid flows along the diverging wall direction. This point is
supported by the CFD simulations reported in Fig. 3 that show reverse
flow regions in the diffuser mode.

B. Analysis of the loss coefficients

The second series of numerical simulations allows one to study
the role of advective and temporal inertia on the model parameters,
i.e., the dependence of model parameters on the Reynolds and
Womersley number or the ratio between the two, i.e., the Strouhal
number. The determination of specific relationships to estimate the
model parameters �f6; �b, and e, is hardly feasible because the flow
behavior depends also on other non-dimensional parameters, e.g., the
cone angle and the tube slenderness. Therefore, we focus on a qualita-
tive or semi-quantitative analysis in order to frame the peculiar charac-
teristics of the pump dynamics and its performance in the range of the
typically prescribed working conditions.32,33 Notably, the relationships
here proposed for estimating the parameters of the model with some
approximation have the only purpose of showing what the dependence
of these parameters on the dimensionless groups that characterize the
problem is. A best-fitting approach based on a trial-and-error proce-
dure is adopted for this aim.

In Sec. VB, we focus exclusively on the loss coefficients �fþ and
�f�, which control the asymmetric flow through the pump. For readers
interested, the other parameters, �b and e, are treated in detail in
Appendix D.

The loss coefficients �fþ and �f� estimated by comparing the solu-
tions of Eq. (15) with those given by the CFD simulations can be
approximated with the following relationships:

�fþ ¼ �f0
k þ ð0:15RedÞk

h i1=k
; �f� ¼ �f0

k þ 1:30
0:15Redffiffiffiffiffiffiffiffiffiffi

tanh
p

� �k
" #1=k

;

(24)

where k and �f0 are suitable coefficients. The data analysis provides

k ¼ 1þ 0:0021v2ðhÞWo2:5; (25)

where vðhÞ is a function of the cone angle, h

vðhÞ ¼ �0:45 ln ðtan hþ 0:22Þ (26)

and Wo the Womersley number calculated in the middle section of
the tube,Wo ¼ rm

ffiffiffiffiffiffiffiffiffi
x=�

p
, with rm¼ (dþ D)/4.

In Eq. (24), the coefficient �f0 is the value of both �fþ and �f�
for Red � 1. Using the second series of experiments, �f0 is found
to be

�f0 ¼
20

ðtan hÞ0:75
d
D
þ 68:5

440 tan h Wo0:9 (27)

with the first term on the right-hand side directly derived from the
solution for steady flow provided by Jiang et al.,27 whereas the second
term stems from a fitting of the numerical results. Equation (27) indi-
cates that �f0 is nearly proportional to Wo, and it decreases quickly by
increasing the diffuser angle, h.

Figure 7 compares the loss coefficients �fþ [panels (a)–(c)] and
�f� [panels (d)–(f)] estimated from the numerical experiments listed in
Table II with the approximate solution given by Eqs. (24)–(27). The
computed �f6 are satisfactorily predicted, and the proposed relation-
ships are able to catch the trend of the losses coefficients with Red and

FIG. 7. Energy loss coefficients as function of Red for the three cone angles, h, of
Table II at different Womersley number, Wo. Panels (a)–(c) show the loss coefficient
in the diffuser direction, �fþ. Panels (d) and (e) show the loss coefficient in the noz-
zle direction, �f�. White symbols represent the values estimated when comparing
CFD simulations with Eq. (15); solid colored lines the solutions predicted by Eqs.
(24)–(27).
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Wo varying. The losses in the nozzle flow modality largely exceed
those in the diffuser case. Interestingly, the increase in Wo increases
the losses when the Reynolds number is low (Red < 100) according to
Eq. (27), while it slightly reduces the sharp increase in �f6 for large Red.

Figure 8 shows an example of how the coefficients �fþ and �f�
vary with Red for a given value ofWo. For Red < 100, the energy losses
are weakly affected by the inertia and hence the differences between
the diffuser and nozzle modality are negligibly small; on the contrary,
for Red> 100, both �fþ and �f� increase with Red, but �f� proportionally
increases less than �fþ.

C. Pump performance

As the energy dissipation and the pump flow rate are influenced
by Red and Wo, even the pump performance turns out to depend on
these two parameters. In the scenarios analyzed, the pump efficiency is
maximized when the values of the dissipation coefficients, �f6, lie along
the elbow of the plots shown in Fig. 7. These maximum conditions

correspond to Reynolds numbers ranging between 500 and 3500 and
increase with the Womersley number. A more effective representation
of the pump’s performance is possible by expressing the efficiency as a
function of the Strouhal number, which can reflect the dependency of
g on both the Reynolds andWomersley numbers.

Figure 9 compares the efficiency g computed using the numerical
results with that estimated with the solution of Eq. (15). The latter sys-
tematically overestimates the numerical efficiency near the maximum;
however, the error does not exceed 7%.

Remarkably, in some cases, the efficiency shows small negative
values at high St, i.e., the average flow rate is higher in the nozzle phase
than in the diffuser phase. This condition of reverse pumping may
occur at low Red when �fþ > �f�.

22,39

In the three configurations, the maximum pump performance
increases with the Womersley number, Wo, whereas the overall effi-
ciency, in the range of the investigated Wo, reduces with h increasing.
Furthermore, the optimum falls within the range 1 < St < 10 in the
three cases analyzed.

This range of St in which the efficiency is maximum is also found
by the numerical analysis on the performance of a diffuser valve car-
ried out by Wang, Chang, and Huang,40 as well as in the experimental
investigation on some micropumps reported in Wang, Chen, and
Hsiao.39

Wang, Chen, and Hsiao carried out experiments on the rectifica-
tion performance of conical diffusers. Their tests highlight an almost
linear relationship between the Reynolds and Roshko number (corre-
sponding to Wod2) when the maximum flow rate in the diffuser is
achieved, i.e., a condition close to that of the maximum efficiency. The
diffusers tested had a cone angle that varied almost in the same range
(h¼ 10�–35�) but with smaller slenderness than those of the present
study (L/d¼ 7.6 vs 13.3). The maximum efficiency, however, resulted
for St from 1.9 to 5.6, i.e., values comparable to those shown in Fig. 9.

The range 1 < St < 10 hints at the possibility that the optimum
is achieved when the convective and temporal inertia balance.
Consequently, such Strohual interval should be the natural operating
condition of circulation that exploits diffuser/nozzle pumps.

Longatti et al.,7 based on the analysis of magnetic resonance
images of a cohort of ten voluntaries, proposed a simplified diffuser/
nozzle pump model to describe the cerebrospinal pulsatile flow (CSF)

FIG. 8. Energy loss coefficient �fþ (blue) and �f� (red) as a function of Red for case
1 with f¼ 50 Hz (see Table II). Circles denote the loss coefficients estimated by
matching the CFD solutions with Eq. (15); solid lines show the solutions predicted
by Eq. (24).

FIG. 9. Pump efficiency, g, as a function of St for (a) configuration 1 (h¼ 7.2�), (b) configuration 4 (h¼ 18.5�), and (c) configuration 8 (h¼ 29.4�). The white symbols are the
values computed from the CFD simulations at different Wo; solid colored lines those predicted from the solution given by Eq. (15). The gray circle in panel (c) denotes the solu-
tion computed in the presumed inertia-dominated flow regime.
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through the system composed of the Third ventricle, the Sylvius
aqueduct, and the Fourth ventricle. In the model, the anatomy of the
aqueduct connecting the two ventricular chambers is described as a
short straight tube of length l¼ 17mm and diameter d0¼ 1.6mm
followed by a tapered diffuser of length L¼ 13mm with the smallest
and largest diameter equal to d¼ d0¼ 1.6 and D¼ 4.5mm (the cone
angle is thus h¼ 12.7�). Although the geometry is not a standard
tapered diffuser/nozzle, the flow still experiences different resistances
in the two directions similarly to the present model of the valveless
pump. The liquor in the CSF circulation has the same characteristics
as water (q ffi 1000 kg/m3 and � ffi 10– 6 m2/s). The fluid is mainly
pumped by the external pressure due to the heartbeat (frequency
f ffi 1Hz), resulting in an oscillatory discharge through the aqueduct
whose peak lays in the range Q0¼ 10–20ml/min.41–43 With these
data, the estimate of the Strouhal number of the Sylvius aqueduct is
St¼ 1.1–2.3.

The above result shows that the third ventricle-sylvius aque-
duct-fourth ventricle system, modeled as a valveless pump, operates
under the expected conditions of maximum efficiency. Interestingly,
the physiological microcirculation in organisms generally occurs
with pulsatility x of order 10Hz and p0 between 100 and 1000 Pa. In
the present analysis, �f is shown to be of the order 100–1000 accord-
ing to Eq. (24), and therefore St turns out to be of order 1, according
to Eq. (22).

These noteworthy results seem to confirm that St¼ 1–10 is prob-
ably the typical range of the Strouhal number in micropumps adopted
for microcirculation in nature. Clearly, the problem at hand is
extremely complex and further specific investigations are necessary to
confirm the significance of the outcomes given by the present simpli-
fied model.

Finally, Fig. 10 shows the normalized net flux Qnet=Q0 as a func-
tion of St for configuration 1. The comparison between panel (a) of
Figs. 9 and 10 shows that the net flow rate, Qnet ¼ eQ0D�f=�f, has the
same trend as g, and, in particular, the maximum of the ratio Qnet

Q0

occurs approximately at the same St that characterizes the maximum
pump efficiency.

VI. CONCLUSIONS

An approximate time-dependent theoretical solution based on
the mechanical energy conservation equation is proposed to predict
the laminar flow rate through an ideal diffuser/nozzle pump.
When the flow is laminar, the solution matches the results of numeri-
cal simulations carried out using several diffuser/nozzle configurations.
Interestingly, when the temporal inertia is relatively large, the onset of
the transition from laminar to inertia-dominated flow shifts toward
higher values of the Reynolds number. A transition criterion is also
proposed, i.e., the transition occurs when the Reynolds number, Red,
exceeds a threshold value Rec, which in turn depends on the throat
Womersley number,Wod.

The correct predictions of the proposed solution depend on four
parameters, namely �f6; �b, and e. Despite the large number of numeri-
cal experiments performed, the characterization of these parameters
was not complete in the space of the non-dimensional groups that gov-
ern the dynamics (Re, Wo, St, L/d, and h). This aspect, thus, deserves
further studies to fully explore the problem and use the simplified 1D
solution straightforwardly. However, the analysis points out some rele-
vant results.

The pump efficiency decreases dramatically with the cone angle h
increasing in the three cases analyzed and depends on the competition
between viscosity and advective and temporal inertia, described by the
dimensionless parameters Red, Wo, and St. The optimal valveless
pump function is achieved for St ¼ Oð1Þ when the advective and tem-
poral inertia are balanced. This condition is also observed in natural
channels, as in the cerebrospinal circulation, in which the Sylvius aque-
duct appears to function as a diffuser/nozzle element.

Furthermore, the efficiency is mainly controlled by the loss coeffi-
cients �f6, which, in turn, depend on Red, Wo, and the geometry of
the diffuser/nozzle. Specifically, the loss coefficients, �f6, growth with
Red, but result strongly dependent on the Womersley number,Wo, for
Red< 100.

Based on the assumptions of incompressible Newtonian fluid, the
model is suitable for water and organic solvents; on the contrary, some
cautions are needed to apply the present scheme to fluids with low
bulk modulus, such as air or gas, or different rheology, such as blood
and industrial oils. That being said, gases can be treated as incompress-
ible in diffuser/nozzle pumps that operate under the flow rates used in
the current study, whereas, the non-Newtonian behavior can be appro-
priately included in the energy losses.

A more accurate estimation of the loss coefficients at different
operating conditions is a challenging problem that needs to be dealt
with to enhance the comprehension of this intriguing hydraulic mech-
anism, with positive benefits in the design of asymmetric micropumps,
as well as in the understanding of the dynamic conditions that may
favor asymmetric pumping systems in biological flows at small scales.
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NOMENCLATURE

a chamber radius
A section area

A1; A2 section area of the chamber 1 and 2
C constant of integration
d throat diffuser/nozzle diameter
D maximum diffuser/nozzle diameter
f pumping frequency
g gravity acceleration
H total head
j head loss per unit length
L diffuser/nozzle length
n normal vector
p pressure

pmax maximum efficiency pressure
p0 maximum pressure difference between chambers

1 and 2
p1, p2 pressure in chamber 1 and 2

Q volumetric flow rate
Qnet net flow rate
Q0 characteristic flow rate
r radial direction

Rec critical Reynolds number
Rec0 critical Reynolds number in steady flow
Red throat Reynolds number

s axial direction
St Strouhal number
t time
T pumping period
T tensor stress
u local flow velocity
u axial flow velocity
U cross-sectional average velocity
U0 characteristic flow velocity
v radial flow velocity
V domain volume

Vþ total volume flowing in the diffuser mode
V� total volume flowing in the nozzle mode
Wo Womersley number in the middle of the diffuser/

nozzle
Wod throat Womersley number

a Coriolis correction factor
b momentum-flux correction factor

bm median of the momentum-flux correction factor

�b time-independent momentum-flux correction factor
�b1 asymptotic momentum-flux correction factor
c fluid specific gravity

D�f semi-difference of the time-independent Energy loss
coefficients

DP1;2 power of the internal forces
Dw semi-difference of the characteristic frequencies
e calibration factor
f energy loss coefficient
�f averaged time-independent Energy loss coefficient
�f0 energy loss coefficient at Red � 1
fþ energy loss coefficient in the diffuser mode
f� energy loss coefficient in the nozzle mode
�fþ time-independent energy loss coefficient in the diffuser

mode
�f� time-independent energy loss coefficient in the nozzle

mode
g kinematic viscosity
g pump efficiency
h cone angle
j coefficient
k coefficient
l dynamic viscosity
q fluid density

r ¼ w=x frequencies ratio
vðhÞ function of the cone angle h

w diffuser/nozzle characteristic frequency
wþ;w� characteristic frequencies of the diffuser (subscript þ)

and nozzle mode (subscript �)
x pumping angular frequency

xmax maximum efficiency pulsatility
X surface boundary
~_ dimensionless parameter

APPENDIX A: DERIVATION OF THE MECHANICAL
ENERGY CONSERVATION IN A DIFFUSER/NOZZLE
ELEMENT

The pump dynamics can be described by assuming the mechani-
cal energy conservation for an uncompressible flow of density q on the
control volume, V, limited by the surface X, which reads

d
dt

ð
V
q
u2 þ v2

2
dV|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

kinetic energy

þ
ð
X
u 
 T 
 nð Þ dX|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

power of external forces

þ DP1;2|fflffl{zfflffl}
power of internal forces

¼ 0;

(A1)

where u and v are the axial (direction s) and radial (direction r)
components of the local velocity u, respectively, T is the tensor
stress, and DP1;2 is total power dissipated within V. The first inte-
gral accounts for the variation of the kinetic energy in V; the second
is instead the power of the external forces owing to the pressure and
the shear stress on the boundaries (n is the normal vector directed
outwardly from X). However, at the wall, the velocity is u ¼ 0 (no-
slip condition); therefore, the contribution of T is null, and the
power depends only on the pressure, p, acting on the inlet and out-
let of the domain. Accordingly, we can rearrange Eq. (A1), as
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ð
V
q
d
dt

u2 þ v2

2

� �
dV � q

2

ð
V

@u2

@t
dV þ q

2

ð
V

u
@u2

@s
þ v

@u2

@r

� �
dV

¼ �
ð
A2

p u dAþ
ð
A1

p u dA� DP1;2; (A2)

here the kinetic energy contribution is approximated to q u2=2 since
v � u, and A1 and A2 are the inlet and outlet sections where
u ¼ ðu; 0Þ and p is constant. The integrals of Eq. (A2) can be solved
in terms of the cross-sectionally averaged velocity, U, by introducing
the correction factors

a ¼ 1
A

ð
A

u3

U3
dA ; b ¼ 1

A

ð
A

u2

U2
dA: (A3)

By replacing these terms in Eq. (A2) and observing that the
integral of v@u2=@r is zero owing to the axial symmetry of the prob-
lem, we find

p2 þ qa2U
2
2

� �� p1 þ qa1U
2
1

� � ¼ �q
ð2
1
b
@U
@t

ds� DP1;2

Q
; (A4)

where Q ¼ U A is the volume flow rate through the pipe. Here, the first
and second terms are the mechanical energy per unit volume of fluid in
the outlet and inlet, respectively, while the third term is the temporal
variation of the energy. Finally, by dividing by the specific gravity of the
fluid, c, the differentiation of Eq. (A4) results in Eq. (2).

APPENDIX B: DERIVATION OF THE FLOW RATE
DIFFERENTIAL EQUATION

The volume flux, Q, is determined by integrating Eq. (2)
between the two chambers, i.e.,ð2

1

@Hðs; tÞ
@s

ds ¼ �
ð2
1

bðs; tÞ
g

@Uðs; tÞ
@t

ds�
ð2
1
jðs; tÞ ds: (B1)

The integral on the left-hand side of Eq. (B1) yields the total
head difference H2ðtÞ � H1ðtÞ, which is equal to the difference in
pressure p2ðtÞ=c� p1ðtÞ=c, as the flow velocity is negligibly small in
the chambers, that is,ð2

1

@Hðs; tÞ
@s

ds ¼ p2ðtÞ
c

� p1ðtÞ
c

¼ p0
c
sin ðxtÞ: (B2)

The term @U=@t is also negligible within the two chambers,
and the first term on the right-hand side can be rewritten as

� 1
g

ð2
1
b

1
A
@Q
@t

� Q
A2

@A
@t

� �
ds; (B3)

where A ¼ Aðs; tÞ is the cross section area of the nozzle.
Furthermore, being fluid incompressible and the wall rigid, Eq. (B3)
can be simplified as follows:

� 1
g

ð2
1
b

1
A
@Q
@t

� Q
A2

@A
@t

� �
ds ¼ � 1

g
dQ
dt

ð2
1

b
A
ds: (B4)

Referring to Fig. 2(a), the cross-sectional area A(s) reads

AðsÞ ¼ p
4
dðsÞ2 ¼ p

4
d þ 2

D� d
2L

s

� �2

¼ p
4

d þ 2 tan h sð Þ2: (B5)

Substituting (B5) in (B4) and assuming self-similar velocity
profiles along the pipe, such that bðs; tÞ � bðtÞ, integration by parts
leads to ð2

1

b
A
ds ¼ 4

p

ð2
1

b

d þ 2 tan h sð Þ2 ds

¼ 4b
2 tan hp

ðD
d

1

n2
dn

¼ � 4Lb
ðD� dÞp

1
D
� 1
d

� �
¼ 4Lb

pdD
: (B6)

By substituting (B4) and (B6) into (B3), the inertial accelera-
tion can be rewritten as

� 1
g

ð2
1

@Q
@t

b
A
ds ¼ � b

g
4L
pdD

dQ
dt

: (B7)

The overall energy loss, quantified by the last integral of the
right-hand side of Eq. (B1), can be estimated by means of semiem-
pirical relations valid for laminar flow condition, e.g., Jiang et al.27

�
ð2
1
j ds ¼ � fðtÞ

g
2�
pd3

QðtÞ: (B8)

FIG. 11. Sensitivity analysis of the grid resolution. Panels (a)–(c) show the coarse
mesh (5400 elements), the normal mesh (32 000 elements), and the fine mesh
(115 000 elements) adopted in the simulation. Panel (d) shows the computed flow
rates for configuration 1 by prescribing f¼ 10 Hz and p0¼ 500 Pa with the coarse
(solid red line), normal (solid sky blue line), and fine (dashed dark gray line) mesh.
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APPENDIX C: MESH SENSITIVITY ANALYSIS

To test the influence of the grid resolution on the results, we
compared the flow rate computed for configuration 1 using three
meshes that consist indicatively of 5400 (coarse), 32 000 (normal),
and 115 000 (fine) elements (see Fig. 11).

The values of the three flow rates are similar. Relative errors
between the solutions with the normal and coarse mesh are below
3%, while between the normal and fine mesh are smaller than 0.3%.

APPENDIX D: ANALYSIS OF �b AND E

1. The momentum correction factor �b

As an example, Fig. 12 shows the values of �b for configuration
1 of the second series of simulations (see Table II) as a function of
the Strouhal number, St. For each Wo, �b increases with St, and it
approaches a constant value as soon as St is sufficiently large
(St ! 1); we denote such a asymptotic value by �b1.

The most striking result is shown in Fig. 13 where the ratio �b=�b1
is plotted vs St 
 vðhÞ for the three configurations analyzed. The data lie
with minor scatter along the black dashed line, indicating that vðhÞ and
�b1 account for the major effects of the cone angle.

The asymptotic �b1 results to be well predicted by the follow-
ing expression:

�b1 ¼ ð1:07þ 0:68 tan hÞWo�0:09 tan h
� 	

bm; (D1)

where bm is the median of the momentum correction factor in the
middle tube section during the period T, when the advective velocity
is neglected according to the flow solution proposed by
Womersley44 for the case of a rigid circular pipe under sinusoidal
pressure gradient (see Fig. 14).

FIG. 12. The momentum corrector factor, �b, vs St for configuration 1 (see Table II).
Circles denote the estimates of �b given by matching the CFD solutions with Eq.
(15) with Wo equal to 10.9 (blue), 15.4 (red), and 24.4 (green). The dashed lines
represent the asymptote �b1 for the three series of data.

FIG. 13. Estimated �b=�b1 vs St 
 vðhÞ for the second series of experiments distin-
guished for Wo (see Table II). Blue symbols refer to configuration 1 (h¼ 7.2�), red
symbols to configuration 4 (h¼ 18.5�), and green symbols to configuration
8 (h¼ 29.4�). The dashed line shows the trend of the overall data.

FIG. 14. The median of the momentum correction factor, bm, as a function of Wo,
computed at the highest St for each frequency of the second series of experiments
(see the test with smallest p0 in Table II). Circles refer to configuration 1 (h¼ 7.2�),
diamonds to configuration 4 (h¼ 18.5�), and triangles to configuration 8 (h¼ 29.4�).
The results are satisfactorily located on the solid line indicating bm calculated
according to the solution of pulsatile flow in a straight tube.44

FIG. 15. Estimated e vs Wo�vðhÞDr=r for the second series of experiments distin-
guished for Wo (see Table II). Blue symbols refer to configuration 1 (h¼ 7.2�), red
symbols to configuration 4 (h¼ 18.5�), and green symbols to configuration
8 (h¼ 29.4�). The dashed line shows the trend of the overall data.
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The term in the square brackets of Eq. (D1) embodies the cone
effect on the value of �b1 (and �b); when the tube is straight, that is,
when h¼ 0, the term in the square brackets is equal to 1.07, that is
not much different from 1, as one would expect in this case.

2. The flow rate correction factor e

Figure 15 shows the coefficient e as it varies with
Wo�vðhÞDr=r. When Dr=r < 0:06WovðhÞ, the flow rate correction
factor e is constant and approximately equal to one; for
Wo�vðhÞDr=r > 0:06, e reduces linearly within the range of the
investigated flow and geometry conditions.
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