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1. Introduction. One of the main open problems in sub-Riemannian geome-
try regards the study of the regularity of length minimizing curves. Several related
technical issues appear when one uses a blow-up procedure to pass to the nilpotent
approximation around a given point. Typical problems that one faces when passing to
such a ``tangent"" structure concern proving that any blow-up \kappa of a length minimizer
\gamma is length minimizing in the nilpotent approximation; proving that \kappa is parametrized
by arclength if \gamma is so; and proving that a curve with left (resp., right) derivative gives
a (suitably defined) left (resp., right) half-line \kappa in the blow-up.

In this paper we give detailed proofs of these facts: in a special case, some of the
proofs were already sketched in [17, section 3.2]. Though of a technical nature, these
results were crucially used in [9, 11, 14]; in particular, papers [9, 11] deal with the
minimality problem for curves with corner-type singularities, i.e., for curves possessing
a point where left and right derivatives to the curve exist and are not equal. In [14]
it was shown that the tangent cone (see Definition 3.1) to a length minimizer at any
of its (interior) points contains a horizontal line; in showing this, one uses the rich
algebraic structure of the nilpotent approximation and, actually, of the Carnot group
lifting the nilpotent approximation; see section 4 below.

LetM be a connected n-dimensional C\infty -smooth manifold and \scrX = \{ X1, . . . , Xr\} ,
r \geq 2, a system of C\infty -smooth vector fields onM that are pointwise linearly indepen-
dent and satisfy the H\"ormander condition introduced below. We call the pair (M,\scrX )
a Carnot--Carath\'eodory (CC) structure. Given an interval I \subseteq \BbbR , a Lipschitz curve
\gamma : I \rightarrow M is said to be horizontal if there exist functions h1, . . . , hr \in L\infty (I) such
that for a.e. t \in I we have

(1.1) \.\gamma (t) =

r\sum 
i=1

hi(t)Xi(\gamma (t)).
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3352 R. MONTI, A. PIGATI, AND D. VITTONE

The function h \in L\infty (I;\BbbR r) is called the control of \gamma . Letting | h| := (h21+ \cdot \cdot \cdot +h2r)1/2,
the length of \gamma is then defined as

L(\gamma ) :=

\int 
I

| h(t)| dt.

Since M is connected, by the Chow--Rashevsky theorem (see, e.g., [4, 16, 3]) for any
pair of points x, y \in M there exists a horizontal curve joining x to y. We can therefore
define a distance function d :M \times M \rightarrow [0,\infty ) letting

(1.2) d(x, y) := inf
\bigl\{ 
L(\gamma ) | \gamma : [0, T ] \rightarrow M horizontal with \gamma (0) = x and \gamma (T ) = y

\bigr\} 
.

The resulting metric space (M,d) is a Carnot--Carath\'eodory space. Since our analysis
is local, our results apply in particular to sub-Riemannian manifolds (M,\scrD , g), where
\scrD \subset TM is a completely nonintegrable distribution and g is a smooth metric on \scrD .

If the closure of any ball in (M,d) is compact, then the infimum in (1.2) is a
minimum; i.e., any pair of points can be connected by a length-minimizing curve. A
horizontal curve \gamma : [0, T ] \rightarrow M is a length minimizer if L(\gamma ) = d(\gamma (0), \gamma (T )).

The main contents of the paper are the following:
(i) We define a tangent CC structure (M\infty ,\scrX \infty ) at any point of M , using

exponential coordinates of the first kind (see section 2);
(ii) in section 3, we define the tangent cone for a horizontal curve, at a given

time, as the set of all possible blow-ups in (M\infty ,\scrX \infty ) of the curve, and we
show that this cone is always nonempty (see Proposition 3.2);

(iii) we show that, if the curve has a right derivative at the given time, the (posi-
tive) tangent cone consists of a single half-line (see Theorem 3.5);

(iv) if the curve is a length minimizer, in Theorem 3.6 we show that all the blow-
ups are length minimizers in (M\infty ,\scrX \infty ) as well;

(v) in section 4, we show that a tangent CC structure can be lifted to a free
Carnot group. Most of the results in this section are well known (see [10]).
However, we add some details on the stability of length minimality under
lifting.

In this paper we choose to work in exponential coordinates of the first kind. Some
of the results hold and are well known in a general system of privileged coordinates.
However, one of the key results, namely Theorem 3.5, is valid only in exponential
coordinates of the first kind; see Remark 3.10. In Remark 3.11 we discuss a statement
of Theorem 3.5 valid in a general system of privileged coordinates. Also, it is possible
to define the tangent cone in a coordinate-free way based solely on the controls; see
Remark 3.13.

We also choose to work with a system of pointwise linearly independent vector
fields (constant rank). This assumption makes the proof of Theorem 2.3 less compli-
cated. We believe that our results also hold for a system of H\"ormander vector fields
with varying rank.

2. Nilpotent approximation: Definition of a tangent structure. In this
section we introduce some basic notions about CC spaces. Then we describe the struc-
ture of a specific frame of vector fields Y1, . . . , Yn (constructed below) in exponential
coordinates; see Theorem 2.3. We also prove a lemma describing the infinitesimal
behavior of the CC distance d near 0, with respect to suitable anisotropic dilations;
see Lemma 2.4. General references for this section are [1, 2, 10, 12, 13].

We denote by Lie(X1, . . . , Xr) the real Lie algebra generated by X1, . . . , Xr

through iterated commutators. The evaluation of this Lie algebra at a point x \in M
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is a vector subspace of the tangent space TxM . If, for any x \in M , we have

Lie(X1, . . . , Xr)(x) = TxM,

we say that the system \scrX = \{ X1, . . . , Xr\} satisfies the H\"ormander condition, and we
call the pair (M,\scrX ) a Carnot--Carath\'eodory structure.

Given a point x0 \in M , let \varphi \in C\infty (U ;\BbbR n) be a chart such that U is an open
neighborhood of x0 and \varphi (x0) = 0. Then V := \varphi (U) is an open neighborhood of
0 \in \BbbR n, and the system of vector fields Yi := \varphi \ast Xi, with i = 1, . . . , r, still satisfies the
H\"ormander condition in V .

For a multi-index J = (j1, . . . , jk) with k \geq 1 and j1, . . . , jk \in \{ 1, . . . , r\} , define
the iterated commutator as

YJ := [Yj1 , . . . , Yjk - 1
, Yjk ],

where, here and in the following, for given vector fields V1, . . . , Vq we use the short
notation [V1, . . . , Vq] to denote the commutator [V1, [. . . , [Vq - 1, Vq] . . . ]]. We say that
YJ is a commutator of length \ell (J) := k, and we denote by Lj the linear span of
\{ YJ(0) | \ell (J) \leq j\} , so that

\{ 0\} = L0 \subseteq L1 \subseteq \cdot \cdot \cdot \subseteq Ls = \BbbR n

for some minimal s \geq 1. We select multi-indices J1 = (1), . . . , Jr = (r), Jr+1, . . . , Jn
such that, for each 1 \leq j \leq s,

\ell (JdimL(j - 1)+1) = \cdot \cdot \cdot = \ell (JdimLj ) = j

and such that, setting Yi := YJi
, the vectors Y1(0), . . . , YdimLj (0) form a basis of Lj .

In particular, we have dimL1 = r.
If we compose \varphi with a diffeomorphism (and shrink U and V ), we can assume

that for any point x = (x1, . . . , xn) \in V we have

(2.1) x = exp

\Biggl( 
n\sum 

i=1

xiYi

\Biggr) 
(0).

Such coordinates (x1, . . . , xn) are called exponential coordinates of the first kind associ-
ated with the frame Y1, . . . , Yn. To each coordinate xi we assign the weight wi := \ell (Ji),
and we define the anisotropic dilations \delta \lambda : \BbbR n \rightarrow \BbbR n as

(2.2) \delta \lambda (x) := (\lambda w1x1, . . . , \lambda 
wnxn), \lambda > 0.

Definition 2.1. A function f : \BbbR n \rightarrow \BbbR is \delta -homogeneous of degree w \in \BbbN if
f(\delta \lambda (x)) = \lambda wf(x) for all x \in \BbbR n, \lambda > 0. We will refer to such a w as the \delta -degree
of f .

We will frequently use the anisotropic (pseudo)norm

(2.3) \| x\| :=

n\sum 
i=1

| xi| 1/wi , x \in \BbbR n.

The norm function, x \mapsto \rightarrow \| x\| , is \delta -homogeneous of degree 1.
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We recall two facts about the exponential map, which are discussed, e.g., in [15,
pp. 141--147]. First, for any \psi \in C\infty (V ), we have the Taylor expansion

(2.4) \psi 

\Biggl( 
exp

\Biggl( 
n\sum 

i=1

siYi

\Biggr) 
(0)

\Biggr) 
\sim 
\Bigl( 
e
\sum 

i siYi\psi 
\Bigr) 
(0),

where
\bullet the left-hand side is a function of s \in \BbbR n near 0;
\bullet the right-hand side is shorthand for the formal series

\infty \sum 
k=0

1

k!
((s1Y1+\cdot \cdot \cdot +snYn)k\psi )(0) =

\infty \sum 
k=0

1

k!

\sum 
i1,...,ik\in \{ 1,...,n\} 

si1 \cdot \cdot \cdot sik(Yi1 \cdot \cdot \cdot Yik\psi )(0);

\bullet given a smooth function f(x) and a formal power series S(x), we define the
relation f(x) \sim S(x) if the formal Taylor series of f(x) at 0 is S(x).

Second, letting S :=
\sum n

i=1 siYi and T :=
\sum n

i=1 tiYi, the following formal Taylor
expansions hold as well:

(2.5) \psi 
\Bigl( 
exp(S) \circ exp(T )(0)

\Bigr) 
\sim 
\bigl( 
eT eS\psi 

\bigr) 
(0) = (eP (T,S)\psi )(0),

where

(2.6) P (T, S) :=

\infty \sum 
p=1

( - 1)p+1

p

\sum 
ki+\ell i\geq 1

[T k1 , S\ell 1 , . . . , T kp , S\ell p ]

k1! \cdot \cdot \cdot kp!\ell 1! \cdot \cdot \cdot \ell p!(k1 + \ell 1 + \cdot \cdot \cdot + kp + \ell p)
.

Above, the notation T k stands for T, . . . , T , k times.

Remark 2.2. The formal power series identity eT eS = eP (T,S) is a purely algebraic
fact which holds in any (noncommutative, graded, complete) associative real algebra
(see, e.g., [8, section X.2]); this principle will be used in the proofs of Theorem 2.3
and Lemma 2.4.

The following theorem is proved using exponential coordinates of the first kind.
In the case of exponential coordinates of the second kind, the theorem is proved in
[7]. Theorem 2.3 is also used in [5], where fine properties of functions with bounded
variation (with respect to a family of vector fields) are studied using exponential
coordinates of the first kind.

Theorem 2.3. The vector fields Y1, . . . , Yn are of the form

(2.7) Yi(x) =

n\sum 
j=i

aij(x)
\partial 

\partial xj
, x \in V, i = 1, . . . , n,

where aij \in C\infty (V ) are functions such that aij = pij + rij and
(i) for wj \geq wi, pij are \delta -homogeneous polynomials in \BbbR n of degree wj  - wi;
(ii) for wj \leq wi, pij = \delta ij (in particular, pij = 0 for wj < wi);
(iii) rij \in C\infty (V ) satisfy rij(0) = 0;
(iv) for wj \geq wi, rij(x) = o(\| x\| wj - wi) as x\rightarrow 0.

Proof. Suppose that

(2.8) aij(x) = O(\| x\| wj - wi), i, j = 1, . . . , n, wj \geq wi.
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Let pij be the sum of all monomials of \delta -degree wj  - wi in the Taylor expansion of
aij , with the convention that pij = 0 if wj < wi. Statements (i) and (iv) then hold
by construction, while (ii) and (iii) follow from aij(0) = \delta ij , which is a consequence
of (2.1).

Let us show (2.8). We pull back the identity Yi(x) =
\sum 

j aij(x)
\partial 

\partial xj
to the origin

using the map exp( - X) (locally defined near x), where X :=
\sum 

k xkYk, for a fixed
x \in V . We have

(2.9) exp( - X)\ast (Yi(x)) =
\sum 
j

aij(x) exp( - X)\ast 

\biggl( 
\partial 

\partial xj
(x)

\biggr) 
,

where the sum ranges from 1 to n. The above equation reads\sum 
\ell 

bi\ell (x)Y\ell (0) =
\sum 
j,\ell 

aij(x)cj\ell (x)Y\ell (0)

for suitable smooth coefficients bi\ell (x), cj\ell (x). We claim that

bi\ell (x) = O(\| x\| w\ell  - wi), cj\ell (x) = O(\| x\| w\ell  - wj ), and cj\ell (0) = \delta j\ell .

Then, defining A := (aij), B := (bi\ell ), and C := 1  - (cj\ell ) (1 denotes the identity
matrix), we obtain three n\times n matrices satisfying B(x) = A(x)(1 - C(x)) and C(0) =
0. In particular, 1 - C(x) is invertible for x close to 0, and (1 - C(x)) - 1 =

\sum \infty 
p=0 C(x)

p.
This gives

A(x) =

s\sum 
p=0

B(x)C(x)p + o(| x| s) =
s\sum 

p=0

B(x)C(x)p + o(\| x\| s)

for any s \in \BbbN , and (2.8) easily follows.
The proof of cj\ell (0) = \delta j\ell follows from the definition of cj\ell and from \partial 

\partial xj
= Yj(0),

which in turn comes from (2.1), as already observed.
We prove the claim bi\ell (x) = O(\| x\| w\ell  - wi). By (2.1), the left-hand side of (2.9)

satisfies

exp( - X)\ast (Yi(x)) =
d

dt
exp( - X) \circ exp(tYi) \circ exp(X)(0)

\bigm| \bigm| \bigm| 
t=0

.

Using (2.5) and Remark 2.2, for any smooth \psi we obtain

\psi 
\bigl( 
exp( - X) \circ exp(tYi) \circ exp(X)(0)

\bigr) 
\sim eP (P (X,tYi), - X)\psi (0),

where the left-hand side is interpreted as a function of (x, t). We now differentiate
this identity at t = 0. Since W (t) := P

\bigl( 
P (X, tYi), - X

\bigr) 
vanishes at t = 0, one has

d
dt (e

W (t)\psi )(0)
\bigm| \bigm| \bigm| 
t=0

= d
dt (W (t)\psi )(0)

\bigm| \bigm| \bigm| 
t=0

, and, letting \psi range among the coordinate

functions, we deduce that any finite-order expansion in x of exp( - X)\ast (Yi(x)) is a
linear combination of terms of the form

xi1 \cdot \cdot \cdot xip [Yi1 , . . . , Yim , Yi, Yim+1
, . . . , Yip ](0),

where p \geq 1 and 0 \leq m \leq p. By Jacobi's identity, the iterated commutator
[Yi1 , . . . , Yim , Yi, Yim+1

, . . . , Yip ](0) is a linear combination of the vectors YJ(0) with
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\ell (J) = w :=
\sum p

q=1 wiq +wi, and so, by construction, it is a linear combination of the

vectors Y\ell (0) with w\ell \leq w. Hence, letting w\alpha :=
\sum n

q=1 \alpha qwq for all \alpha \in \BbbN n, we have

exp( - X)\ast (Yi(x)) \sim 
\sum 
\ell 

\sum 
\alpha :w\alpha \geq w\ell  - wi

d\alpha i\ell x
\alpha Y\ell (0)

for suitable coefficients d\alpha i\ell \in \BbbR . This gives the required estimate.
The proof of cj\ell (x) = O(\| x\| w\ell  - wj ) is analogous to the preceding argument, once

we observe that

exp( - X)\ast 

\biggl( 
\partial 

\partial xj
(x)

\biggr) 
=

d

dt
exp( - X) \circ exp(X + tYj)(0)

\bigm| \bigm| \bigm| 
t=0

.

We can omit the details.

Lemma 2.4. For any compact set K \subset \BbbR n and any \varepsilon > 0, there exist \eta > 0 and
\lambda > 0 such that \lambda d(\delta 1/\lambda (x), \delta 1/\lambda (y)) < \varepsilon for all x, y \in K with | x  - y| < \eta and all

\lambda \geq \lambda .

Proof. Let \psi \in C\infty (V ) be an arbitrary smooth function. Using (2.4) and Remark
2.2, we have the following identity of formal power series in (s, t) \in \BbbR n \times \BbbR n: letting
S :=

\sum n
i=1 siYi and T :=

\sum n
i=1 tiYi,

(2.10) \psi (exp(S)(0)) \sim (eS\psi )(0) = (eT e - T eS\psi )(0) = (eT eP ( - T,S)\psi )(0).

The truncation PN ( - T, S) of the series P ( - T, S) up to \delta -degree N := wn is

(2.11) PN ( - T, S) =
\sum 

1\leq \ell (J)\leq N

qJ(s, t)YJ ,

where the sum is over all J such that 1 \leq \ell (J) \leq N and qJ is a homogeneous
polynomial with \delta -degree \ell (J), i.e., qJ(\delta \lambda s, \delta \lambda t) = \lambda \ell (J)qJ(s, t). This follows from the
fact that any iterated commutator [Yi1 , . . . , Yik ] is a constant linear combination of

the vector fields YJ 's with \ell (J) =
\sum k

j=1 wij (which in turn is a consequence of Jacobi's
identity).

Moreover, using (2.11) and applying (2.5) with the vector fields YJ in place of
Y1, . . . , Yn, we have the following formal Taylor expansion in (s, t) at 0 \in \BbbR 2n:

\psi 
\bigl( 
exp(PN ( - T, S)) \circ exp(T )(0)

\bigr) 
\sim 
\Bigl( 
eT ePN ( - T,S)\psi 

\Bigr) 
(0),

which, by (2.10), coincides with that of \psi (exp(S)(0)) up to \delta -degree N . Since this
holds for any \psi , we deduce (for instance, letting \psi range among the coordinate func-
tions) that

exp(S)(0) = exp(PN ( - T, S)) \circ exp(T )(0) + o(| s| N + | t| N ),

which by (2.1) gives

s = exp(PN ( - T, S))(t) + o(| s| N + | t| N ) =: f(s, t) + o(| s| N + | t| N ).

Now let s = \delta 1/\lambda (x) and t = \delta 1/\lambda (y) with x, y \in K. Since

qJ(s, t) = \lambda  - \ell (J)qJ(x, y),
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by [15, Theorem 4] we get

d(t, f(s, t)) \leq C
\sum 

1\leq \ell (J)\leq N

| qJ(s, t)| 1/\ell (J) = C\lambda  - 1
\sum 

1\leq \ell (J)\leq N

| qJ(x, y)| 1/\ell (J),

while, by [15, Lemma 2.20(b)],

d(s, f(s, t)) = O(| s - f(s, t)| 1/wn) = o(| s| + | t| ) = o(\lambda  - 1),

provided \lambda is sufficiently large. Thus, by the triangle inequality,

\lambda d(\delta 1/\lambda (x), \delta 1/\lambda (y)) = \lambda d(s, t) \leq C
\sum 

1\leq \ell (J)\leq N

| qJ(x, y)| 1/\ell (J) +
\varepsilon 

2

for all \lambda \geq \lambda , for a suitably large \lambda > 0. Finally, since PN (S, - S) = 0, we can
assume that qJ vanishes on the diagonal of K \times K (possibly replacing qJ(s, t) with
qJ(s, t) - qJ(s, s)). Hence, by compactness of K, we also have

C
\sum 

1\leq \ell (J)\leq N

| qJ(x, y)| 1/\ell (J) <
\varepsilon 

2

whenever x, y \in K are such that | x - y| < \eta , for a suitably small \eta > 0.

We now introduce the vector fields Y\infty 
1 , . . . , Y\infty 

r in \BbbR n defined by

Y\infty 
i (x) :=

n\sum 
j=1

pij(x)
\partial 

\partial xj
,

and we let \scrX \infty = \{ Y\infty 
1 , . . . , Y\infty 

r \} . The vector fields Y\infty 
1 , . . . , Y\infty 

r are known as
the nilpotent approximation of Y1, . . . , Yr at the point 0. In the literature, they are
sometimes denoted by \widehat Yi. By Proposition 2.5 below, the pair (\BbbR n,\scrX \infty ) is a CC
structure. We setM\infty := \BbbR n and call (M\infty ,\scrX \infty ) a tangent CC structure for (M,\scrX )
at the point x0 \in M .

Proposition 2.5. The vector fields Y\infty 
1 , . . . , Y\infty 

r are pointwise linearly indepen-
dent and satisfy the H\"ormander condition in \BbbR n. Moreover, any iterated commutator
Y\infty 
J := [Y\infty 

j1
, [. . . , [Y\infty 

jk - 1
, Y\infty 

jk
] . . . ]] of length \ell (J) = k > s vanishes identically.

Proof. We claim that Theorem 2.3 implies Y\infty 
i = lim\lambda \rightarrow \infty \lambda  - 1(\delta \lambda )\ast Yi, for all

i = 1, . . . , r, in the (local) C\infty -topology (the vector field \lambda  - 1(\delta \lambda )\ast Yi is defined on
\delta \lambda (V )). Indeed, since Yi(x) = Y\infty 

i (x) +
\sum 

j rij(x)
\partial 

\partial xj
, we have

\lambda  - 1((\delta \lambda )\ast Yi)(x) = Y\infty 
i (x) +

n\sum 
j=1

\lambda wj - 1rij(\delta 1/\lambda (x))
\partial 

\partial xj
,

because \lambda  - 1(\delta \lambda )\ast Y
\infty 
i = Y\infty 

i . By Theorem 2.3, the monomials in the Taylor expansion
of rij have \delta -degree greater than wj  - 1. Thus, for any \alpha \in \BbbN n,

\partial | \alpha | 

\partial x\alpha 
(\lambda wj - 1rij(\delta 1/\lambda (x))) = \lambda wj - 1 - w\alpha 

\partial | \alpha | rij
\partial x\alpha 

(\delta 1/\lambda (x)),

where w\alpha :=
\sum 

\ell \alpha \ell w\ell . The monomials in the expansion of
\partial | \alpha | rij
\partial x\alpha have \delta -degree

greater than wj  - 1  - w\alpha , hence | \partial 
| \alpha | rij
\partial x\alpha (\delta 1/\lambda (x))| = o(\lambda  - (wj - 1 - w\alpha )), and the claim

follows.
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In particular, we deduce that for any multi-index J,

(2.12) Y\infty 
J = lim

\lambda \rightarrow \infty 
\lambda  - \ell (J)(\delta \lambda )\ast YJ

in the local C\infty -topology. Hence, defining the n\times n matrix D\lambda :=diag[\lambda w1 , . . . , \lambda wn ]
and recalling that \ell (Jp) = wp, for all p = 1, . . . , n we have

Y\infty 
Jp

(x) = lim
\lambda \rightarrow \infty 

\lambda  - wpD\lambda YJp
(\delta 1/\lambda (x)).

Now the first statement follows from

det(Y\infty 
J1
, . . . , Y\infty 

Jn
)(x) = lim

\lambda \rightarrow \infty 
\lambda  - 

\sum 
i wi det(D\lambda ) det(YJ1 , . . . , YJn)(\delta 1/\lambda (x))

= det(YJ1
, . . . , YJn

)(0) = det(Y1, . . . , Yn)(0),

which is a nonzero constant. This gives the first part of the statement.
In order to prove the last assertion, we use again the fact that \lambda  - 1(\delta \lambda )\ast Y

\infty 
i = Y\infty 

i

for i = 1, . . . , r. For any x \in \BbbR n and any J with \ell (J) > s = wn, we have, by (2.12),

Y\infty 
J (x) = lim

\lambda \rightarrow \infty 
\lambda  - \ell (J)((\delta \lambda )\ast YJ)(x) = lim

\lambda \rightarrow \infty 
\lambda  - \ell (J)D\lambda YJ(\delta 1/\lambda (x)).

The right-hand side is bounded by \lambda s - \ell (J)| YJ(\delta 1/\lambda (x))| (if \lambda \geq 1), which tends to 0
as \lambda \rightarrow \infty . This shows that Y\infty 

J = 0.

Remark 2.6. Setting Y\infty 
i := Y\infty 

Ji
for i = 1, . . . , n, the coordinate functions on

M\infty = \BbbR n are exponential coordinates of the first kind for (Y\infty 
1 , . . . , Y\infty 

n ), namely,

(2.13) x = exp

\Biggl( 
n\sum 

i=1

xiY
\infty 
i

\Biggr) 
(0)

for any x \in \BbbR n. This follows from the fact that, for \lambda large enough (depending on x),
we have y := \delta \lambda  - 1(x) \in V and, using (2.1) with y in place of x,

x = \delta \lambda 

\Biggl( 
exp

\Biggl( \sum 
i

yiYi

\Biggr) 
(0)

\Biggr) 
= exp

\Biggl( \sum 
i

xi\lambda 
 - wi(\delta \lambda )\ast Yi

\Biggr) 
(0) \rightarrow exp

\Biggl( \sum 
i

xiY
\infty 
i

\Biggr) 
(0)

as \lambda \rightarrow \infty , since (2.12) gives \lambda  - wi(\delta \lambda )\ast Yi \rightarrow Y\infty 
i in the local C\infty -topology.

3. The tangent cone to a horizontal curve. Let (M,\scrX ) be a CC structure,
and let \gamma : [ - T, T ] \rightarrow M be a horizontal curve. Given t \in ( - T, T ), let \varphi be a chart
centered at x0 = \gamma (t), as in the previous section, together with the dilations \delta \lambda and
the tangent CC structure (M\infty ,\scrX \infty ) introduced above.

Definition 3.1. The tangent cone Tan(\gamma ; t) to \gamma at t \in ( - T, T ) is the set of all
horizontal curves \kappa : \BbbR \rightarrow M\infty such that there exists an infinitesimal sequence \eta i \downarrow 0
satisfying, for any \tau \in \BbbR ,

lim
i\rightarrow \infty 

\delta 1/\eta i
\varphi 
\bigl( 
\gamma (t+ \eta i\tau )

\bigr) 
= \kappa (\tau ),

with uniform convergence on compact subsets of \BbbR .
We remark that any limit curve as above is automatically (M\infty ,\scrX \infty )-horizontal;

see, e.g., the proof of Theorem 3.6.
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The definition of Tan(\gamma ; t) depends on the choice Y1, . . . , Yn of linearly indepen-
dent iterated commutators. It also depends on the chart \varphi . However, the tangent
cone can be described in a coordinate-free way in terms of the controls; see Remark
3.13. When \gamma : [0, T ] \rightarrow M , the tangent cones Tan+(\gamma ; 0) and Tan - (\gamma ;T ) can be
defined in a similar way: Tan+(\gamma ; 0) contains curves in M\infty defined on [0,\infty ), while
Tan - (\gamma ;T ) contains curves defined on ( - \infty , 0].

WhenM =M\infty orM = G is a Carnot group, there is already a group of dilations
on M itself. In such cases, when \gamma (t) = 0, we define the tangent cone Tan(\gamma ; t) as the
set of horizontal limit curves of the form \kappa (t) = limi\rightarrow \infty \delta 1/\eta i

\gamma (t+ \eta i\tau ).
The tangent cone is closed under uniform convergence of curves on compact sets.

Proposition 3.2. For any horizontal curve \gamma : [ - T, T ] \rightarrow M the tangent cone
Tan(\gamma ; t) is nonempty for any t \in ( - T, T ). The same holds for Tan+(\gamma ; 0) and
Tan - (\gamma ;T ), for a horizontal curve \gamma : [0, T ] \rightarrow M .

Proof. We prove that Tan+(\gamma ; 0) \not = \emptyset . The other cases are analogous. We use
exponential coordinates of the first kind centered at \gamma (0). By (1.1), we have a.e.

\.\gamma =

r\sum 
i=1

hiYi(\gamma ) =

n\sum 
j=1

r\sum 
i=1

hiaij(\gamma )
\partial 

\partial xj
,

where hi \in L\infty ([0, T ]) and aij = pij + rij , as in Theorem 2.3. Letting K := \gamma ([0, T ]),
we have | \.\gamma (t)| \leq C for some constant depending on \| aij\| L\infty (K) and \| h\| L\infty . This
implies that | \gamma (t)| \leq Ct for all t \in [0, T ].

By induction on k \geq 1, we prove the following statement: for any j satisfying
wj \geq k we have | \gamma j(t)| \leq Ctk. The base case k = 1 has already been treated. Now
assume that wj \geq k > 1 and that the statement is true for 1, . . . , k  - 1. Since rij is
smooth, we have rij = qij,k + rij,k, where qij,k is a polynomial containing only terms
with \delta -homogeneous degree at least wj  - wi+1 = wj and with| rij,k(x)| \leq C| x| k - 1 on
K (here | x| denotes the usual Euclidean norm).

Each monomial c\alpha x
\alpha of the polynomial pij + qij,k has \delta -degree w\alpha \geq wj  - 1. If

\alpha m = 0 whenever wm \geq k, then we can estimate

| \gamma (t)\alpha | =
\prod 

m:wm\leq k - 1

| \gamma m(t)| \alpha m \leq Ctw\alpha \leq Ctk - 1,

using the inductive hypothesis with k replaced by wm \leq k - 1. Otherwise, there exists
some index m with wm \geq k and \alpha m > 0, in which case

| \gamma (t)\alpha | \leq C| \gamma m(t)| \leq Ctk - 1,

using the inductive hypothesis with k replaced by k - 1. Thus | pij(\gamma (t))+qij,k(\gamma (t))| \leq 
Ctk - 1. Combining this with the estimate | rij,k(\gamma (t))| \leq Ctk - 1, we obtain | aij(\gamma (t))| \leq 
Ctk - 1. So we finally have

| \gamma j(t)| \leq \| h\| L\infty 

r\sum 
i=1

\int t

0

| aij(\gamma (\tau ))| d\tau \leq Ctk,

completing the inductive proof. Applying the above statement with k = wj , we obtain

(3.1) | \gamma j(t)| \leq Ctwj

for a suitable constant C depending only on K, T, and \| h\| L\infty .

D
ow

nl
oa

de
d 

01
/0

9/
19

 to
 1

47
.1

62
.1

14
.1

38
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3360 R. MONTI, A. PIGATI, AND D. VITTONE

Now we prove that Tan+(\gamma ; 0) is nonempty. For \eta > 0 consider the family of
curves \gamma \eta (t) := \delta 1/\eta (\gamma (\eta t)), defined for t \in [0, T/\eta ]. The derivative of \gamma \eta is a.e.

\.\gamma \eta (t) =

n\sum 
j=1

r\sum 
i=1

hi(\eta t)\eta 
1 - wjaij(\gamma (\eta t))

\partial 

\partial xj
,

where, by Theorem 2.3 and the estimates (3.1), we have

| aij(\gamma (\eta t))| \leq C\| \gamma (\eta t)\| wj - 1 \leq C(\eta t)wj - 1.

This proves that the family of curves (\gamma \eta )\eta >0 is locally Lipschitz equicontinuous. By
the Ascoli--Arzel\`a theorem and a diagonal argument, there exists a subsequence (\gamma \eta i)i
that is converging locally uniformly as \eta i \rightarrow 0 to a curve \kappa : [0,\infty ) \rightarrow \BbbR n.

Remark 3.3. The following result was obtained along the lines of the proof of
Proposition 3.2. Let (M,\scrX ) be a CC structure. Using exponential coordinates of the
first kind, we (locally) identify M with \BbbR n, and we assign to the coordinate xj the
weight wj , as above. Given T > 0 and K compact, there exists a positive constant
C = C(K,T ) such that the following holds: for any horizontal curve \gamma : [0, T ] \rightarrow K
parametrized by arclength and such that \gamma (0) = 0, one has

(3.2) | \gamma j(t)| \leq Ctwj for any j = 1, . . . , n and t \in [0, T ].

In Carnot groups, by homogeneity, the constant C is independent of K and T .

Definition 3.4. We say that v \in \BbbR n is a right tangent vector to a curve \gamma :
[0, T ] \rightarrow \BbbR n at 0 if

\gamma (t) = tv + o(t) as t\rightarrow 0+.

The definition of a left tangent vector is analogous.

The next result is stated in exponential coordinates of the first kind; see Remark
3.11 for a statement which holds in general systems of privileged coordinates. Recall
that V = \varphi (U) is the image of the chart.

Theorem 3.5. Let \gamma : [0, T ] \rightarrow V be a horizontal curve parametrized by arclength,
with \gamma (0) = 0. If \gamma has a right tangent vector v \in \BbbR n at 0, then

(i) vj = 0 for j > r and | v| \leq 1;
(ii) Tan+(\gamma ; 0) = \{ \kappa \} , where \kappa (t) = tv for t \in [0,\infty );
(iii) | v| = 1 if \gamma is also length minimizing.

A similar statement holds if \gamma : [ - T, 0] \rightarrow V has a left tangent vector at 0.

Proof. (i) Since Yi(x) =
\partial 

\partial xi
+ o(1) as x\rightarrow 0, we have

(3.3) \gamma j(t) =

\int t

0

r\sum 
i=1

hi(s)\delta ij ds+ o(t).

We deduce that vj = 0 for j > r and

| v| = lim
t\rightarrow 0+

\bigm| \bigm| \bigm| \gamma (t)
t

\bigm| \bigm| \bigm| \leq lim
t\rightarrow 0+

1

t

\int t

0

| h(s)| ds = 1.

(ii) Since \gamma j(t) = vjt+ o(t) for j \leq r, it suffices to show that

(3.4) \gamma j(t) = o(twj ), j > r.
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Up to a rotation of the vector fields Y1, . . . , Yr, which by (2.1) corresponds to a rotation
of the first r coordinates, we can assume that v2 = \cdot \cdot \cdot = vr = 0. Notice that Theorem
2.3 still applies in these new exponential coordinates. From (3.3) we get

(3.5) lim
t\rightarrow 0+

1

t

\int t

0

hi(s) ds =

\biggl\{ 
v1, i = 1,
0, i = 2, . . . , r.

By Remark 3.3 we have \| \gamma (t)\| = O(t). We now show (3.4) by induction on j \geq r+1.
Assume the claim holds for 1, . . . , j  - 1. The coordinate \gamma j , with j > r, is

\gamma j(t) =

r\sum 
i=1

\int t

0

hi(s)aij(\gamma (s)) ds =

\int t

0

h1(s)a1j(\gamma (s)) ds+

r\sum 
i=2

\int t

0

hi(s)aij(\gamma (s)) ds.

By Theorem 2.3, aij = pij + rij with rij(x) = o(\| x\| wj - 1), so we deduce that

aij(\gamma (s)) = pij(\gamma (s)) + rij(\gamma (s)) = pij(\gamma (s)) + o(swj - 1), i = 1, . . . , r.

From (2.1) we deduce that for i = 1, . . . , r we have Yi(0, . . . , xi, . . . , 0) = \partial 
\partial xi

, and
hence

(3.6) aij(0, . . . , xi, . . . , 0) = 0, j > r.

The polynomial pij(x) is \delta -homogeneous of degree wj  - wi = wj  - 1 and so contains
no variable xk with k \geq j. Condition (3.6) implies that pij(x) does not contain

the monomial x
wj - 1
i either. Thus, when i = 1 each monomial in p1j(x) contains at

least one of the variables x2, . . . , xj - 1. By the inductive assumption, it follows that
p1j(\gamma (s)) = o(swj - 1), and thus a1j(\gamma (s)) = o(swj - 1). This implies that\int t

0

h1(s)a1j(\gamma (s)) ds = o(twj ).

Now we consider the case i = 2, . . . , r. Letting pij = cijx
wj - 1
1 + \widehat pij with cij \in \BbbR 

and \widehat aij := \widehat pij + rij , we have \widehat aij(\gamma (s)) = o(swj - 1) as in the previous case, and thus\int t

0

hi(s)\widehat aij(\gamma (s)) ds = o(twj ).

We claim that, for i = 2, . . . ,m, we also have\int t

0

hi(s)\gamma 1(s)
wj - 1 ds = o(twj ).

Indeed, since vi = 0, we have Hi(s) :=
\int s

0
hi(s

\prime ) ds\prime = o(s), so integration by parts
gives\int t

0

hi(s)\gamma 1(s)
wj - 1 ds = Hi(t)\gamma 1(t)

wj - 1  - (wj  - 1)

\int t

0

Hi(s)\gamma 1(s)
wj - 2 \.\gamma 1(s) ds

= o(twj ) +

\int t

0

o(swj - 1) ds = o(twj ).

This ends the proof of (3.4) and hence of (ii).
(iii) By Theorem 3.6 below, \kappa is parametrized by arclength. But (v1, . . . , vr)

equals its (continuous) control h(t) at t = 0, so | v| = 1.
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For \lambda > 0, we define the vector fields Y \lambda 
1 , . . . , Y

\lambda 
r in \delta \lambda (V ) by

Y \lambda 
i (x) := \lambda  - 1((\delta \lambda )\ast Yi)(x) =

n\sum 
j=1

\lambda wj - 1aij(\delta 1/\lambda (x))
\partial 

\partial xj
, x \in \delta \lambda (V ).

In the proof of Proposition 2.5 it was shown that

(3.7) Y \lambda 
i \rightarrow Y\infty 

i

locally uniformly in \BbbR n as \lambda \rightarrow \infty , together with all the derivatives.
We denote by d\lambda the CC metric of (\delta \lambda (V ),\scrX \lambda ), with \scrX \lambda := \{ Y \lambda 

1 , . . . , Y
\lambda 
r \} . The

distance function d\lambda is related to the distance function d via the formula

(3.8) d\lambda (x, y) = \lambda d
\bigl( 
\delta 1/\lambda (x), \delta 1/\lambda (y)

\bigr) 
for all x, y \in \delta \lambda (V ) and \lambda > 0. Indeed, let \gamma : [0, 1] \rightarrow V be a horizontal curve

(3.9) \gamma (t) = \gamma (0) +

\int t

0

r\sum 
i=1

hi(s)Yi(\gamma (s)) ds, t \in [0, 1],

and define the curve \gamma \lambda : [0, \lambda ] \rightarrow \delta \lambda (V ) as

(3.10) \gamma \lambda (t) := \delta \lambda \gamma (t/\lambda ), t \in [0, \lambda ].

Then we have

(3.11) \gamma \lambda (t) = \gamma \lambda (0) +

\int t

0

r\sum 
i=1

hi(s/\lambda )Y
\lambda 
i (\gamma \lambda (s)) ds, t \in [0, \lambda ],

and therefore the length of \gamma \lambda is

(3.12) L\lambda (\gamma \lambda ) =

\int \lambda 

0

\bigm| \bigm| h(s/\lambda )\bigm| \bigm| ds = \lambda 

\int 1

0

| h(s)| ds = \lambda L(\gamma ).

If \gamma is length minimizing, then the curves in Tan(\gamma ; t) are also locally length
minimizing. This is the topic of the next theorem.

Theorem 3.6. Let \gamma : [ - T, T ] \rightarrow M be a length-minimizing curve in (M,\scrX ),
parametrized by arclength, and let \gamma \infty \in Tan(\gamma ; t0) for some t0 \in ( - T, T ). Then \gamma \infty 

is horizontal, parametrized by arclength, and, when restricted to any compact interval,
it is length minimizing in the tangent CC structure (M\infty ,\scrX \infty ).

Proof. We can assume t0 = 0. We use exponential coordinates of the first kind
centered at \gamma (0). Given any T > 0, for some sequence \lambda j \rightarrow \infty we have

(3.13) \gamma \lambda j (t) := \delta \lambda j\gamma (t/\lambda j) \rightarrow \gamma \infty (t) in L\infty ([ - T , T ]).

With abuse of notation, we write \lambda = \lambda j , and we replace j \rightarrow \infty with \lambda \rightarrow \infty .
Up to a subsequence, we can assume that the functions h(t/\lambda ) weakly converge in
L2([ - T , T ];\BbbR r) to some h\infty \in L2([ - T , T ];\BbbR r) such that | h\infty | \leq 1 a.e. Then, using
(3.11), we have

\gamma \infty (t) = lim
\lambda \rightarrow \infty 

\int t

0

r\sum 
i=1

hi(s/\lambda )Y
\lambda 
i (\gamma \lambda (s)) ds =

\int t

0

r\sum 
i=1

h\infty i Y
\infty 
i (\gamma \infty (s)) ds,
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so \gamma \infty is (M\infty ,\scrX \infty )-horizontal, and, when we denote by d\infty the CC distance onM\infty 

induced by the family \scrX \infty , its length satisfies

(3.14) d\infty (\gamma \infty ( - T ), \gamma \infty (T )) \leq L\infty 
\Bigl( 
\gamma \infty 
\bigm| \bigm| 
[ - T ,T ]

\Bigr) 
=

\int T

 - T

| h\infty | dt \leq 2T .

We will see that, in fact, the converse inequality d\infty (\gamma \infty ( - T ), \gamma \infty (T )) \geq 2T holds
as well, thus proving that \gamma \infty is length minimizing on [ - T , T ] and parametrized by
arclength (with control h\infty ).

Let \kappa \infty : [ - T , T ] \rightarrow \BbbR n be an (M\infty ,\scrX \infty )-horizontal curve such that \kappa \infty (\pm T ) =
\gamma \infty (\pm T ), with control k\infty \in L\infty ([ - T , T ];\BbbR n). For all \lambda large enough, the ordinary
differential equation

(3.15) \.\kappa \lambda (t) =

r\sum 
i=1

k\infty i (t)Y \lambda 
i (\kappa \lambda (t))

with initial condition \kappa \lambda ( - T ) = \kappa \infty ( - T ) has a (unique) solution defined on [ - T , T ].
Indeed, let K be a compact neighborhood of \kappa \infty ([ - T , T ]). For any \varepsilon > 0 we have
\| Y \lambda 

i  - Y\infty 
i \| L\infty (K) \leq \varepsilon eventually. If  - T \in I \subseteq [ - T , T ] is the maximal (compact)

subinterval such that \kappa \lambda is defined on I and \kappa \lambda (I) \subseteq K, we have

| \.\kappa \lambda  - \.\kappa \infty | \leq C\varepsilon + C

r\sum 
i=1

| Y\infty 
i (\kappa \lambda ) - Y\infty 

i (\kappa \infty )| \leq C\varepsilon + C| \kappa \lambda  - \kappa \infty | 

on I, for some C depending on \| k\infty \| L\infty and \| \nabla Y\infty 
i \| L\infty (K). Hence, by Gronwall's

inequality, | \kappa \lambda  - \kappa \infty | \leq C\varepsilon on I. If \varepsilon is small enough, we deduce that \kappa \lambda (max I)
belongs to the interior of K, so I = [ - T , T ]. Since \varepsilon was arbitrary, we also get

(3.16) lim
\lambda \rightarrow \infty 

\kappa \lambda (\pm T ) = \kappa \infty (\pm T ) = \gamma \infty (\pm T ) = lim
\lambda \rightarrow \infty 

\gamma \lambda (\pm T ).

From the length minimality of \gamma \lambda in (\delta \lambda (V ),\scrX \lambda ) it follows that

2T = L\lambda 
\Bigl( 
\gamma \lambda 
\bigm| \bigm| 
[ - T ,T ]

\Bigr) 
\leq L\lambda (\kappa \lambda ) + d\lambda 

\Bigl( 
\kappa \lambda ( - T ), \gamma \lambda ( - T )

\Bigr) 
+ d\lambda 

\Bigl( 
\kappa \lambda (T ), \gamma \lambda (T )

\Bigr) 
=

\int T

 - T

| k\infty (t)| dt+ \lambda d
\Bigl( 
\delta 1/\lambda \kappa 

\lambda ( - T ), \delta 1/\lambda \gamma \lambda ( - T )
\Bigr) 

+ \lambda d
\Bigl( 
\delta 1/\lambda \kappa 

\lambda (T ), \delta 1/\lambda \gamma 
\lambda (T )

\Bigr) 
.

By Lemma 2.4 and (3.16), we have

lim
\lambda \rightarrow \infty 

\lambda d(\delta 1/\lambda \kappa 
\lambda (\pm T ), \delta 1/\lambda \gamma \lambda (\pm T )) = 0.

Hence, 2T \leq 
\int T

 - T
| k\infty (t)| dt = L\infty (\kappa \infty ). Since \kappa \infty was arbitrary, we conclude that

d\infty (\gamma \infty ( - T ), \gamma \infty (T )) \geq 2T .

The following fact is a special case of the general principle according to which the
tangent to the tangent is (contained in the) tangent.

Proposition 3.7. Let \gamma : [ - T, T ] \rightarrow M be a horizontal curve, and let t \in 
( - T, T ). If \kappa \in Tan(\gamma ; t) and \widehat \kappa \in Tan(\kappa ; 0), then \widehat \kappa \in Tan(\gamma ; t).
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Proof. We can assume without loss of generality that t = 0. We use exponential
coordinates of the first kind centered at \gamma (0). Let N > 0 be fixed. Since \widehat \kappa \in Tan(\kappa ; 0),
there exists an infinitesimal sequence \xi k \downarrow 0 such that, for all t \in [ - N,N ] and k \in \BbbN ,
we have

\| \widehat \kappa (t) - \delta 1/\xi k\kappa (\xi kt)\| \leq 1

2k
.

Since \kappa \in Tan(\gamma ; 0), there exists an infinitesimal sequence \eta k \downarrow 0 such that, for all
t \in [ - N,N ] and k \in \BbbN , we have

\| \kappa (\xi kt) - \delta 1/\eta k
\gamma (\eta k\xi kt)\| \leq \xi k

2k
.

It follows that for the infinitesimal sequence \sigma k := \xi k\eta k we have, for all t \in [ - N,N ],

\| \widehat \kappa (t) - \delta 1/\sigma k
\kappa (\sigma kt)\| \leq \| \widehat \kappa (t) - \delta 1/\xi k\kappa (\xi kt)\| + \| \delta 1/\xi k\kappa (\xi kt) - \delta 1/\sigma k

\gamma (\sigma kt)\| \leq 1

2k - 1
.

The thesis now follows by a diagonal argument.

When \gamma : [0, T ] \rightarrow M , there are analogous versions of Propositions 3.6 and 3.7
for Tan+(\gamma ; 0) and Tan - (\gamma ;T ).

Proposition 3.8. Let \kappa : \BbbR \rightarrow M\infty be a horizontal curve in (M\infty ,\scrX \infty ). The
following statements are equivalent:

(i) There exist c1, . . . , cr \in \BbbR such that \.\kappa =
\sum r

i=1 ciY
\infty 
i (\kappa ) and \kappa (0) = 0;

(ii) there exists x0 \in M\infty such that \kappa (t) = \delta t(x0) (here \delta t is defined by (2.2) also
for t \leq 0).

Proof. We prove (i)\Rightarrow (ii). Since (\delta \lambda )\ast Y
\infty 
i = \lambda Y\infty 

i for \lambda \not = 0, the curve \delta \lambda \circ \kappa (\cdot /\lambda )
satisfies the same differential equation, so \delta \lambda \circ \kappa (t/\lambda ) = \kappa (t); choosing \lambda = t we get
\kappa (t) = \delta t(\kappa (1)).

We check (ii)\Rightarrow (i). Up to rescaling time, we can assume that \.\kappa (1) exists and is
a linear combination of Y\infty 

1 (\kappa (1)), . . . , Y\infty 
r (\kappa (1)), so \.\kappa (1) =

\sum 
i hiY

\infty 
i (\kappa (1)) for some

h \in \BbbR r. If h is the control of \kappa , for a.e. s we have

r\sum 
i=1

hiY
\infty 
i (\kappa (1)) = \.\kappa (1) = s

d

dt
\kappa (t/s)

\bigm| \bigm| \bigm| 
t=s

= s
d

dt
(\delta 1/s \circ \kappa (t))

\bigm| \bigm| \bigm| 
t=s

=

r\sum 
i=1

hi(s)Y
\infty 
i (\kappa (1)),

again because s(\delta 1/s)\ast Y
\infty 
i = Y\infty 

i . Since Y\infty 
1 , . . . , Y\infty 

r are pointwise linearly indepen-

dent (see Proposition 2.5), we get h = h a.e.

Definition 3.9. We say that a horizontal curve \kappa in (M\infty ,\scrX \infty ) is a horizontal
line (through 0) if one of conditions (i)--(ii) of Proposition 3.8 holds.

The definitions of positive and negative half-line are similar, and the formulas
above are required to hold for t \geq 0 and t \leq 0, respectively.

Remark 3.10. One of the referees pointed out to us the following example. In \BbbR 3

consider the vector fields X = \partial x and Y = \partial y + x\partial z. The coordinates (x, y, z) are
privileged and the curve \gamma (t) = (t, t, t2/2), t \in \BbbR , has constant control h(t) = (1, 1)
and satisfies (i) and (ii) of Proposition 3.8. So it is a horizontal line in the sense of
Definition 3.9, but it satisfies neither property (ii) of Theorem 3.5 nor (3.4): this is
because the vector fields X and Y are not in exponential coordinates of the first kind.

Remark 3.11. In general systems of privileged coordinates, the fact that vj = 0
for j > r (whenever \gamma has a right tangent vector v) always holds, since | \gamma j(t)| \leq Ct2
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by definition of privileged coordinates. Moreover, in view of Remark 3.13 below, the
conclusions of Theorem 3.5 hold once they are replaced with the following more robust
statements:

(i') | w| \leq 1 for the constant control w \in \BbbR r specified in (ii');
(ii') Tan+(\gamma ; 0) = \{ \kappa \} , where the curve \kappa has constant control w \in \BbbR r; i.e., \gamma 

is a horizontal line in the sense of Definition 3.9 (observe that the proof of
Proposition 3.8 works in general privileged coordinates);

(iii') | w| = 1 if \gamma is also length minimizing.
Also, w = (v1, . . . , vr) if the privileged coordinates satisfy Yi(x) =

\partial 
\partial xi

+ o(1) for

i = 1, . . . , r, as is readily seen from (3.3) and the fact that
\int t

0
hi(s) ds = wit+ o(t).

On the other hand, in exponential coordinates of the first kind, (i) and (ii) of
Proposition 3.8 are equivalent to the fact that \kappa is a straight horizontal line, i.e., that
\kappa (t) = tv for some v \in \BbbR n such that vr+1 = \cdot \cdot \cdot = vn = 0.

Remark 3.12. Let us observe the following fact. Let \gamma : [ - T, T ] \rightarrow M be a
length minimizer parametrized by arclength with control h = (h1, . . . , hr), and let
t \in ( - T, T ) be fixed. Then, the tangent cone Tan(\gamma ; t) contains a horizontal line \kappa 
in M\infty if and only if there exist an infinitesimal sequence \eta i \downarrow 0 and a constant unit
vector c \in Sr - 1 such that

h(t+ \eta i \cdot ) \rightarrow c in L2
loc(\BbbR ,\BbbR r).

As usual, an analogous version holds for Tan+(\gamma ; 0) and Tan - (\gamma ;T ) in the case when
\gamma is a length minimizer parametrized by arclength on the interval [0, T ].

Let us prove our claim; we can set t = 0. Assume that there exists a sequence
\eta i \downarrow 0 such that the curves \gamma i(\tau ) := \delta 1/\eta i

\varphi (\gamma (\eta i\tau )) converge locally uniformly to a
horizontal line \kappa in the tangent CC structure (M\infty ,\scrX \infty ); we have

\gamma i(\tau ) =

\int \tau 

0

r\sum 
j=1

hj(\eta is)Y
1/\eta i

j (\gamma i(s)) ds.

Up to subsequences we have h(\eta i \cdot ) \rightharpoonup h\infty in L2
loc(\BbbR ,\BbbR r), with \| h\infty \| L\infty \leq 1. Since

Y
1/\eta i

j \rightarrow Y\infty 
j locally uniformly, writing h\infty = (h1\infty , . . . , h

r
\infty ) we obtain

\kappa (\tau ) =

\int \tau 

0

r\sum 
j=1

hj\infty (s)Y\infty 
j (\kappa (s)) ds.

By Proposition 3.6, \kappa is parametrized by arclength. So | h\infty | = 1 a.e., and, since \kappa is a
horizontal line, h\infty is constant. Finally, for any compact set K \subset \BbbR , we trivially have
\| h(\eta i \cdot )\| L2(K,\BbbR r) \rightarrow \| h\infty \| L2(K,\BbbR r), which gives h(\eta i \cdot ) \rightarrow h\infty in L2(K,\BbbR r). The reverse
implication (if h(t+\eta i \cdot ) \rightarrow c in L2

loc(\BbbR ,\BbbR r), then Tan(\gamma ; t) contains a horizontal line)
follows a similar argument, detailed more generally below.

Remark 3.13. From the point of view of the controls, a coordinate-free version of
the tangent cone can be defined as follows. Fix a horizontal curve \gamma : [ - T, T ] \rightarrow M
parametrized by arclength, with control h \in L\infty ([ - T, T ],\BbbR r), and a t \in ( - T, T ). We
let cTan(\gamma ; t) \subseteq L\infty (\BbbR ;\BbbR r) be the set of functions k which can be obtained as the
limit, in the weak L2

loc(\BbbR ,\BbbR r)-topology, of a sequence h(t+ \eta i\cdot ) with \eta i \downarrow 0.
Arguing as in Remark 3.12 we get that whenever \kappa \in Tan(\gamma ; t), its control

k (which uniquely determines \kappa ) lies in cTan(\gamma ; t). Conversely, assume that k \in 
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cTan(\gamma ; t), i.e., k = limi\rightarrow \infty h(t + \eta i\cdot ) for some sequence \eta i \downarrow 0; up to subsequences
we have

\delta 1/\eta i
\varphi (\gamma (t+ \eta i\cdot )) \rightarrow \kappa 

for some curve \kappa : \BbbR \rightarrow M\infty , uniformly on compact subsets of \BbbR (with the same proof
as that of Proposition 3.2), so \kappa \in Tan(\gamma ; t) and \kappa has control k.

This establishes a bijective correspondence between Tan(\gamma ; t) and cTan(\gamma ; t).
Moreover, if \gamma is a length minimizer, an equivalent definition of cTan(\gamma ; t) is ob-
tained using the strong L2

loc(\BbbR ,\BbbR r)-convergence (with the same proof as that used in
Remark 3.12), and, in particular, | k| = 1 a.e. for all k \in cTan(\gamma ; t).

In view of this correspondence, the fact that Tan(\gamma ; t) contains (or not) a horizon-
tal line is independent of all the choices made to construct Tan(\gamma ; t). Also, one can
form the tangent cone in any system of privileged coordinates and the correspondence
with cTan(\gamma ; t) still holds, as the key inequality | aij(\gamma (t+ \eta \tau ))| \leq C(\eta \tau )wj - 1, estab-
lished in Proposition 3.2 and needed for the precompactness of the dilated curves, is
satisfied (see, e.g., [10, Proposition 2.2] and recall that d(\gamma (t+ \eta \tau ), \gamma (t)) \leq C\eta \tau ).

4. Lifting the tangent structure to a free Carnot group. In this section
we show how a tangent CC structure (M\infty ,\scrX \infty ) can be lifted to a free Carnot group
F by means of a desingularization process. This is already present in the literature
(see, e.g., [10, section 2.4]); however, we include here a construction also in order to
show that length minimizers in M\infty lift to length minimizers in F .

Let (M\infty ,\scrX \infty ) be a tangent CC structure as in section 2. The Lie algebra
g generated by \scrX \infty = (Y\infty 

1 , . . . , Y\infty 
r ) is nilpotent because, by Proposition 2.5, any

iterated commutator of length greater than s vanishes. The identity (\delta \lambda )\ast Y
\infty 
i = \lambda Y\infty 

i

implies that (\delta \lambda )\ast X \rightarrow 0 pointwise as \lambda \rightarrow 0 for any X \in g. We deduce that the jth
component of X is a polynomial function depending only on the previous variables. It
follows that the flow (x, t) \mapsto \rightarrow exp(tX)(x) is a polynomial function in (x, t) \in M\infty \times \BbbR ,
and X is therefore complete.

Let f be the free Lie algebra of rank r and step s, with generators W1, . . . ,Wr.
The connected, simply connected Lie group F with Lie algebra f can be constructed
explicitly as follows: we let F := f, and we endow F with the group operation A \cdot B :=
P (A,B), where

(4.1) P (A,B) =

s\sum 
p=1

( - 1)p+1

p

\sum 
1\leq ki+\ell i\leq s

[Ak1 , B\ell 1 , . . . , Akp , B\ell p ]

k1! \cdot \cdot \cdot kp!\ell 1! \cdot \cdot \cdot \ell p!
\sum 

i(ki + \ell i)
.

This is a finite truncation of the series in (2.6): the omitted terms vanish by the
nilpotency of f. One readily checks that P (A, 0) = P (0, A) = A and P (A, - A) =
P ( - A,A) = 0, while the associativity identity P (P (A,B), C) = P (A,P (B,C)) is
shown in [8, section X.2] for free Lie algebras and can be deduced for f by truncation.
For any A \in F , t \mapsto \rightarrow tA is a one-parameter subgroup. From this, it is straightforward
to check that f identifies with the Lie algebra of F , with exp : f \rightarrow F given by the
identity map. In particular, exp : f \rightarrow F is a diffeomorphism, and we have

(4.2) exp(A) exp(B) = exp(P (A,B)), A,B \in f.

The group F is a Carnot group, which means that it is a connected, simply
connected, and nilpotent Lie group whose Lie algebra is stratified, i.e., has an assigned
decomposition f = f1 \oplus \cdot \cdot \cdot \oplus fs satisfying [f1, fi - 1] = fi and [f, fs] = \{ 0\} (in this case
f1 is the linear span of W1, . . . ,Wr). The group F just constructed is called the free
Carnot group of rank r and step s.
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Proposition 4.1. The group F is generated by exp(f1).

Proof. See [6, Lemma 1.40].

By the nilpotency of g, there exists a unique homomorphism \psi : f \rightarrow g such that
\psi (Wi) = Y\infty 

i \in g for i = 1, . . . , r. The group F acts on M\infty on the right. The action
M\infty \times F \rightarrow M\infty is given by (x, f) \mapsto \rightarrow x \cdot f := exp(\psi (A))(x), where f = exp(A). In
fact, by (4.2), for any f \prime = exp(B) we have

(4.3) x \cdot (ff \prime ) = exp(P (\psi (A), \psi (B)))(x) = exp(\psi (B)) \circ exp(\psi (A))(x) = (x \cdot f) \cdot f \prime .

The second equality is a consequence of the formula exp(P (tY, tX))(x) = exp(tX) \circ 
exp(tY )(x) for X,Y \in g (with P given by (4.1)), which holds since both sides are
polynomial functions in t, with the same Taylor expansion (by (2.5)). We define the
map

\pi \infty : F \rightarrow M\infty , \pi \infty (f) := 0 \cdot f,

where the dot stands for the right action of F on M\infty .
Let \scrW := \{ W1, . . . ,Wr\} , and extend \scrW to a basis W1, . . . ,WN of f adapted to

the stratification. Via the exponential map exp : f \rightarrow F , the one-parameter group
of automorphisms of f defined by Wk \mapsto \rightarrow \lambda iWk if and only if Wk \in fi induces a
one-parameter group of automorphisms (\widehat \delta \lambda )\lambda >0 of F called dilations.

If A \in f1, for any \lambda > 0 and x \in M\infty we have the identity

exp(\lambda \psi (A))(\delta \lambda (x)) = \delta \lambda 
\bigl( 
exp(\psi (A))(x)

\bigr) 
,(4.4)

which follows from (\delta \lambda )\ast \psi (A) = \lambda \psi (A).

Definition 4.2. We call the CC structure (F,\scrW ) the lifting of (M\infty ,\scrX \infty ) with
projection \pi \infty : F \rightarrow M\infty .

Proposition 4.3. The lifting (F,\scrW ) of (M\infty ,\scrX \infty ) has the following properties:
(i) For any f \in F and i = 1, . . . , r we have \pi \infty 

\ast (Wi(f)) = Y\infty 
i (\pi \infty (f));

(ii) the dilations of F and M\infty commute with the projection; namely, for any
\lambda > 0 we have

\pi \infty \circ \widehat \delta \lambda = \delta \lambda \circ \pi \infty .

Proof. (i) Using the action property (4.3), we find

\pi \infty 
\ast (Wi(f)) =

d

dt
\pi \infty \bigl( f exp(tWi)

\bigr) \bigm| \bigm| \bigm| \bigm| 
t=0

=
d

dt
0 \cdot 
\bigl( 
f exp(tWi)

\bigr) \bigm| \bigm| \bigm| \bigm| 
t=0

=
d

dt
\pi \infty (f) \cdot exp(tWi)

\bigm| \bigm| \bigm| \bigm| 
t=0

= \psi (Wi)(\pi 
\infty (f)) = Y\infty 

i (\pi \infty (f)).

(ii) Let \lambda > 0 and x \in M\infty . By (4.4), for any W \in f1 we have

\delta \lambda (x) \cdot exp(\lambda W ) = exp(\lambda \psi (W ))(\delta \lambda (x)) = \delta \lambda 
\bigl( 
exp(\psi (W ))(x)

\bigr) 
= \delta \lambda (x \cdot exp(W )).

(4.5)

We deduce that the claim holds for any f = exp(W ) with W \in f1, because

\pi \infty (\widehat \delta \lambda (f)) = \pi \infty (exp(\lambda W )) = \delta \lambda (0) \cdot exp(\lambda W ) = \delta \lambda (0 \cdot exp(W )) = \delta \lambda (\pi 
\infty (f)).
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By Proposition 4.1, any f \in F is of the form f = f1f2 . . . fk with each fi \in exp(f1).

Assume by induction that the claim holds for \widehat f = f1f2 . . . fk - 1. By (4.5), letting
fk = exp(W ) we have

\pi \infty (\widehat \delta \lambda (f)) = \pi \infty (\widehat \delta \lambda ( \widehat f) exp(\lambda W )) = \pi \infty (\widehat \delta \lambda ( \widehat f)) \cdot exp(\lambda W )

= \delta \lambda (\pi 
\infty ( \widehat f)) \cdot exp(\lambda W ) = \delta \lambda 

\bigl( 
\pi \infty ( \widehat f) \cdot exp(W )

\bigr) 
= \delta \lambda 

\bigl( 
\pi \infty (f)

\bigr) 
.

Let \kappa : I \rightarrow M\infty be a horizontal curve in (M\infty ,\scrX \infty ), with control h \in L\infty (I,\BbbR r).
A horizontal curve \kappa : I \rightarrow F such that

\kappa = \pi \infty \circ \kappa and \.\kappa (t) =

r\sum 
i=1

hi(t)Wi(\kappa (t)) for a.e. t \in I

is called a lift of \kappa to (F,\scrW ).

Proposition 4.4. Let (F,\scrW ) be the lifting of (M\infty ,\scrX \infty ) with projection \pi \infty :
F \rightarrow M\infty . Then the following facts hold:

(i) If \kappa is length minimizing in (M\infty ,\scrX \infty ), then any horizontal lift \kappa of \kappa is
length minimizing in (F,\scrW ).

(ii) If \kappa is a horizontal (half-)line in F , then \pi \infty \circ \kappa is a horizontal (half-)line in
(M\infty ,\scrX \infty ).

Proof. Claim (i) follows from L(\kappa ) = L(\kappa ) and from the inequality L(\kappa \prime ) =
L(\kappa \prime ) \geq L(\kappa ) whenever \kappa \prime is horizontal with the same endpoints as \kappa and \kappa \prime = \pi \infty \circ \kappa \prime .
We now turn to claim (ii). Let \kappa (t) = exp(tW ) for someW \in f1. The projection \pi 

\infty \circ \kappa 
is horizontal by part (i) of Proposition 4.3. The thesis follows from characterization
(i) for horizontal lines, contained in Proposition 3.8.
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