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1. Introduction

The aim of this paper is to study the well-posedness of a system representing a toy model for the Helium
atom with relativistic corrections that the first and second authors started in [6]. The Helium atom is
represented by a nucleus in position ¢(t) € R® and by two electrons. The wave function u satisfies the
following Cauchy problem :

i0yu = Dpyu + Wqlu + | (u, Bu) |pT_lﬁu7 u(t,z) : Ry x R3 — C*
u(0, z) = ug(x).

Here, D,, with m > 0, denotes the massive Dirac operator: this is classically represented as

(1)

3
Dy, = —iZakak—Fﬁm: —i(a- V) + fm
k=1

where a = (a1, az, a3) and the 4 x 4 Dirac matrices are given by
IQ 0 0 Ok
= = 2
IB <0 IQ> ’ k (O’k 0 ) ( )
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where I5 is the 2 x 2 identity matrix and oy for kK = 1, 2,3 are the Pauli matrices given by

() (0 3) ) 0

In what follows, we will take for simplicity m = 1 and we will denote D = D;.

The potential Wg] is the electrodynamic field generated by the nucleus, assuming the nucleus is not
punctual but is spread according to a function y : R?® — R representing the charge distribution, centered in
q(t), where q : R — R? is the position of the nucleus in time. In other words, W{q] is the solution W to the
equation

oW + W — AW = x(x — ¢q(t)), Wi(t,z): Ry x R} - R A
{ W(0,z) = wg, OW(0,z)=w. )

The function x is assumed to be real and satisfying suitable conditions that we will state later on.

In the first time, we assume that ¢ is given; in this setting, the Dirac equation and the Klein—Gordon
equation are decoupled.

The nonlinear term we are considering in (1), that is sometimes referred to as Soler nonlinearity, is
classical in this setting (see e.g. [10]), as it is the main example of covariant nonlinearities for the Dirac
equation, that is such that the equation is left invariant under Lorentz transforms.

Before stating our main results, let us comment on our system. As we mentioned above, the map u
represents the wave function of the electrons, the map W represents the electric field generated by a nucleus
centered in the position ¢(t) at time ¢ and with a charge density distribution given by x(x —¢(t)). In fact, in
relativistic electronic structure theory, the nuclei, composed of small constituents (i.e. nucleons or quarks)
and bound together by the strong force, should be represented by an extended distribution function x instead
of a Dirac delta distribution (see e.g. [1]). Here, we propose to study a non-linearity that we can deal with by

) |(p71)/26u. Another possible choice would be to

making use of standard Strichartz estimates, that is | (u, Su
consider the Hartree type nonlinear term (|x|™ " * \u|2)u7 ~ > 1, but this would force us either to provide a
more refined version of Strichartz estimates in Besov spaces (see e.g. [15]) or to require more regularity on the
initial data (see e.g. [7]). Note that to be perfectly consistent with the physics literature, the Klein—-Gordon
equation should be replaced by the wave equation; however, the wave equation admits less dispersion than
the Klein—Gordon one, and this fact represents a substantial obstacle to the strategy we pursue here. To the
best of our knowledge, there is no result about the Dirac—wave equation system in dimension 3 that suits
our problem.

Our first main result is the following (we postpone the overview of the notation to the end of the

introduction):

Theorem 1.1 (Global Well-Posedness For (1)). Let p and s < 2 be such that:

sz % - if p > 3 is an odd integer,
— —=, ifp> 3 is not an odd integer.

. 1 -
Gl 21 my < 5 q € L*(R). (5)

Then, if |wollys+s.1, lwillysz1, [IXIw2esr,
Wlq] to (4) belongs to the space

(z)*t xHLoo and ||ug|| ;s are small enough, the unique solution

CO(R, L=(R?)) + L' (R, H**+>(R?))
and system (1) admits a unique global solution u in the space

C(R, H*(R?)) N LP~1(R, L™ (R?)). (6)
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Remark 1.1. It is easy to see that the most frequently used charge density distribution such as the
Gauss-type, and the Fermi-type satisfy our assumptions on x (for detail, see [1, Section 4.4 and Section
4.5]).

Remark 1.2. For the proof of Theorem 1.1, we follow the argument developed in [10, Theorem II] where
the case p = 3 is excluded for the global well-posedness. The reason is technical, and it is ultimately due to
the failure of a Gagliardo—Nirenberg inequality at the critical level (see [10, Remark 7]). We do not know
whether it will be possible to be able to cover the case p = 3 as well by making use of some more efficient
nonlinear argument; anyway, as this is not really the focus of our paper, we do not mean to strive on the
optimality of p.

The proof of Theorem 1.1 is quite standard provided one has suitable Strichartz estimates at disposal; to
the best of our knowledge, they are not available in the form we need, and we thus need to prove them. To
begin with, let us give the following

Definition 1.2 (Dirac Admissible Triple). The triple (p,r,s) is Dirac admissible if and only if there exists
a constant C such that for any ug € H?

le"Puoll pp < Clluollas-

Remark 1.3. The standard choice of Dirac admissible triple (p,r,s) is the non-endpoint Schrédinger
admissible one [9]:

2 3 3 1 1 1

—+-==, 2<p<+oo, 2<r<6, s=_-+—-——.

p r 2 2 p r

Actually, to deal with the nonlinear term in system (1), it is helpful to work with a different triple, that is
1,4+ 5 ! >3
— LT, ==, 5
p 5 51 p
in fact, the estimates, in this case, can be retrieved by the classical ones and the application of a

the one given by

Gagliardo—Nirenberg inequality (see [10], Theorem 1.5).

We thus prove the following

Theorem 1.3 (Strichartz Estimates). Let T € (0,400]. Let u = Sy (t)ug be a solution to
i0u = Du+ V(t, z)u, u(t,z) : (0,T) x R — C*
u(0, z) = up(z)

where V (t,z) is an operator. Let N > 3 and s > 0. Assume that

o system (7) is well-posed on H®,
e there is a constant € > 0 small enough such that

N — N
N = 1— A2V (1 — A)=s/2 H <
IVliz.s.n H<I> ( aad ) @) Loo((0T) L2 L?) S

Then the following estimate holds:
HSV(t)“O||LO@((0,T);HS) S o]l gs - (9)

Furthermore, if (p,r, s) is any Dirac admissible triple then the following Strichartz estimates hold:

HSV(t)UOHLP((o,T);L?") S lluollgs - (10)
3
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Remark 1.4. Strichartz estimates for potential perturbations of the Dirac equation have been widely
investigated (see e.g. [3-5,9]). Theorem 1.3 improves on existing results, as here V is a time-dependent
operator, not necessarily a multiplication one; this result is thus of independent interest.

As a second step, we couple system (1) with a nuclear dynamics of Hellmann—Feynman type, that is we
now consider the following more involved system:

i0u = Du+ Wiglu + | (u, fu) |"T Bu;  u(t,z) : R, x RS — C*

i=(u u )= u(x), u(x 4uz'
MQ< > /]1§3<(), ()>C |qu|3d, (11)

u(0, z) = ug(x);
q(0,2) =0, ¢(0,z)=vp.

z—q
3
|z — q

for some M > 1 and with the same notations as for system (1).
This coupling comes from the fact that the electrons act on the nucleus via a potential

(el

Note that now the Dirac equation and the Klein—-Gordon equation are coupled through the dynamics of q.

We keep the electrostatic approximation here because the nucleus is far heavier (M > 1) than the electrons
and thus carries some inertia. Hence we assume that its dynamics are driven by the classical dynamics of a
charged particle in a given field. Note that this type of system has been studied in [7] in the nonrelativistic
case with electrostatic approximations for the nucleus and the electrons: the authors proved global well-
posedness for the system. We stress the fact that for a nonrelativistic system, the Coulomb potential is not
scaling-critical, which makes all the difference with the problem at stake.

For system (11), we prove the following;:

Theorem 1.4 (Large-Time Well-Posedness For (11)). Let p and s < 2 be such that:

{52 %—i, if p > 3 is an odd integer,

p—1
%_1 >s>3 - p—il, if p > 3 is not an odd integer.

Let x, wo, w1, q1,q2 be as in the assumptions of Theorem 1.1 with the additional assumption that
| (@)*" Vx| Lo be sufficiently small. For all R > 0, such that

luoll s + llwollyystsr + lwillysvan + Ixllwsin <R,
there exists a constant Cy = C2(R) such that the unique solution Wlq] to (4) belongs to the space
CO([0, 7], L= (R?)) + L*([0, 7], H* > (R?))
and system (11) admits a unique solution (u,q) in the space
C°([0,T], H*(R?)) x C*([0,T],R?)

for any T < Coymin(v M, ‘U0|_1)'

Remark 1.5. The regularity assumption s > 3/2 on the initial condition ug is needed in order to prove

well-posedness for the dynamics of the nuclei or, more precisely, to prove that the map F'(q) = <u\ l;__qqlg |v>
is Lipschitz continuous and thus to be able to apply Picard fixed point Theorem; therefore, it represents an

4
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unavoidable threshold. This fact has been already noticed and discussed in [6] (see Remark 1.5 there). On
the other hand, the (additional) upper bound s < 2 turns out to be necessary in view of providing suitable
estimates on the function W (see e.g. Proposition 3.5). This upper bound is thus due to technical reasons;
again, this condition could be lifted at the price of losing derivatives on x. We omit the details.

We remark that we call the Theorem “large-time well-posedness” because the time T of well-posedness
goes to oo as M and |vg\_l go to oo, which corresponds to taking a nucleus that is infinitely heavier than
the electrons.

Overview of the paper and sketch of the proof. As the paper is quite articulated, let us give a short
overview of the main ideas of our argument. The main difficulty with Eq. (1) and system (11) is driven by
the Klein—Gordon equation on W: in fact, this Klein—-Gordon equation cannot be solved directly by making
use of standard Strichartz estimates, as indeed in our assumptions the function x(z —q(t)) & LY (R, L"(R?))
for any 1 < p < +oo and 1 < r < +o0. To be more precise, we cannot find a functional space L} (R, L™(R3))
for some 1 < p < +o0o and 7 > 1 such that W € L¥(R, L"(R?)). To overcome this problem, we will not solve
the (full) Klein-Gordon equation for W by standard Strichartz estimates; instead, we shall decompose the
potential W into a sum of a “dispersive part” (that means that it enjoys some “nice” dispersive estimates)
and a “non-dispersive” part. The dispersive part will be studied by means of standard Strichartz estimates
for the Klein—Gordon equation, while the non-dispersive one will be treated as a perturbation of the free
Dirac equation (we postpone to the beginning of Section 3 a more detailed overview of this decomposition).
Therefore, we will need some Strichartz estimates for the Dirac equation perturbed with a non-stationary
potential which, to the best of our knowledge, are not known: this will be the first step of our argument.
Once Strichartz estimates are available, the proof of Theorems 1.1 and 1.4 becomes fairly straightforward.
In particular, the proof of 1.4 requires some additional effort in order to handle the classical dynamics on ¢:
to show that it is well posed, we need to assume sufficient regularity on the initial condition ug.

The plan of the paper is thus the following:

e In Section 2 we shall prove Strichartz estimates for the Dirac equation with a moving potential, the proof
relying on the well-established path

virial identity = weak dispersive estimates = Strichartz estimates.

e In Section 3 we shall deal with the Klein—Gordon equation: we provide the aforementioned decomposition
of the solution, prove some useful estimates on the single terms and prove global well-posedness.

o Section 4 will be devoted to the proofs of Theorems 1.1-1.4, that is the well-posedness for systems (1)
and (11).

Notation. We use the standard notation LP for Lebesgue spaces, often distinguishing with a subscript
x (resp. t) the norm in space on R? (resp. in time on R;); with the subscript X7 we will denote norms on a
time interval (0,7T) with T € (0, +oo], that is e.g. L}, = LY((0,T)). We will denote with W** the Sobolev

spaces:
1/p

I lwee = > ID*fllLs |

|a|<s

for s € Nand p > 1, and for s € (0,+00) \ N, let s =m +r with m € N and r € (0,1), then

1/p
Da Da p
1 flwes = [ 1712 ’”Z//R | f> |4Tpf<y>' de dy

3%xR3 T =Yy

loe|=
We will denote with H®P the spaces equipped with the norms

[l zrsw = 1 H* | o
5
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where H = /1 — A, for s > 0 and p > 1, with the usual convention for the case p = 2 that is H® = H*?2.
According to interpolation theory,

[fllsr S N fllwse, 1< p < +o0, (12)
and according to Calderén—Zygmund inequality,

I fllwse S fllzse, 1 <p< +oo. (13)

The Strichartz norms will be denoted as

ey = 1A lxeve = 1171 x ey cay)

where X and Y might be Lebesgue, Sobolev or weighted Sobolev spaces; the local-in-time versions will be
written as X7V, = X((0,T); Y (R2)) for some T € (0, +oc]. As declared, we will often omit the subscripts ¢
and x when the context will make it unambiguous.

Let (z) = /1 + |z|°>. We will make use of the following weighted norms: by L2((z)") and H*((z)") we
denote respectively the spaces induced by the norms

>N

Il paeyy = Y oy Wl gy 2= gy + 19y (1
where N is a real number (that may be negative). Notice that the H((z)"™) norm of u is equivalent to the
H' norm of (z)" u, which in turns makes it equivalent to the L2 norm of D (z)" u.

We recall that the norm that will play the starting role, as defined in (8), is given by

V]

N /2 =s/2 (AN
oN = 1— APV (1 — )%/ H
T,s,N H<m> ( ) ( ) (@) Lo°((0,T),L2—L2)

for s, N € R. When T = oo, we denote it as |V||s -
Finally, we recall that the functional space X 4+ Y is defined through the norm

[ull x4y = _inf (Juillx +[Juzlly)-
u=ui+ug

2. Linear estimates for the Dirac equation: proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3, that is of Strichartz estimates for solutions to Eq. (7)
under suitable assumptions on the potential V. The strategy is classical in this framework, and it is based
on virial identity. Therefore we will proceed as follows: after introducing our functional setting and some
inequalities in Section 2.1, in Section 2.2 we shall build the virial identity and prove a weak dispersive
estimate, while in 2.3 we shall derive the Strichartz estimates via the standard argument.

2.1. Preliminaries
We begin with some norm inequalities that we shall need in the sequel.
Proposition 2.1. For all N € R, the norm
1l g1y = [Dull p2ayny + C llull 2w

is equivalent to the H'((x)™) one defined in (14) for C large enough.
6
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Proof. By definition of the Dirac operator, we have that

3
DUy =y + |35 (01" 050y
= ,

3
+ 2Re <— Z i(z)™ a;0;u, ()N Bu>
j=1 L2

On the one hand, it is easy to see that

2’

i(x)Najaju = H(x}NVu‘
=1 2

On the other hand, by Young’s inequality, for any a > 0

3
N N 1 N 2 2
Re <— E lz<m> a;05u, (x) 6u> < p H<x> VUHL2 —|—a|\u||L2(<m>N).
=

L2

As a consequence, we get

2
2 _ 4 2 — 2
1Dy > (1= =) Nl gy + (1= 20) [l 25,

and

2
1Dl vy < (14 a)nunHl( oy (L 20) [l

from which we deduce the result taking some a > 5 and C large enough. O

Proposition 2.2. Forall N inR, s >0, a € N3 and for allu € L2(<LIJ>N), if la| < s the following inequality
holds

HDO‘H_SUHLQ((z)N) S ||U||L2(<$>N) .
Proof. We prove the statement for N € N, the rest of the cases will be covered by standard interpolation.
By Plancherel theorem, we know that

i e, = v @l 2 5 oreeio7,
yI<N
$3° it g, < 3 o, 5
k=0 k=0

and this concludes the proof. [

2.2. Weak dispersive estimates

The aim of this subsection is to prove a weak dispersive estimate for solutions to (7), that is to say, that
we prove the following proposition.

Proposition 2.3. Let T € (0,400], N > 2 and s > 0. Assume that V € C((0,T), H* — H?®) is such that

VT~ <e, (15)
7



F. Cacciafesta, A.-S. de Suzzoni, L. Meng et al. Nonlinear Analysis 239 (2024) 113420

for e > 0 small enough. Then the following estimate holds
||UHL2TH5((,T>*N) < O(e)||luol| ms (16)

for some constant C(g) depending on €.

Remark 2.1. Notice that this result in particular implies
HSO(t)uO”L%LZ((E)*N) < ||u0||L2 (17)
for any N > 2, as indeed condition (15) is obviously satisfied when V = 0

The remaining of this subsection is dedicated to the proof of Proposition 2.3, which is divided into various
steps. The first one consists in reducing the problem to the case of the regularity s = 1; the second step
consists in establishing a virial identity, namely an identity of the form

t

O1(¥, v)(7)dT = O(¢,v)(t) — O(x),v)(0)

0

where the quantities involved depend on v the solution to the Dirac linear equation with time-dependant
potential, and a function 1 called a multiplier.

The rest of the proof consists in proving that ©; controls an adequate norm on v to the square given
an appropriate (family of) multiplier ¢ and that ©(,v)(t) is controlled by the norm of the initial datum
(regardless of the time t) to the square thanks to the symmetries of the equation.

In the third step, we control the terms appearing in ©; that depend on the potential, and that we will
consider as perturbative. The estimate do not depend on the choice of the multiplier 1) but on its norm.

In the fourth step, we control @ thanks to the initial datum.

In the fifth step, we give out a one-parameter family of multiplier ()g)g>o such that

2

HU”L%Hl(@v}_N)

is controlled by the supremum on R of the non perturbative term in 6.
In the sixth and final step, we combine all the previous estimates to prove the proposition.

Proof of Proposition 2.3. Step 1 : Reducing the regularity to s = 1. We introduce the function
v = H 'y that satisfies the equation
i0v =Dv+ Vo (18)

with V = H*"1VH'* and vo = H* ug. Then from IV

7,5, < €, we infer that
IVlran <e

The advantage of using the function v is in that we now aim to prove an estimate at the H* level on it (which
in fact is the “natural setting” for the weak dispersive estimates with our strategy), and the H' norm of v
is equivalent to the H® norm of .

Step 2 : Virial identity. As it is often the case when dealing with the Dirac equation, in order to build
a useful virial identity we consider the squared system, that is

— 820 = D% + DV +id,(Vv). (19)
Let 9 : R?> = R be some real, regular function independent of time to be chosen later; we then set

6 = 2Re ([- A4, Y]v, 0v) + 2Re <[—A,1/J]v,i‘~/v> , (20)

8
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so that
00 = 2Re <[—A, Vv, 02v + i@t(VU)> + 2Re <[—A, ] 0sv, zI~/v>

Plugging (19) in the above yields
9,0 = —2Re([-A,¢Jv,D*v) + A+ B (21)
with
A =2Re <[—A, Y] 0w, in>

and
B = —2Re <[—A, Yo, D\~/v>

(identity (21) or its time derivative is often referred to as wvirial identity). Moreover, the following identity
holds
—2Re ([~ A, ¢]v, D*v) = (A%Yv,v) — 4 (Oxv, 0, 0;90;v) . (22)

Indeed, the proof of (22) is classical, but we include it anyway for the sake of completeness. As D? = 1— A,
we have

2Re ([—A, ¢]v, D*v) = —2Re ([— A, v, Av) .
We recall that [—A, ] is skew-symmetric, and A is self-adjoint. Then we get
—2Re ([—A, ¢]v, D*v) = — ([— A, ¢]v, Av) — (Av, [~ A, ¢Jv) = ([4, [A,¢]]v,v).
We have [A, 1] = A + 2VihV, which gives
[A,[A )] = A% +4VAY -V +4V R VY-V V.

We compute
a = (V ® V¢ -V® VU, ’U> = (6j8kw8j8kv, 7]) .

We use that 1 is real to get
a = <8j8kv, (8J8k1/1)v> .

We use that 0; is skew-symmetric and the Leibniz rule to get
a=— <8kv,8]2»8kwv> — (Okv, 0;0x10;v) .

In other words

a=—(VAY - Vu,v) — (Okv, 0;0x10;v) .

Summing up, we get
—2Re ([~ A, ¥]v, D*v) = (A%v,v) — 4 (Ikv, 8;0,10;v) .

Step 3 : Estimating the perturbative terms in the left-hand side regardless of the choice of
the multiplier. The following estimates hold

1ALy, SIS I7 s 25 1 gy (23)
17 2
1By, SNVl 10113 1y

where [|1[l2 = V|| zoe + || A¢|[ oo
We start with the estimate for the term A. We have

A =2Re <[—A, Y]y, ﬂ7v> .

9
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Recalling that [—A, 4] = —AyY — 2V - V is skew-symmetric, we get

A< 900] 2 gay-, [[[= 4,61V

S Yl2100l 2y - HVUH

L2((@)N) H ((@)N)
Obviously,
7 N Frr—1 N
[70] s oy S @™ BVE @] 1ol oy
We now control [|0yv| ;2 ((,y-ny- From the equation on v, we get
oot =04l €10+
[ tU||L2(<I> Ny v+ Vv L2((z)-N) | 'U||L2((x) N)+ v L2(()-N)

from which, by Proposition 2.1, we get

1000l ) S Wl + [t HPH @)

L2512 1ol g2y -
Using the fact that V should be small, we get

A S Il | @) BV E (@)™

(el
L2512 H1(<z>7N) :

The Cauchy—Schwarz inequality on the integral on time gives the result for A.
We now estimate the term B. We have

B = —2Re <[—A,¢]U,D‘7v> .
This gives by Cauchy—Schwarz inequality,

L2 (@)™
As we have seen previously,

DVl SN HVE T (@)Y
£2((z)"N)

12,12 ”vHHl((m)—N) . (24)

Using Cauchy—Schwarz inequality on the integral on time, we get the result.
Step 4 : Estimating the right-hand side thanks to the initial datum
The following estimate holds

2 17 2
16110 S ells (NoolFi + 1V 2 o032 g1y, ) - (25)

First, let us prove that
2
1605ce S Il o120 (26)

Starting from identity (20), by Holder inequality we get

10153 S 14 vl gese (Houlers + |72 ., )-

We have on the one hand
1A vl ez S (1Ml 101l oo g »

and on the other hand, by HI~/||T,17N < €, we have
<[]

10

17 N 7 —N
[Vl o 3 102" 70| < [P, o 100 Eolagpne S ol
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Finally, since i0;v = Dv + 171)7 we obtain
||3tUHL%oL2 S ||U||L%°H1
and thus (26) follows. To conclude, we now prove that
2 2 oy 2
[lge pr S Mlvollgr + IV Iz v 1ol ez g ggay—y -

We proceed as usual. Recall that the equation is well-posed in any H® with propagation of regularity hence
the computations below make sense. We differentiate

lo(0)|71 = (Hv, Ho)

to get

O ()31 = 2Re (Hv, Hdyw) = 2Im (Hv, Hid;v) .
Note that as the Dirac operator D is self-adjoint on L?, we get that (Hv, DHv) = (Hv, DHv) = (DHwv, Hv)
is real, so Im (Hv, HDv) = 0. Then using the equation on v,

9 [v(®)]|%: = 2Im <HU, Hf/v> ,

from which we get
IO g2 < ol +2 [[(Hro, HT0)

L
Lt

Step 5 : Estimating the norm of the solution thanks to a one parameter family of multipliers

Finally, by the inequality (24) we get the result.

Let us now introduce the family of multipliers (¢'gr)g>0, which is completely standard in this contest (see

e.g. [3]).
For all R > 0 we define the radial function ¢ g such that ¥z(0) = 0 and
) ﬁ ifr<R
Yr(r) = 2 .
A E (1) e R
with r = |z|.
The choice of the multipliers and straightforward computations yields the following properties.
We have

3 R 3
Ahpp = —1, s 27
YR R <R+<R>r >R (27)
3
App = ———6(r — 2
= =0 = ). (28)
s UR 3R zjx) [ R?
YR = 07— + 1, — -1 2
8k6]1/)R 5_] r + ,>R2<R> 7"3 ’]"2 ’ ( 9)
9
¥R, < 5 (30)
We have for all R > 0,
— 2Re ([~ A, ¢plv, D*v) > i/ of® + i/ Vo|? (31)
R(R) Jsy (R) Jpy
where Sy is the sphere of radius R and Bpg is the ball of radius R.

We have 3 5

(—A%)gu,v) =/m5(r—3)|v|2 — m/s v|?,

11
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and
(D40, OO aw—/ [Vol* +i/ [1(5—13:)%42 xkxi?(fq)ﬂav}
k7k]RJ_BR<R> <R>B}c%7“2 2 r2 r3 2\ 2 RECIE]
Let 3 R
L TETj -
a.—/c 3 5(7’72_1)615118‘7'[]
R
We have
a—/ xkﬁkvxjajvé(}ﬁ_l)
-~ Jge r3 2\ r2 ’
R
Because f—; — 1 is negative, we get
/ IVo|? 3/ R2
o> B,
B r 2\7r2

R
We now sum up and get

|Vu|? R/ 1/3R? 1R? 2
VROV > — e (e )
<aku,akaJ¢Rajv>//BR Bt Bir(2r2 5= )1Vl

2 2
From the positivity of [, %(%% %%) IVo|?, we get
R

Vol
<8kv,ak8‘1/)R8"U> 2/ .
T Br (R)
We have for any a > 3 and 8 > 3,
01172 12 ((ay-ay S sup L / [of? (32)
Pplal@) ™) ~ 75" J_r R(R) Js,

T
1 2
Vol|? - Ssup/ 7/ Vel
IVOllhs 12 y-e) S sw | BR‘ |

v|*(x). We have

2 w —2a
v —ay = 7dx——/drr / w

2 r(r) 1 /
v —ay < | dr—==sup w
Since a > %, we have 2 — 2 > 1 and thus ~%5L is integrable which gives the first result.

<7,>2a
Let z = fTT |Vu]?, we have

1
SRR S Y o
H ||L2(<z> By <T>2ﬁ (T)Qﬁ s,

oo 25 (7)27/”2 dr. We get

)
IVolliaqoysy =2 [ dr—ass [ =
L2((x)~F) <T>2ﬁ+2 B,

12

Let w(z) = fTT

from which we get

We write (T;QB =
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and thus

1
Vol? _B :2/d7'#—/ z,
ZT 0

1
vol? _ <2/d7'#sup—/ Z.
IVollZa ) A2 R) gy

Since 23 > 1, we get that % is integrable from which we can conclude.

from which we deduce

What we deduce from all the different estimates involved in this step is that with our choice of family of
multipliers, we have

loll 2 411 - s%p(—me <[—A7¢R]@,p%>). (33)
Step 6 : Combining all previous steps. Let N > %, and assume that
IVlran <e
for some constant £ small enough. Then the following estimate holds
HU”L?THl((:,;)*N) < CE)[lvoll g1

Recall that © is defined by (20). Here we choose ¥ = 1, then we use O = © for this case.
We specialize @r with our choice of ¥ = 9. We have

T
/ 0;0r = Or(T) — Or(-T). (34)
T
On the one hand we have
T T
| ovonz— [ ome(-Avnlo0%) ~ Al ~ 1B, (35)
-T -T T T
and on the other hand
Or(T) = Or(=T) < 2| Orll 20 - (36)

By Eq. (31) we have

—/_i2Re<[—A,wR]v,D2v> >/_i(3R<1R>/SR |v\2+4% /BRW|2>' (37)

Given the bounds on A and B (23) and combining (35)—(37) and (25), there exists a constant C > 0 such
that

C l[xlly lvoll
T 1 2 1 2 ~
Z 37/ v —|—4—/ Vo7 ) = Cy 1%
Loty [, o7 4 J,, 190 =l 17

Since || g||5 is uniformly bounded in R, we get a constant Cy > 0 such that

T
2 1 2 1 2 ~ 2
> = v Vo|”) = Co||V -Ny -
02 HUOHHl = /_T(3R<R> /SR |U| +4<R> /BRl U‘ ) Cz” ||T71,N ”U”L%Hl((z) N)

Let 0 < ¢ < 1, and let us assume that ||‘~/||T717N < e. Thus,

T
i o, o 19 - el :
3—="5¢ lv|” + 4 / [Vol” ) — Cae ||| -y < O Jlvoll 71 -
/‘T( R(R) Jsg (R) By l) ¢ | |L2TH1(<> ) 2 [voll

13

2
T,1,N ”UHLQTHI(@)*N) .
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We take the sup in R and we get

T
1 2 1 2 2 2
su 37/ v —|—4—/ Voul?) — Caell|lv Ny < Cqllv . 38
w [ (77 [P gy [ 19) = Gl gy < Colol (38)
As N > %, from Eq. (32), we have
T
1 1
2 < 2 2
Il s 5500 [ (i /SR SRS /BR vl )

Plugging (39) into (38), and taking e small enough, we get that there exists a constant C(e) dependent on
e such that

HU”L%HI(@)*N) < O@)|vollgr-
We use the fact that V = HS"'WH'~* and v = H* 'u to conclude estimate (16), as indeed

IVIzsn = IVIz1n,

and

2 2
HUHL?fTHs((x)*N) = ”U”L?THl((x)*N)’ ”UOHHS = HUOHHl .
2.8. Strichartz estimates
We are in a position for proving Strichartz estimates for solutions to (7).
Proof of Theorem 1.3. By Duhamel’s formula, we know that
t
ul(t) = So(tyuo — i / Solt — )V (7, Yu(r, ) dr.
0

We prove (10): we write

t
Il s = IS ol < ISo(Oalg -+ | [ ot = 7V utr ) o

P
LTL‘Z

Thanks to the Christ—Kiselev Lemma (see [8]), since we are only interested in the non-endpoint case (p > 2)
it is sufficient to estimate the untruncated integral

/So(t — 1)V (7, )u(r,:)dr = Sp(t) / So(=7)V (7, )u(r,-) dr.

As (p,q, s) is Dirac admissible, according to Definition 1.2 we get

T T
‘ So(t)/ So(=m)V (7, -Ju(r, ) dr < / So(=7)V (7, )Ju(r, ) dr
0 LP L 0 He
Now, we use the dual form of estimate (17) to obtain
T T
/ So(—T)V (7, u(r,-)dr < / So(—=7)H*V (7, )u(r, ) dr
0 Hs 0 L2

S| mevu)

L2132

14
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Hence by Proposition 2.3 and the assumption
||V||T75;N < &,
we finally get

ISvuoll i S Nuoll e + || (@) BV @) ()~ F*u

12,12

< Nuoll s+ IV 70 1902 g2y S It

and this concludes the proof of (10). Estimate (9) can be proved in much the same way, using also the fact

We also have some form of continuity in the operator V' in the sense of the following proposition.

Proposition 2.4. Let (p,r,s) be a Dirac admissible triple as given by Definition 1.2 and T € (0, +o0]. Let
N > 3/2 and let V1, V3 be two operators belonging to C((0,T), H®* — H?®) such that

IVillz,s,n < 1.

for j =1,2. Let ug € H®. Then the following bounds hold:

[1Sva ()uo = Svy (ol e 1o S Vi = Vallzs,wlluol a5, (40)

[1Svy (D)uo = Svy WuollLgems < Vi — Vall s, [[uolas- (41)

Proof. We prove (40). Setting u;(t) = Sy, (t)uo for j = 1,2, from Duhamel’s formula we get

t
wa(t) = wa(®) = =i | Solt = V() (wa(r) ~ ua(r) )dr
o
— Z/ So(t —7) (Vl(T) - Vg(T))ug(T)dT.
0
By (17) we get
Hul - u2||L%HS((x)7N) 5 ”Vl”T,s,N”Ul - UQHL%Hs(@»fN) + H‘/l - V2||T,S,N||u2||L%Hs(<$>7N)-

where we have used the fact that H*Sy(t) = So(t)H?®. Taking Vi and V2 small enough and using local
smoothing on Sy,, we get

lur = w2ll g2 s @y -~y S V2 = Vallm,s,wlluol s
Finally, using the same strategy as in the previous proof, we get
lur = wallge e S IValls,wllur = w2ll 2 o @y~ + 11V2 = Vallz,s wlluol s

and we conclude using the first inequality we proved. The proof of (41) follows the same lines, the only
difference being that we use estimate (9) instead of (10). O

15
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3. Properties of the solution to the Klein—-Gordon equation

This section is devoted to the study of the Klein—-Gordon equation on W:

{aﬁw + W — AW = x(z — q(t)), W(t,z): Ry x R® - R @)

W(O7l’) = Wo, atW(Oa‘r) = w

Our aim is provide some suitable estimates on W in view of proving well-posedness for systems (1) and (11).

As mentioned in the introduction, the main idea here consists in splitting W into a “dispersive part” (that
will be given by the sum of two terms, Wy and W3) and a “non-dispersive part” (that will be denoted by
W1). When dealing with the study of the well-posedness for system (1), the idea is that W will be treated
as a perturbation of the free Dirac equation, and we will be able to evoke Theorem 1.3 to deduce Strichartz
estimates, while W5 and W3, which enjoy their own dispersive estimates, will be regarded as inhomogeneous
terms. Therefore, to be more precise, on the one hand, we will need to ensure ourselves that the term W;
satisfies condition (8): Proposition 3.5 goes in this direction (see also Section 4.1). On the other hand, for
the remaining terms, it will be enough to prove that

[Wa + Wall 1 oe < +o0, (13)

and this will be done in Propositions 3.6 and 3.7. In addition, in view of the proof of Theorem 1.4, we also
need the continuity of W with respect to ¢ and its derivatives, which will appear in the same propositions.
More precisely, we prove the following proposition.

Proposition 3.1. Let T € (0,+00] and s € [1,2]. Assume that ¢ € W™ and Hq||L% < L. Provided that
X € LN WS+2’1 wp € WS+3’1 wy € Ws+2,1
the unique solution to the Klein—Gordon equation
PW +W — AW = x(z — q(t)) (44)

writes

W = Wi(q) + Wa(q)

such that W1(q) € C$L* and the multiplication by the function W1(q) satisfies

W (q)|

2N
2N
o S (lallzge )™ @)Y xlnee
and Wa(q) € LLH®*> with

IWa(@)ll s prse < lwollwsrsa + lwallwsan + [xllws+z..

What is more, under the same assumptions for g1 and gz as for q, we have the continuity estimates :

2N 2N oON
IWita) = Wala) e < ((lallge ) + (llaalloge ) )1 @)™ xlleoo lar = gallyr.o

IW2(q1) = Wala2) g mrace S Ixllwenllar — gallyy 2.

16
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3.1. Decomposition of W

It is well known indeed that, by Duhamel’s formula, W can be written as

B sin(v/1 — At) Lsin(v/1— At — 7))
W (t,z) = cos(v1— At)wo + ﬁwl - /0 Vi

In our case, it is possible to provide a much more explicit representation of the solution:

x(z —q(7)) dr. (45)

Proposition 3.2. Let W solve the Klein—Gordon equation
OuW + W — AW = x(x — q(t)).
Then it is possible to decompose W as follows

W(Qa CL q) (t7 Z‘) = Wl (qa Q) (t7 .’L') + W2 (t7 .'13) + W3(Q7 q.a Q) (t’ Jf)

with
Wl (Q7 q)(t’ LL‘) = Xl(q.v €r — q(t))a
Wa(t, ) = cos(vI = At)uo + sini/ix/ll_AAt) w, + coS(l\/i ;At)X(I)y
and
Ws(q,q,4)(t, =) =
| (VO atat) i), dr) = VI v
where

RO

T G
o RO gy i)
~ - _ 5(\(5) e—i€a(t) i - ‘I(t)

)

)

Proof. First of all, let

U - /t sin(v1— A(t — 7))

e =gt e

We pass in Fourier variables to obtain

5o [ =) —iea g,
U /0 X(€) d

(€
~ t v t
_ X(f) 6i(§>t/ e~ HOT—iCa(T) 4 — X(g) e*i@t/ 8 T=i8a(m) g7
2 (€) 0 2i (€) 0
Let ~ t
I, = X&) e / (FUOT-iEa(r) g7,
21 <§> 0
then

~

U:I_;,_—I_.

17
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Integrating by parts, we get
_ X(E)  wigey "Fi(E) — i€ q(7) Fi(€)T—i€-q(7)
BTG /o¢i<>—}z's~q<r>e dT
_X(§) EiE)t < eFHOTital) L 1 /t SFiE) Titq(r) 15 q(7) >
2i () i{§) —ig-q(t) (&) Jo (Fi (§) —&-4(7))?
)

_X(® e i Y e —iatr) 16 d(T)
206 ($Z<§>—l§'Q(7)i (3 /0 ($i<§>—i§'d(7))2>'

Computing I, — I_, we get

e—i€-a(r) B et€al) — ei€alr )22.—<£>
i) i€ () —i@ —iE-d(r) (©° - (- a(m)?
and
Y . 6il(§>t _ _2icos((§> t)
i (&) i(€) (€

from which we get
5o X(Qe 1 X(E) cos((€) 1)
(€)% + (i€ - 4(7))? (€)?
/t &eﬂgq ) < i€ - G(7)eH& =) B Z‘g.q(T)ei(g)(tT)) "
o 2i(&) (=i (&) —i&-q(m)2 (i (&) —if-¢(7))?

and this concludes the proof. O

3.2. Some auxiliary operators and technical preliminaries

We now introduce some operators based on translation and scaling that will play an important role in
this section.
Let v € R3 with 0 < |v| < 1, we define the operator L, : R3 — R3 as

1 - - 1
L,z = 7Hv+ (x U xv) = va—i—PULa:.

1_|v|2’0"l) v-v /1—|U|2

This operator is clearly invertible, and

Ltz =1/1—-|v \—U—l—(x—ﬁv):\/1—|v|2PUx—|—Ple.
vev

In particular when v = 0 we define Loz = La x = x. Based on L,, we also define the operator £, and its

inverse as follows:
Lof(x) = f(Lyx), L;'f(z) = f(L, ).
Notice that

Ly(fg) = (Lo f)(Log).

Finally, we define the operators

(=40)"2 = Lo(-A)2L, " = ((1— )|

and
Hif = L,HL)f = (1— Ay)*2F. (46)

18
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Indeed, we have

v v
V = v v + (v - Y U))
v
SO \%
LVL] =\1— P — v+ (V- Ol
and 2 2
~d, = (L) (G987 = (= o) |5 4|7 - S

s/2

For the fractional Laplacian operator (—A)*/2 and any function f € L?, we also have

v [ v P\
CA)2 =1 - )| S +V—v v
(=A,)%"f f
vev
It is not difficult to see that for 0 < |v| < 1,
I(=20)"2ull 2 S I(=2)2ull 2 S (= A0)*2ull 2 (47)
and
[Hullp2 S 1H ull 2 S [1Hul g2 (48)

Letting y = L 'z we get

1L, = / L5 f (@) do = / L5 F(Loy)P ALy

=[5 Loy = ———1l15,.
V1-1lof
Thus, for any 1 < p < 400 and |v] < &, we have
I£llee S LT e S N Fllee. (49)

We remark that the functions x1, x2 and x3 can be seen as convolution terms:
Lemma 3.3. LetY(z) = %:;l‘, Z(x) = e~ 1l and let K be the modified Bessel function of the second kind
and order 1. For any v € R3 with |v| < 1, up to some multiplicative constants we have:

p ) = L__Y(L,z) € WH1(R?)

(1) ( i \/1 ‘ |2 3,1 3
(2) 7 (m) = ﬁZ(L vx) € W2HR?),

(3) 7 () = Bl e L1 (R?).

Proof. To compute the Fourier transforms we use the identity

2
/f|:1c| e Pdy = 7T|/ )elr Pl dp, (50)

By Cauchy’s residue formula, we easily find that the Fourier transform of (14 |¢[*)~* (resp. (1 + [¢]*)72) is
e~ 1l /(4n|x|) (resp. Ce~1#! for some C' > 0). Both functions are integrable. Furthermore, Y (z) € Wb! and
Z(z) € W3L. We get the formula of .Z((¢)™") by showing that |z|.Z ((¢)™") satisfies the same ODE as K’s.
We recall that K (r) has exponential decay and diverges at » = 0 with singularity % [16, Sections 3.71 and
7.23]. Thus % is in L.

19
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Now, for any &, we have the decomposition ¢ = P& + P €. Setting z; = Po&, and (29, 23) = P&, we
have
2 2 2 2 1g12
(€ —(€-0)" =1+ 1= [")[PLI" + [P¢l (51)

Changing the variables, we conclude by the dilation formula for the Fourier transform:

. 1 _ 1 1 Jiew g
‘/<<£>2(5~v)2> (27r>3/ms (€)% — (€ v)2 ¢

_ 1 / 1 ei(zl-Pv$+(Z2’Z3)'Ple) dzl dZQ dZB
(2m)3 Jrs 1+ (1- |v|2)z% +22 + 232

1 1
_\/1—|v|2Y(\/1—|v|2

We get the Fourier transform of

P,z + Plzx).

W in a similar fashion. 0O

The estimates on the W; part of the solution to the Klein—Gordon equation requires that we identify a
function and the operator that consists in multiplying by this function. We have the following relationship
between the norms of these two objects.

Lemma 3.4. Let N >0, s € R andv € R3, |v| < 1/2. Then for any function V : R® — C, we have the
following bound:
H<m>N HVH™* <a;>N]

S HHi <m>2N VHLOO ’

212 ™~

where H, is defined in (46).
We postpone the proof to Appendix B.

3.3. Estimates on W

Now, in view of applying a contraction argument to prove the well-posedness for our differential systems,
we need to provide some estimates on the terms W;, j = 1,2,3. The idea is that to deal with the term
W1 we will make use of Theorem 1.3, and thus we will check that the potential W; satisfies the necessary
conditions, while for the terms W5 and W3 we will exploit their own dispersive properties driven by the
Klein—Gordon flow.

We estimate the terms W; one by one.
Proposition 3.5 (Estimates on W1). Let N > 0, T € (0,+o0] and s € [0,2]. If |¢] < %, and g € LY, then

2N
< 2N H
Willzon S (llallge ) [[@ x| -

What is more, let q and gy in W™, and assume that ldullzge, lldzlloge are less than 1. We have

Wilqr,d1) — Wilg2, ¢2)||7,s,8

2N 2N N (52)
< (Qallag)™ + laallaz )™ ) @ 9] o = el

Proof. Because of Lemma 3.4, it is sufficient to estimate

g oo

o .
LT Le°

20
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If suffices to prove the case s =2 and s = 0, and the conclusion follows from the standard interpolation.

From definition of W; and (51), we have W; = H;quX with 7,(x)(x) = x(z — ¢). By definition of H
and (49), it suffices to estimate || H*® <Lq_1x>2N H_Qﬁq_quxHLoToLoo for s € [0,2]. For the case s = 0, thanks
to Lemma 3.3, we have

_ 2N _ —
” <qul‘> H 2£q17-qXHL%°L°°
— 2N —
=z [ v e -y
R3 L%OLoo
— 2N ,_
s [y e e -y -a0)] ., (53
R3 LTL°O

(L7 W) Y ()L X (@ —y — gt dy

o,
R3

)| -
2N
S e =0 e < (lallzge ) 1@ o
T

where as |z| < |£;1m| < |z| the second inequality holds. On the other hand, by Leibniz rule, we have

H? <Lq_1x>2N H_Q,Cq_qux =(-A <Lq~_1x>2N

— 2N _ _ oN .
-2V <Lq 1l‘> ’ /]RS VY(y)Eq 17-qX(«r - y) dy + <Lq 1I> Ltj 1qu_

)H_Qﬁq_qux

Mimicking the estimate (53), and using the exponential decay properties of VY, we get the result. This ends
the proof of the first part of the proposition.
For the continuity estimate, we observe that

1
Wi(qi,d1) — Wilge, 42) = / VWil +7(q2 — q1),q1) (g2 — q1) dr
0
1
+/ ViWilge, g1 + 7(¢2 — ¢1))(¢2 — ¢1) dr.
0

Thus,
W1(q1,d1) — Wige, 42) 7,85

<o — gl Tzl[tli’)l] IVeWilqr + 7(g2 — 1), ¢1) |75, 5 (54)
+ |ldg1 — q'2||LgS 721[101,)1] IVaWi(g2,d1 + 7(d2 — ¢1))l|7,s,N-
Let v, (t) = q1(t) + 7(g2(t) — ¢1(¢)). Thus, from Lemma 3.4
IV Wi (vr (), d0)llze,8 S IS, (@)Y Vaxa (G2 = vr (6)) || g oo
Notice that

1
val(‘jv €T — UT(t)) = Y(Lth y)va(x - UT(t) - y) dy;
/]RS V1- g1

as a consequence of the first part of the proposition we get

2N
19aWa(0r (0 @)l S sup (florllye) [|@)* v
T€[0,1] T LE

< (o)™ + Qo)™ ) e 3] ..
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Now, we consider the second term on the right-hand side of (54). Set w,; = ¢1(t)+7(g2(t) — ¢1(t)). Obviously,
||w7.HLoTO <(1-7) quﬂL%o +7 ||q2||L%o < 1. From Lemma 3.4,

IVaWi (a1 + 72 = @)l S [|Ho, @Y Voxs(wrz—a)| -
T
Notice that

2(¢ - wr)R(Qe 61
()7 + (i€ - wr)?)?

Let G,(t,&) = %, according to Lemma 3.3, we find that G, (t,2) € W21(R?). Moreover,

V1 (wr, 7 — 42) (1, €) =

Vix(wr,z — q2) = /3 V,G-(ty)x(z — g2 —y)dy = /3 G- (t,y)Vx(r — g2 — y) dy.
R R

As for the proof of the first part of the proposition, we find

2N
o stons 0] . (i)™ [ 5

K e
Hence (52) follows. O
Proposition 3.6 (Estimates on Wa). Let T € (0, +00] and s € [0,2]. We have
Wall 1 gsioo S llwollws+sn + [willysezn + [Ixlwsrra s
Proof. It is easy to see that W5 is the solution of the following linear Klein—-Gordon equation:
oW +W — AW =0; W(0,2) =wo + (1 — A) 'x(z), W(0,2) = w;.

According to [13, Corollary 2.3] and (12),

Wt Mg S (L4672 (llwollysran + llwillyperza + [xXllyeria). (55)
The result follows immediately. [

Remark 3.1. Notice that the term W5 does not depend on ¢, and thus we do not need to study its continuity
with respect to ¢ and its derivatives.

Now we turn to the estimates on Wj.

Proposition 3.7 (Estimates on Ws). Let T € (0,+00], s € [1,2] and Hq(t)HLlT < 5. Then there exists

C = C(e) such that:

Wallp1 prs.ce S Ixllwassn

What is more, if ¢; € W' and ||q](t)||L1T < L forj =1,2, then there exists C = C(e) such that:

W3(q1, 41, d1) — W3(Q2,427Q'2)||L1THS700 Sl — Q2||W;71 X llyys,1 - (56)
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Proof. By symmetry of treatment, we only deal with the ys-term. We rewrite:
X(E) —icqt i€ - g(t)
21 (€) (=i (€) — i€ d(1)”

5(\2 (Qa q.7 q) (ta 5) =

)

eI (O -€-d)?,
T t
((©)* = [ - a(1)]*)? TG (Hx(6)
As |q(t)] < ||Q||L1T < % by assumption, according to Lemma 3.3 we have
)t a) = SHNH i VRV -G | (1, —y—q(t))dy.
a6 0)(0,2) = GH 7 410979 [ e Ay a) (57)

Hence Young’s convolution inequality gives, for all s > 1,

1H*x2(q,9) (&, )| 1 < 1G(0)] S 1>~ x (2 = a@)ll o < ldllxllws-1a-
€10,

It follows from the decay estimate [13, Corollary 2.3] that
Wiz < 3 [ 16D a6, e

7=2,3
5 [ P i o,
=, 1+|t )3 ’

t .

|G(7)]
< . S b AN B
S Ixllws+2.a /0 1+t 7_|)3/2

Integrating in ¢ and using the fact that (1 + |¢t[)~3/2 € L (R) we deduce
IWlipreoe  Ilhwess | / — |t . T| T drde

s [ [ O dtar % e

and this concludes the proof of the first part of the proposition.
For the continuity estimates, we have

1H*(Ws(q1, 1, G1) — Wa(gz, d2, G2)) g
3 [ IO ) ), 6) — a6, )

7=2,3
/ 1 (i (a1 (), 41 (), 1)) — x5(q2(¥), Ga(t'), @2())) s s
(+ = o] |

7j=2,3
Let vi = ¢2 — q1, v2 = g2 — ¢1 and v3 = §o — ¢1; we have
||W3HL%,W37°° N

CIH G (), (1), @1 (1) = x5 (@), d2 (), G2 (@) lwst
/[OT]/ (1+|t—t'])3/2 dt’ dt

j=2,3
which yields

IWsllpgweoe S / 1 0 (a (1), 62 (), 41 (1) = x5 (2 (), 42 (1), G2(2))) s dE'.

7=2,3
23
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We expand the right hand side and get

IIWsHLlTWs,ooSJZ sup / IH*Vgx;(qi(t') + 7v1,q1 ('), 41 (¢)) lwa.a [ (') At/
j:2’37'6[0,1] [0,7]

+ ) SUP/ IH*Vx;(q1(t'), q1(t") + To2(t"), 1 (1) [ws.a [v2(t) | At/
j—2,37€l0,1]J[0,T]

+ ) Sup/ IH*Vx;(a(t), q(t), (') + Tos(t')[lws. vs(t)| dE'.
Stsreo) Jo.)

We deal with the yo-term, as the other one can be dealt with similarly by symmetry. According to (57)
and Lemma 3.3, we get
IH*Vax;(qn (), qu(t)) + 7v2(t), @1 (t)) llws.n
= IVaH Vx;(ar(t'), (') + o2(t), 1 () lwsa S 1G] X lyrsr s

and
IH*Vax; (@), qu(t) + 7v2(t), @ () lwsr S 1GE )] Ixllyya-1
as well as
IH*Vax; (@), q1(t), @1(t) + 7vs () lwsa < xllyps—r1 -
Hence,

W3(q1,d1,G1) — Wal(qz, ¢o, QQ)HLlTHs,oo
S (lar = aell s, + = dall g, + llis = el ) ellyrea

and this concludes the proof. [

4. Proof of Theorems 1.1-1.4

This section is devoted to the proof of Theorems 1.1 and 1.4, that will be proved respectively in
Sections 4.2 and 4.3. The strategy is very standard, and consists in the application of a fixed point theorem
based on Strichartz estimates for the operator D+W7: therefore, in Section 4.1 we shall prove these estimates,
essentially showing that the potential W7 satisfies condition (8).

4.1. Strichartz estimates for the Dirac equation in the Dirac—Klein—Gordon system

We now show that solutions to the following equation
10w = Du + Wiu with Wi = x1(t, 2 — ¢(t)), (58)

satisfy Strichartz estimates: we prove in fact the following

Proposition 4.1. Let T € (0,4+00], (p,7,$) any Dirac admissible triple with s € [0,2], u be a solution to
(58) with initial condition u(0,x) = ug(z), ¢ = q(t) be such that HQ(t)”L; < Landq e L and let x be such
that

(%], <2

for some constant C' and € small enough. Then u satisfies the Strichartz estimates (10) and (9) for the triple
(p,7,9).
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Proof. We need to check that the operator W; satisfies the conditions required in Theorem 1.3. To do that,
we perform a change of variables, and consider the function v(¢,z) = u(t, x 4+ ¢(t)) which solves the equation

10w = Dv +i4(t) - Vv + x1(t, x)v. (59)

In our assumption on ¢, we have that ||| < 1/2 and this ensures that Hy := D +ig(t) - V + x1(t, z) is a
uniform (in ¢) perturbation of D. Therefore the L? norm of H; f is uniformly in time equivalent to the H*!
norm of f and Hj, which is symmetric, is also essentially self-adjoint. Notice that,

OyHy = —iq - V + 01,
and as
x(€)
2 .
(&)~ + (i€ - 4(1))
we get that 9;H; belongs to L'(R, H*T* — H?), and hence H;j is of bounded variations in time as an
operator from H*t! to H*. This means in particular that the equation

5t>21(§) =

10w = Hiv

is well-posed in H*® for any s > 0 as long as ¢ and Y are small in L! norm: in other words, we have that
there exists a constant C' > 0 such that for any solution v of (59) with initial condition vg and for any time
t € R then

[0l s < Cllvollms-

Now, we re-change variables to get back to the function u: as the translations in time do not alter the H*
norm in space, we get for any solution u to Eq. (58) the following bound

lull s < Clluol| as

and thus (58) is well-posed in H*® for any s > 0.
Now, thanks to Lemma 3.4 and Proposition 3.5 we get that for any N € Rt and s € [0,2], there is a
constant C” such that

2N
2N
Willzon <€ (llallge ) [[@* -

Let H ()t XHLOO sufficiently small such that

3+
3+
¢ Qalie) @ ¥ <

Then, for s € [0, 2]
Wiz 5q <€

Applying Theorem 1.3, the conclusion follows. [

4.2. Proof of Theorem 1.1

We are now in a position for proving the global existence of solutions for the nonlinear Dirac equation

(60)

{i@tu =Du+ Wu+ N(u),
u(0, ) = up(x).

Here A (u) is a generic nonlinearity.

25



F. Cacciafesta, A.-S. de Suzzoni, L. Meng et al. Nonlinear Analysis 239 (2024) 113420

According to Proposition 3.2, we write W = Wy + Wy 4+ W3; letting V = Wy, the above Dirac equation
can be rewritten in integral form:

w =So(t)uo + i /0 So(t — ) (Wu)(r) dr +i /0 So(t — 1IN (u)(r) dr (61)

:S()(t)’LLO-l-’L/O S()(t—T)((Wl+W2+W3)U)(T)d7’+2/0 S(](t—T)N(U)(T)dT

— S, (Huo + i /0 Solt — 7)(Wa + Wa)u)(r) dr + i /0 Solt — PN (w)(r) dr.

The proof of the well-posedness is now very standard, and it consists in the application of the contraction
mapping principle on the solution map above on the ball

Xx =¥ e X|[lx = 19l rgons + 19l pp-1 e < K} (62)

where X = L§H* N L4 L™ and s € [s(p), 2] with s(p) = 3 — 15
The only additional tool that we need (with respect to the unperturbed case) is given by the following

Lemma, that allows us to control the terms involving W5 and Wij:

Lemma 4.2. Let

Cux = l[wollws+s1 + [[wrllysszn + Ixllwstar,
and
Cox = [[H Xlyy21 -
Then, ,
/0 So(t = 7)(Wa + Ws)u)dr . S (Cux + Cox) llullx - (63)

Proof. Thanks to Strichartz estimates for the free flow, the left-hand side of (63) can be bounded by the
term |[(Wo + W3)ul| ;145 By the Kato-Ponce inequality (71), Propositions 3.6 and 3.7, as s > 1, we then
get
(W2 +Wa)ull gy s S IW2 + Wl g1 prs.co ull oo s
S(Cuwx + Cop) lull poo s S (Cux + Cox) llull x

and this concludes the proof of the lemma. [J

The rest of the proof is now completely standard (see [10]), and we thus omit it.
In what follows we will also need the continuity in ¢ of the solution map. We thus prove the following

Proposition 4.3.  Let x, wo, w1, q1,q2 be as in the assumptions of Theorem 1.1 with the additional
assumption that || (z)*" Vx| e is sufficiently small. Let T € (0,400) and let U, denote the global flow
associated to system (60) with p and s as in the assumptions of Theorem 1.1, and let ||ug||ms small enough.
Then ¥, satisfies the following properties:

¥, Dol s < Clluollms,  j=1,2, (64)

| g, (t)uo — Wo, (Huoll x < Clluollers (llgr — @2lly100 + G2 = G2l 1) (65)

where the norm X is given in (62) and the constant C = C(s,wo, w1, X, [|q1/[zge, [lg2/lnge)-
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Proof. We only need to prove (65) as indeed (64) is a consequence of the contraction argument. Let us
take g1 # go; we start from representation (61) that we rewrite as

uj = Yo, (t)uo :Swlqj (t)uo +i/0 So(t =) (W5 + Wy Juy)(7) dr

t
+ Z/ So(t — 7)N(uj)(7)dr
0
for 7 = 1,2. Then we have that
[ Wy, (t)uo — Wy (tuollx < T+11+111,

with
I= ||Swfl (t)uo — SWFZ (t)uollx < C;L‘I%Xqu - QQ”W;‘X’

thanks to Propositions 2.4 and 3.5 (the constant Cy, 4,,, is the one given by (52)). Then,

Il =

/ So(t—1) U Wi uy — (W32 + W§2)uz] (r)dr

X
< (W3t + W’“)Ul (WQQQ + Wi)uall 1 s
<

WS = Wa)uall s s + 1W5" = Wi )uallpa s + (W5 + W32) (ua — ua)l 12 s
=1l +1Ip+ 1.
Notice now that IT4 = 0 as indeed the term W5 does not depend on g. We estimate the other terms as

follows:
Hp S W5 = W2l 11 grs.ce uallLgems < C2 o lluollmsllay — qulw%l

where we have used Proposition 3.7 with the constant given in (56) and estimate (64), and

He < (W5 + W52) (= uz) | p1gs
S IWE" + W2l L prs.co [lur — wal| oo s
< (Cuyx + Cop)llur — uzl|Loops
-1
where the constants are given in Lemma 4.2. Finally, writing N (u) = |{u, Bu) |pTﬂu, combining free

Strichartz with classical nonlinear estimates yields

—1 _
111 = Cllur Bt + uzllB Hllur — ual x.

; /0 Sot — 1) [N (un) — N(uz)] (7) dr

X

As shown in the proof of Theorem 1.1, for |jug|| small enough the solution map v is contracting, and thus
absorbing the necessary terms on the LHS (notice that T' < +o00) yields (65). O

4.3. Proof of Theorem 1.4

We now deal with the proof of Theorem 1.4, that is we prove local well-posedness for system (11). To do
this, we essentially follow the strategy developed in [6] (see also [2]).
First of all, we need to deal with the classical dynamics driven by ¢. Let us consider the following system

%“0> ’ (66)

1 T —
i=F(q) = — { Wup|—L
q (q) M< q o ‘(E—q‘d

q(0) = qo, 4(0) = vo.

We prove the following
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Proposition 4.4. Let s € (%72], There exists a constant C' such that for all qo, vo and ug € H® system

(66) admits a unique solution C*([0,T)) for any T < ﬁ.
HS

Proof. Let Z be the completion of C?([0,T]) induced by the norm
0> lalzge + 1l

We want to apply a contraction (Picard) argument onto the ball

,mmmgL«mzm«m=v§.

. 1
B=B) = {ae 2 iy < 3

We denote with P the solution map, that is the map such that 9?[P(q)] = F(q) with P(0) = 0 and
0. P(0) = 1. First of all, we prove that B is stable under the action of P:

Lemma 4.5. Let ug € H'. There exists a constant Cy such that if T < O VM then P maps B in B.

HUOHill
Proof. Thanks to Hardy inequality we have

C
1F (@)oo < 5714 (o) -
This and (64) imply that
cT

IF@lzy, < S ol

As a consequence we get
CcT? 5
1P(6) 15 < ool + = lluollys

so that choosing T < K% and T' < K|vo|71 with K small enough, we get
H1

1
< = o <
IE@I, <5 IP@le <1
that implies that P(g) € B, and so P maps B in B. O

Then, we show that F' is uniformly Lipschitz-continuous in ¢, that is the following

Lemma 4.6. Let ug € H® for some s € (%, 2] and let q1,qo € B. There exists a constant Co > 0 such that
for any T < Ty with Ty as in Lemma 4.5 such that

1P(q1) = P(g2)llc2(jo.rp) < CoT?luollFrs llar — q2ll 2 go,m) (67)

Proof. We rewrite the difference

F(q1) — F(q2) = <wq1 (u0)|qu|3| ¥y, (u0)> - <y7q2(“0)|x_q23| qu(uo)>

|$—Q1 JT—Q2|
as follows
with
r—(q
I= <(wq1 (uo) — g’qz(UO)) 13 Yy, (u0)>,
|z — a1
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r—aq T —q2
IT = ¥, (u0)| 3 3 |Wq1 (UO)
|z — a1 |z — qo|

Il = <y7q2 (10)| —L_| (W, (u) — Wy (uo))>
|z — g2

and we estimate the three terms one by one.
For I, we write

1] < / |, (10) — Wiy (u0) || iy (o)

lq1 — $|2
_ / | Wy, (uo) — Wy (u0)| | ¥y, (uo)]
R3 lg1 — $|S_1 lgn — 3«"|3_s
<C g/(h (UO) — W‘ZQ (uO) qu (UO)
X s5— 3—s
|q1 _x‘ ! L2 |q1 _.’,C‘ L2

< O Wy (u0) = Yy (uo) || prs—1 (| gy (o) [ pra—s

where we have made use of (68), and thanks to Proposition 4.3 we get (notice that 3 — s < s since s > %)

11| < ClluolFs g — Q2HW;,1 < ClluolFrs llar — a2llc2o.)-

The same strategy allows to control the term I11. To deal with the term II, We consider the quantity

G(q) = <u v> .

T(t, ) = v(t, z — q).

T —q
3
|z —q|

Recall in the proof of Proposition 3.5:

Then after a change of variable (the translation y = = — ¢), we have
||

Tqv>
where u,(x) = u(z + ¢). After differentiating in ¢, we get

T
T_q1)> + <T_quq | |

3
T

G(q) = <Tqu

V,G(g) = ( 7—4Vu 3
||

T_qu>

IVG(9)] < Clir—gVull rz=s[[7—qullzrs + Cllir—qull s [ 7—g V0l pr2-s

from which, by the use of (68), we obtain

= Cllullgs—sllvllzs + Cllullas [0l ga—s-

We thus get
Gar) ~ Gla2)] < lar — aal (Clulga-a ol s + Clulls ol gra—s ).

Thus by Proposition 4.3, we obtain, as s > 3/2,
(11| < Clluol|ms|luoll gs—sllar — a2l e < Clluollzrsllar — a2l zge -

We integrate these bounds twice and get the result. [
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Remark 4.1. Notice how we have used the fact that s > 3/2 twice, in the application of inequality (68):
this therefore turns out to be a necessary condition in our proof above.

Now, the proof of Proposition 4.4 follows from the two Lemmas: it is a contraction argument for the map
P in B for the topology of Z. 0O

Proof of Theorem 1.4. We only need to combine Theorem 1.1, Propositions 4.3 and 4.4. Let ug € H?,
wo € W31 wy € W21l and y € WeTh! with s > 3/2. Let ¢ € Z be the solution to (66) as given in
C”T%, Klvo|™'}. Let u = @, (t)uo defined in Proposition 4.3.
Then, the couple (u,q) € C([0,T],H®) x Z for T < MC where the constant C' depends on |ugl| s,
llwollwsts.1, |willys+2a, [[X]|ps+11 (follows from the proof of Theorem 1.1), and it satisfies system (11).

The fact that ¢ belongs to C? is due to the fact that ¥, (¢)(ug) belongs to C(R, H®) if ¢ € Z.

Proposition 4.4, with any T' < T} := min{
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Appendix A. Useful inequalities

We devote this small appendix to recalling some useful (and classical) inequalities and small variations
of them that were needed during our proofs.
First, we recall the following generalized Hardy inequality

|~ (=2) 2| Losre < C (68)

and by duality,
I(=2)="2|2| ™| Laza < C (69)

which holds for a > 0, and any 1 <p < 2 and p~' + ¢! =1 (see e.g. [12]).
Then, we recall the classical Kato—Ponce inequality:

Lemma A.1 (Kato—Ponce Inequality [11]). Forr > 1, s > 0 and 1 < p1,q1,p2,q2 < 400 such that
1r = 1/p1+1/q1 = 1/ps +1/g2, we have

|ar28) Sl

(—2)"7%|

s

g1l a2 - (70)

L1 LP2

and
IH fallpr SNl e 129l pay + 1H? fll o2 191l oz (71)

It is possible to prove an analogue for estimate (70) in the case of the operator HS as defined in (46). By
replacing fg with £ 1(fg), we get the following

L5 (S S NH L oo €5 gl oy + L5 Fllen || H L3 gl oo
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For any 1 < p < +o0,
IH L, flloe = 112, H f | oo

Therefore, we get from (49) the following Kato—Ponce inequality:

WHS fallr S NFllpen 139l Loy + 1l oo gy, » (72)
with 1/r =1/p1 +1/q1 = 1/p2 +1/qz and |v] < &.
Appendix B. Proof of Lemma 3.4
Up to taking the dual operator, we can assume s > 0. We decompose
OV EvET N = (N EE ()TN H) e )NV (O)NH ) (10 ()TN H T (Y).
As |v| <, from (48), for any u € L?, we have

HH (x)NV<x>Nu’

< HH <x>NV<x>Nu’

2"~

2’

Then by Kato—Ponce inequality (72), we have

HH <z>NV<x>Nu‘

2N 2N
Lo SHG (@)™ Vlzee|lull L2 + ([ (2)™ V| oo | Hyul 2

s 2N s
S NH (@)™ Vlpee | H ul| 2

Here in the second inequality, we use (48) again. Then we get

@ V@ a, s ey
HH @ vetes| , s|m@v|
To conclude the proof, we need to show that
Fro= (@)Y H* () N H
and
Fy=H"(z) "N H ()N
are bounded L2-operators.
Before turning to the proof, we introduce some notations: we write
N=2p+r, peN, rel0,2), (73)

and m,(€) = (1 + |¢]*)*/2. Notice that by induction we have for any multi-index a

Maa(€) = 0°ms(€) = wa(§) (€)1, (74)

where w,, is a smooth bounded function (rational function of £ and (£)).

Boundedness of Fj. By Leibniz rule (in Fourier space) we write Fy as a linear combination of terms

2

>NH757 |041| + |OZ2| < 2p.

()" Mg 0y (—iV)

(x

We write r = |r] +¢. Using (z) < 14 |z|, we realize that we only need to show the boundedness of terms
of type (z)° ms o, (—iV) 222 {5 with |ay| + |ag| < 2p+ 7] (recall (73)).

(@)
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We now commute (z)° with msg o, (—iV). The second term mg o, (— ZV) is bounded by
Kato—Ponce inequality and the estimate Hmé oy (— iV)Hll- s||L2 2 < too. Let us now deal with the

commutator term [(-)*,m q, (— ZV)] 222 H=5: if € = 0, then [()°, M0y (— ZV)] L2 H— =0;if e € (0,1),

we have oo )
d
<x>5:C’€/ %EL, C: < 400.
0o wT(x)" 4 u?
Using (Igg% =1- mgﬁ, we infer
oo
1
(@ ey (<09 = Ce [ e, (<i9), ] =
0 ()" + u?

We now use Plancherel and estimate the integral kernel A\(f ,n) with the help of Lemma 3.3. Before going
further, we rewrite the operator ((u)> — A)~! on R3 (see [14, Eq. (8), Section 6.23]):

() =2y 6= o= [ le=al™ e agan

Then for a test function ¢ we have

+o00o 1
4 u e dulmg o, (€), —5——
/0 [ sQ1 (é-) <u>2 _ A]¢
+oo
0 R3 1€ —nl
_ +oo Lo —((w)—1/2)[—n] ote e—l€—nl/2
" e 1€ = nl" " du ) gz [0y (§) = M0 ()] $()-
RN € |
Z(1€—nl)

Using (u) —1/2 > ‘qu we get sups-oZ(d) < +o0o. Using the Taylor expansion of m; o, () with respect
to n up to order [s] — ||, we get:

e~ l€=nl/2 ( © ) e—1&—nl/2 [s]—|o|—1
7’6 ms7a — ms,a ’]7 — 7&_
& —nl** ' ' e—n**l &=

where [dFmg o, (7)(€ —n)*| < 1€ =" (n)*~1*117% and the remainder satisfies |Rs,a, (6,m)] S 16— p|* el
Since the function | - [*~*~°¢~11/2 is integrable for any k > 1, it follows that the operator [(-)*,mg a4, (—iV)]
H—stleal+1 4g || . || ;2 ;2-bounded. Then by Kato-Ponce inequality the operator HS_|“1|_1%H_S is
Il - Il L2 r2-bounded. We have shown the boundedness of

[<>E M0 (—iV)] éj?v H—S = ([<>5 ’m&al(—iV)}H*SHaﬂJrl) (HS*‘Oéﬂ*l%Hfs).

Boundedness of F5. Let us now write

dkmS,al (77) (5 - 77)k + Rs,oq (ga 77)1| )

s=2¢+t, qeN, te]lo0,2).

By Leibniz rule [H27, (z) "] is a linear combination of terms of type M_N,a, ()02 (we recall m_n o, =
91 (YY), Let ¢ =t — [t] € [0,1), we only need to check the boundedness of HSm_ 4, 0“2 H~* ()Y
with |OZ1| + |OZ2| < 2(] + |_tJ

As for Fy, we commute H¢ with M_N,a, - We first deal with the second term m_y o, (m)aaQH_Qq_M (x)N
.= T5. By duality and by Proposition 2.2 we have

T2l 22 = Il (@)™ 0°2H 2" W oy 2 p2 S @)™ monaq llee < +oo.
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Let us now consider the commutator term [HS, m_y 4, (2)]0“2H~* (z)™ which we further decompose:
HE mo oy (VOB ()N = ([HE moy o, O () (7Y 0720 ().

As for Ty, the operator (:c)fN 0“2H™* <$)N is bounded. Then, proceeding as we did for Fj, given a test
function ¢, for { # 0, we have

(o O Y 6= 5 [ ayure Mo =N ) el )

with too
U = (/ u1+Ce*(<U>*1/2)IZ*yI|z _ y|2+€du>.
0

By the mean-value theorem, we have:
MmNy (@) = Mooy )] () S |2 = 9] (107 Vmoy (2)] + 0% Vm_n (9)]) ()" -
We have sup,, [0“1Vm_n(y)| ()N < 400. Then using (1)~ < (@) + (z — )V we get
e~ lz—yl/2

Iﬂv—yl2+C|

e—le—vl/2

Y=

SR V@@ o= 0™,

0 Vm_y ()| ()" 5

~

e—lul/2

Since W [1+ |y|] is integrable, we get that [HS,m_nN,a, (2)] (-»" is bounded.
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