Correspondence

Aleksandar Petlichkovski, Ss. Cyril and Methodius University in Skopje, Faculty of Medicine-Skopje, Institute for Immunobiology and Human Genetics, 50. Divizija 6a, Skopje 1109, PO Box 60, Republic of North Macedonia.

Email: aleksandar.petlichkovski@medf.ukim.edu.mk

ORCID

Haris Babačić https://orcid.org/0000-0003-0813-0005

REFERENCES

 Plebani M, Padoan A, Fedeli U, et al. SARS-CoV-2 serosurvey in health care workers of the Veneto region. Clin Chem Lab Med 2020;58(12):2107-2111.

- Ebinger JE, Fert-Bober J, Printsev I, et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med 2021
- Krammer F, Srivastava K, Alshammary H, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. 2021.
- Saadat S, Tehrani ZR, Logue J, et al. Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2. JAMA 2021.
- Prendecki M, Clarke C, Brown J, et al. Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. Lancet (London, England). 2021;397(10280):1178-1181.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

DOI: 10.1111/all.15048

Antiviral response in vernal keratoconjunctivitis may be protective against COVID-19

To the Editor.

Vernal keratoconjunctivitis (VKC) is a severe type 2 ocular eosinophilic inflammation with a proven IgE sensitization in about 50% of patients. Many Th2-type and proinflammatory cytokines have been found to be locally overexpressed in VKC patients, recalling a sort of local cytokine storm. Conjunctivitis is a common, self-limiting manifestation of COVID-19 with an incidence of 11% in affected patients, 1 but can be the first or the unique manifestation of SARS-CoV-2 infection. As a referral center for the diagnosis and treatment of VKC, so far, we observed only two VKC patient affected by COVID-19 without any ocular symptoms or consequences. The prevalence of VKC is estimated in our area 4/10.000 under 15 years of age.² Knowing that the prevalence of COVID-19 in pediatric population (0-14) in Padova great area is 6.4%, we calculated that the odds ratio (OR) for VKC to be associated with COVID-19 is OR = 0.88 (95% CI, 0.66–1.16), therefore, with a tendency for VKC to be protective. It has been suggested that a Th2-skewed immunity may be protective against severe COVID-19 disease.³ For this reason, we investigated the conjunctival expression of genes related to the local defense immunity to virus that may play a relevant role in the response to SARS-CoV-2.

Conjunctival samples were collected from 15 VKC patients and 5 healthy age-matched control subjects (CTRL) using the EyeprimTM device (OPIA Technologies SAS). Samples were immediately treated and stored at -80°C for subsequent RNA isolation and Affymetrix assay (see Appendix S1). Over the 21,448 tested expression probes,

using the Gene Ontology Biological Process (GOBP) term "defense response to virus," 237 genes were selected (Figure S1). In addition, using bibliographic elements, we selected genes with SARS-CoV-2 receptor function and antiviral activity. The receptor angiotensinconverting enzyme 2 (ACE2), cellular transmembrane serine protease 2 (TMPRSS2), Basigin/CD147/EMMPRIN (BSG), cathepsin L (CTSL), and dipeptidyl peptidase (DPP4) were not overexpressed in VKC compared to CTRL. Conversely, FURIN (FC = 2.73, p = 0.001) and ADAM-17 (FC = 1.61; p = 0.01) were significantly higher in VKC. Thirty-eight genes involved in the defense response to virus, including bone marrow stromal antigen (BST2)/tetherin and MX Dynamin Like GTPase 2/myxovirus resistance protein 2 (MX2) and tumor necrosis factor-alpha-induced protein 3 (TNFAIP3) were overexpressed in VKC (Table 1 and Figure 1). Even though several members of the interferon regulatory and inducible proteins (Table 1) were overexpressed in VKC, genes encoding for interferons were not. Notably, interferon receptors IFNAR1 (FC = 1.88; p = 0.003), IFNGR2 (FC = 2.6; p = 0.04) were significantly overexpressed in VKC.

The meaning of the upregulation of all these antiviral genes in VKC is not clear. It has been shown that ACE2 is overexpressed in diseased conjunctiva compared to normal tissues and that conjunctival inflammation can enhance its expression.⁴ Our results show that this is not the case for allergic inflammation. It has been suggested that type 2 immune response can provide certain protective effects against COVID-19 since asthma patients do not have

TABLE 1 Significantly overexpressed antiviral genes in VKC compared with control (CTRL)

Transcript cluster id	Symbol	Description	VKC vs CTRL FC	p valu
TC0100015921.hg.1	ADAR	Adenosine deaminase, RNA-specific	2.62	.0016
TC1100006500.hg.1	AP2A2	Adaptor-related protein complex 2, alpha 2 subunit	2.79	.0000
ГС2200009268.hg.1	APOBEC3A	Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A	1.42	.0045
ГС2200009271.hg.1	APOBEC3C	Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C	2.19	.0069
TC1900009859.hg.1	BRD4	Bromodomain containing 4	2.78	.0061
ГС1900009970.hg.1	BST2	Bone marrow stromal cell antigen 2	11.59	.0016
ГС0500012470.hg.1	CD74	CD74 molecule, major histocompatibility complex, class II invariant chain	4.03	.0107
ГС1700010698.hg.1	CNP	Memczak2013 ANTISENSE, CDS, coding, INTERNAL best transcript NM_033133	1.77	.0052
TC1100006840.hg.1	CTR9	CTR9 homolog, Paf1	1.41	.0534
TC0200012257.hg.1	EIF2AK2	Eukaryotic translation initiation factor 2-alpha kinase 2	2.74	.0028
C1100012949.hg.1	IFITM1	Interferon induced transmembrane protein 1	3.33	.0417
C0500012017.hg.1	IRF1	Interferon regulatory factor 1	2.83	.0382
TC1600008712.hg.1	IRF8	Interferon regulatory factor 8	1.65	.0456
TC1400010584.hg.1	IRF9	Interferon regulatory factor 9	1.52	.0442
ΓC0100010244.hg.1	IFI16	Interferon, gamma-inducible protein 16	2.83	.0005
C0200014772.hg.1	IFIH1	Interferon induced, with helicase C domain 1	4.64	.0009
ГС0100006483.hg.1	ISG15	ISG15 ubiquitin-like modifier	5.91	.0371
TC1700011922.hg.1	LGALS3BP	Lectin, galactoside-binding, soluble, 3 binding protein	3.07	.0018
TC0100009449.hg.1	MOV10	Mov10 RISC complex RNA helicase	2.16	.0027
ГС2100007205.hg.1	MX2	MX dynamin-like GTPase 2	14.65	.0027
ГС2000009023.hg.1	SAMHD1	SAM domain and HD domain 1	3.20	.0014
TC1200010908.hg.1	STAT2	Signal transducer and activator of transcription 2	3.69	.0001
TC0600009597.hg.1	TNFAIP3	Tumor necrosis factor, alpha-induced protein 3	9.75	.0015
TC0800007007.hg.1	TNFRSF10C	Tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain	2.50	.0415
TC1100009940.hg.1	TRIM5	Tripartite motif containing 5	1.66	.0231
ΓC0100017612.hg.1	TRIM11	Tripartite motif containing 11	1.56	.0079
TC0900010968.hg.1	TRIM14	Tripartite motif containing 14	1.83	.0151
ГС1700007135.hg.1	TRIM16L	Tripartite motif containing 16-like	2.13	.0246
ГС1100009942.hg.1	TRIM22	Memczak2013 ANTISENSE, CDS, coding, INTERNAL, UTR5 best transcript NM_001199573	2.44	.0007
TC1100012957.hg.1	TRIM22	Tripartite motif containing 22	2.25	.0189
ГС1700011208.hg.1	TRIM25	Tripartite motif containing 25	2.08	.0040
C0600011351.hg.1	TRIM31	Tripartite motif containing 31	4.89	.0504
C0100015346.hg.1	TRIM33	Tripartite motif containing 33	1.41	.0385
TC0600007257.hg.1	TRIM38	Tripartite motif containing 38	2.06	.0477
ГС0500009762.hg.1	TRIM41	tripartite motif containing 41	1.85	.0434
C0700008579.hg.1	TRIM56	tripartite motif containing 56	2.47	.0397
ΓC0100012328.hg.1	TRIM58	tripartite motif containing 58	2.58	.0037
TC0100007832.hg.1	ZC3H12A	Zinc finger CCCH-type containing 12A	3.71	.0024

Abbreviations: CTR, controls; FC, fold change; VKC, vernal keratoconjunctivitis.

increased susceptibility or severity of SARS-CoV-2 infection than others.⁵ Although the presence of SARS-CoV-2 in tears has rarely been detected in infected individuals, the conjunctiva is a potential gateway for the SARS-CoV-2 and conjunctivitis may be a sign of COVID-19 prior to or after the onset of respiratory symptoms.

In our study, we suggest that the overexpression of multiple antiviral factors in severe allergic inflammation and the low ACE2 expression in the conjunctiva might explain to the low prevalence of COVID-19 in VKC. In addition, it has been shown that having eosinophilia and a Th2 phenotype (which are typical of VKC) may

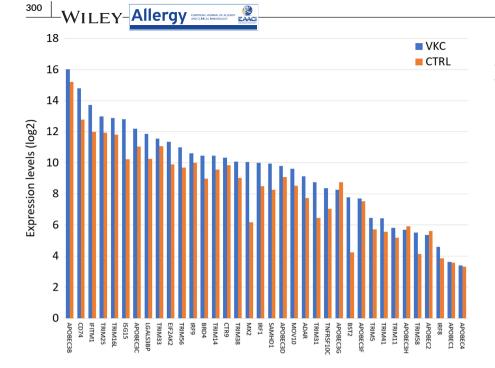


FIGURE 1 Histogram showing the levels of expression of selected genes in VKC patients and control subjects (CTRL). The selection includes genes involved in the antiviral response. VKC, vernal keratoconjunctivitis

be an important predictive factor for reduced COVID-19 morbidity and mortality in asthma. We cannot translate this statement for VKC patients, but we suggest that having a local persistent allergic inflammation might be protective for ocular viral infections.

KEYWORDS

ACE2, antiviral factors, COVID-19, SARS-CoV-2, vernal keratoconjuntivitis

FUNDING INFORMATION

Supported by an unrestricted grant from Santen SAS.

ACKNOWLEDGEMENT

Open Access Funding provided by Universita degli Studi di Padova within the CRUI-CARE Agreement. [Correction added on 21 May 2022, after first online publication: CRUI-CARE funding statement has been added.]

CONFLICT OF INTEREST

Authors have no conflict of interest, only Philippe Daull and Jean-Sébastien Garrigue are employees of Santen SAS.

Andrea Leonardi¹ Dumberto Rosani²
Fabiano Cavarzeran¹
Philippe Daull³
Jean-Sebastien Garrigue³
Brun Paola⁴

¹Department of Neuroscience, Ophthalmology Unit, University of Padua, Padova, Italy ²Department of Biology, University of Padova, Padova, Italy ³Santen SAS, Evry, France ⁴Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy

Correspondence

Andrea Leonardi, Department of Neuroscience, Ophthalmology Unit, University of Padua, via Giustiniani 2, 35128 Padua. Italy.

Email: andrea.leonardi@unipd.it

ORCID

Andrea Leonardi https://orcid.org/0000-0002-7246-8580

REFERENCES

- Nasiri N, Sharifi H, Bazrafshan A, Noori A, Karamouzian M, Sharifi A. Ocular manifestations of COVID-19: a systematic review and meta-analysis. J Ophthal Vision Res. 2021;16:103-112.
- Leonardi A, Busca F, Motterle L, et al. Case series of 406 vernal keratoconjunctivitis patients: a demographic and epidemiological study. Acta Ophthalmol Scand 2006;84:406-410.
- Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A. Is asthma protective against COVID-19? Allergy 2021;76:866-868.
- Collin J, Queen R, Zerti D, et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul Surf 2021;19:190-200.
- Timberlake DT, Grayson MH. The evidence is in that asthma is not associated with severe coronavirus disease 2019. Ann Allergy Asthma Immunol 2021;126:451-452.
- Ferastraoaru D, Hudes G, Jerschow E, et al. Eosinophilia in asthma patients is protective against Severe COVID-19 illness. J Allergy Clin Immunol Pract 2021;9:1152-1162 e3.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.