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Abstract

The network control theory framework holds great potential to inform neurostimulation

experiments aimed at inducing desired activity states in the brain. However, the current

applicability of the framework is limited by inappropriate modeling of brain dynamics, and an

overly ambitious focus on whole-brain activity control. In this work, we leverage recent prog-

ress in linear modeling of brain dynamics (effective connectivity) and we exploit the concept

of target controllability to focus on the control of a single region or a small subnetwork of

nodes. We discuss when control may be possible with a reasonably low energy cost and

few stimulation loci, and give general predictions on where to stimulate depending on the

subset of regions one wishes to control. Importantly, using the robustly asymmetric effective

connectome instead of the symmetric structural connectome (as in previous research), we

highlight the fundamentally different roles in- and out-hubs have in the control problem, and

the relevance of inhibitory connections. The large degree of inter-individual variation in the

effective connectome implies that the control problem is best formulated at the individual

level, but we discuss to what extent group results may still prove useful.

Author summary

Compared to healthy individuals, patients suffering from neurological diseases generally

present widely altered brain activity patterns. A promising way to help these people

restore a normal brain activity balance is using brain stimulation. As brain areas are inter-

connected in an intricate web, locally stimulating one or more brain areas can trigger

effects across several distant locations, thus evoking a complex response. To achieve a spe-

cific response, one should know where (which stimulation sites) to stimulate. Several

authors have proposed to solve this puzzle by using a computational model of brain activ-

ity together with control theory, a mathematical paradigm to design perturbations with

desired effects on a dynamical system. Using an accurate model of brain activity fitted to

experimental data from functional magnetic resonance imaging, we show that evoking
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arbitrary activity patterns in the whole brain requires stimulating a large number of brain

areas simultaneously, which is unfeasible with current technology. One can nevertheless

focus on a more affordable objective, controlling the activity of a small set of target
regions. We discuss how to optimally select stimulation sites (so as to minimize the stimu-

lation intensity) depending on the choice of the target regions, and on the structure of the

brain connectivity network.

Introduction

Brain controllability refers to the possibility of manipulating brain activity in a controlled way

through external perturbations [1, 2], such as those that can be delivered non-invasively

through neurostimulation techniques. For this goal, one can exploit control theory, a general

mathematical framework to design perturbations of dynamical systems with a desired effect.

In a first approximation, neural dynamics can be modeled as a linear and time-invariant [3],

and one can try to control brain activity using the simple framework of linear network control

theory [4]. The activity of the whole network can be controlled by acting on a subset of “driver

nodes”, and theory predicts which nodes should be selected and which input signal should be

applied to obtain desired activity states. Since the first proposal by Gu et al. [5], this idea has

been extensively explored [1, 2] and debated [6, 7].

So far, however, there has been limited success in directly applying this framework to pre-

dict the outcomes of neurostimulation experiments [8–10]. In fact, the framework has been

mainly applied in a relatively indirect way, by enriching the analysis of structural connectomes

with a whole new set of tools based on controllability metrics [11]. The latter are node-wise

metrics assessing the difficulty (energy cost) to reach desired states when specific nodes are

selected as driver nodes, and they have proven very effective in summarizing features of the

structural connectomes linked with cognitive function [12–20].

Among the obstacles hindering the practical applicability, and hence the widespread adop-

tion of network control theory in neuromodulation experiments, a major one is a nearly exclu-

sive focus on a quite ambitious objective, namely, whole-brain activity control. While a

sufficiently well-connected network is in principle controllable with a single driver node, in

practice a non-negligible fraction of the total number of nodes should be used as driver nodes

to control the activity of the whole network with a realistic energy cost [21]. For large networks

this means that many driver nodes are required. This is indeed the case for the brain: even

with a coarse parcellation, N� 60 nodes are required to model the whole brain. However, cur-

rent neurostimulation techniques such as TMS allow stimulating at most one (or two [22])

sites at the same time. Thus, a fine-grained control of whole brain activity is way beyond cur-

rent experimental capabilities. A second relevant obstacle is the choice of the model for brain

dynamics. The original proposal [5] assumed that the brain macroscopically follows linear

dynamics with inter-areal couplings given by structural connectivity (SC), i.e., the amount of

anatomical connections between areas estimated from diffusion MRI. This approach, however,

was criticized by Tu et al. [6], who argued that couplings defined by structural connectivity

miss important features of the dynamics. Dynamical coupling between brain areas is not sim-

ply proportional to anatomical connectivity: it can be asymmetric and include negative con-

nections [23], whereas SC matrices inferred from diffusion imaging are always symmetric and

positive. In fact, many authors have striven to develop powerful ways to fit functional MRI

data at rest with a linear dynamical model and find the underlying effective connectivity (EC)

structure [23–26].
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In the present work, we propose a controllability approach relying on a realistic control

objective and an EC-based dynamical model able to well fit the observed fMRI data. On one

side, we will focus on a more affordable goal: target control, which consists in controlling only

a selected group of regions [27] rather than the whole brain. On the other side, we will frame

the control problem using EC matrices instead of SC matrices. EC at the individual level will

be inferred from functional magnetic resonance imaging (fMRI) data through sparse dynamic

causal modeling (sparse DCM) [26]. This model is a recent improvement over previous DCMs

for resting state fMRI [3, 24], allowing for accurate parameter inference by combining lineari-

zation of the hemodynamic response, discretization of the dynamics, and then a sparsity-

inducing prior. Our proposal is illustrated by applying it to fMRI recordings of N = 76 subjects

from a large public database (Leipzig Study for Mind-Body-Emotion Interactions—LEMON

dataset [28]). We will first confirm the main difficulties of whole-brain controllability already

highlighted by previous literature [6, 7, 29], showing that the control cost (energy) scales expo-

nentially with the number of target nodes. This will motivate our subsequent analysis of target

control. We will initially discuss the simplest case of target control, where the goal is to control

a single target region by acting on a remote brain region. Then, we will consider the case where

one aims to control interconnected groups of regions defined by canonical resting state net-

works (RSNs). Controlling RSNs could be of clinical importance, as several brain diseases per-

turb specific RSNs [30, 31]. This analysis will also allow us to assess whether specific RSNs can

be preferentially controlled from other RSNs, which could be of potential relevance in discus-

sions of cognitive control. For both single target and RSN control, we will systematically

address the problem of selecting good driver nodes (yielding a low energy cost) depending on

the target, showing that centrality metrics can assist the choice of drivers, and discussing to

what extent an individualized or a group selection is convenient.

The approach we propose has the potential to inform neurostimulation experiments with

non-invasive techniques such as transcranial magnetic stimulation (TMS, [32]) or temporal

interference [33]. These techniques could be used to control the activity of a (small) set of tar-

get regions, by inducing a desired activity pattern (i.e., activating or de-activating specific

regions). To this aim, given estimates of each subject’s effective connectivity obtained with

fMRI, our approach allows identifying the optimal driver region (or set of driver regions) and

assess the control energy (the amplitude of the control signal to be applied) necessary to con-

trol the target.

Materials and methods

Data collection

The resting-state fMRI dataset employed in this study consists of resting-state scans on a subset

of 295 healthy subjects from the publicly available MPI-Leipzig Mind-Brain-Body dataset

(LEMON) [28]. The data selection was performed on the original dataset (consisting of 318

individuals) by excluding participants with structural images heavily affected by artefacts or

functional images with high head motion (less than 400 volumes with a mean framewise

displacement < 0.4 mm) or affected by pre-processing failures and/or unavailability of rs-

fMRI data [34]. While the first half of the dataset (147 subjects) was employed for clustering

purposes (see details in the following sections), a final age- and gender-balanced sample of 76

individuals (younger: 20–39 M = 19, F = 19, older: 40–80 M = 19, F = 19) was extracted from

the second half and then included in the controllability analysis of EC.

Data acquisition was performed with a 3T Siemens Magnetom Verio scanner, equipped

with a 32-channel head coil. The protocol included a T1-weighted 3D magnetization-prepared

2 rapid acquisition gradient echoes (MP2RAGE; TR = 5,000 ms, TE = 2.92 ms, TI1 = 700 ms,
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TI2 = 2,500 ms, first flip angle = 4˚, second flip angle = 5˚, FOV = 256 ×240 × 176 mm, voxel

size = 1 × 1 × 1 mm, multiband acceleration factor [MBAccFactor] = 3), rs-fMRI scans

(TR = 1,400 ms, TE = 39.4 ms, flip angle = 69˚, FOV = 202 × 202 mm, voxel

size = 2.3 × 2.3 × 2.3 mm, volumes = 657, MBAccFactor = 4) and two spin echo acquisitions

(TR = 2,200 ms, TE = 52 s, flip angle = 90˚, FOV = 202 × 202 mm, voxel size = 2.3 × 2.3 × 2.3

mm). During rs-fMRI scans, the subjects were asked to keep their eyes opened and to lie down

as still as possible.

Data preprocessing

For each control an individual pseudo-T1w image was obtained by multiplying the T1w

3D-MP2RAGE image with its second inversion time image and the structural preprocessing

performed on this pseudo-T1w image included bias field correction (N4BiasFieldCorrection

[35], skull-stripping (MASS [36]) and nonlinear diffeomorphic registration [37] to the sym-

metric MNI152 2009c atlas [38]. Pre-processing of rs-fMRI data consisted of slice timing

(Smith et al. 2004), distortion (TOPUP [39]) and motion correction (MCFLIRT [40]) and

nonlinear normalization to the symmetric MNI atlas [38] passing through the pseudo-T1w

image via a boundary-based registration [41]. As a second step an ICA-based denoising was

performed. The GIFT toolbox (http://trendscenter.org/software/gift/) was used to decompose

the functional pre-processed data into independent components (ICs) by performing a group

spatial-ICA as detailed in [42]. The ICs were classified into artifactual or resting-state network

related in accordance with refs. [43, 44]. As a result, ICs that were related to banding artifacts,

vascular or noise components were discarded. Then, 10 principal components related to CSF

and white matter signal (5 from WM, 5 from CSF) were regressed out from rsfMRI timeseries

as well as the 6 standard head motion parameters and their temporal derivatives. Then the

denoised signal was high-passed with a filtering cut-off equal to 1/128 Hz.

Parcellation and networks

We then extracted subject-level time series data from a 100-area parcellation scheme of the

cortex provided by the Schaefer atlas [45], which maps to 7 resting-state functional networks:

Control network (CON, 10 parcels), Default mode network (DMN, 16 parcels), Dorsal atten-

tion network (DAN, 9 parcels), Limbic network (LIM, 5 parcels), Saliency/Ventral attention

network (VAN, 11 parcels), Somatomotor network (SMN, 6 parcels), Visual network (VIS, 5

parcels). We also defined a set of 12 subcortical and cerebellar regions based on the AAL3 seg-

mentation [46]: for each hemisphere, 6 regions consisting of thalamus, caudate, putamen, pal-

lidum, hippocampus and cerebellum (SUB, 12 parcels).

In addition, we assigned to each subject a binary temporal mask accounting for brain vol-

umes corrupted by head motion (FD> 0.4mm) and we applied volume despiking to the time

series by means of the icatb_despike_tc function of the GIFT toolbox. Moreover, the temporal

traces were band-pass filtered (0.008 to 0.1 Hz).

Given the need to keep the computational load of sparse DCM at a reasonable level, a Con-

sensus Clustering Evidence Accumulation (CCEA) procedure [47] was applied to reduce the

number of cortical parcels derived from the Schaefer atlas. In order to account for hemody-

namic differences across spatially distant parcels, this procedure was performed selectively for

subsets of adjacent cortical regions referring to the same functional network. This additional

constraint implied that only functionally homogeneous and spatially contiguous parcels could

be grouped together, ensuring the consistency of hemodynamic properties of each cluster. The

resulting clustering procedure provided 62 cortical clusters, from which demeaned fMRI time
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courses (i.e., within-cluster mean BOLD signal) were extracted and supplied as inputs to sparse

DCM together with the BOLD signals from subcortical sources.

Sparse DCM

Dynamical Causal Modelling (DCM) was first introduced by Friston et al. [49]. It is a genera-

tive model of measured brain responses, where the output hemodynamic responses are evoked

either by an underlying (unobserved) brain activity arising from experimental stimuli (during

tasks) or spontaneous neural fluctuations (at rest). Here, we use the sparse DCM approach by

Prando et al. [26]. This DCM variant implements a sparsity inducing mechanism that auto-

matically prunes irrelevant connections, thereby avoiding the need to perform a selection

between competing network structures. The algorithm has been further adjusted to account

for the signal reliability of the temporal frames: high-motion frames (with framewise displace-

ment FD> 0.4) were weighted less than normal frames (FD� 0.4) in the estimation algo-

rithm. The model includes two layers: i) a coupled ODE system modeling neuronal activation

x(t), and ii) a mapping from neuronal activity x(t) to the BOLD fMRI signal y(t) (hemody-

namic response). In formulas:

_xðtÞ ¼ AxðtÞ þ νðtÞ ð1aÞ

yðtÞ ¼ hðxðtÞ; yhÞ þ eðtÞ ð1bÞ

where x(t) = [x1(t). . .xn(t)]T is the hidden neural activity of n brain regions at time t, A is the

effective connectivity matrix (with matrix element Aij representing the effective connection

from j to i), ν(t) is a stochastic term driving intrinsic brain fluctuations, y(t) is the BOLD fMRI

response at time t, θh denotes collectively a set of biophysical parameters regulating the hemo-

dynamic response (which is modelled with the Balloon-Windkessel model [49]), and eðtÞ �
N ð0;RÞ is a Gaussian observation noise with covariance matrix R.

All model parameters, including the effective connectivity matrix A, need to be estimated

by inverting the model on the measured fMRI data. To simplify the estimation procedure,

Prando et al. [26] took two steps.

First, in a discretization step, justified by the low temporal resolution of fMRI scanners with

sampling time TR* 0.5s to 3s, the equation is integrated in steps of TR. Measuring time in

units of TR, this leads to the finite difference equation

xðkþ 1Þ ¼ eAxðkÞ þ wðkÞ ð2Þ

If we assume that the stochastic term ν(t) is a white Gaussian noise with diagonal covariance

matrix σ2In, then w(k) is also white Gaussian and its corresponding variance is given by

Q ¼ s2
R 1

0
eAteATtdt.

Second, in a linearization step the non-linear hemodynamic response is linearized by

assuming a finite impulse response (FIR) for brain region i

yiðkÞ ¼
Xs� 1

l¼0

hi;lxiðk � lÞ ð3Þ

where hi = [hi,0, . . ., hi,s−1]T are the FIR parameters for region i, with s large enough to maintain

temporal dependencies. The combination of these two simplifying moves reduces the model
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to a linear stochastic model

xðsÞðkþ 1Þ ¼ AðsÞxðsÞðkÞ þ wðsÞðkÞ ð4Þ

yðkÞ ¼ HðsÞxsðkÞ þ eðkÞ ð5Þ

where x(s)(k) = [xT (k) xT (k − 1). . .xT (k − s + 1)]T 2 Rn×s is the time-delayed activity signal,

A(s) and H(s) are matrices containing the EC parameters (A)and the FIR parameters (H),

respectively, w(s) is a Gaussian noise terms with covariance matrix Q(s) (with blocks equal to

Q), and e is a Gaussian noise with covariance matrix R.

The parameters θ = {A, H, Q, R}, are estimated within a Bayesian framework by taking into

account the observed values of the BOLD signal as well as the prior distribution of the parame-

ters, chosen to be in this factorized form:

pðθÞ / pgðAÞpðQÞpðHÞpðRÞ ð6Þ

Here, p(Q) and p(R) are uninformative priors, p(H) is Gaussian (with means and variances

fixed from knowledge of the typical hemodynamic responses [49]), and pγ(A) is a sparsity
inducing prior,

pgðAÞ � N ð0; diagðg1; :::; gn2ÞÞ ð7Þ

Parameters are estimated by maximum a-posteriori estimates, using the expectation-maxi-

mization algorithm. The hyper-parameters γi are estimated through marginal likelihood maxi-

mization, ensuring that a controlled fraction of the γi are small and thus effectively inducing

sparsity in A.

Controllability

In our control framework, we neglect noise and assume that input is provided to a set of driver
nodes. The system’s dynamics become

_xðtÞ ¼ AxðtÞ þ BuðtÞ ð8Þ

where u(t) is a time-dependent r × 1 vector representing r external inputs (r� n), u(t) = (u1(t),
. . ., ur(t))T and B is an n × r input matrix with which identifies the driver nodes, with Bij = 1 if

control input uj(t) is imposed on node i. The Kalman’s controllability condition [50] states that

the system is controllable if and only if the controllability GramianW

W ¼
Z 1

0

dteAtBBTeATt ð9Þ

W is positive definite, W> 0 or λmin(W) > 0 where λmin is the minimum eigenvalue. Due to

numerical inaccuracies, it is impossible to assess whether an eigenvalue is exactly 0. Following

common practice [51], we consider an eigenvalue to be 0 whenever is it below a very low

numerical threshold � = 10−12.

The control energy is defined as the (integrated) amplitude of the control signal used to

steer the system from a given initial state x0 to a given final state xf in a finite time tf

EðuÞ ¼
Z tf

0

dtjjuðtÞjj2 ð10Þ

Note that, if t is measured in units of TR, E(u) is adimensional. The magnitude of E(u) is

related to the magnitude of the control signal, as jjujj �
ffiffiffiffiffiffiffiffi
E=t

p
where τ is the time for which
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||u|| is significantly different from 0. As all nonzero matrix elements of B are of value 1, the

magnitude of the term Bu in Eq (8) is of order
ffiffiffiffiffiffiffiffi
E=t

p
. This is to be compared with the magni-

tude of the initial and final states, ||x0||, ||xf|| = 1. If E(u) = 1012 and τ = 102, this means that ||

u||� 105, which means that the external driving must force the system through trajectories

that pass through activity vectors of magnitude 105 times larger than the initial and final

activity vectors.

Let u* be the optimal control input minimizing the control energy for a given pair (x0, xf).

In the limit tf!1, for normalized (x0, xf), one has (see S1 Text for details)

Eðu∗Þ � E �
1

lminðWÞ
ð11Þ

where the λ’s are simply the eigenvalues of W. A common metric to assess the difficulty of

steering the system is the upper bound E, which gives the control energy required to steer the

system along the worst possible eigendirection of the Gramian W.

In target control [27], one aims to control only a selected subset of target nodes. Let T ¼
fc1; c2; c3:::cSg be the target node set (of cardinality S) and let

yðtÞ ¼ CxðtÞ ð12Þ

be the output vector describing the activity of the the target nodes we want to control

(yðtÞ 2 RS), with Cij = 1 if and only if i = j and j 2 C. The definition of target controllability fol-

lows from that of standard (Kalman) controllability, where the system is now defined by the

triple (A, B, C) instead of the pair (A, B) [27]. The system (A, B, C) is target controllable with

respect to target node set C if the target controllability Gramian

WC ¼ CWCT ð13Þ

is positive definite. Similar to the one we have seen in the case of full controllability, we have

for the control energy (see S1 Text)

Eðu�Þ � E target
¼

1

lminðWCÞ
ð14Þ

If a single driver node i is used, and the target is in turn a single node j, the expression of

the control energy significantly simplifies. We have B = ei and C ¼ eTj , where ei is the i-th

canonical basis vector. Thus

E i!j � Etarget
min ¼ ðW

ðiÞ
jj Þ
� 1
¼

1
R1

0
dt½eAt�2ij

ð15Þ

To better highlight the controllability properties of each node within a network, we define

two quantities, the driver centrality and the target centrality by averaging the pairwise control

energy over all possible targets and all drivers, respectively:

Ed
i ¼

1

n

X

j
E i!j ð16aÞ

E t
i ¼

1

n

X

j
E j!i ð16bÞ
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Centrality measures and shortest paths

EC centralities. A possible way to select driver nodes is based on centrality measures com-

puted on the graph defined by the EC matrix Aij. Nodes of the network are ranked according

to a selected centrality measure, and high-ranking nodes are selected as driver nodes. A viable

set of centrality measures appropriate for this approach is the following, which includes both

on classical and controllability-tailored measures i) Out-strength (sum of absolute strength of

outgoing connections) Aout
i ¼

P
jjAjij and in-strength (sum of absolute strength of incoming

connections) Ain
i ¼

P
jjAijj; note that Aout

i 6¼ Ain
i in general because EC matrices are non-sym-

metric, and we take absolute values since entries of A can have both positive and negative sign

ii) Page rank [52], which determines the nodes centrality based on how long a random walk

can remain “stuck” in the node; in this case, nodes are ranked in decreasing order (to avoid

issues related to the presence of negative weights in the computation of PageRank, we consid-

ered an unweighted version of the network replacing all nonzero links with ones) iii) The ratio

of absolute out-strength and in-strength rwðiÞ ¼
PN

j¼1
jAjij=

PN
j¼1
jAijj, which was argued to be

a good centrality measure to select driver nodes in the context of controllability [53], iv) the

control centrality proposed by Lindmark et al [54], ri = pi/qi. In the last centrality measure, pi =

Tr(W(i)), where WðiÞ ¼
R1

0
eAtbib

T
i e

ATt is the controllability Gramian corresponding to using

node i as a driver, with bi the i-th column of B; qi = Tr(M(i)), where M(i) is the observability

Gramian MðiÞ ¼
R1

0
eATteieTi e

At. Respectively, pi and qi measure the ability to control other

nodes from node i, and the ability to control node i indirectly from other nodes.

Energy centralities. Based on the single-driver-single-target energy (15) we define two

quantities, the driver centrality Ed
i ¼

P
jE i!j and the target centrality E t

i ¼
P

jE j!i, by summing

the pairwise control energy over all possible targets and all drivers, respectively. The driver

energy represents the average energy with which we can control another node, using node i as

a driver. The target energy represents the average energy with which we can control node i
using another node as a driver.

Shortest paths. In the graph defined by Aij, we defined the length of a path by summing

the length of each edge, assigning to the edge between nodes k and l a length 1/|Akl|, i.e.,

inversely proportional to the effective connection between k and l. We can thus compute

shortest paths in the graph through Dijkstra’s algorithm [55]. We denote by ℓij the length of

the shortest path between nodes i and j.

Optimal node placement and rank aggregation

For a given subset of target nodes T , we rank nodes according to different centralities, and

select as driver nodes the nd nodes with highest rank. Then, we can identify which centrality

allows achieving the lowest value of control energy (‘optimal centrality’), rank nodes according

to the optimal centrality, and select as drivers the nd driver nodes with highest rank (‘optimal

drivers’). In a fist step, we can identify optimal drivers for each subject independently, yielding

a subject-dependent set of optimal drivers OðsÞ where s is a subject index.

Then, given a certain set of nodes D, non-overlapping with T (D \ T ¼ ;), we can test

whether optimal drivers are preferentially selected from D. This problem is analogous to the

problem where one has balls of two colors (blue/red) divided in two urns (A/B), and wants to

test whether urn A contains an anomalous proportion of blue balls (i.e., statistically unlikely if

balls are randomly placed in the two urns regardless of color). This problem can be solved per-

forming a Fisher exact test [56]. Here, we have optimal/non-optimal nodes (belonging respec-

tively to O and its complement �O), divided in two sets. To know whether optimal nodes are
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preferentially selected from D, we perform a Fisher exact test on the quantities

n1 ¼
P

s jOðsÞ \Dj; n2 ¼
X

s

jOðsÞ \ �Dj; n3 ¼
X

s

j �OðsÞ \Dj; n4 ¼
X

s

j �OðsÞ \ �Dj;

which correspond to the number of optimal/non-optimal drivers that belong/not belong to D.

One can use rank aggregation to obtain a group-wise set of optimal nodes. Among the pos-

sible approaches to rank aggregation [57], we used the most basic approach, namely, comput-

ing the average rank (other common criteria such as Borda and Dowdall [57] give very similar

results). For each subject, we thus rank nodes according to the optimal centrality, produce a

group ranking using rank aggregation, and select as drivers the nd driver nodes with highest

rank.

Results

Effective connectivity matrices

We considered resting state fMRI data of N = 76 participants, parcellated into n = 74 regions

(58 cortical regions + 16 subcortical regions). Applying sparse DCM [26] to the regional time

series, we obtained individual effective connectivity matrices A. The matrix element Aij repre-

sents the directed connection (influence) from j to i. The linear model given by DCM obtained

a very good fit of the data, with a correlation between the functional connectivity (FC, standard

Pearson correlation matrix between the BOLD signals of all areas) of the model and the actual

FC of 0.78 (on average over subjects). Example matrices are shown in S1 Fig. The EC matrices

have nonzero, negative diagonal entries, Aii< 0, as required for dynamic stability [49]. Effec-

tive connections are sparse: on average over all subjects, the link density was 0.39 (61% of

matrix entries are zero). On average 59.9% of links were positive (“excitatory”), and 40.1% neg-

ative (“inhibitory”). The EC matrices exhibit a large inter-subject variability. To assess the

degree of inter-subject consistency, we evaluated the Pearson correlation between the EC

matrices of all pairs of subjects: on average over all pairs, the correlation was 0.49 (s.d. 0.03).

This figure is comparable with the inter-subject consistency of FC matrices (average 0.49, s.d.

0.08).

Scaling of control energy with the number of driver and target nodes

Two key parameters determining the control energy (Eq 11) are the number of driver nodes,

nd, and the number of target nodes, nt.
Scaling with the number of driver nodes. In the literature, the case nt = n is usually con-

sidered, where one tries to control the whole network. We thus first fix nt = n and analyze the

control energy E as a function of the number of driver nodes nd (Fig 1A).

For each value of nd, we selected driver nodes as high-ranking nodes according to different

centrality measures (Methods). Results for a random selection of nodes are also presented. The

control energy is exceedingly high (> 1012) unless a significant (≳ 15%) fraction of the nodes

are used as driver nodes. This result is fully in agreement with the previous results of Tu et al.

[6] and resonates with previous theoretical controllability studies. On one side, since the

matrix A has nonzero diagonal entries, the maximum matching theorem ensures that the sys-

tem is controllable by applying a single external input jointly to all nodes, i.e. B = [1, 1, 1, . . ..,

1]T [21, 58]. However, when computing the minimum eigenvalue of the corresponding Gra-

mian matrix, we systematically obtain very small values (of the order 10−13). Therefore, this

simple control solution is not applicable in practice. In fact, as highlighted in ref. [21], unless a

considerable fraction of the nodes are controlled, control energy is astronomically large, and

control trajectories are extremely long and numerically unstable. Fig 1B shows the distribution
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(over subjects) of control energies obtained with different (centrality-based) choices of driver

nodes, with energies z-scored to the mean of the distribution obtained with a random choice

of driver nodes. The control energy depends quite weakly on the choice of driver nodes, with

centrality measures not affording any significant advantage over a random choice of nodes.

Scaling with the number of target nodes. Given the difficulties with whole-brain net-

work controllability, we next consider the dependence of the control energy on the total num-

ber of target nodes nt. In Fig 1C we plot the energy required to control a varying number of

target nodes. Here, target nodes were chosen randomly (nodes were randomly sorted and an

increasing number of nodes was included in the set of target nodes following the sorting). We

used nd = 5 driver nodes selected according to 4 different centrality measures, as well as ran-

domly. The control energy scales exponentially with nt. Since current techniques allow per-

turbing only one or a few nodes simultaneously, this implies that the control problem is

practically solvable only for a low number of target nodes. The strictly exponential scaling

depends on the fact that target nodes were chosen randomly: therefore, target nodes were on

Fig 1. Dependence of the control energy on the number of driver and target nodes. (A) Energy to control the whole brain network (median over

subjects) as a function of the number of driver nodes nd. For each nd, nodes were selected based on a ranking of centrality measures. (B) Energy to

control the whole brain network (distribution over subjects), for three values of nd. For each subject, energy values were z-scored with respect to the

mean of the random node selection. (C) Energy to control a varying number of target nodes, using nd = 5 driver nodes selected according to different

centrality measures as well as randomly. Lines represent the average control energy over subjects (over both subjects and realizations for the random

curve) (D) Energy to control target nodes, using nd = 10 driver nodes (distribution over subjects). For each number of target nodes, energy values were

z-scored with respect to the mean energy obtained with the random node selection. (E) Energy to control a varying number of target nodes within each

of 8 RSNs, using nd = 10 driver nodes selected according to a ranking based on the out-strength. In (A-D), all random curves were obtained by

averaging over M = 100 random selections of driver nodes.

https://doi.org/10.1371/journal.pcbi.1011274.g001
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average not strongly connected to driver nodes. If one restricts attention to groups of strongly

connected nodes, such as those belonging to the same resting state network (RSN), we observe

a deviation from the exponential scaling (Fig 1E). In particular, the scaling of log E with nd is

weakly sublinear, showing a weak “saturation effect” whereby adding new nodes to the set of

target nodes is progressively less costly. Fig 1C also shows that selection of driver nodes has an

effect on the control energy. In particular, the random choice systematically yields larger ener-

gies than centrality-based choices. In Fig 1D we show the distribution (over subjects) of the

(log-)control energies, z-scored to the mean of the distribution obtained with a random choice

of driver nodes. For all values of nt, a centrality-based choice of driver nodes affords a signifi-

cant advantage over a random choice of driver nodes (T-test, T(75) < −8, p< 10−10 corrected

for 5 multiple comparisons). The effect is more pronounced for low nt. These results do not

depend either on the specific nd used (analogous results are obtained with nd = 5, nd = 20). We

stress that centrality measures are computed directly on the EC, not on standard FC. In S9(A)

Fig we show the overlap between the 10 highest-ranking nodes selected with the EC and with

the FC, respectively. On average (over subjects), the overlap was only 15% (for out degree),

11% (for pq-centality), 13% (for degree ratio centrality), 28% (for page rank centrality). Corre-

spondingly, in S9(B) Fig we show the distribution of the (log-)control energies obtained using

FC-based instead of EC-based centrality measures. The values of the (log-)control energy were

z-scored to the mean of the distribution obtained with an EC-based choice of driver nodes.

The FC-based choice consistently yields larger energies than the EC-based one.

In summary, the control energy scales exponentially with the number of target nodes. When
the number of target nodes is large, the energy is exceedingly large unless a significant fraction of
the nodes is used as driver nodes. These results imply that whole-brain controllability is unfeasi-
ble with current techniques. The dependence of the control energy on the choice of driver nodes is
appreciable for a low number of driver and target nodes.

Single-node target controllability

Given the unfeasibility of whole-brain controllability, in the remainder we concentrate on tar-

get controllabilty of selected brain regions or groups of regions. We first consider the simplest,

and experimentally most viable target controllability problem: controlling a single target node
by using a single driver node. This case corresponds to the typical experimental setting where

one wishes to activate/deactivate a specific brain region by stimulating a (single) remote

region. Furthermore, it allows clarifying general relations between effective connectivity matri-

ces and controllability.

Which connections contribute to control. The control energy for the single-driver-sin-

gle-target case is given by Eq (15), which determines the energy E i!j required to control node j
through node i. In Fig 2A we plot E i!j against Aji for a single subject. Unsurprisingly, for posi-

tive links (Aji> 0, blue) E i!j is negatively correlated with Aji (Spearman R� −0.39 for this

subject).

This means that if there is a large effective connection between i and j, it is less costly to con-

trol j through i (control energy decreases). However, for negative connections (Aji< 0) E i!j is

positively correlated with Aji (Spearman R� 0.44 for this subject). Thus, negative connections

have a positive, not a detrimental effect for controllability: if there is a large, negative effective

connection between i and j, it is less costly to control j through i. Stated otherwise, effective

connections reduce the required control energy with a contribution dependent on their

strength, but independent of their sign. Group results confirm this finding (Fig 2E). The aver-

age Spearman correlation between EC and control energy is R = −0.40 ± 0.03 (mean ± s.d.) for

positive connections and R = 0.41 ± 0.05 for negative connections. From Fig 2A we also see
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that large effective connections are a sufficient, yet not necessary condition to have low control

energy. We hypothesized that this is due to indirect connections. Indeed, mathematically, the

influence of node i onto j over a time scale t is exerted though the propagator eAt, rather than

A. The matrix element [eAt]ji effectively integrates the effect of direct and indirect paths

between i and j. In Fig 2B we plot E i!j against [eAT]ji for a single subject, where T = 10 (corre-

sponding to 14 seconds, as time is measured in units of TR = 1.4s). This is the timescale

required for a local perturbation to fully propagate to distal nodes according to the DCM

model (S2 Fig). We obtain stronger correlations (R� −0.70,R� 0.71 for positive and negative

connections respectively). Over all subjects (Fig 2E), we obtain R = 0.67 ± 0.08 for positive con-

nections and R = 0.69±0.06 for negative connections. To strengthen the conjecture that the

value of the control energy E i!j is related to the presence of direct and indirect connections

between i and j, in Fig 2C we plot E i!j against ℓji, the length of the shortest path between i and j

Fig 2. Relation between single-driver single-target energy and effective connectivity. We considered the control energy required to consider a single

target j using a single target i (top left; the brain image was visualized with BrainNetViewer [48]). (A) Control energy E i!j (energy required to control a

single node j using a single node i as driver) vs. the effective connectivity between i and j, Aji for a single representative subject. Positive (Aji> 0) and

negative (Aji< 0) effective connections are highlighted in blue and red respectively. The value of Spearman correlation between Aji and log E i!j is

shown for positive (R(+)) and negative (R(−)) connections respectively. (B) Control energy E i!j vs. the absolute value of the i, j matrix element of the

propagator eAT for T = 10 for a single representative subject. Positive ([eAT]ji> 0) and negative (eATji < 0) effective connections are highlighted in blue

and red respectively, along with the corresponding values of Spearman correlation with log E i!j. (C) Control energy E i!j vs. the length of the shortest

path ‘ji connecting i and j using effective connections for a single representative subject. (D) Control energy E i!j vs. the i, j matrix element of the

functional connectivity F for a single representative subject. (E) Distribution (over subjects) of the absolute value of Spearman correlation |R| between

E i!j and Aji (positive and negative connections), [eAT]ji (positive and negative connections), ℓj,i, and Fji.

https://doi.org/10.1371/journal.pcbi.1011274.g002

PLOS COMPUTATIONAL BIOLOGY Controlling target brain regions by optimal selection of input nodes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011274 January 12, 2024 12 / 30

https://doi.org/10.1371/journal.pcbi.1011274.g002
https://doi.org/10.1371/journal.pcbi.1011274


in the graph defined by Aji. We observe a strong positive correlation (R� 0.58): if nodes i and

j are “near” (i.e., linked by strong direct or indirect connections), the control energy is lower.

Over all subjects (Fig 2E), the average correlation coefficient is 0.56 ± 0.04. Finally, we note

that the value of the control energy E i!j is poorly predicted by the standard functional connec-

tivity Fji between nodes i and j (Fig 2D), as we observe only a weak negative correlation (R�
−0.23). Over all subjects (Fig 2E), the average correlation coefficient is −0.16 ± 0.06. In sum-
mary, the presence of large (direct and indirect, positive or negative) connections between i and j
determines a low control energy E i!j.

Optimal driver and target nodes. Based on the results of the previous section, we

assumed that nodes with strong incoming connections would require a low energy to be con-

trolled, and nodes with strong outgoing connections would require low energy to control

other nodes. We verified this hypothesis by computing the link between the driver/target cen-

trality Ed
i ; E

t
i of a node (Methods), representing the average energy when using a node as a

driver or target, and the in- and out-strength of that node Ain
i ;A

out
i . On average over subjects

(S3(A) Fig), Ed
i is strongly negatively correlated with Aout

i (R = −0.71 ± 0.05, mean ± s.d.) but

uncorrelated with Ain
i (R = 0.00 ± 0.15). Conversely, E t

i is strongly negatively correlated with

Ain
i (R = −0.72 ± 0.07) but weakly correlated with Aout

i (R = −0.10 ± 0.17). This implies that

asymmetries between incoming and outgoing connections have large significance for control.

These asymmetries can be appreciated when considering EC (which is non-symmetric), but

not standard functional connectivity, FC (which is by definition symmetric). In fact, when

considering the FC strength (F i ¼
P

jFji where F is the functional connectivity matrix), we

did not find any relation with either the driver centrality (R = −0.02 ± 0.12), or the target cen-

trality (R = 0.17 ± 0.13). In S4(A) Fig we illustrate the conceptual difference between in-hubs

(nodes with strong incoming connections) and out-hubs (nodes with strong outgoing connec-

tions), while in S4(B)–S4(D) Fig we report brain plots showing the in-strength and out-

strength of different regions, as well as the total FC strength. Our results suggest that “in-hubs”

of the effective connectivity are the easiest nodes to control, while “out-hubs” of effective con-

nectivity are the best nodes to use to control other nodes, and should possibly be chosen as

driver nodes. Intuitively, as the control signal must reach the target node from the driver node,

the easiness to control a given target node is related to the existence and the number of net-

work paths leading from the driver to the target. In summary, on average in-hubs are more eas-

ily reached (there are many paths leading to them), out-hubs are the best drivers (many paths

from them lead to the possible targets). Note that in- and out-hubs of EC do not trivially align

with FC hubs.

An important caveat is that out-hubs are not strongly consistent across subjects. In fact, we

assessed the consistency of in- and out-strength over subject by computing the coefficient of

variation cV (standard deviation/mean). Small values imply high consistency and vice versa.

We obtained: for out-strength cV = 0.31 ± 0.07 (mean ± st. dev. over nodes), for in-strength cV
= 0.17 ± 0.03 (S3(B) Fig). Thus, the in-strength is much more consistent than the out-strength

(T test, T(73) = −19.2, p< 10−30). Correspondingly, the target centrality (cV = 0.10 ± 0.02) is

much more consistent than the driver centrality (cV = 0.19 ± 0.03; T test, T(73) = −19.5,

p< 10−30). Thus, the easy-to-control nodes are more consistent across subjects than the good

“input nodes” by which one can control other nodes.

To identify good driver nodes, we ranked nodes based on Ed
i . Fig 3A shows a rendering of

the brain, with region color corresponding to the average rank (average over subjects) based

on Ed
i .
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The average E t
i tends to decrease along the posterior/anterior axis, with posterior nodes

generally corresponding to larger target energies (the correlation between E t
i and the sagittal

coordinate y of the nodes is significant, R = −0.34, p = 0.003). Nodes with high rank (low Ed
i ),

on average over subjects, include portions of the anterior DMN (ventrolateral prefrontal cor-

tex/ba47 and dorsomedial prefrontal cortex/ba8), the anterior portion of the VAN (dorsolat-

eral prefrontal cortex), the anterior portion of DAN (frontal eye field), primary motor cortex,

putamen, left cerebellum, right hippocampus. Nodes with high rank (high Ed
i ) include thala-

mus, caudate, the temporal portion of DMN, primary visual cortex, the posterior portion of

the DAN. However, in agreement with the above states caveat, the distribution (over subjects)

of node ranks is quite broad for all nodes, with a st. dev. of� 20 for all nodes, implying that

ranks are not consistent across subject (S5(A) Fig). Therefore, while we can identify nodes that

tend to be better/worse as driver nodes across subjects, no nodes are consistently good/bad for

all subjects. S5(A) Fig also shows node affiliation to one of eight resting state networks (RSN).

The node ranking does not clearly correlate with RSNs affiliation: no networks are consistently

associated with low/high ranks.

To identify nodes that are easy to control, we ranked nodes based on E t
i . Fig 3B shows a ren-

dering of the brain, with region color corresponding to the average rank. The average E t
i tends

to decrease along the ventral/dorsal axis, and to increase along the posterior/anterior axis, with

ventral and anterior nodes generally corresponding to larger target energies (we found a signif-

icant correlation between E t
i and the axial coordinate z of the nodes, R = −0.63, p = 4 � 10−9,

and a significant correlation between E t
i and the sagittal coordinate y of the nodes, R = −0.32,

p = 0.005). Nodes with low E t
i include primary visual cortex, posterior nodes of the DAN,

Fig 3. Driver nodes and target nodes. (A) We show a rendering of the brain, with each dot representing the center of one of the 74 regions. Node size

is inversely proportional to the node driver centrality Ed
i , while nodes color corresponds to resting state network affiliation. (B) as in (A), but node size

is inversely proportional to the node target centrality Et
i . Brain images were visualized using BrainNetViewer [48].

https://doi.org/10.1371/journal.pcbi.1011274.g003

PLOS COMPUTATIONAL BIOLOGY Controlling target brain regions by optimal selection of input nodes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011274 January 12, 2024 14 / 30

https://doi.org/10.1371/journal.pcbi.1011274.g003
https://doi.org/10.1371/journal.pcbi.1011274


posterior nodes of the CON, right anterior nodes of the CON, and the medial prefrontal cortex

portion of the DMN. In terms of RSN affiliation, nodes of the Limbic network and subcortical

nodes are generally associated with very low ranks. On the contrary, nodes of the control and

the sensorimotor network are generally associated to high ranks. The distribution (across sub-

jects) of node ranks, for each node, is shown in S5(B) Fig. In agreement with the above discus-

sion of consistency, the rank distribution is much sharper than that obtained with Ed
i , with a st.

dev. of< 10 for many nodes. Therefore, not only can we identify nodes that tend to be better/

worse as target nodes (in terms of control energy) across subjects, but we find nodes that are

consistently good/bad for all subjects.

In summary, in-hubs of EC are easy to control, out-hubs of EC are the best nodes to use as
driver nodes; In-hubs are consistent over subjects, and generally located dorsally; out-hubs are
poorly consistent over subjects, and mostly locate frontally.

RSN target controllability

We have shown that the control energy needed to control a target node depends on the choice

of the driver nodes, and we linked this variability to the structure of effective couplings. Here,

we address the general problem of selecting driver nodes when wishing to control more than

one target nodes. Due to the general findings in the “scaling” subsection, we consider only

small sets of target nodes. A natural choice is to take groups of nodes belonging to the same

resting state network (RSNs) as targets. RSNs correspond to integrated neurocognitive systems

[59–62] and are jointly affected in major brain disorders [30, 31].

Driver node selection. We computed the control energy required to control each of eight

RSNs, using a fixed number of driver nodes nd. We systematically analyzed the effect of driver

node selection, by comparing results obtained selecting driver nodes: i) based on a driver

energy rank ii) based on EC centrality iii) randomly. Nodes belonging to the target RSN were

excluded from the set of possible driver nodes. Results for nd = 5 are shown in Fig 4, where we

show the average (log)energy to control each RSN with different driver node selection.

For each RSN, energies were z-scored to the mean energy (over subjects and driver node

selection). Performing a two-way repeated measures ANOVA on the z-scored energy values,

with RSN and driver nodes selection criterion as factors, we obtained a significant effect of

selection criterion (F(5, 375) = 195, p< 10−10), and a significant criterion × RSN interaction (F
(35, 2625) = 5.2, p< 10−10). Post-hoc T-tests comparing different criteria to select control

nodes show that selecting nodes based on driver centrality or EC centralities except page-rank

(pq, ratio degree and out degree centralities) systematically yields lower energies than random

(T(75)< − 21.6, p< 10−10). The strongest effects of node selection are felt in the small net-

works (LIM, VIS and SMN networks). For each target RSN, we identified the centrality yield-

ing the lowest energy (“optimal centrality”), shown in Table 1.

Energy to control a target RSN. We computed the control energy required to control

each of eight RSNs, using a fixed number of driver nodes nd. Nodes were selected according to

the optimal centrality. In S6(A) Fig we show how the energy scales as a function of nd. For nd =

2, energies are > 103 for all RSNs (103 − 108). For nd = 5, energies are in the range 102.5 − 104.5.

With nd = 10, energies are in the range 102 − 103.5. Thus, 5 to 10 driver nodes would generally

be required to control a target RSN with moderate energy. In S6(B) Fig we show the average

(log-)energy, normalized by the number of target nodes included in each network. This allows

a more direct comparison between different RSNs. It is clear that the DMN, DAN, CON, VAN

and SUB are comparatively easier to control, while LIM, VIS and SMN are more difficult to

control.
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Controlling a RSN from another RSN. For each target RSN, we ranked nodes based on

the optimal centrality and identified a set of ‘optimal driver nodes’ nd = 10 nodes with highest

rank (at the individual level). We asked whether the optimal nodes to control a given target

RSN preferentially belong to specific driver RSNs. In Fig 5A we show, for each target RSN, the

average percentage of optimal nodes belonging to each driver RSN.

For each pair driver RSN/target RSN, we tested whether this fraction was higher or lower

than expected randomly. Intuitively, if optimal nodes were selected randomly from any driver

RSN, the fraction of optimal nodes from a given RSN should approximately match the fraction

of nodes belonging to that RSN. More formally, a Fisher exact test (Methods) can be per-

formed to identify when the fraction of nodes from a given driver RSN is lower/higher than

Fig 4. Target RSN controllability. For each of the eight RSNs, we computed the control energy required to control all nodes belonging to that RSN,

when nd = 5 driver nodes are selected among all remote nodes (not belonging to that RSN) according to rankings based on centrality measures. For all

RSNs and all choices of driver nodes, we plot the distribution over subjects of the average (log) energy per node.

https://doi.org/10.1371/journal.pcbi.1011274.g004

Table 1. RSN Target control energy.

region centrality nt nd hlog10ðEÞi hlog10ðEÞiagg ΔE

CON out strength 10 10 2.446 2.536 0.090

DMN out strength 16 10 3.521 3.698 0.177

DAN single-node 9 10 2.602 2.677 0.075

LIM single-node 5 10 2.145 2.350 0.205

VAN out strength 11 10 2.797 2.992 0.195

SMN single-node 6 10 2.608 2.760 0.152

SUB pq 12 10 3.298 3.472 0.174

VIS single-node 5 10 2.252 2.401 0.151

https://doi.org/10.1371/journal.pcbi.1011274.t001
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chance (marked with *+, *− in Fig 5a). Notably, the DMN is overrepresented among good driv-

ers of nearly all networks. The VAN and DAN are overrepresented in the control of each other

and the DMN and CON. Conversely, the LIM is systematically underrepresented.

Individual vs. group selection of driver nodes. For each target RSN, we used rank aggre-

gation to combine individual rankings in a unique ranking (Methods), obtaining a group-wise

set of optimal driver nodes. In Fig 5B we show, for each target RSN, the average percentage of

group-optimal nodes belonging to each driver RSN. Results are very similar to Fig 5A, but

rank aggregation tends to sparsify the matrix. We observe that the SMN is very underrepre-

sented among top-ranking driver nodes. This is probably a consequence of the fact that effec-

tive connections of the SMN are highly variable among subjects, so that no nodes of the SMN

consistently appear among the top-ranking for many subjects. In Fig 6 we show the 10 top-

ranking nodes according to the aggregated ranking, for two example target RSNs (CON and

SUB). In S7 Fig we show results for all target RSNs.

Among the nodes frequently represented we find: the ventrolateral prefrontal cortex nodes

of the DMN and VAN (which among the top-10 ranking nodes for nearly all target networks),

the frontal nodes of the DAN, the dorsomedial nodes of the DMN, the precuneus, the striatum

and the left cerebellum (for a more detailed discussion, see S2 Text). We asked to what extent

group results, i.e., the aggregated ranking, can be used to select driver nodes. Therefore, we

compared the energy to control each target RSN, averaged over subjects, when nodes were

selected based on an individual node ranking (hlog
10
Ei) or the aggregated ranking hlog

10
Eiagg .

Results are shown in Table 1. Obviously, the individual ranking is more efficient

(DE ¼ hlog
10
Ei � hlog

10
Eiagg > 0). However, the difference is small, ranging from a DE ¼

0:075 for DAN (corresponding to a factor 1.3 in energy) to DE ¼ 0:205 for VAN (correspond-

ing to a factor 1.6 in energy). Therefore, the group results can be used to inform the node selec-

tion. We also verified that selecting driver nodes based on centrality measures computed on

Fig 5. Relation between driver and target RSNs. For each target RSN and each subject, we obtained a ranking of driver nodes based on the centrality

measure yielding the least average energy to control the target network. A For each RSN and subject, we considered the top 10 driver nodes according

to the ranking. We plot the number of the top 10 driver nodes belonging to each RSN, on average over subjects. We mark with *+, *− nodes that

significantly more/less represented among the top 10 driver nodes than expected by chance (Fisher exact test, P< 0.05, false-discovery-rate corrected

for multiple comparisons (as we have 8 RSNs, we have 8 × 8 − 8 = 56 comparisons, as we consider all possible pairs of driver RSN—target RSN

excluding identical pairs). B Using rank aggregation, for each target RSN we obtained a single ranking for all subjects and considered the top 10 driver

nodes. We plot the number of the top 10 driver nodes belonging to each RSN.

https://doi.org/10.1371/journal.pcbi.1011274.g005
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the FC (instead of the EC) leads to larger control energies. Results are shown in S1 Table,

where we compare three quantities: i) the average difference in (log-)energies when using

group ranking vs individual ranking, based on FC. Since FC estimates are less variable over

subjects than EC estimates, the difference is generally smaller than the difference obtained

using an EC-based ranking. ii) the average difference in (log-)energies when using individual

ranking, based on FC vs EC. The difference is always positive. iii) the average difference in

(log-)energies when using group ranking, based on FC vs EC. The difference is always positive,

except for DMN. Thus, while using FC to select centrality measures allows a greater robustness

of group results, control energies are still larger than those obtained when using EC-based cen-

trality measures. Notably, when using FC, the optimal centrality criterion is nearly always the

page rank centrality, implying that optimal control nodes are generally those that do not
receive many incoming connections (hence, not FC hubs).

Discussion

Effective-connectivity-based controllability

We proposed an approach to brain controllability based on effective connectivity (EC) inferred

from fMRI, instead of structural connectivity (SC) as in the standard approach. To what extent

EC depends on the underlying SC is an open question [63]. The EC model is in principle better

suited to represent activity propagation, but we are not aware of previous studies presenting a

thorough analysis of controllability properties of whole-brain EC networks. Ref. [17] com-

puted controllability metrics on EC networks, but the entire analysis focused on a small subset

regions involved in cognitive control. Recent work [64, 65] assessed controllability properties

of functional rather than structural networks, but used standard functional connectivity (FC)

networks, rather than effective connectivity (EC) networks. We stress that standard FC only

Fig 6. Optimal driver nodes for RSN). Two example RSNs with the corresponding target nodes(small blue markers) and top 10 aggregate driver nodes

(yellow markers) are shown. Brain images were visualized using BrainNetViewer [48].

https://doi.org/10.1371/journal.pcbi.1011274.g006
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measures correlations between the signals of two areas, and in principle it is not suited to

model activity propagation. A key trait of EC networks is that they are asymmetric, contrary to

FC networks (symmetric by definition) and SC networks (symmetric due to limitations of dif-

fusion MRI). Consistently with other works [23], we observed substantial asymmetries in EC

connections. We showed that asymmetries are important for control, as incoming and outgo-

ing connections, and correspondingly in- and out-hubs, play a different role (S3(A) Fig). This

differences cannot be detected with an SC- or FC-based analysis. In future work, it is certainly

of interest to compare SC- and EC-based predictions of activity propagation following neuro-

modulation in a TMS-EEG experiment (a recent study [66] compared SC- and FC- based pre-

diction, but FC cannot adequately predict propagation patterns). To ensure that our EC-based

scheme is not sensitive to small errors in EC estimates, we performed a sensitivity analysis. For

each subject independently, we added random Gaussian noise so as to perturb each effective

connection with a relative error f up to 25%. For each value of f, we assessed the fraction of

top-10 ranking nodes (according to several centrality measures) shared between the unper-

turbed and perturbed case. Results are shown in S10 Fig. The set of optimal nodes is very

robust with respect to small variations of the effective connectivity estimates. On average (over

subjects) the fraction of top-ranking nodes stays above 90% (for out strength), above 85% (for

ratio degree centrality), above 40% (for pq centrality). The pq centrality is more fragile,

because adding Gaussian noise has the effect of perturbing the spectral properties of A, creat-

ing large eigenvalues which strongly distort the spectral properties of the Gramian.

Impracticability of whole-brain control

Based on Kalman’s criterion, Gu et al. [5] originally argued that the whole brain could be con-

trolled by acting on a single driver node. However, Kalman’s criterion does not ensure practi-

cal controllability. The latter requires a reasonably low power of the control signal, i.e., a

reasonably low control energy. Very large values of the control energy are problematic for the

following reasons: i) Experimentally, control signals are subjected to bandwidth and power

constraints; ii) Control trajectories become highly non-local and extremely long, and, conse-

quently, numerically unstable: small numerical errors in the Gramian W (of magnitude com-

parable to machine precision) imply very large deviations in the final state, and thus it is not

practiaclly possible to reach the desired target [21]; iii) Numerical instabilities can be exacer-

bated by noise and model inaccuracies. Focusing on SC controllability, Tu et al. [6] showed

that control energies are astronomically large unless an important fraction of the network

nodes (≳ 20%) are used as driver nodes. Here, we replicate Tu et al.’s findings with EC con-

trollability, showing that whole-brain control implies exceedingly high control energies unless

15–20% of the nodes are used as driver nodes (Fig 1A). In fact, huge control energies should

be expected whenever the ratio between number of driver nodes and the number of target

nodes is small, irrespective of details of the system or model at hand. Indeed, the control

energy scales (roughly) exponentially with the number of target nodes to be controlled (Fig

1C).

Target controllability of brain networks

Currently available techniques for non-invasive brain stimulation, such as transcranial mag-

netic stimulation (TMS), do not allow for stimulation of multiple sites. Standard TMS allows

stimulation of one site, and recent experiments with dual coil TMS stimulation (also known as

cortico-cortical paired associative stimulation [22, 67]) allow stimulating two cortical sites.

Proposals to implement multi-site stimulation are currently under development [68], but for-

midable technical difficulties must be surpassed before stimulation of more than a few sites
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simultaneously becomes possible. Therefore, we decided to focus our analysis on control of

one or a few target nodes, adopting the framework of target controllability [27, 69]. While

recent work considered target controllability of whole-brain brain networks [70, 71], we are

not aware of a systematic study of target controllability on EC networks. We first analysed the

case where a single driver node is used to control a single target nodes (corresponding to

experiments where one tries to activate a chosen brain region by acting on a remote region).

Controlling a single target region is feasible with limited control energy (≲ 101). We then con-

sidered the case of controlling a subset of nodes belonging to the same resting state network

(RSN). Control of target RSNs demands large control energies unless at least nd� 5 driver

nodes are used. Therefore, the control objective is not easily accomplished with current tech-

nology. We stress, however, that controlling a subnetwork (in the sense of target controlla-

bility) is equivalent to being able to generate an arbitrary activity pattern in the subnetwork.

This is considerably more difficult than producing a generic overall activation of the subnet-

work (as in [72]).

Criteria for selection of driver nodes

When considering targets of small size, it is relevant to properly select driver nodes, ensuring a

low control energy. A random selection of nodes is generally inefficient (Fig 1). In the single-

driver-single-target case, control energies span 3 orders of magnitude depending on which

node is selected (Fig 2A). Good driver nodes should be connected to the target: owing to net-

work effects, both direct and indirect connections count (Fig 2A and 2B), such that there is a

general relation between control energy and network distance between driver and target (Fig

2C). Negative (inhibitory) connections appear to have the same effectiveness for control as

positive (excitatory) connections (Fig 2E). To identified node that are generally “good drivers”

or “good targets”, we defined two control metrics, a driver centrality and target centrality, aver-

aging, respectively, the energy required to control other nodes of the network from a given

driver node and the energy required to control a given target node from other nodes. The

driver and target centralities are strongly related to EC graph centralities. In particular, out-

hubs of EC (nodes with a large weight of outgoing connections) serve as good control drivers,

while in-hubs of EC (nodes with a large weight of incoming connections) are easy target

nodes. We thus replicate qualitatively a major finding of previous studies on brain controlla-

bility [1, 5], namely, that hubs correspond to optimal driver nodes. However, within our pic-

ture there is a clear distinction between in-hubs and out-hubs—a difference that can be

appreciated only when considering asymmetric effective connections. When using several

driver nodes (e.g., to control a target RSN), it is impossible to perform an exhaustive search of

the optimal subset driver nodes, but node centralities can be used to choose the drivers. Select-

ing driver nodes from a ranking based on driver centrality or EC graph centralities (pq, ratio-

degree or out-strength centrality) yields a significant energy advantage over a random selec-

tion of driver nodes (Fig 4). All these metrics largely correlate with the out-strength centrality.

We stress that the relevance of out-hubs for control, i.e., to transmit external perturbations to

distal nodes, does not imply that these nodes are the most relevant or influential in spontane-

ous brain dynamics. In particular, if one ranks nodes on the basis of the impact their removal
can have on brain dynamics [73], then the most relevant nodes may correspond to other topo-

logical criteria, such as belonging to the set of rich-club nodes.

Node accessibility

Throughout this study, we have assumed that driver nodes can be selected freely. However,

depending on the stimulation method chosen (TMS, TACS, DBS etc.), not all nodes might be
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equally accessible to drive the network. In practice, this means that the control signal cannot

reach the nodes, or it can reach it with reduced power. We might define a node accessibility βi,
with 0� βi� 1, such that any control signal u(t) acting node i is reduced by βi: βi = 1 corre-

sponds to fully accessible nodes, βi = 0 corresponds to fully inaccessible ones. This is equivalent

to modulating the entries of the matrix B in Eq (8), by taking Bij = βi instead of Bij = 1 for all

nonzero entries of B.

In the presence on non-unit values of the accessibility, centrality measures defined only on

the effective connectivity matrix A will not lead to a good driver nodes selection (as they do

not take node accessibility into account). Conversely, the pq-centrality ri(Methods) is based on

the controllability Gramian, which takes into account also the matrix B. With non-unit values

of the accessibility, we have ri ¼ b
2

i r
0
i , where r0

i is the value obtained in the case where all nodes

are fully accessible. In other words, the pq-centrality of node i scales with node accessibility as

b
2

i . Thus, this centrality measure accounts for both node topology and node accessibility. We

simulated a situation where nodes had very different accessibilities. We generated random

accessibilities between 0.01 and 1, mimicking a situation where some nodes are nearly inacces-

sible and some are fully accessible. In S8 Fig we show the control energy as a function of the

number of driver nodes for different driver selection criteria. The lowest energy is obtained

using pq-centrality, while the random selection is very inefficient (not surprisingly, as a ran-

dom selection will generally include low-accessibility nodes).

Individual vs. group selection of drivers

While in-hubs of EC were consistent over subjects, out-hubs exhibited a much larger inter-sub-

ject variability. Therefore, the location of a single “optimal driver node” may strongly vary among

different individuals. This finding strengthens the case for an individual optimization of the stim-

ulation targets, as advocated by recent contributions [72, 74]. However, when using multiple

driver nodes, selecting nodes based on a group-averaged node ranking does not entail a signifi-

cant additional energy cost with respect to using a subject-dependent ranking. Possibly, the usage

of multiple nodes may partially offset fine-grained individual differences in the connectome pro-

files. This result is interesting in the light of the development of multiple-site neurostimulation

paradigms: it implies that using a standardized protocol over different subjects, certainly conve-

nient especially in a development stage, may not determine severe efficiency trade-offs.

Optimal driver regions

Nodes with low driver centrality (good drivers) are predominantly located frontally (Fig 3A).

This finding is in agreement with a previously reported anterior-to-posterior information flow

in the slow frequency range [75]. Good drivers include dorsolateral and ventrolateral prefron-

tal nodes of the CON, DAN and DMN, primary motor areas, and left cerebellum. The driver

centrality, being an average measure, is not sensistive to different targets. By using rank aggre-

gation, we found nodes that are frequently ranked among good driver nodes for several target

RSNs. The most recurring nodes are DAN and DMN nodes located in the ventrolateral pre-

frontal cortex, the frontal eye field (DAN), and hubs of the DMN (dorsomedial nodes of the

DMN and precuneus), the cerebellum and the striatum. Dorsolateral and ventrolateral pre-

frontal regions are among the key regions involved in cognitive control [76–81]. The frontal

eye field is a key region mediating attentional control [82]. Primary motor regions, that are

involved not only in motor control but also a wide array of top-down processes [83, 84], have

been previously associated to a high control centrality [5, 71]. The left cerebellum is strongly

involved in motor control of the dominant hemisphere [85]. The striatum is widely implicated

in learning and reward [86]. The topography of good driver nodes generally aligns with the
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cortical hierarchy [87]. Areas from attentional and association networks high in the cortical

hierarchy (DAN, DMN, VAN) are consistently identified as good driver nodes, contrary to

areas low in the cortical hierarchy (including somatomotor, visual and limbic areas). This

trend culminates with the DMN, which sits on top of the cortical hierarchy and is overrepre-

sented among driver nodes of all target networks, coherently with a hypothesized central inte-

grative role of the DMN in the brain [88]. We note that these findings do not fully align with

those of Ref. [71], which indicated only motor regions as optimal driver regions. However,

Ref. [71] based the controllability analysis on a “directed structural connectome” obtained by

normalizing outgoing connections by node degree, assuming a diffusive process on the net-

work [89]. The ensuing network considerably differs from EC network empirically observed

in fMRI, and implies robust outgoing connections for nodes with low degree, which are mainly

located in the somatomotor cortex.

Optimal targets

Target centrality is organized along the axial direction, with ventral nodes being generally

associated with higher target centrality (Fig 3B). In particular, subcortical nodes and nodes of

the limbic network correspond to particularly large control energies, implying that they are

much less easy to activate and control from remote regions, in agreement with previous find-

ings [74]. Among the nodes with lowest target centrality (hence, among the nodes that are

most easy to perturb remotely) are frontoparietal nodes belonging to the control network,

which integrate input from several regions and plays a central role in cognitive control [77].

Limitations

We finally discuss possible limitations of the present work. Cohort and recordings. The sample

used (N = 76) was not large enough to split our analysis into a training and a validation cohort.

Furthermore, the relatively short fMRI time-series (here, 657 time points) are not optimal for

the stability of individual-level EC matrices. Thus, a replication in a different data set involving

a larger cohort and longer recordings may considerably strengthen our analysis. A larger

cohort would possibly allow linking control properties (such as driver and target energies)

with individual traits, e.g., demographic data, allowing to look for age-, sex- and parenthood-

related effects ([71, 90]). Parcellation. The general findings of our manuscript do not depend

on the specific parcellation used, but some of the more specific findings may not be parcella-

tion-invariant. For instance, while the relation between out-degree and driver centrality is

expected to be general, the specific identity of the optimal driver nodes may depend on the par-

cellation, as the in- and out-degree of different nodes may slightly vary in different parcella-

tions. We also warn the reader that the specific values of control energy obtained depend on

the parcellation used: more fine-grained parcellations imply a larger number of nodes, and

hence an increased difficulty of the control problem. Control cost. In the present work we used

the control energy as general measure of control cost. Control energy is a worst-case-scenario

metric, as it measures the maximal square amplitude of the control signal required to generate

a desired activity pattern in the target region (maximum over all possible patterns). Therefore,

our estimates of controllability are generally quite conservative. Controllability framework.

Here, we used the standard framework of linear controllability. Obviously, a limitation of this

framework is the assumption that the dynamics is linear. However, we acknowledge two addi-

tional, potentially more relevant limitations. First, the framework is not fault-tolerant, as it

neglects noise and aims at inducing an exact target pattern. In a recent publication, Kamiya

et al. [91] framed the control problem probabilistically: the system’s state is not a specific activ-

ity pattern, but a distribution, and the control objective is to reach a target distribution
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centered around a specific pattern. In principle, one could use this approach in combination

with sparse DCM to achieve a fault-tolerant control approach, but this would require some

advances: in its current formulation, Kamiya et al’s approach assumes that one can control all

network nodes, and we should therefore adapt it to embed stronger constraints on the driver

nodes that can be used. A second limitation is the framework allows for arbitrary control sig-

nals u: in practice, there are often constraints in the control signals that can be generated, e.g.,

in terms of bandwidth. Finally, in terms of applications, the control approach we are using is

suitable for a “single shot” application where one temporarily induces a desired activity state.

For clinical applications, it would be relevant to understand how repeated stimulation can

leverage plasticity mechanisms inducing long-term changes [92]. Rapid effects of brain stimula-
tion. EC inferred from fMRI is represents infraslow activity (which mostly represents slow

modulations of gamma activity [93]), and hence it can capture a slow activity propagation, on

the order of several seconds, originating from a node whose local activity is increased by stimu-

lation (see S2 Fig). It cannot, however, account for a rapid non-local effect of neurostimulation,

which induces local spiking and hence also a fast activity spread along anatomical pathways

[94]. How to model this effect remains an open challenge. Task experiments. The dynamical

model, Eq (1), and the EC matrix were derived for the resting state condition. As such, our

control model is appropriate only during rest. Note that several works already used fMRI-

based connectivity results (such as RSNs) to select driver nodes for TMS-EEG experiments

[22, 95, 96]. During a tasks, we cannot generally model the dynamics as linear time-invariant

(LTI). In fact, the dynamics can contain task-dependent inputs modulating the regions’ activity

and effective connections [97], leading to a non-linear and non-time-invariant dynamics. To

what extent task-dependent modulations can be neglected, using a single task-related effective

connectivity matrix, and to what extent the optimal control nodes identified at rest would still

be efficient during a task are open questions that would deserve a dedicated study. Whole-
brain computational model. The DCM model used in this study can yield a very accurate esti-

mate of the effective connectivity, but is dynamically simplistic. To what extent predictions of

our linear model would be fully accurate in the case of a more complex, non-linear node

dynamics is an open question. In future work, we will address this question by testing our pre-

dictions on simulations of several whole-brain model with non-trivial node dynamics. To this

aim, we will use models including a data-driven, asymmetric EC estimate (the key feature for

our approach) and non-trivial node dynamics, such as the model proposed by Deco et al. [98].

Supporting information

S1 Text. Linear controllability. Details on the derivation of the main linear controlability for-

mulas reported in Methods.

(PDF)

S2 Text. Optimal nodes to control RSNs according to rank aggregation. Details optimal

nodes to control each target RSN.

(PDF)

S1 Fig. Examples of effective connectivity matrices. The 74 brain areas are divided in left cor-

tical, right cortical and subcortical areas. The figure in panel (C) represents the asymmetry in

A, defined as δA = A − AT.

(PDF)

S2 Fig. Functional propagation of perturbations. We simulated the propagation of a pertur-

bation in the model _xðtÞ ¼ AxðtÞ where A is the average (over subjects) effective connectivity

matrix. The system’s state was initialized to x(0) = 0 (corresponding to the stable equilibrium
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point) except for the state of node i that was perturbed to xi(0) = 1. We let the system evolve

freely until t = 100. The signal of area j is the functional response of area j to the perturbation

in i. (A) functional in all areas j 6¼ 0 when node i = 0 is perturbed. (B) For each region (except

the pertubed region i), we identified the time corresponding to the maximum of the functional

response. We iterated this procedure perturbing all n regions in the network, obtaining n � (n
−1)) response peak times. We show the histogram of peak response times. The average

response time is T = 10.29.

(PDF)

S3 Fig. Relation of driver and target control energy and effective connectivity. (A) For each

subject, we computed the Pearson correlation R between the node driver and target centrality

Ed
i , E t

i (average energy to control other nodes from node i vs average energy to control node i
from other nodes) and the in-strength Ain

i and out-strength Aout
i of effective connections, as

well as the strength of functional connections F i. We show the distribution of |R| over sub-

jects. (B) For each node, we computed the coefficient of variation (s.d./mean) over subjects of

Ed
i , E t

i , A
out
i Ain

i . We show the distribution of the coefficient of variation over nodes.

(PDF)

S4 Fig. In-hubs and Out-hubs. (A) Difference between in-hubs and out-hubs (B) Hubs of the

functional connectivity (in-hubs and out-hubs coincide because the functional connectivity is

symmetric). Brain regions are colored according to the FC strength (averaged over subjects)

(C) Out-hubs of the effective connectivity. Brain regions are colored according to the EC out-

strength (averaged over subjects) (D) In-hubs of the effective connectivity. Brain regions are

colored according to the EC in-strength (averaged over subjects). Brain images were visualized

using BrainNetViewer (Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool

for human brain connectomics. PloS one. 2013;8(7):e68910).

(PDF)

S5 Fig. Node ranks based on driver/target control energy. (A) For each subject, we ranked

all nodes based on the value of driver centrality Ed
i . We show the rank distribution for all

nodes, with nodes ordered according to the average rank, from lowest to highest. Nodes are

colored according to the resting state network they belong to. (B) Same as (A), but ranks are

based on target centrality E t
i .

(PDF)

S6 Fig. Dependence of the RSN control energy on the number of driver nodes. Energy to

control RSN with a varying number of driver nodes, selecting driver nodes according to the

driver centrality (A) Energy to control RSN with a varying number of driver nodes, rescaled

by the number of target nodes n.

(PDF)

S7 Fig. Optimal driver nodes for RSN. For each RSN we show the corresponding target

nodes(small blue markers) and top 10 aggregate driver nodes(yellow markers) are shown.

Brain images were visualized using BrainNetViewer (Xia M, Wang J, He Y. BrainNet Viewer: a

network visualization tool for human brain connectomics. PloS one. 2013;8(7):e68910).

(PDF)

S8 Fig. Control energy in presence of non-unit node accessibilities. (A) Energy to control

the whole brain network (median over subjects) as a function of the number of driver nodes

nd. For each nd, nodes were selected based on a ranking of centrality measures. Nodes had dif-

ferent accessibility values βi in the range [0.01, 1]. (B) Energy to control the whole brain
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network (distribution over subjects), for three values of nd. For each subject, energy values

were z-scored with respect to the mean of the random node selection.

(PDF)

S9 Fig. Selecting nodes based on functional connectivity rather than effective connectivity.

(A) Fraction of common nodes (distribution over subjects) among the top-10 ranking nodes

according to different centrality measures based on FC and EC. (B) Energy to control target

nodes, using nd = 10 driver nodes (distribution over subjects) selected according to different

centrality measures. Centrality measures were computed on FC instead of EC. For each num-

ber of target nodes, energy values were z-scored with respect to the mean energy obtained with

the same centrality but using EC.

(PDF)

S10 Fig. Effect of perturbing the effective connectivity on driver node selection. For each

subject, we considered the effective connectivity matrix A. We perturbed A by adding random

Gaussian noise to each connection. The noise was chosen to have mean 0 and standard devia-

tion proportional to the connection value, i.e., the noise �ij acting on Aji was �ij � N ð0; f � AjiÞ

with 0� f� 0.25. Thus, each link was perturbed by a relative error with magnitude f with f up

to 25%. For each value of f, we ranked nodes according to several centrality measures and we

assessed the fraction of top-10 ranking nodes common between the unperturbed (f = 0) and

perturbed case. (A) Fraction of common nodes (distribution over subjects) among the top-10

ranking nodes according to different centrality measures based on FC and EC. (B) Energy to

control target nodes, using nd = 10 driver nodes (distribution over subjects) selected according

to different centrality measures. Centrality measures were computed on FC instead of EC. For

each number of target nodes, energy values were z-scored with respect to the mean energy

obtained with the same centrality but using EC.

(PDF)

S1 Table. RSN Target control with functional-connectivity-based node selection. We

repeated the analysis of control energies for RSN targets, selecting the driver nodes on the

basis of centrality measures computed on FC. Here, we show three quantities: i) the average

difference in (log-)energies when using group ranking vs individual ranking, based on FC:

DEFC
FCagg
¼ hlog

10
EiFC;agg � hlog10

EiFC ii) the average difference in (log-)energies when using

individual ranking, based on FC vs EC: DEFC
EC ¼ hlog10

EiFC � hlog10
EiEC iii) the average differ-

ence in (log-)energies when using group ranking, based on FC vs EC:

DE
FCagg
ECagg ¼ hlog10

EiFC;agg � hlog10
EiEC;agg .

(PDF)
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69. Yan G, Vértes PE, Towlson EK, Chew YL, Walker DS, Schafer WR, et al. Network control principles

predict neuron function in the Caenorhabditis elegans connectome. Nature. 2017; 550(7677):519–523.

https://doi.org/10.1038/nature24056 PMID: 29045391

70. Tahmassebi A, Meyer-Baese U, Meyer-Baese A. Structural target controllability of brain networks in

dementia. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC). IEEE; 2021. p. 3978–3981.

71. Bassignana G, Lacidogna G, Bartolomeo P, Colliot O, De Vico Fallani F. The impact of aging on human

brain network target controllability. Brain Structure and Function. 2022; p. 1–15. PMID: 36274102

72. Menardi A, Ozdemir RA, Momi D, Tadayon E, Boucher P, Vallesi A, et al. Effect of group-based vs indi-

vidualized stimulation site selection on reliability of network-targeted TMS. NeuroImage. 2022;

264:119714. https://doi.org/10.1016/j.neuroimage.2022.119714 PMID: 36309331

73. Lopes MA, Richardson MP, Abela E, Rummel C, Schindler K, Goodfellow M, et al. An optimal strategy

for epilepsy surgery: Disruption of the rich-club? PLoS computational biology. 2017; 13(8):e1005637.

https://doi.org/10.1371/journal.pcbi.1005637 PMID: 28817568

74. Menardi A, Momi D, Vallesi A, Barabási AL, Towlson EK, Santarnecchi E. Maximizing brain networks

engagement via individualized connectome-wide target search. Brain Stimulation. 2022; 15(6):1418–

1431. https://doi.org/10.1016/j.brs.2022.09.011 PMID: 36252908

75. Hillebrand A, Tewarie P, Van Dellen E, Yu M, Carbo EW, Douw L, et al. Direction of information flow

in large-scale resting-state networks is frequency-dependent. Proceedings of the National Acad-

emy of Sciences. 2016; 113(14):3867–3872. https://doi.org/10.1073/pnas.1515657113 PMID:

27001844

76. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic con-

nectivity networks for salience processing and executive control. Journal of Neuroscience. 2007; 27

(9):2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007 PMID: 17329432

77. Cole MW, Schneider W. The cognitive control network: Integrated cortical regions with dissociable func-

tions. Neuroimage. 2007; 37(1):343–360. https://doi.org/10.1016/j.neuroimage.2007.03.071 PMID:

17553704

78. Brosnan MB, Wiegand I. The dorsolateral prefrontal cortex, a dynamic cortical area to enhance top-

down attentional control. Journal of Neuroscience. 2017; 37(13):3445–3446. https://doi.org/10.1523/

JNEUROSCI.0136-17.2017 PMID: 28356395

79. Menon V, D’Esposito M. The role of PFC networks in cognitive control and executive function. Neurop-

sychopharmacology. 2022; 47(1):90–103. https://doi.org/10.1038/s41386-021-01152-w PMID:

34408276

80. Badre D, Wagner AD. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neurop-

sychologia. 2007; 45(13):2883–2901. https://doi.org/10.1016/j.neuropsychologia.2007.06.015 PMID:

17675110

PLOS COMPUTATIONAL BIOLOGY Controlling target brain regions by optimal selection of input nodes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011274 January 12, 2024 29 / 30

https://doi.org/10.1073/pnas.0504136102
http://www.ncbi.nlm.nih.gov/pubmed/15976020
https://doi.org/10.1016/j.neuron.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22099467
https://doi.org/10.1101/2023.02.22.529400
https://doi.org/10.1101/2023.02.22.529400
http://www.ncbi.nlm.nih.gov/pubmed/36865122
https://doi.org/10.1016/j.jad.2022.04.123
http://www.ncbi.nlm.nih.gov/pubmed/35500684
https://doi.org/10.1038/s41598-021-90663-z
http://www.ncbi.nlm.nih.gov/pubmed/34127688
https://doi.org/10.1016/j.cub.2018.05.083
https://doi.org/10.1016/j.cub.2018.05.083
http://www.ncbi.nlm.nih.gov/pubmed/29990453
https://doi.org/10.1016/j.brs.2018.03.014
http://www.ncbi.nlm.nih.gov/pubmed/29627272
https://doi.org/10.1038/nature24056
http://www.ncbi.nlm.nih.gov/pubmed/29045391
http://www.ncbi.nlm.nih.gov/pubmed/36274102
https://doi.org/10.1016/j.neuroimage.2022.119714
http://www.ncbi.nlm.nih.gov/pubmed/36309331
https://doi.org/10.1371/journal.pcbi.1005637
http://www.ncbi.nlm.nih.gov/pubmed/28817568
https://doi.org/10.1016/j.brs.2022.09.011
http://www.ncbi.nlm.nih.gov/pubmed/36252908
https://doi.org/10.1073/pnas.1515657113
http://www.ncbi.nlm.nih.gov/pubmed/27001844
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17329432
https://doi.org/10.1016/j.neuroimage.2007.03.071
http://www.ncbi.nlm.nih.gov/pubmed/17553704
https://doi.org/10.1523/JNEUROSCI.0136-17.2017
https://doi.org/10.1523/JNEUROSCI.0136-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28356395
https://doi.org/10.1038/s41386-021-01152-w
http://www.ncbi.nlm.nih.gov/pubmed/34408276
https://doi.org/10.1016/j.neuropsychologia.2007.06.015
http://www.ncbi.nlm.nih.gov/pubmed/17675110
https://doi.org/10.1371/journal.pcbi.1011274


81. Badre D. Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends in

cognitive sciences. 2008; 12(5):193–200. https://doi.org/10.1016/j.tics.2008.02.004 PMID: 18403252

82. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature

reviews neuroscience. 2002; 3(3):201–215. https://doi.org/10.1038/nrn755 PMID: 11994752

83. Sohn H, Meirhaeghe N, Rajalingham R, Jazayeri M. A network perspective on sensorimotor learning.

Trends in Neurosciences. 2021; 44(3):170–181. https://doi.org/10.1016/j.tins.2020.11.007 PMID:

33349476

84. Bassett DS, Yang M, Wymbs NF, Grafton ST. Learning-induced autonomy of sensorimotor systems.

Nature neuroscience. 2015; 18(5):744–751. https://doi.org/10.1038/nn.3993 PMID: 25849989

85. Manto M, Bower JM, Conforto AB, Delgado-Garcı́a JM, Da Guarda SNF, Gerwig M, et al. Consensus

paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in

movement. The Cerebellum. 2012; 11:457–487. https://doi.org/10.1007/s12311-011-0331-9 PMID:

22161499

86. Cox J, Witten IB. Striatal circuits for reward learning and decision-making. Nature Reviews Neurosci-

ence. 2019; 20(8):482–494. https://doi.org/10.1038/s41583-019-0189-2 PMID: 31171839

87. Huntenburg JM, Bazin PL, Margulies DS. Large-scale gradients in human cortical organization. Trends

in cognitive sciences. 2018; 22(1):21–31. https://doi.org/10.1016/j.tics.2017.11.002 PMID: 29203085

88. Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. The default mode network in

cognition: a topographical perspective. Nature reviews neuroscience. 2021; 22(8):503–513. https://doi.

org/10.1038/s41583-021-00474-4 PMID: 34226715

89. Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks.

Nature reviews neuroscience. 2018; 19(1):17–33. https://doi.org/10.1038/nrn.2017.149

90. Jamalabadi H, Hahn T, Winter NR, Nozari E, Ernsting J, Meinert S, et al. Interrelated effects of age and

parenthood on whole-brain controllability: protective effects of parenthood in mothers. bioRxiv. 2022; p.

2022–07.

91. Kamiya S, Kawakita G, Sasai S, Kitazono J, Oizumi M. Optimal control costs of brain state transitions in

linear stochastic systems. Journal of Neuroscience. 2023; 43(2):270–281. https://doi.org/10.1523/

JNEUROSCI.1053-22.2022 PMID: 36384681

92. Mantovani A, Neri F, D’Urso G, Mencarelli L, Tatti E, Momi D, et al. Functional connectivity changes

and symptoms improvement after personalized, double-daily dosing, repetitive transcranial magnetic

stimulation in obsessive-compulsive disorder: a pilot study. Journal of Psychiatric Research. 2021;

136:560–570. https://doi.org/10.1016/j.jpsychires.2020.10.030 PMID: 33158554

93. Drew PJ, Mateo C, Turner KL, Yu X, Kleinfeld D. Ultra-slow oscillations in fMRI and resting-state con-

nectivity: neuronal and vascular contributions and technical confounds. Neuron. 2020; 107(5):782–804.

https://doi.org/10.1016/j.neuron.2020.07.020 PMID: 32791040

94. Momi D, Ozdemir RA, Tadayon E, Boucher P, Shafi MM, Pascual-Leone A, et al. Network-level macro-

scale structural connectivity predicts propagation of transcranial magnetic stimulation. Neuroimage.

2021; 229:117698. https://doi.org/10.1016/j.neuroimage.2020.117698 PMID: 33385561

95. Bonnard M, Chen S, Gaychet J, Carrere M, Woodman M, Giusiano B, et al. Resting state brain dynam-

ics and its transients: a combined TMS-EEG study. Scientific reports. 2016; 6(1):31220. https://doi.org/

10.1038/srep31220 PMID: 27488504

96. Ozdemir RA, Tadayon E, Boucher P, Momi D, Karakhanyan KA, Fox MD, et al. Individualized perturba-

tion of the human connectome reveals reproducible biomarkers of network dynamics relevant to cogni-

tion. Proceedings of the National Academy of Sciences. 2020; 117(14):8115–8125. https://doi.org/10.

1073/pnas.1911240117 PMID: 32193345

97. Jung K, Friston KJ, Pae C, Choi HH, Tak S, Choi YK, et al. Effective connectivity during working mem-

ory and resting states: A DCM study. NeuroImage. 2018; 169:485–495. https://doi.org/10.1016/j.

neuroimage.2017.12.067 PMID: 29284140

98. Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis NK, et al. Awakening: Predicting exter-

nal stimulation to force transitions between different brain states. Proceedings of the National Academy

of Sciences. 2019; 116(36):18088–18097. https://doi.org/10.1073/pnas.1905534116 PMID: 31427539

PLOS COMPUTATIONAL BIOLOGY Controlling target brain regions by optimal selection of input nodes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011274 January 12, 2024 30 / 30

https://doi.org/10.1016/j.tics.2008.02.004
http://www.ncbi.nlm.nih.gov/pubmed/18403252
https://doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
https://doi.org/10.1016/j.tins.2020.11.007
http://www.ncbi.nlm.nih.gov/pubmed/33349476
https://doi.org/10.1038/nn.3993
http://www.ncbi.nlm.nih.gov/pubmed/25849989
https://doi.org/10.1007/s12311-011-0331-9
http://www.ncbi.nlm.nih.gov/pubmed/22161499
https://doi.org/10.1038/s41583-019-0189-2
http://www.ncbi.nlm.nih.gov/pubmed/31171839
https://doi.org/10.1016/j.tics.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/29203085
https://doi.org/10.1038/s41583-021-00474-4
https://doi.org/10.1038/s41583-021-00474-4
http://www.ncbi.nlm.nih.gov/pubmed/34226715
https://doi.org/10.1038/nrn.2017.149
https://doi.org/10.1523/JNEUROSCI.1053-22.2022
https://doi.org/10.1523/JNEUROSCI.1053-22.2022
http://www.ncbi.nlm.nih.gov/pubmed/36384681
https://doi.org/10.1016/j.jpsychires.2020.10.030
http://www.ncbi.nlm.nih.gov/pubmed/33158554
https://doi.org/10.1016/j.neuron.2020.07.020
http://www.ncbi.nlm.nih.gov/pubmed/32791040
https://doi.org/10.1016/j.neuroimage.2020.117698
http://www.ncbi.nlm.nih.gov/pubmed/33385561
https://doi.org/10.1038/srep31220
https://doi.org/10.1038/srep31220
http://www.ncbi.nlm.nih.gov/pubmed/27488504
https://doi.org/10.1073/pnas.1911240117
https://doi.org/10.1073/pnas.1911240117
http://www.ncbi.nlm.nih.gov/pubmed/32193345
https://doi.org/10.1016/j.neuroimage.2017.12.067
https://doi.org/10.1016/j.neuroimage.2017.12.067
http://www.ncbi.nlm.nih.gov/pubmed/29284140
https://doi.org/10.1073/pnas.1905534116
http://www.ncbi.nlm.nih.gov/pubmed/31427539
https://doi.org/10.1371/journal.pcbi.1011274

